JP4380120B2 - Electrical steel sheet with insulation film - Google Patents
Electrical steel sheet with insulation film Download PDFInfo
- Publication number
- JP4380120B2 JP4380120B2 JP2002224524A JP2002224524A JP4380120B2 JP 4380120 B2 JP4380120 B2 JP 4380120B2 JP 2002224524 A JP2002224524 A JP 2002224524A JP 2002224524 A JP2002224524 A JP 2002224524A JP 4380120 B2 JP4380120 B2 JP 4380120B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- moles
- silicate
- film
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主としてモーターや変圧器に使用される、表面に絶縁皮膜を有する電磁鋼板において、6価クロムのような有害物質を含まず、塩素イオン存在下での耐食性、歪取り焼鈍後の密着性に優れた無方向性電磁鋼板に関する。
【0002】
【従来の技術】
モーターや変圧器などに広く使用される電磁鋼板には、渦電流損失を低減させて電流効率を高めるため、その表面に絶縁皮膜が形成されている。モーターや変圧器では、絶縁皮膜が形成された電磁鋼板を所定の形状に打ち抜くかもしくは剪断した後、積層し、この積層体をTIG溶接またはカシメにより固定し、必要に応じて歪取り焼鈍を施した後、巻き線を施して製品となる。
【0003】
このように使用される電磁鋼板の絶縁皮膜には、本来の目的である高い絶縁性に加えて、皮膜の密着性、溶接性、耐食性、打ち抜き性などさまざまな特性に優れていることが要求される。さらに歪取り焼鈍が施される場合には、鋼板どうしが密着(スティック)しないような特性(以下、耐スティッキング性と称する)も求められる。
【0004】
このような特性を有する絶縁皮膜として、無機質皮膜に有機樹脂を含有した無機有機系皮膜が広く使用されている。例えば特公昭60-36476号公報には少なくとも1種の2価金属を含む重クロム酸塩系水溶液に酢酸ビニル/ベオバの樹脂エマルジョンおよび有機還元剤を配合した処理液を鋼板表面に塗布し、常法による焼付工程を経て得られる電磁鋼板の絶縁皮膜形成方法が開示されている。この絶縁皮膜付き電磁鋼板は、前記の種々の性能を満足する。また特開平3-240970号公報にはクロム酸とAl、Mg等の酸化物と、樹脂粒子径が0.2〜0.5μmの有機樹脂エマルジョン(アクリル、スチレン、酢酸ビニルおよび/またはこれらの共重合体樹脂)および樹脂粒子径が1〜50μmの有機樹脂エマルジョン(メチルメタアクリレート、ポリアクリロニトリル、ポリスチレン等の樹脂および/またはこれらの共重合体樹脂、架橋体樹脂)とからなる処理液を電磁鋼板の表面に塗布し、焼き付けることにより絶縁皮膜を形成する方法が開示されている。
【0005】
しかしながらこれらの処理液中には6価クロムが含まれており、環境汚染の問題が懸念されるとともに、廃棄処理や廃液処理にコストがかかる問題がある。
【0006】
一方このような課題改善を目的とし、クロム系化合物を含まない皮膜処理液として、特開平11-152579号公報のように第1リン酸Alと樹脂エマルジョンと皮膜の吸湿性改善のために添加されるOHを含有する有機化合物からなる処理液を鋼板表面に塗布し、焼き付ける方法が開示されている。また特開平10-36976号公報のようにガラス転移点が30〜150℃の樹脂とシリカ、ケイ酸塩(Li、Na、K)からなる皮膜を有する鋼板が開示されている。
【0007】
また2層化を図ることにより高い層間絶縁性、耐食性、密着性を実現することを目的とした特開平9-141199号公報のように、リン酸塩皮膜の上にエポキシエステル系樹脂およびメラミン樹脂からなる水溶性樹脂を形成したものが開示されている。
【0008】
【発明が解決しようとする課題】
特開平11-152579号公報に記載の方法によれば、リン酸AlをベースとしてOHを含有する有機化合物を添加することにより、リン酸塩系皮膜のフリーなPO4の吸湿によるベトツキをある程度抑制できることを可能としたものである。しかしながら耐食性、特に塩素イオン存在下での耐食性はクロム酸塩系化合物を使用したものに比べて、大きく劣るという問題があった。
【0009】
一方、特開平10-36976号公報に記載の方法によれば、樹脂・シリカゾル系により低温焼付を可能とし、さらに樹脂のガラス転移点や皮膜中のアルカリ金属量を規制することで耐溶剤性を向上させたものである。しかしながら無機コロイド状物質では下地電磁鋼板との密着性が十分には得られず、特に歪取り焼鈍後の密着性に劣るといった問題があり、上述のようなクロム化合物フリーの無機−有機系絶縁皮膜は、クロム酸塩系をベースとした無機有機系絶縁皮膜の品質性能に比べて不十分なものであった。
【0010】
また特開平9-141199号公報の記載によれば、リン酸塩皮膜と特定の水溶性樹脂の2層化により、層間絶縁性、耐食性、密着性に優れる絶縁皮膜としたものである。しかしながら本技術では上層皮膜が樹脂皮膜単体であるために、歪取り焼鈍が必要な用途に使用できないといった問題があった。
【0011】
本発明は上述した問題を解決すべくなされたものであり、歪取り焼鈍が可能であり、塩素イオン存在下での耐食性、歪取り焼鈍後の密着性に優れた絶縁皮膜付き電磁鋼板を提供するものである。
【0012】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するための手段について鋭意検討を重ねた結果、リン化合物を主体とする下層皮膜を形成した後、ケイ酸塩を主体とする皮膜を形成することにより、高い耐食性、層間絶縁性が得られ、かつ歪取り焼鈍後においても優れた耐食性や層間絶縁性が得られることを見出したものである。
【0013】
本発明はこのような知見に基づいてなされたもので、その特徴は以下の通りである。
【0014】
[1]電磁鋼板の表面に第1層として厚さ0.2〜1μmのリン化合物を含む皮膜を形成し、更にその上層に第2層として厚さ0.1〜1μmのケイ酸塩を含む皮膜を形成した複層皮膜を有し、第1層と第2層の合計膜厚が0.3〜1μmであり、前記ケイ酸塩は、Li、Na、Kの中から選ばれる1種以上のアルカリ金属および/またはCaを含むケイ酸塩であり、かつ前記ケイ酸塩に含まれるSiO 2 のモル数とアルカリ金属のモル数(M 2 O換算)および/またはCaのモル数(CaO換算)の比{SiO 2 モル数/(M 2 O換算モル数とCaO換算モル数の合計モル数)}が2以上8以下であることを特徴とする塩素イオン存在下での耐食性、歪取り焼鈍後の密着性に優れた絶縁皮膜付き電磁鋼板。
【0015】
