[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4384346B2 - Ni-Cu-Zn ferrite magnetic material - Google Patents

Ni-Cu-Zn ferrite magnetic material Download PDF

Info

Publication number
JP4384346B2
JP4384346B2 JP2000313072A JP2000313072A JP4384346B2 JP 4384346 B2 JP4384346 B2 JP 4384346B2 JP 2000313072 A JP2000313072 A JP 2000313072A JP 2000313072 A JP2000313072 A JP 2000313072A JP 4384346 B2 JP4384346 B2 JP 4384346B2
Authority
JP
Japan
Prior art keywords
sno
ferrite
stress
magnetic material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000313072A
Other languages
Japanese (ja)
Other versions
JP2002124408A (en
Inventor
山本  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2000313072A priority Critical patent/JP4384346B2/en
Publication of JP2002124408A publication Critical patent/JP2002124408A/en
Application granted granted Critical
Publication of JP4384346B2 publication Critical patent/JP4384346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Ni−Cu−Zn系フェライト磁性材料の組成に係るもので、積層チップ部品および積層インダクタに適した磁性材料に関するものである。
【0002】
【従来の技術】
コイル、トランスの磁性コアとして各種のフェライト燒結体が用いられている。また、コイル、トランスあるいは複合部品を磁性体の積層体内部に周回する導体パターンを形成した積層インダクタで構成することも実用化されている。高周波用の磁性材料としては比抵抗の大きなNi−Zn系あるいはNi−Cu−Zn系フェライトが用いられる。
【0003】
積層インダクタに用いる磁性材料には、幾つかの条件が求められる。第1は内部の銀電極と一体に焼成するために、950°C以下の焼成温度が必要となる。また、一般に低温焼成すると燒結密度が低くなり、機械的強度が低下するが、ある程度の機械的強度を確保することが要求される。また、透磁率等の電気的特性や温度特性の安定なども要求される。
【0004】
また、フェライト材の磁気特性は、フェライト材に加えられる応力の影響を受け易いことが知られており、応力が加わると透磁率に変動が生じ、インダクタとしてのインダクタンスに変動を生じる。コアに巻線を施した従来のインダクタでは、巻線の締め付けの程度を調整することによってばらつきを補正できるが、同時焼成による積層インダクタでは、内部応力にばらつきを生じて特性の変動を避けることが非常に難しい。
【0005】
また、素子を基板に搭載した時の応力、半田の収縮による応力、基板のたわみによる外部応力によってもインダクタンスが変動する。変動対策として、材料の組成にガラスを加えたりする方法が考えられているが、材料の電気的特性の劣化を生じるのが一般的であった。寸法が小さくターン数が限られる積層インダクタでは、材料の電気的特性を維持することが重要となる。
【0006】
【発明が解決しようとする課題】
本発明は、900°C以下の焼成温度でも高い燒結密度を有し、良好な磁器特性を有するNi−Cu−Zn系フェライト磁性材料を提供するものである。積層チップインダクタに用いるときに、電気的特性および温度特性を損なうことなく、内部及び外部応力に対して特性の変動が小さい磁性材料を提供するするものである。
【0007】
【課題を解決するための手段】
本発明は、SnO のみ又は、SnOとLiCO のみを添加することによって、上記の課題を解決するものである。
【0008】
すなわち、NiO:10.44〜44.61mol%ZnO:1.05〜31.32mol%、CuO:8.8211.90mol%、Fe O :45.52〜47.8mol%からなるフェライト材に、SnO のみを0.4〜1.8wt%添加したことを特徴とする。
【0009】
あるいは、NiO:10.44〜44.61mol%ZnO:1.05〜31.32mol%、CuO:8.8211.90mol%、Fe O :45.52〜47.8mol%からなるフェライト材に、SnO およびLi CO のみを、SnO:0.4〜1.8wt%LiCO:0.3〜0.5wt%添加したことを特徴とする。
【0010】
【実施例】
以下、本発明の実施例について説明する。本発明においては、フェライトの基本組成として次の組成をベースにして添加物を加えてその特性を測定した。
A NiO:44.61mol% ZnO:1.05mol% CuO:8.82mol% 残部Fe2O3
B NiO:25.96mol% ZnO:16.23mol% CuO:11.90mol% 残部Fe2O3
C NiO:19.83mol% ZnO:24.12mol% CuO:9.64mol% 残部Fe2O3
D NiO:10.44mol% ZnO:31.32mol% CuO:10.44mol% 残部Fe2O3
G NiO:15.84mol% ZnO:27.45mol% CuO:9.50mol% 残部Fe2O3
【0011】
【実施例1】
上記のBの基本組成となるように原料酸化物を秤量し、これにSnO2を0.6〜3.0wt%、Li2CO3を0.15〜0.75wt%、TiO2を0.3〜1.5wt%の範囲でこれらの1種を添加したもの、およびLi2CO3を0.3wt%そしてSnO2を0.6〜3.0wt%の範囲でこれらを併せて添加したものを、ボールミルで湿式混合を行い、乾燥して原料混合粉を得た。この原料混合粉を大気中で675°Cで2時間仮焼し、その後ボールミルにより20時間湿式粉砕を行い、乾燥してNi-Cu-Zn系フェライト材料を得た。
【0012】
上記材料を造粒し、プレス成型によりトロイダルコア(外径20mm、内径18mm、高さ5mm)および角型コア(外径20mm、内径13mm、高さ5mm)に成形し、大気中で890°Cの温度で2時間焼成してNi−Cu−Zn系フェライトのコアを得た。なお、比較のために上記Bの基本組成そのままの材料からなるコアも作製した。
【0013】
このようにして作製されたフェライトコアについて、燒結密度、μiac(2MHz時)、Q値(10MHz)、温度特性(−25〜+85°C)、加圧変動の評価を行った。その結果を表1に示す。加圧変動は、図1に示すように、角型コアの1辺に20ターンの巻線を施し、巻線を施した辺をオートグラフにより加圧し、そのときのインダクタンス値の変動を測定した。表1には、500kgf/cm2加圧時の結果を示す。
【0014】
【表1】