[2]電磁鋼板の表面に第1層として厚さ0.2〜1μmのリン化合物を含む皮膜を形成し、更にその上層に第2層として厚さ0.1〜1μmのケイ酸塩と有機樹脂エマルジョンを含む皮膜を形成した複層皮膜を有し、第1層と第2層の合計膜厚が0.3〜1μmであり、前記ケイ酸塩は、Li、Na、Kの中から選ばれる1種以上のアルカリ金属および/またはCaを含むケイ酸塩であり、かつ前記ケイ酸塩に含まれるSiO 2 のモル数とアルカリ金属のモル数(M 2 O換算)および/またはCaのモル数(CaO換算)の比{SiO 2 モル数/(M 2 O換算モル数とCaO換算モル数の合計モル数)}が2以上8以下であることを特徴とする塩素イオン存在下での耐食性、歪取り焼鈍後の密着性に優れた絶縁皮膜付き電磁鋼板。
【0016】
[3]電磁鋼板の表面に第1層として厚さ0.2〜1μmのリン化合物と有機樹脂エマルジョンを含む皮膜を形成し、更にその上層に第2層として厚さ0.1〜1μmのケイ酸塩と有機樹脂エマルジョンを含む皮膜を形成した複層皮膜を有し、第1層と第2層の合計膜厚が0.3〜1μmであり、前記ケイ酸塩は、Li、Na、Kの中から選ばれる1種以上のアルカリ金属および/またはCaを含むケイ酸塩であり、かつ前記ケイ酸塩に含まれるSiO 2 のモル数とアルカリ金属のモル数(M 2 O換算)および/またはCaのモル数(CaO換算)の比{SiO 2 モル数/(M 2 O換算モル数とCaO換算モル数の合計モル数)}が2以上8以下であることを特徴とする塩素イオン存在下での耐食性、歪取り焼鈍後の密着性に優れた絶縁皮膜付き電磁鋼板。
【0017】
[4]前記リン化合物は、無機リン酸、無機リン酸塩、有機リン酸、有機リン酸塩の中から選ばれる1種また2種以上を含むことを特徴とする[1]〜[3]のいずれかに記載の絶縁皮膜付き電磁鋼板。
【0018】
[5]前記無機リン酸塩は、Zn、Al、Mg、Mn、Mo、Ca、Sr、Ceの中から選ばれる1種または2種以上の金属元素を含む第一リン酸塩からなることを特徴とする、[4]に記載の絶縁皮膜付き電磁鋼板。
【0019】
[6]前記金属元素を含む第一リン酸塩は、第一リン酸亜鉛を含むことを特徴とする、[5]に記載の絶縁皮膜付き電磁鋼板。
【0022】
[7]前記有機樹脂エマルジョンが、エポキシ系樹脂、スチレン系樹脂、フェノール系樹脂、メラミン系樹脂、ポリエステル系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、シリコン系樹脂の各種樹脂エマルジョンの中から選ばれる1種または2種以上からなり、その配合量は、リン化合物及びケイ酸塩の固形成分の合計100重量部に対して樹脂固形分の合計で5〜100重量部であることを特徴とする、[2]〜[6]の何れかに記載の絶縁皮膜付き電磁鋼板。
【0023】
【発明の実施の形態】
以下、本発明の詳細をその限定理由とともに説明する。
本発明において、絶縁皮膜を形成する基板となる鋼板は、モーターやトランスなどの電気製品に利用される鉄芯用の電磁鋼板である。このような電磁鋼板としては、無方向性電磁鋼板や方向性電磁鋼板が一般的であるが、これ以外にも軟鋼板、ステンレス鋼板、その他の特殊鋼板などでもよく、基板となる鋼板は特に限定されない。本発明の効果は、これらいずれの鋼板を基板とした場合でも得ることができる。
【0024】
本発明の絶縁皮膜は下層(第1層)としてリン化合物を含む皮膜を形成し、更にその上層に第2層としてケイ酸塩を含む皮膜を形成した複層皮膜を有する。
【0025】
第1層として形成される皮膜に含まれるリン化合物は、無機リン酸、その塩、有機リン酸、その塩の中から選ばれる1種また2種であることが好ましい。
【0026】
このような2層化によって塩素イオン存在下での耐食性が向上する理由は次のように考えられる。すなわち前記リン化合物は吸湿性があり、腐食環境では溶出しやすい状態であると考えられ、ケイ酸塩皮膜をその上層に形成することにより、リン化合物の溶出を抑制し、耐食性が向上するものと考えられる。また前記リン化合物は下地である鋼板と反応することにより強固な密着性を実現するとともに、皮膜の不均一な部分をケイ酸塩で覆うことで、鋼板−皮膜界面を鋼板が腐食しにくいアルカリ環境へ導くためだと考えられる。さらにケイ酸塩は皮膜がガラス質で、有機樹脂などと比べて緻密であるため、第2層として有機樹脂を形成した場合と比べて、塩素イオンや水などのバリヤー性が高いため、より耐食性に優れるものと考えられる。
【0027】
また2層化皮膜として、下層にケイ酸塩系皮膜を形成し、その上層にリン化合物系皮膜を形成した場合は、本発明と同様の効果は得られない。これは上層にリン化合物系皮膜を形成しても、上層部分が腐食環境により溶出してしまうためだと考えられる。
【0028】
第1層として形成するリン化合物を含む皮膜において、無機リン酸及びその塩としては、例えばオルトリン酸、ピロリン酸、ポリリン酸、メタリン酸などの無機リン酸、これらの金属塩や金属塩以外の化合物などを皮膜処理液中に添加することにより、皮膜成分として含有させることができる。また有機リン酸及びその塩としては、例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩を、皮膜処理液中に添加することにより皮膜成分として含有させてもよい。
【0029】
皮膜処理液の安定性の点から、無機リン酸塩が好ましく、無機リン酸塩としては、Zn、Al、Mg、Mn、Mo、Ca、Sr、Ceの中から選ばれる1種または2種以上の金属元素を含む第一リン酸塩が好ましい。第一リン酸亜鉛を添加すると、耐食性がより良好になるので、前記第一リン酸塩は、第一リン酸亜鉛を含むことがより好ましい。第一リン酸亜鉛を添加することで耐食性が向上するのは、亜鉛イオンが鉄に対して優れた防錆性を有しているためと考えられる。
【0030】
皮膜中でのリン酸及びその塩などのリン化合物の存在形態については特に限定されない。
【0031】
皮膜中における金属成分の存在形態については特別な限定はなく、金属として、あるいは酸化物、水酸化物、水和酸化物、リン酸化合物として存在していてもよい。
【0032】
皮膜中に金属イオン成分を導入するためには、特に限定されないが、リン酸塩、硫酸塩、硝酸塩、塩化物などとして皮膜処理液中に添加すればよい。
【0033】
第2層して形成するケイ酸塩皮膜は、ケイ酸塩水溶液またはケイ酸塩水溶液とケイ酸コロイドの混合物を塗布して焼付を行えばよく、これによってガラス質の皮膜を表面に形成することができる。
【0034】
ケイ酸塩水溶液としては、市販のリチウムシリケートや水ガラスと呼ばれるケイ酸ソーダ、ケイ酸カリウム、ケイ酸カルシウム等を用いればよく、またケイ酸コロイドについても市販のコロイダルシリカやコロイドゾルを用いればよい。これらのケイ酸塩水溶液の中でも、リチウムシリケートは皮膜外観が白変化しにくく、耐食性にも優れるため好ましい。ケイ酸カルシウムは最も耐食性に優れているが、水溶液の安定性が低いため、リチウムシリケートと複合化することがバランスの点から好ましい。
【0035】
ケイ酸塩に含まれるSiO 2 のモル数([SiO 2 ])と、アルカリ金属のモル数(M 2 O換算、[M 2 O])および/またはCaのモル数(CaO換算、[CaO])との比、[SiO 2 ]/([M 2 O]+[CaO])は、2以上8以下であることが好ましい。前記モル数比[SiO 2 ]/([M 2 O]+[CaO])が2未満では、皮膜中に含まれるアルカリ金属が多いため、吸湿しやすく、耐食性に劣るとともに、皮膜表面が白変化しやすくなるため好ましくない。また前記モル数比[SiO 2 ]/([M 2 O]+[CaO])が8超では、密着性に劣るため好ましくない。
【0036】
本発明では、前記第1層及び第2層に有機樹脂エマルジョンを含有させてもよい。この場合、有機樹脂エマルジョンは少なくとも第2層に含有させることが好ましい。
【0037】
有機樹脂エマルジョンは、エポキシ系樹脂、スチレン系樹脂、フェノール系樹脂、メラミン系樹脂、ポリエステル系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、シリコン系樹脂の各種樹脂エマルジョンの中から選ばれる1種または2種以上から選ばれる少なくとも1種以上が好ましい。有機樹脂エマルジョンを添加することにより、連続打ち抜き性、耐スティッキング性等が向上する。またその粒子径は0.3μm以上2.5μm未満が好ましい範囲である。
【0038】
これは有機樹脂エマルジョンの樹脂粒子径が0.3μm未満では、耐スティッキング性が十分ではなく、一方2.5μm以上では耐食性が劣り、また耐スティッキング性にも劣る傾向があるためである。また特に優れた耐食性と耐スティッキング性を必要とする場合には、有機樹脂エマルジョンの樹脂粒子径は0.5〜1.5μm、更に好ましくは0.5〜1μmとすることが好ましい。
【0039】
上記有機樹脂エマルジョンの処理液中での配合量は、リン化合物及びケイ酸塩の固形成分の合計100重量部に対して樹脂固形分の合計で5〜100重量部とすることが好ましい。有機樹脂エマルジョンの配合量が5重量部未満では、耐スティッキング性の改善効果が十分に得られず、また皮膜中での有機樹脂の割合も少なくなるため打ち抜き性も劣るため好ましくない。一方配合量が100重量部を超えると耐食性が劣化する傾向があるため好ましくない。より好ましい配合量の範囲は20〜50重量部である。
【0040】
本発明の電磁鋼板の絶縁皮膜は、第1層用の処理液を鋼板表面に塗布後、乾燥し、さらに第2層用の処理液を塗布後、焼付を行うことにより形成される。少なくとも第2層の皮膜を焼き付ける場合の温度は200℃以上であることが好ましい。200℃未満では第1層および第2層とも水系の処理液から形成するため、皮膜の脱水が十分でなく、緻密な絶縁皮膜が得られないため耐食性が低下する恐れがある。
【0041】
第1層の膜厚は0.2〜1μmとする。0.2μm未満では耐食性向上効果が十分でなく、1μm超では密着性や溶接性に劣る。第2層の膜厚は0.1〜1μmとする。0.1μm未満では耐食性耐食性向上効果が十分でなく、1μm超では密着性や溶接性に劣る。
【0042】
第1層と第2層の合計膜厚は0.3〜2μmとすることが好ましい。合計膜厚が0.3μm未満では絶縁性、耐スティッキング性、耐食性が劣り、一方合計膜厚が2μm超では皮膜の密着性並びに占積率や溶接性が劣るため好ましくない。特に好ましい合計膜厚は0.3〜1μmである。
【0043】
なお、絶縁皮膜の形成方法は、ロールコーターなどの既知の方法で電磁鋼板表面に塗布した後、熱風乾燥炉や誘導加熱炉で焼付を行う方法がある。
【0044】
【実施例】
(実施例1)
下層(第1層)絶縁皮膜形成用の処理液として表1、上層(第2層)絶縁皮膜形成用の処理液として表2に示す処理液を、各々調整し、これら処理液を板厚0.5mmの無方向性電磁鋼板の表面に、所定の皮膜厚となるように、ロールコーティング法により塗布した後、これを誘導加熱装置で焼付を行い、絶縁皮膜を形成した供試材を作成した。下層および上層の皮膜厚および焼付温度を表3及び表4に記載した。
【0045】
【表1】
【0046】
【表2】
【0047】
作成した供試材について、耐食性(歪取り焼鈍有り・無し)、皮膜密着性(歪取り焼鈍有り・無し)、層間抵抗(歪取り焼鈍有り・無し)を評価した。その結果を表3及び表4に合わせて記載した。性能評価方法は以下に示す。
【0048】
(a)耐食性:歪取り焼鈍無し
供試材を70mm×150mmに切断し、この供試材の裏面およびエッジ部をシールした後、JIS Z 2371に規定された塩水噴霧試験を15時間行い、試験後の赤錆発生面積率により耐食性を評価した。その評価基準は以下の通りである。
◎+:赤錆発生率10%以下。
◎:赤錆発生率10%超、20%以下。
○:赤錆発生率20%超、40%以下。
△:赤錆発生率40%超、60%以下。
×:赤錆発生率60%超。
【0049】
(b)耐食性:歪取り焼鈍有り
供試材を70mm×150mmに切断し、歪取り焼鈍(750℃×2時間、N2ガス雰囲気中)を施した後に裏面およびエッジ部をシールした後、50℃・95%RHの条件下での湿潤試験を96時間行い、試験後の赤錆発生面積率により耐食性を評価した。その評価基準は以下の通りである。
◎:赤錆発生率20%以下。
○:赤錆発生率20%超、40%以下。
△:赤錆発生率40%超、60%以下。
×:赤錆発生率60%超。
【0050】
(c)皮膜密着性:歪取り焼鈍無し
供試材に10mmφの曲げ加工を施した後、曲げ部にテープ剥離試験を実施し、テープへの皮膜剥離率を目視で判定することにより皮膜密着性を評価した。その評価基準は以下の通りである。
◎:剥離無し。
○:剥離率20%未満。
△:剥離率20%超、40%未満。
×:剥離率40%超。
【0051】
(d)皮膜密着性:歪取り焼鈍有り
供試材に歪取り焼鈍(750℃×2時間、N2ガス雰囲気中)を施した後、10mmφの曲げ加工を施した後、曲げ部にテープ剥離試験を実施し、テープへの皮膜剥離率を目視で判定することにより皮膜密着性を評価した。その評価基準は以下の通りである。
◎:剥離無し。
○:剥離率20%未満。
△:剥離率20%超、40%未満。
×:剥離率40%超。
【0052】
(e)層間抵抗:歪取り焼鈍無し
供試材をJIS C 2550に規定された層間抵抗測定(第2法)により評価した。その評価基準は以下の通りである。
◎:30Ωcm/枚超。
○:10Ωcm/枚超、30Ωcm/枚以下。
△:5Ωcm/枚超、10Ωcm/枚以下。
×:5Ωcm/枚以下。
【0053】
(f)層間抵抗:歪取り焼鈍有り
供試材に歪取り焼鈍(750℃×2時間、N2ガス雰囲気中)を施した後、JIS C 2550に規定された層間抵抗測定(第2法)により評価した。その評価基準は以下の通りである。
◎:10Ωcm/枚超。
○:5Ωcm/枚超、10Ωcm/枚以下。
△:3Ωcm/枚超、5Ωcm/枚以下。
×:3Ωcm/枚以下。
【0054】
【表3】
【0055】
【表4】
【0056】
表1〜4から明らかなように、本発明による絶縁皮膜を形成した電磁鋼板は、耐食性(歪取り焼鈍有り・無し)、皮膜密着性(歪取り焼鈍有り・無し)、層間抵抗(歪取り焼鈍有り・無し)のいずれにも優れている。これに対して比較例は耐食性(歪取り焼鈍有り・無し)、皮膜密着性(歪取り焼鈍有り・無し)、層間抵抗(歪取り焼鈍有り・無し)の何れかに劣っている。
【0057】
(実施例2)
下層(第1層)絶縁皮膜形成用の処理液として表5及び上層(第2層)絶縁皮膜形成用の処理液として表6に示す処理液を、各々調整し、これら処理液を板厚0.5mmの無方向性電磁鋼板の表面に、所定の皮膜厚となるように、ロールコーティング法により塗布した後、これを誘導加熱装置で焼付を行い、絶縁皮膜を形成した供試材を作成した。下層および上層の皮膜厚および焼付温度を表7及び表8に記載した。
【0058】
作成した供試材について、実施例1と同様にして、耐食性(歪取り焼鈍有り・無し)、皮膜密着性(歪取り焼鈍有り・無し)、層間抵抗(歪取り焼鈍有り・無し)を評価した。その結果を表7及び表8に合わせて記載した。