Figure 0004384346
【0015】
表1から明かなように、SnO、Li2CO3を添加することによって応力変動は軽減されている。また、SnO2の添加量が増大するにしたがって応力(加圧)変動は正の方向に増大するが、1.8wt%を超えると焼成密度が低下して強度確保が困難となるとともに、透磁率の低下が著しくなる。また、0.4wt%未満では応力変動の軽減は確認されない場合が多くなるので、上記の範囲とする。
【0016】
上記のGの基本組成となるように原料酸化物を秤量し、これにSnO2を0.5〜1.5wt%の範囲で添加したもの、およびSnO2を1.0wt%そしてLi2CO3を0.2〜0.6wt%の範囲でこれらを添加したものを、上記と同様の工程でフェライトコアを作製し種々の特性の測定を行なった。測定結果を表2に示す。
【0017】
【表2】
Figure 0004384346
【0018】
表1、表2より明らかなように、SnO2とLi2CO3を複合添加することにより、比較例と同等のμiac値、Q値を有するにもかかわらず、温度変動、応力変動が大幅に軽減された材料が得られている。複合添加時においてSnO2の添加量が増大するにつれて正の方向に増大する。1.8wt%を超えて添加するとμiac値の低下が著しく、また、0.4wt%未満では応力変動の軽減は確認されない。また、Li2CO3においては添加量が0.3〜0.6wt%の範囲外ではμiac値の低下が著しい。したがって、複合添加時の範囲はSnO2の添加量は0.4〜1.8wt%、Li2CO3の添加量は0.3〜0.5wt%の範囲とする。なお、図2に試料17と比較例とのQ値の周波数変動を示したが、添加によるQ値の劣化は見られない。
【0019】
試料17の材料を用いてドクターブレード法によりシート化し、銀を内部導体を銀とする積層チップインダクタを作製した。比較例の材料でも同等に積層チップインダクタを作製した。素子の焼成は大気中で890°Cで2時間とした。素子の形状は、0.8mm×0.8mm×1.6mmで巻数は14ターンとした。
【0020】
このようにして得られた積層チップインダクタについて測定周波数10MHzにおけるインダクタンス値、Q値および直流抵抗を求めた。その結果を表3に示す。
【0021】
【表3】
Figure 0004384346
【0022】
表3に示したように積層チップインダクタに使用したときの電気的特性は比較例とほぼ同様となっている。
【0023】
作製された素子を、図3に示したように、ガラス基材エポキシ樹脂基板(100mm×40mm×0.8mm)に実装し、測定用端子として30mmのリード線を装着し、応力試験用のサンプルとした。測定用のサンプルを、図4に示すように、支点間90mmとして中心部分を加圧し、そのたわみ量とインダクタンス値の変動を測定した。その結果を示したのが図5であり、実施例の素子は比較例の素子に比較して外部応力に対する変動が大幅に軽減されていることが確認された。また、たわみを解放した後の復帰値の変動も軽減されている。
【0024】
上記の例は基本組成がBの材料に添加物を加えたものであるが、前記の基本組成A,C,GについてSnO2、Li2CO3を添加したときのデータを表3から表6に示す。いずれにおいても本発明による所定範囲の添加による応力変動および温度特性変動の防止の効果が確認された。
【0025】
【表4】
Figure 0004384346
【0026】
【表5】
Figure 0004384346
【0027】
【表6】
Figure 0004384346
【0028】
なお、SnO2とLi2CO3はフェライトの基本組成によっては、前記の範囲を若干外れた添加量でも特性的に満足できるものもあるが、共通して一定の特性を確保するためには前記の添加量の範囲とすることが好ましい。
【0029】
【発明の効果】
本発明によれば、低温焼成材料でありながら、外部応力、温度に対して極めて安定した電気的特性を有するNi−Cu−Zn系フェライト磁性材料が得られる。また、この材料を積層チップインダクタだけでなく、巻線タイプのインダクタに利用することもできる。
【図面の簡単な説明】
【図1】 測定方法を示す説明図
【図2】 本発明の特性の説明図
【図3】 測定方法を示す平面図
【図4】 測定方法を示す正面図
【図5】 本発明により得られた積層チップインダクタの特性の説明図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition of a Ni—Cu—Zn ferrite magnetic material, and relates to a magnetic material suitable for a multilayer chip component and a multilayer inductor.
[0002]
[Prior art]
Various ferrite sintered bodies are used as magnetic cores for coils and transformers. In addition, it has been put into practical use to constitute a laminated inductor in which a conductor pattern that wraps around a coil, a transformer, or a composite component inside a magnetic laminate. As a magnetic material for high frequency, Ni-Zn or Ni-Cu-Zn ferrite having a large specific resistance is used.
[0003]
Several conditions are required for the magnetic material used for the multilayer inductor. First, a firing temperature of 950 ° C. or lower is required for firing integrally with the internal silver electrode. In general, sintering at low temperature lowers the sintering density and lowers the mechanical strength, but it is required to ensure a certain level of mechanical strength. In addition, electrical characteristics such as magnetic permeability and temperature characteristics are required to be stable.
[0004]
Further, it is known that the magnetic properties of the ferrite material are easily affected by the stress applied to the ferrite material. When the stress is applied, the magnetic permeability varies, and the inductance as the inductor varies. In conventional inductors with windings on the core, variation can be corrected by adjusting the degree of tightening of the windings, but in multilayer inductors that are fired simultaneously, variations in internal stress can be avoided to avoid fluctuations in characteristics. very difficult.
[0005]
Further, the inductance varies due to stress when the element is mounted on the substrate, stress due to solder contraction, and external stress due to deflection of the substrate. As a countermeasure against the fluctuation, a method of adding glass to the composition of the material has been considered, but it is general that the electrical characteristics of the material are degraded. In multilayer inductors with small dimensions and limited number of turns, it is important to maintain the electrical properties of the material.