【0059】
【表5】
【0060】
【表6】
【0061】
【表7】
【0062】
【表8】
【0063】
表5〜8から明らかなように、本発明による絶縁皮膜を形成した電磁鋼板は、耐食性(歪取り焼鈍有り・無し)、皮膜密着性(歪取り焼鈍有り・無し)、層間抵抗(歪取り焼鈍有り・無し)のいずれにも優れている。これに対して比較例は耐食性(歪取り焼鈍有り・無し)、皮膜密着性(歪取り焼鈍有り・無し)、層間抵抗(歪取り焼鈍有り・無し)の何れかに劣っている。
【0064】
【発明の効果】
以上に述べた本発明の絶縁皮膜を形成した電磁鋼板によれば、クロム化合物を含まないで、従来のクロム化合物を含む無機−有機混合系皮膜と同等の皮膜特性が得られる。すなわち塩素イオン存在下での歪取り焼鈍前の耐食性、歪取り焼鈍後の密着性に優れ、他の皮膜特性も良好な絶縁皮膜が得られる。本発明の電磁鋼板は、絶縁皮膜はクロム化合物を含まないので、安全衛生上の問題点がほとんどなく、環境問題にも対応可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly used for motors and transformers, in an electrical steel sheet having an insulating film on its surface, does not contain harmful substances such as hexavalent chromium, corrosion resistance in the presence of chlorine ions, adhesion after strain relief annealing The present invention relates to a non-oriented electrical steel sheet having excellent properties.
[0002]
[Prior art]
In order to reduce eddy current loss and increase current efficiency, electrical steel sheets widely used in motors and transformers have an insulating film formed on the surface thereof. In motors and transformers, electrical steel sheets with insulating coatings are punched out or sheared into a predetermined shape and then laminated, and this laminate is fixed by TIG welding or caulking, and subjected to strain relief annealing as necessary. After that, it is wound into a product.
[0003]
Insulating coatings for electrical steel sheets used in this way are required to be excellent in various properties such as coating adhesion, weldability, corrosion resistance, and punchability in addition to the original high insulation properties. The Further, when strain relief annealing is performed, a characteristic that prevents the steel sheets from sticking to each other (hereinafter referred to as sticking resistance) is also required.
[0004]
As an insulating film having such characteristics, inorganic organic films containing an organic resin in an inorganic film are widely used. For example, in Japanese Patent Publication No. 60-36476, a treatment liquid in which a dichromate aqueous solution containing at least one divalent metal is mixed with a vinyl acetate / veova resin emulsion and an organic reducing agent is applied to the steel sheet surface. An insulating film forming method for an electromagnetic steel sheet obtained through a baking process by a method is disclosed. This electrical steel sheet with an insulating film satisfies the above-mentioned various performances. Japanese Patent Application Laid-Open No. 3-240970 discloses an organic resin emulsion (acrylic, styrene, vinyl acetate and / or copolymer resin thereof) having a chromic acid and an oxide such as Al and Mg and a resin particle size of 0.2 to 0.5 μm. ) And an organic resin emulsion (resin such as methyl methacrylate, polyacrylonitrile, polystyrene and / or their copolymer resin, crosslinked resin) having a resin particle size of 1 to 50 μm on the surface of the electrical steel sheet A method of forming an insulating film by applying and baking is disclosed.
[0005]
However, these treatment liquids contain hexavalent chromium, which raises concerns about environmental pollution and costs for disposal and waste liquid treatment.
[0006]
On the other hand, for the purpose of improving such problems, as a film treatment liquid not containing a chromium-based compound, it is added to improve the hygroscopicity of primary phosphoric acid Al, resin emulsion, and film as disclosed in JP-A-11-152579. A method is disclosed in which a treatment liquid comprising an organic compound containing OH is applied to the surface of a steel sheet and baked. Further, as disclosed in Japanese Patent Application Laid-Open No. 10-36976, a steel sheet having a film made of a resin having a glass transition point of 30 to 150 ° C., silica, and silicate (Li, Na, K) is disclosed.
[0007]
In addition, an epoxy ester resin and a melamine resin are formed on a phosphate film as disclosed in Japanese Patent Application Laid-Open No. 91-141199, which aims to realize high interlayer insulation, corrosion resistance, and adhesion by forming two layers. What formed the water-soluble resin which consists of is disclosed.
[0008]
[Problems to be solved by the invention]
According to the method described in Japanese Patent Application Laid-Open No. 11-152579, by adding an organic compound containing OH based on Al phosphate, the stickiness due to moisture absorption of free PO 4 in the phosphate film is suppressed to some extent. It is possible to do it. However, there is a problem that the corrosion resistance, particularly the corrosion resistance in the presence of chloride ions, is greatly inferior to that using a chromate compound.
[0009]
On the other hand, according to the method described in Japanese Patent Application Laid-Open No. 10-36976, low temperature baking is possible with a resin / silica sol system, and the solvent resistance is improved by regulating the glass transition point of the resin and the amount of alkali metals in the film. It is an improvement. However, the inorganic colloidal material does not provide sufficient adhesion to the underlying electrical steel sheet, and in particular has a problem of poor adhesion after strain relief annealing. Was insufficient compared to the quality performance of inorganic organic insulating films based on chromate.
[0010]
Further, according to the description of JP-A-9-11199, an insulating film having excellent interlayer insulation, corrosion resistance, and adhesion is obtained by forming a phosphate film and a specific water-soluble resin into two layers. However, in this technique, since the upper film is a single resin film, there is a problem that it cannot be used for applications that require strain relief annealing.
[0011]
The present invention has been made to solve the above-described problems, and provides an electrical steel sheet with an insulating film that is capable of strain relief annealing and is excellent in corrosion resistance in the presence of chlorine ions and adhesion after strain relief annealing. Is.
[0012]
[Means for Solving the Problems]
As a result of earnestly examining the means for solving the above problems, the present inventors formed a lower layer film mainly composed of a phosphorus compound, and then formed a film mainly composed of a silicate, It has been found that high corrosion resistance and interlayer insulation can be obtained, and that excellent corrosion resistance and interlayer insulation can be obtained even after strain relief annealing.
[0013]
The present invention has been made based on such findings, and the features thereof are as follows.
[0014]
[1] A film containing a phosphorus compound having a thickness of 0.2 to 1 μm is formed as a first layer on the surface of the magnetic steel sheet, and further a silicate having a thickness of 0.1 to 1 μm is included as a second layer on the upper layer. It has a multilayer film in which a film is formed, the total film thickness of the first layer and the second layer is 0.3-1 μm, and the silicate is one or more selected from Li, Na, K Silicate containing alkali metal and / or Ca, and the number of moles of SiO 2 and the number of moles of alkali metal contained in the silicate (in terms of M 2 O) and / or the number of moles of Ca (in terms of CaO) ) Ratio {SiO 2 moles / ( total moles of M 2 O equivalents and CaO equivalents)} is 2 or more and 8 or less, corrosion resistance in the presence of chloride ions, strain relief annealing An electrical steel sheet with an insulating film with excellent adhesion afterwards.
[0015]
[2] A film containing a phosphorus compound having a thickness of 0.2 to 1 μm is formed as a first layer on the surface of the electromagnetic steel sheet, and further a silicate and an organic material having a thickness of 0.1 to 1 μm are formed as a second layer thereon. It has a multilayer film in which a film containing a resin emulsion is formed, the total film thickness of the first layer and the second layer is 0.3 to 1 μm, and the silicate is selected from Li, Na, and K Silicate containing at least one alkali metal and / or Ca and the number of moles of SiO 2 and the number of moles of alkali metal (in terms of M 2 O) and / or the mole of Ca contained in the silicate Number (CaO equivalent) ratio {SiO 2 moles / ( total moles of M 2 O equivalents and CaO equivalents)} is 2 or more and 8 or less, corrosion resistance in the presence of chloride ions An electrical steel sheet with an insulating coating that has excellent adhesion after strain relief annealing.
[0016]
[3] A film containing a phosphorus compound having a thickness of 0.2 to 1 μm and an organic resin emulsion is formed as a first layer on the surface of the electrical steel sheet, and a 0.1 to 1 μm thick film is formed as a second layer thereon. It has a multilayer film in which a film containing an acid salt and an organic resin emulsion is formed, the total film thickness of the first layer and the second layer is 0.3 to 1 μm, and the silicate includes Li, Na, K Is a silicate containing at least one alkali metal and / or Ca selected from the above, and the number of moles of SiO 2 and the number of moles of alkali metal (in terms of M 2 O) contained in the silicate and / or Or the ratio of the number of moles of Ca (calculated in CaO) {SiO 2 mole number / ( total mole number of M 2 O converted mole number and CaO converted mole number)} is 2 or more and 8 or less. Insulation skin with excellent corrosion resistance and adhesion after strain relief annealing Electromagnetic steel sheet attached.
[0017]
[4] The phosphorus compound includes one or more selected from inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, and organic phosphate [1] to [3] The electrical steel sheet with an insulating film as described in any of the above.
[0018]
[5] The inorganic phosphate is composed of a primary phosphate containing one or more metal elements selected from Zn, Al, Mg, Mn, Mo, Ca, Sr, and Ce. The electrical steel sheet with an insulating film according to [4], which is characterized.
[0019]
[6] The first phosphate salt containing the metal element is characterized by comprising a first zinc phosphate, the insulation coating with an electromagnetic steel sheet according to [5].
[0022]
[7] The organic resin emulsion is selected from various resin emulsions of epoxy resins, styrene resins, phenol resins, melamine resins, polyester resins, vinyl acetate resins, acrylic resins, and silicon resins. It consists of 1 type or 2 types or more, The compounding quantity is 5-100 weight part in total with resin solid content with respect to 100 weight part of total of the solid component of a phosphorus compound and a silicate, [2] to [6] The electrical steel sheet with an insulating film according to any one of [6] .
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described together with the reasons for limitation.