[0006]
[Problems to be solved by the invention]
The present invention provides a Ni—Cu—Zn ferrite magnetic material having a high sintering density even at a firing temperature of 900 ° C. or less and having good ceramic characteristics. When used in a multilayer chip inductor, a magnetic material having a small variation in characteristics with respect to internal and external stress is provided without impairing electrical characteristics and temperature characteristics.
[0007]
[Means for Solving the Problems]
The present invention, SnO 2 alone or by adding only SnO 2 and Li 2 CO 3, is intended to solve the foregoing problems.
[0008]
That, NiO: 10.44~44.61mol%, ZnO: 1.05~31.32mol%, CuO: 8.82 ~ 11.90mol%, Fe 2 O 3: a ferrite material composed of 45.52~47.8mol%, only SnO 2 0.4~1.8wt %, characterized in that the added pressure.
[0009]
Alternatively, NiO: 10.44~44.61mol%, ZnO: 1.05~31.32mol%, CuO: 8.82 ~ 11.90mol%, Fe 2 O 3: a ferrite material composed of 45.52~47.8mol%, only SnO 2 and Li 2 CO 3 the, SnO 2: 0.4~1.8wt%, Li 2 CO 3: characterized by being 0.3~0.5Wt% added pressure.
[0010]
【Example】
Examples of the present invention will be described below. In the present invention, additives were added based on the following composition as the basic composition of ferrite, and the characteristics were measured.
A NiO: 44.61 mol% ZnO: 1.05 mol% CuO: 8.82 mol% Remaining Fe 2 O 3
B NiO: 25.96 mol% ZnO: 16.23 mol% CuO: 11.90 mol% Remaining Fe 2 O 3
C NiO: 19.83 mol% ZnO: 24.12 mol% CuO: 9.64 mol% Remaining Fe 2 O 3
D NiO: 10.44 mol% ZnO: 31.32 mol% CuO: 10.44 mol% Remaining Fe 2 O 3
G NiO: 15.84mol% ZnO: 27.45mol% CuO: 9.50mol% Remaining Fe 2 O 3
[0011]
[Example 1]
Weigh the raw materials described above oxide so that the basic composition of B, which in the SnO 2 0.6~3.0wt%, 1 of the Li2CO3 0.15~0.75wt%, of TiO 2 in the range of 0.3 to 1.5% those obtained by adding seeds, and 0.3 wt% and those of SnO 2 added together these range from 0.6~3.0Wt% of Li2 CO3, subjected to wet mixing with a ball mill, and dried to give the raw material mixed powder. This raw material mixed powder was calcined in the atmosphere at 675 ° C. for 2 hours, then wet pulverized by a ball mill for 20 hours, and dried to obtain a Ni—Cu—Zn ferrite material.
[0012]
The above materials are granulated and formed into a toroidal core (outer diameter 20 mm, inner diameter 18 mm, height 5 mm) and square core (outer diameter 20 mm, inner diameter 13 mm, height 5 mm) by press molding, and 890 ° C in the atmosphere The core of Ni-Cu-Zn ferrite was obtained by firing at a temperature of 2 hours. For comparison, a core made of the material with the basic composition B was used.
[0013]
The ferrite core thus fabricated was evaluated for sintering density, μ iac (at 2 MHz), Q value (10 MHz), temperature characteristics (−25 to + 85 ° C.), and pressure fluctuation. The results are shown in Table 1. As shown in FIG. 1, the fluctuation of the pressurization was performed by winding 20 turns on one side of the square core, pressurizing the wound side with an autograph, and measuring the fluctuation of the inductance value at that time. . Table 1 shows the results when 500 kgf / cm 2 is applied.
[0014]
[Table 1]
Figure 0004384346
[0015]
As is apparent from Table 1, the stress fluctuation is reduced by adding SnO 2 and Li 2 CO 3. In addition, the stress (pressurization) fluctuation increases in the positive direction as the amount of SnO 2 added increases. However, if it exceeds 1.8 wt%, the firing density decreases and it becomes difficult to ensure the strength. The decline is significant. Further, if the amount is less than 0.4 wt%, the reduction of stress fluctuation is often not confirmed.
[0016]
The raw material oxide is weighed so as to have the basic composition of G, SnO 2 is added in the range of 0.5 to 1.5 wt%, SnO 2 is 1.0 wt%, and Li 2 CO 3 is 0.2 to 0.6. A ferrite core was prepared in the same process as above by adding these in the wt% range, and various characteristics were measured. The measurement results are shown in Table 2.