In the present invention, the steel plate serving as the substrate on which the insulating film is formed is an electromagnetic steel plate for iron cores used in electric products such as motors and transformers. As such an electrical steel sheet, a non-oriented electrical steel sheet and a directional electrical steel sheet are generally used, but other than this, a mild steel sheet, a stainless steel sheet, other special steel sheets, etc. may be used, and the steel sheet used as a substrate is particularly limited. Not. The effect of the present invention can be obtained even when any of these steel plates is used as a substrate.
[0024]
The insulating film of the present invention has a multilayer film in which a film containing a phosphorus compound is formed as a lower layer (first layer) and a film containing a silicate is formed as a second layer thereon.
[0025]
The phosphorus compound contained in the film formed as the first layer is preferably one or two selected from inorganic phosphoric acid, a salt thereof, organic phosphoric acid, and a salt thereof.
[0026]
The reason why the corrosion resistance in the presence of chlorine ions is improved by such two-layer formation is considered as follows. That is, the phosphorus compound is hygroscopic and is considered to be easily eluted in a corrosive environment, and by forming a silicate film on the upper layer, the dissolution of the phosphorus compound is suppressed and the corrosion resistance is improved. Conceivable. In addition, the phosphorus compound reacts with the underlying steel plate to achieve strong adhesion, and the non-uniform portion of the coating is covered with silicate, so that the steel plate-coating interface is less susceptible to corrosion by the steel plate. It is thought that it is to lead to. Furthermore, silicate has a glassy film and is denser than organic resins, so it has higher barrier properties such as chlorine ions and water compared to the case where organic resin is formed as the second layer. It is considered excellent.
[0027]
Further, when a silicate film is formed in the lower layer and a phosphorus compound film is formed in the upper layer as the two-layer film, the same effect as in the present invention cannot be obtained. This is considered to be because even if a phosphorus compound-based film is formed on the upper layer, the upper layer part is eluted by the corrosive environment.
[0028]
In the film containing the phosphorus compound formed as the first layer, the inorganic phosphoric acid and its salt include, for example, inorganic phosphoric acid such as orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, and metaphosphoric acid, and compounds other than these metal salts and metal salts And the like can be added as a film component by adding them to the film treatment solution. As the organic phosphoric acid and its salt, for example, phytic acid, phytate, phosphonic acid and phosphonate may be added as a film component by adding them to the film treatment solution.
[0029]
In view of the stability of the coating solution, inorganic phosphate is preferable, and the inorganic phosphate is one or more selected from Zn, Al, Mg, Mn, Mo, Ca, Sr, and Ce. A primary phosphate containing the above metal elements is preferred. When the primary zinc phosphate is added, the corrosion resistance becomes better. Therefore, it is more preferable that the primary phosphate contains the primary zinc phosphate. The reason why the corrosion resistance is improved by adding primary zinc phosphate is thought to be because zinc ions have excellent antirust properties against iron.
[0030]
There are no particular limitations on the form of phosphorus compounds such as phosphoric acid and its salts in the film.
[0031]
There are no particular limitations on the form of the metal component in the film, and it may exist as a metal or as an oxide, hydroxide, hydrated oxide, or phosphate compound.
[0032]
In order to introduce a metal ion component into the film, it is not particularly limited, but it may be added to the film treatment solution as a phosphate, sulfate, nitrate, chloride or the like.
[0033]
The silicate film formed as the second layer may be baked by applying a silicate aqueous solution or a mixture of silicate aqueous solution and silicate colloid, thereby forming a glassy film on the surface. Can do.
[0034]
As the silicate aqueous solution, commercially available lithium silicate or sodium silicate called water glass, potassium silicate, calcium silicate or the like may be used, and commercially available colloidal silica or colloidal sol may be used for the silicate colloid. Among these silicate aqueous solutions, lithium silicate is preferable because the appearance of the film hardly changes to white and is excellent in corrosion resistance. Calcium silicate is most excellent in corrosion resistance, but since the stability of the aqueous solution is low, it is preferably combined with lithium silicate from the viewpoint of balance.
[0035]
The number of moles of SiO 2 contained in the silicate ([SiO 2 ]), the number of moles of alkali metal (in terms of M 2 O, [M 2 O]) and / or the number of moles of Ca (in terms of CaO, [CaO] ) And [SiO 2 ] / ([M 2 O] + [CaO]) are preferably 2 or more and 8 or less. In the molar ratio [SiO 2] / ([M 2 O] + [CaO]) is less than 2, since the alkali metal contained in the film is large, moisture easily, with inferior corrosion resistance, white coating surface changes Since it becomes easy to do, it is not preferable. Also, the molar ratio [SiO 2] / ([M 2 O] + [CaO]) in 8 greater, undesirably poor adhesion.
[0036]
In the present invention, the first layer and the second layer may contain an organic resin emulsion. In this case, the organic resin emulsion is preferably contained in at least the second layer.
[0037]
The organic resin emulsion is one or two selected from epoxy resin, styrene resin, phenol resin, melamine resin, polyester resin, vinyl acetate resin, acrylic resin, and silicon resin. At least one selected from at least one species is preferred. By adding the organic resin emulsion, continuous punching property, sticking resistance and the like are improved. The particle size is preferably in the range of 0.3 μm or more and less than 2.5 μm.
[0038]
This is because if the resin particle diameter of the organic resin emulsion is less than 0.3 μm, the sticking resistance is not sufficient, while if it is 2.5 μm or more, the corrosion resistance tends to be poor and the sticking resistance tends to be poor. When particularly excellent corrosion resistance and sticking resistance are required, the resin particle diameter of the organic resin emulsion is preferably 0.5 to 1.5 μm, more preferably 0.5 to 1 μm.
[0039]
The blending amount of the organic resin emulsion in the treatment liquid is preferably 5 to 100 parts by weight in total of the resin solid content with respect to 100 parts by weight of the solid components of the phosphorus compound and silicate. When the blending amount of the organic resin emulsion is less than 5 parts by weight, the effect of improving the sticking resistance cannot be sufficiently obtained, and the ratio of the organic resin in the film is reduced, so that the punching property is inferior. On the other hand, if the blending amount exceeds 100 parts by weight, the corrosion resistance tends to deteriorate, such being undesirable. A more preferable range of the blending amount is 20 to 50 parts by weight.
[0040]
The insulating film of the electrical steel sheet according to the present invention is formed by applying a treatment liquid for the first layer on the surface of the steel sheet, then drying, and further applying a treatment liquid for the second layer, followed by baking. The temperature for baking at least the second layer coating is preferably 200 ° C. or higher. If the temperature is lower than 200 ° C., both the first layer and the second layer are formed from an aqueous processing solution, so that the film is not sufficiently dehydrated and a dense insulating film cannot be obtained, which may reduce the corrosion resistance.
[0041]
The film thickness of the first layer is 0.2-1 μm. If it is less than 0.2 μm, the effect of improving corrosion resistance is not sufficient, and if it exceeds 1 μm, the adhesion and weldability are poor. The film thickness of the second layer is 0.1-1 μm. If it is less than 0.1 μm, the effect of improving corrosion resistance and corrosion resistance is not sufficient, and if it exceeds 1 μm, the adhesion and weldability are poor.
[0042]
The total film thickness of the first layer and the second layer is preferably 0.3-2 μm. If the total film thickness is less than 0.3 μm, the insulation, sticking resistance and corrosion resistance are inferior. On the other hand, if the total film thickness exceeds 2 μm, the film adhesion and space factor and weldability are inferior. A particularly preferable total film thickness is 0.3 to 1 μm.
[0043]
In addition, the formation method of an insulating film has the method of baking in a hot-air drying furnace or an induction heating furnace, after apply | coating to the surface of a magnetic steel plate by known methods, such as a roll coater.
[0044]
【Example】
(Example 1)
The treatment liquid shown in Table 1 as the treatment liquid for forming the lower layer (first layer) insulating film and the treatment liquid shown in Table 2 as the treatment liquid for forming the upper layer (second layer) insulation film were prepared, respectively. After applying to the surface of mm non-oriented electrical steel sheet by a roll coating method so as to have a predetermined film thickness, this was baked with an induction heating device to prepare a test material on which an insulating film was formed. The film thickness and baking temperature of the lower layer and the upper layer are shown in Tables 3 and 4.
[0045]
[Table 1]
[0046]
[Table 2]
[0047]
The prepared test materials were evaluated for corrosion resistance (with and without strain relief annealing), film adhesion (with and without strain relief annealing), and interlayer resistance (with and without strain relief annealing). The results are shown in Table 3 and Table 4. The performance evaluation method is shown below.
[0048]
(A) Corrosion resistance: Test material without strain relief annealing was cut into 70mm x 150mm, and the back and edges of this test material were sealed, and then subjected to the salt spray test specified in JIS Z 2371 for 15 hours. Corrosion resistance was evaluated by the subsequent red rust generation area ratio. The evaluation criteria are as follows.
◎ +: Red rust occurrence rate is 10% or less.
A: Red rust occurrence rate is over 10% and 20% or less.
○: Red rust occurrence rate is over 20% and 40% or less.
Δ: Red rust occurrence rate is over 40% and 60% or less.
X: Red rust occurrence rate is over 60%.
[0049]
(B) corrosion resistance: After a stress relief annealing there test material was cut into 70 mm × 150 mm, stress relief annealing (750 ° C. × 2 hours, N 2 gas atmosphere) seals the rear surface and the edge portion after being subjected to, 50 Wet test under the condition of ℃ ・ 95% RH was conducted for 96 hours, and corrosion resistance was evaluated by the area ratio of red rust generated after the test. The evaluation criteria are as follows.
A: Red rust occurrence rate is 20% or less.
○: Red rust occurrence rate is over 20% and 40% or less.
Δ: Red rust occurrence rate is over 40% and 60% or less.
X: Red rust occurrence rate is over 60%.
[0050]
(C) Film adhesion: After subjecting the specimen without strain relief annealing to 10mmφ, tape peeling test is performed on the bent part, and film adhesion to the tape is judged visually. Evaluated. The evaluation criteria are as follows.
A: No peeling.
○: Peeling rate is less than 20%.
Δ: Peeling rate is over 20% and less than 40%.
X: Peeling rate is over 40%.
[0051]
(D) Film adhesion: With strain relief annealing After subjecting the specimen to strain relief annealing (750 ° C x 2 hours in N 2 gas atmosphere), bending to 10mmφ, and then peeling the tape to the bend The test was carried out, and the film adhesion was evaluated by visually determining the film peeling rate on the tape. The evaluation criteria are as follows.
A: No peeling.
○: Peeling rate is less than 20%.
Δ: Peeling rate is over 20% and less than 40%.
X: Peeling rate is over 40%.
[0052]
(E) Interlaminar resistance: The specimens without strain relief annealing were evaluated by interlaminar resistance measurement (second method) defined in JIS C 2550. The evaluation criteria are as follows.
A: More than 30 Ωcm / sheet.
○: More than 10Ωcm / sheet, 30Ωcm / sheet or less.
Δ: Over 5Ωcm / sheet, 10Ωcm / sheet or less.
×: 5 Ωcm / sheet or less.
[0053]
(F) Interlayer resistance: With strain relief annealing After subjecting the specimen to strain relief annealing (750 ° C x 2 hours in N 2 gas atmosphere), interlayer resistance measurement specified in JIS C 2550 (second method) It was evaluated by. The evaluation criteria are as follows.
A: More than 10 Ωcm / sheet.
○: More than 5Ωcm / sheet, 10Ωcm / sheet or less.
Δ: More than 3Ωcm / sheet, 5Ωcm / sheet or less.
×: 3Ωcm / sheet or less.
[0054]
[Table 3]
[0055]
[Table 4]
[0056]
As is apparent from Tables 1 to 4, the electrical steel sheet formed with the insulating coating according to the present invention has corrosion resistance (with or without strain relief annealing), coating adhesion (with or without strain relief annealing), and interlayer resistance (strain relief annealing). Excellent with or without). On the other hand, the comparative example is inferior in any of corrosion resistance (with or without strain relief annealing), film adhesion (with or without strain relief annealing), and interlayer resistance (with or without strain relief annealing).
[0057]
(Example 2)
The treatment liquid shown in Table 5 as the treatment liquid for forming the lower layer (first layer) insulating film and the treatment liquid shown in Table 6 as the treatment liquid for forming the upper layer (second layer) insulation film were adjusted, respectively, and these treatment liquids had a thickness of 0.5. After applying to the surface of mm non-oriented electrical steel sheet by a roll coating method so as to have a predetermined film thickness, this was baked with an induction heating device to prepare a test material on which an insulating film was formed. The film thickness and baking temperature of the lower layer and the upper layer are shown in Tables 7 and 8.
[0058]
For the prepared specimens, the corrosion resistance (with or without strain relief annealing), film adhesion (with or without strain relief annealing), and interlayer resistance (with or without strain relief annealing) were evaluated in the same manner as in Example 1. . The results are shown in Table 7 and Table 8.
[0059]
[Table 5]
[0060]
[Table 6]
[0061]
[Table 7]
[0062]
[Table 8]
[0063]
As is apparent from Tables 5 to 8, the electrical steel sheet formed with the insulating coating according to the present invention has corrosion resistance (with or without strain relief annealing), coating adhesion (with or without strain relief annealing), and interlayer resistance (strain relief annealing). Excellent with or without). On the other hand, the comparative example is inferior in any of corrosion resistance (with or without strain relief annealing), film adhesion (with or without strain relief annealing), and interlayer resistance (with or without strain relief annealing).