[0017]
[Table 2]
Figure 0004384346
[0018]
As is clear from Tables 1 and 2, by adding SnO 2 and Li2CO3 in combination, temperature fluctuations and stress fluctuations are greatly reduced despite having μ iac and Q values equivalent to those of the comparative example. The material is obtained. At the time of composite addition, the amount increases in the positive direction as the amount of SnO 2 added increases. When the amount exceeds 1.8 wt%, the μ iac value is remarkably reduced, and when the amount is less than 0.4 wt%, the reduction in stress fluctuation is not confirmed. In addition, when Li 2 CO 3 is added in an amount outside the range of 0.3 to 0.6 wt%, the μ iac value significantly decreases. Therefore, the range at the time of composite addition is 0.4 to 1.8 wt% for SnO 2 and 0.3 to 0.5 wt% for Li 2 CO 3 . In addition, although the frequency fluctuation of Q value of the sample 17 and a comparative example was shown in FIG. 2, deterioration of Q value by addition is not seen.
[0019]
Using the material of Sample 17, a sheet was formed by the doctor blade method, and a multilayer chip inductor having silver as the inner conductor was produced. Multilayer chip inductors were also manufactured with the material of the comparative example. The device was baked at 890 ° C. for 2 hours in the air. The element shape was 0.8 mm x 0.8 mm x 1.6 mm and the number of turns was 14 turns.
[0020]
With respect to the multilayer chip inductor thus obtained, an inductance value, a Q value and a DC resistance at a measurement frequency of 10 MHz were obtained. The results are shown in Table 3.
[0021]
[Table 3]
Figure 0004384346
[0022]
As shown in Table 3, the electrical characteristics when used for the multilayer chip inductor are almost the same as those of the comparative example.
[0023]
As shown in Fig. 3, the fabricated device is mounted on a glass-based epoxy resin substrate (100mm x 40mm x 0.8mm), a 30mm lead wire is attached as a measurement terminal, and a sample for stress testing is installed. did. As shown in FIG. 4, the sample for measurement was pressed at the center portion with a fulcrum of 90 mm, and the amount of deflection and the variation of the inductance value were measured. FIG. 5 shows the result, and it was confirmed that the variation of the external stress was significantly reduced in the device of the example compared to the device of the comparative example. Further, the fluctuation of the return value after releasing the deflection is also reduced.
[0024]
In the above example, an additive is added to a material having a basic composition B. Tables 3 to 6 show data when SnO 2 and Li 2 CO 3 are added to the basic compositions A, C, and G. In any case, the effect of preventing the stress fluctuation and temperature characteristic fluctuation by adding the predetermined range according to the present invention was confirmed.
[0025]
[Table 4]
Figure 0004384346
[0026]
[Table 5]
Figure 0004384346
[0027]
[Table 6]
Figure 0004384346
[0028]
Although SnO 2 and Li 2 CO 3 may satisfy the characteristics even with an addition amount slightly outside the above range depending on the basic composition of the ferrite, in order to ensure certain characteristics in common, It is preferable to be within the range of the amount of addition.
[0029]
【The invention's effect】
According to the present invention, it is possible to obtain a Ni—Cu—Zn ferrite magnetic material having an extremely stable electrical characteristic with respect to external stress and temperature while being a low-temperature fired material. Further, this material can be used not only for multilayer chip inductors but also for winding type inductors.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a measuring method. FIG. 2 is an explanatory view of characteristics of the present invention. FIG. 3 is a plan view showing a measuring method. FIG. 4 is a front view showing a measuring method. Of characteristics of a multilayer chip inductor

Claims (2)

NiO:10.44〜44.61mol%、ZnO:1.05〜31.32mol%、CuO:8.82〜11.90mol%、Fe O :45.52〜47.8mol%からなるフェライト材に、SnO のみを0.4〜1.8wt%添加したことを特徴とするNi−Cu−Zn系フェライト磁性材料。NiO: 10.44~44.61mol%, ZnO: 1.05~31.32mol %, CuO: 8.82~11.90mol%, Fe 2 O 3: a ferrite material composed of 45.52~47.8mol%, 0.4~1.8wt% added only SnO 2 A Ni-Cu-Zn ferrite magnetic material characterized by having been added. NiO:10.44〜44.61mol%、ZnO:1.05〜31.32mol%、CuO:8.82〜11.90mol%、Fe O :45.52〜47.8mol%からなるフェライト材に、SnO およびLi CO のみを、SnO:0.4〜1.8wt%LiCO:0.3〜0.5wt%添加したことを特徴とするNi−Cu−Zn系フェライト磁性材料。NiO: 10.44~44.61mol%, ZnO: 1.05~31.32mol %, CuO: 8.82~11.90mol%, Fe 2 O 3: a ferrite material composed of 45.52~47.8mol%, only SnO 2 and Li 2 CO 3, SnO 2: 0.4~1.8wt%, Li 2 CO 3: 0.3~0.5wt% added pressure and Ni-Cu-Zn based ferrite magnetic material characterized in that the.
JP2000313072A 2000-10-13 2000-10-13 Ni-Cu-Zn ferrite magnetic material Expired - Lifetime JP4384346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313072A JP4384346B2 (en) 2000-10-13 2000-10-13 Ni-Cu-Zn ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313072A JP4384346B2 (en) 2000-10-13 2000-10-13 Ni-Cu-Zn ferrite magnetic material

Publications (2)

Publication Number Publication Date
JP2002124408A JP2002124408A (en) 2002-04-26
JP4384346B2 true JP4384346B2 (en) 2009-12-16

Family

ID=18792545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313072A Expired - Lifetime JP4384346B2 (en) 2000-10-13 2000-10-13 Ni-Cu-Zn ferrite magnetic material

Country Status (1)

Country Link
JP (1) JP4384346B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576727B2 (en) * 2001-02-23 2010-11-10 株式会社村田製作所 Oxide magnetic ceramic composition and inductor component using the same
JP4532401B2 (en) 2005-12-21 2010-08-25 Tdk株式会社 NiCuZn-based ferrite and electronic component using the same
WO2008096795A1 (en) * 2007-02-07 2008-08-14 Hitachi Metals, Ltd. Low-loss ferrite and electronic component using the same
JP5841312B2 (en) * 2007-04-17 2016-01-13 日立金属株式会社 Low loss ferrite and electronic parts using the same
WO2012173147A1 (en) * 2011-06-15 2012-12-20 株式会社 村田製作所 Laminated coil component and method for manufacturing said laminated coil component
CN105683125B (en) 2013-10-31 2019-04-23 户田工业株式会社 Ferrite cemented body, ferrite sintered plate and ferrite sintered sheet material

Also Published As

Publication number Publication date
JP2002124408A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
KR101543752B1 (en) Composite ferrite composition and electronic device
KR101839204B1 (en) Composite ferrite composition and electronic component
JP5841312B2 (en) Low loss ferrite and electronic parts using the same
KR20090115938A (en) Low-loss ferrite and electronic component using the same
JP2002255637A (en) Oxide magnetic ceramic composition and inductor component using the composition
KR20160118973A (en) Ferrite composition and electronic component
TWI704120B (en) Ferrite sintered body and electronic component using thereof
JP3635016B2 (en) Ferrite material
JP4668404B2 (en) Magnetic material and coil parts using the magnetic material
JP4384346B2 (en) Ni-Cu-Zn ferrite magnetic material
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP5871017B2 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP7508986B2 (en) Ferrite sintered body and wound coil parts
KR20160118974A (en) Ferrite composition and electronic component
KR102362501B1 (en) Ferrite composition and multilayer electronic component
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP4831457B2 (en) Ferrite magnetic material and electronic component using the same
JP7508985B2 (en) Ferrite sintered body and wound coil parts
US20010028051A1 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
JP2599887B2 (en) Magnetic materials for chip parts
JP3947343B2 (en) Magnetic ferrite material
JP6079951B2 (en) Ferrite-based magnetic body, method for producing the same, and electronic component using the ferrite-based magnetic body
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
JP7578121B2 (en) Ceramic composition and wire-wound coil component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070419

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4384346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141002

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350