[0064]
【The invention's effect】
According to the above-described electrical steel sheet on which the insulating film of the present invention is formed, film characteristics equivalent to those of a conventional inorganic-organic mixed film containing a chromium compound can be obtained without containing a chromium compound. That is, an insulating film having excellent corrosion resistance before strain relief annealing in the presence of chloride ions, adhesion after strain relief annealing, and other excellent film properties can be obtained. In the electrical steel sheet of the present invention, since the insulating film does not contain a chromium compound, there are almost no safety and health problems and it is possible to cope with environmental problems.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002224524A JP4380120B2 (en) | 2002-08-01 | 2002-08-01 | Electrical steel sheet with insulation film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002224524A JP4380120B2 (en) | 2002-08-01 | 2002-08-01 | Electrical steel sheet with insulation film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004068032A JP2004068032A (en) | 2004-03-04 |
JP4380120B2 true JP4380120B2 (en) | 2009-12-09 |
Family
ID=32012465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002224524A Expired - Lifetime JP4380120B2 (en) | 2002-08-01 | 2002-08-01 | Electrical steel sheet with insulation film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4380120B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4725094B2 (en) * | 2004-12-14 | 2011-07-13 | Jfeスチール株式会社 | Electrical steel sheet with insulation coating |
JP4878788B2 (en) * | 2005-07-14 | 2012-02-15 | 新日本製鐵株式会社 | Insulating coating agent for electrical steel sheet containing no chromium |
JP4669451B2 (en) * | 2006-07-26 | 2011-04-13 | 新日本製鐵株式会社 | Electrical steel sheet having a multilayer film with excellent film adhesion and good magnetic properties, and method for producing the same |
JP4669457B2 (en) * | 2006-09-14 | 2011-04-13 | 新日本製鐵株式会社 | Electrical component comprising a magnetic steel sheet having a multilayer coating with excellent film adhesion and good magnetic properties, and its manufacturing method |
US9365931B2 (en) | 2006-12-01 | 2016-06-14 | Kobe Steel, Ltd. | Aluminum alloy with high seawater corrosion resistance and plate-fin heat exchanger |
EP2047981B1 (en) * | 2007-09-20 | 2010-11-03 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy material having an excellent sea water corrosion resistance and plate heat exchanger |
JP5651002B2 (en) * | 2010-12-16 | 2015-01-07 | 株式会社神戸製鋼所 | Soft magnetic steel parts having excellent AC magnetic characteristics and manufacturing method thereof |
KR102223864B1 (en) * | 2018-11-30 | 2021-03-04 | 주식회사 포스코 | Electrical steel sheet and manufacturing method of the same |
CN111318434A (en) * | 2018-12-13 | 2020-06-23 | 宝山钢铁股份有限公司 | Treatment method of non-oriented electrical steel material |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357781A (en) * | 1986-08-25 | 1988-03-12 | Kobe Steel Ltd | Silicon steel sheet having insulating film |
JPH0238582A (en) * | 1988-07-28 | 1990-02-07 | Kobe Steel Ltd | Electrical steel sheet with formed insulating coating film |
JP3408410B2 (en) * | 1997-11-19 | 2003-05-19 | 新日本製鐵株式会社 | Surface treatment agent for non-oriented electrical steel sheet and method of forming film using the same |
JP3435080B2 (en) * | 1998-10-23 | 2003-08-11 | 新日本製鐵株式会社 | Non-oriented electrical steel sheet with excellent coating properties |
JP2000219976A (en) * | 1999-02-01 | 2000-08-08 | Nippon Steel Corp | Non-chromium type heat resisting treated steel sheet |
JP4474714B2 (en) * | 2000-02-04 | 2010-06-09 | Jfeスチール株式会社 | Method for producing electrical steel sheet with insulating coating |
JP2002038279A (en) * | 2000-07-25 | 2002-02-06 | Nippon Steel Corp | Grain-oriented magnetic steel sheet superior in bend adhesion to long transverse direction and suitable for direct ignition |
JP2002212754A (en) * | 2001-01-19 | 2002-07-31 | Nippon Steel Corp | Surface treated metallic sheet having excellent press galling resistance and coil deformation resistance, and method for manufacturing the same |
JP4268344B2 (en) * | 2001-04-12 | 2009-05-27 | Jfeスチール株式会社 | Electrical steel sheet with insulating coating that is excellent in workability |
-
2002
- 2002-08-01 JP JP2002224524A patent/JP4380120B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004068032A (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5181571B2 (en) | Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
KR101774187B1 (en) | Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating | |
JP5082601B2 (en) | Treatment liquid for insulating film formation of electrical steel sheets | |
KR101433276B1 (en) | Chromium-free insulation coating material for non-oriented silicon steel | |
JPH06330338A (en) | Production of non-oriented electric steel sheet having extremely good film characteristic | |
JP2001107261A (en) | Silicon steel sheet deposited with insulating film | |
JP4474714B2 (en) | Method for producing electrical steel sheet with insulating coating | |
JP4380120B2 (en) | Electrical steel sheet with insulation film | |
JP2002047576A (en) | Treating solution and treating method for forming insulating film on silicon steel sheet | |
JP4360667B2 (en) | Electrical steel sheet with insulation film | |
JP6558325B2 (en) | Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer | |
KR100817157B1 (en) | Method for manufacturing of cr-free coating solution for non-oriented electrical steel sheet with excellent solution stability | |
JP3572938B2 (en) | Electrical steel sheet with excellent sticking and corrosion resistance | |
JP6074129B2 (en) | Electrical steel sheet with insulation film | |
JP2003193252A (en) | Method of producing silicon steel sheet with insulating film having excellent film appearance | |
JPH0443715B2 (en) | ||
JPH04110476A (en) | Production of electrical steel sheet with insulating coating film having superior adhesion and insulating property even after strain relief annealing | |
JP3381632B2 (en) | Electrical steel sheet with excellent odor resistance, sticking resistance and corrosion resistance | |
JP4905382B2 (en) | Electrical steel sheet with insulating coating | |
JPS5985872A (en) | Electrical sheet having electrically insulating film generating no malodor during welding | |
JP4081230B2 (en) | Electrical steel sheet with excellent magnetic properties suitable for mold cores | |
JPH04235287A (en) | Method for forming insulating film on magnetic steel sheet | |
JPS60152681A (en) | Insulating film on nonoriented electrical steel sheet | |
JP3370261B2 (en) | Electrical steel sheet with insulating coating that can be manufactured by high-speed coating and low-temperature baking and has excellent TIG weldability and post-annealing performance | |
JPH0445586B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050727 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070402 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070918 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071115 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080108 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20080229 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |