JP4371959B2 - Heating deaerator for boiler - Google Patents
Heating deaerator for boiler Download PDFInfo
- Publication number
- JP4371959B2 JP4371959B2 JP2004257717A JP2004257717A JP4371959B2 JP 4371959 B2 JP4371959 B2 JP 4371959B2 JP 2004257717 A JP2004257717 A JP 2004257717A JP 2004257717 A JP2004257717 A JP 2004257717A JP 4371959 B2 JP4371959 B2 JP 4371959B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- boiler
- steam
- pressure
- deaeration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Description
本発明は、ボイラー用水を加熱加圧し、減圧によるフラッシュによってボイラー用水中の溶存酸素を除去するボイラー用加熱脱気装置に関するものである。 The present invention relates to a boiler degassing apparatus that heats and pressurizes boiler water and removes dissolved oxygen in the boiler water by flashing under reduced pressure.
ボイラに供給する水は、溶存酸素を含んでいるとボイラ内で腐食を招くため、溶存酸素を除去した脱気水を供給するようにしている。溶存酸素を除去する脱気装置として、特開平11−337009号公報に記載しているようなフラッシュ式脱気装置も知られていた。フラッシュ式脱気装置は、ボイラー用水を加熱加圧しておき、圧力低下によってボイラー用水をフラッシュさせ、溶存酸素を分離して排出することで脱気水を取り出すものである。ボイラー用水の加熱は、高温の排ガスを通す排ガス通路内に脱気用熱交換器を設置しておき、脱気用熱交換器へボイラー用水を送り込むことで行える。 If the water supplied to the boiler contains dissolved oxygen, it causes corrosion in the boiler, so deaerated water from which dissolved oxygen has been removed is supplied. As a degassing device for removing dissolved oxygen, a flash type degassing device as described in JP-A-11-337209 has also been known. The flash type deaerator is configured to take out deaerated water by heating and pressurizing boiler water, flushing the boiler water by a pressure drop, and separating and discharging dissolved oxygen. The boiler water can be heated by installing a deaeration heat exchanger in the exhaust gas passage through which the high-temperature exhaust gas passes, and feeding the boiler water into the deaeration heat exchanger.
特開平11−337009号の場合、蒸気タービンから出る復水の大部分を排ガスで高温に加熱し、その後に減圧弁で圧力を下げて脱気して脱気器に供給している。このとき、前記復水の残りのもの(極小量)を加熱せずに脱気器へ注入することにより、脱気器内の蒸気を冷却して凝縮させることが記載されている。また、加熱後の温度の例として120℃〜150℃、減圧弁の上流及び下流の圧力の例として、それぞれ9.9×103hpa(0.99MPa)、3.5×103hpa(0.35MPa)が記載されている。 In the case of Japanese Patent Application Laid-Open No. 11-337209, most of the condensate discharged from the steam turbine is heated to a high temperature with exhaust gas, and then the pressure is reduced with a pressure reducing valve to deaerate and supply to the deaerator. At this time, it is described to cool and condense the vapor in the deaerator by injecting the remaining condensate (minimum amount) into the deaerator without heating. Further, examples of the temperature after heating are 120 ° C. to 150 ° C., and examples of the pressure upstream and downstream of the pressure reducing valve are 9.9 × 10 3 hpa (0.99 MPa), 3.5 × 10 3 hpa (0 .35 MPa).
排ガスの熱を利用してボイラー用水を加熱している場合、脱気部入口のボイラー用水温度をより高くするために脱気用熱交換器での熱吸収量を大きくすると、脱気用熱交換器のコストや排ガス側の圧損が増大するという問題がある。また、脱気部入口のボイラー用水圧力が高くなると、ポンプのコスト、配管の信頼性及び電気代が増大するという問題がある。 When boiler water is heated using the heat of exhaust gas, if the amount of heat absorption in the deaeration heat exchanger is increased to increase the boiler water temperature at the inlet of the deaeration unit, heat exchange for deaeration There is a problem that the cost of the vessel and the pressure loss on the exhaust gas side increase. Further, when the boiler water pressure at the inlet of the deaeration unit increases, there is a problem that the cost of the pump, the reliability of the piping, and the electricity cost increase.
本発明が解決しようとする課題は、コストの増大を防ぎ、効果的に脱気することのできるボイラー用加熱脱気装置を提供することにある。 The problem to be solved by the present invention is to provide a heating and deaeration device for a boiler that can prevent the increase in cost and can effectively deaerate.
請求項1に記載の発明は、ボイラー用水を加熱する脱気用熱交換器、加熱加圧したボイラー用水を減圧することによってフラッシュ蒸気を発生する減圧部、フラッシュ蒸気発生によって脱気したボイラー用水をためる脱気水タンク、前記脱気用熱交換器へ送る前のボイラー用水をためる給水タンクを設けておき、給水タンクから脱気用熱交換器へ通水し、脱気用熱交換器で加熱したボイラー用水をフラッシュ脱気することでボイラー用水中の溶存酸素を除去するボイラー用加熱脱気装置において、脱気水タンクと給水タンクは連通管によって接続することで脱気水の一部が脱気水タンクから給水タンクへ還流するようにしており、給水タンクから脱気用熱交換器へはボイラーの定格出力の1.1倍〜2倍の水を連続供給し、脱気水の一部を脱気水タンクから給水タンクへ還流させ続けるとともに、前記減圧部入口におけるボイラー用水の水温を103℃〜115℃、水圧を0.03MPaG〜0.4MPaGとし、かつ前記脱気水タンク内圧力は大気圧に調節されていることを特徴とする。 The invention described in claim 1 includes a degassing heat exchanger for heating boiler water, a depressurizing unit for generating flash steam by depressurizing the heated and pressurized boiler water, and boiler water degassed by flash steam generation. A degassing water tank to be stored and a water supply tank for collecting boiler water before being sent to the degassing heat exchanger are provided, water is passed from the water supply tank to the degassing heat exchanger, and heated by the degassing heat exchanger. In the boiler degassing device that removes dissolved oxygen from the boiler water by flushing the degassed boiler water, a part of the degassed water is removed by connecting the degas water tank and the water supply tank with a communication pipe. It is designed to return from the water tank to the water supply tank, and from the water supply tank to the deaeration heat exchanger is continuously supplied with water that is 1.1 to 2 times the rated output of the boiler. Deaerate While continuing to recirculate from the water tank to the water supply tank, the water temperature of the boiler water at the inlet of the pressure reducing section is 103 ° C. to 115 ° C., the water pressure is 0.03 MPaG to 0.4 MPaG, and the pressure in the deaerated water tank is atmospheric pressure. It is characterized by being adjusted.
請求項2に記載の発明は、前記ボイラー用加熱脱気装置において、脱気水タンクにはフラッシュ蒸気を排出するフラッシュ蒸気流路を接続しており、フラッシュ蒸気流路の途中には、ボイラー用水と熱交換する熱回収用熱交換器が設けられていることを特徴とする。 According to a second aspect of the present invention, in the boiler degassing apparatus, a flash steam channel for discharging flash steam is connected to the deaerated water tank, and the boiler water is disposed in the middle of the flash steam channel. A heat recovery heat exchanger for exchanging heat with the heat exchanger is provided.
請求項3に記載の発明は、前記ボイラー用加熱脱気装置において、ボイラーで発生した蒸気を蒸気使用箇所側へ送る蒸気供給管の途中に、蒸気使用箇所側への蒸気供給を遮断する蒸気弁を設けておき、前記減圧部入口における水温又は水圧が所定の範囲より低い場合には、ボイラー内蒸気圧力が所定圧力に達するまで、蒸気使用箇所側への蒸気供給を停止することを特徴とする。 According to a third aspect of the present invention, in the boiler degassing apparatus, the steam valve for shutting off the steam supply to the steam use location side in the middle of the steam supply pipe for sending the steam generated in the boiler to the steam use location side When the water temperature or water pressure at the inlet of the pressure reducing unit is lower than a predetermined range, the steam supply to the steam use location side is stopped until the steam pressure in the boiler reaches the predetermined pressure. .
請求項4に記載の発明は、前記ボイラー用加熱脱気装置において、ボイラー用水を供給する経路(給水タンクへ給水する原水経路から、給水タンク・脱気水タンクを含む脱気水タンクまでの経路を意味する)の途中にボイラー用水を加熱する加熱ヒータを設けておき、前記減圧部入口における水温又は水圧が所定の範囲より低い場合には、前記加熱ヒータによる加熱を併用することによってボイラー用水の脱気を促進するものであることを特徴とする。 According to a fourth aspect of the present invention, in the boiler degassing apparatus, a path for supplying boiler water (a path from a raw water path for supplying water to a water supply tank to a deaerated water tank including a water supply tank and a deaerated water tank) A heater for heating the boiler water is provided in the middle, and when the water temperature or water pressure at the inlet of the pressure reducing unit is lower than a predetermined range, the boiler water is used by combining the heating with the heater. It is characterized by promoting deaeration.
本発明を実施することで、以下の効果を得ることができる。減圧部入口の水温を最適化しているので、脱気用熱交換器のコスト及び排ガス側圧損の増大を防止できる。減圧部入口の水圧を最適化しているので、脱気用ポンプのコスト及び電気代の増大を防止でき、配管等からの水漏れに対する信頼性が高くなる。減圧部出口が実質的に大気圧であり、かつ脱気水タンク内が大気圧であるので、脱気水タンクを耐圧・密閉設計としなくてもよく、脱気用熱交換器及び減圧部入口の温度及び圧力を下げることができる。 By implementing the present invention, the following effects can be obtained. Since the water temperature at the inlet of the pressure reducing unit is optimized, it is possible to prevent an increase in the cost of the deaeration heat exchanger and the pressure loss on the exhaust gas side. Since the water pressure at the inlet of the pressure reducing unit is optimized, the cost of the deaeration pump and the increase in the electricity bill can be prevented, and the reliability against water leakage from the piping and the like is increased. Since the decompression section outlet is substantially at atmospheric pressure and the inside of the deaeration water tank is at atmospheric pressure, the deaeration water tank does not have to be pressure-resistant and hermetically sealed. Temperature and pressure can be reduced.
給水タンクから脱気用熱交換器へ連続給水し、かつ連続給水する流量をボイラーの定格給水量より多くし、1.1倍〜2倍としてるので、排ガスからの熱の回収量がより大きくなる。脱気水タンクと給水タンクを連通管によって接続し、脱気水タンクから給水タンクに高温の脱気水が連続給水する流量とボイラーの定格給水量の差の分だけ環流するようになっているので、給水タンクの水を予熱することができる。これにより給水タンクおよび給水の温度が低い場合でも、より確実にかつ速やかに減圧部入口における水温を所定の値にすることが可能になる。給水は脱気水をためた脱気水タンクから実質的に全量供給しており、ボイラーには脱気前給水中の高濃度の溶存酸素が混じらないので、ボイラーへ供給する水の溶存酸素濃度上昇がない。 The continuous water supply from the water supply tank to the deaeration heat exchanger and the flow rate of continuous water supply are increased from the boiler's rated water supply to 1.1 to 2 times, so the amount of heat recovered from the exhaust gas is larger. Become. The deaeration water tank and the water supply tank are connected by a communication pipe, and the deaeration water tank is circulated by the difference between the flow rate of continuous hot water supply from the deaeration water tank to the water supply tank and the rated water supply amount of the boiler. So you can preheat the water in the water tank. Thereby, even when the temperature of the water supply tank and the water supply is low, the water temperature at the inlet of the pressure reducing unit can be more reliably and quickly set to a predetermined value. The supply water is supplied substantially from the deaeration water tank that stores deaerated water, and the boiler does not contain the high concentration of dissolved oxygen in the feed water before deaeration, so the dissolved oxygen concentration of the water supplied to the boiler There is no rise.
また、起動時などボイラー用水を十分に加熱することができずに、脱気が不十分となる期間を短縮することができ、溶存酸素濃度の高い水の供給を最小限に抑えることができる。 In addition, the boiler water cannot be sufficiently heated at the time of start-up, the period during which deaeration is insufficient can be shortened, and the supply of water having a high dissolved oxygen concentration can be minimized.
ボイラー各部の腐食を長期にわたり防止するには、ボイラー各部の腐食速度をおおよそ10mddレベル以下にすることが好ましい。この場合、ボイラー用水の溶存酸素濃度が原因でこの腐食速度を越えないようにするためには、ボイラー用水の平均溶存酸素濃度をおおよそ0.3mg/Lレベル以下にすることが好ましいという知見がある。 In order to prevent corrosion of each part of the boiler for a long period of time, it is preferable to set the corrosion rate of each part of the boiler to about 10 mdd level or less. In this case, in order not to exceed this corrosion rate due to the dissolved oxygen concentration in the boiler water, it is known that the average dissolved oxygen concentration in the boiler water is preferably about 0.3 mg / L or less. .
脱気水タンク内の圧力は大気圧とする。たとえば、脱気水タンクにはフラッシュ蒸気を排出するフラッシュ蒸気流路を接続し、フラッシュ蒸気流路の途中に脱気水タンク内圧力を調節する圧力調節弁を設けておき、圧力調節弁によって脱気水タンク内圧力を大気圧に調節する。ただし、前記圧力調節弁は省略してもよい。また、フラッシュ蒸気流路の途中に熱回収用熱交換器を設けておき、フラッシュによって生成された水蒸気の熱を給水の予熱に利用して回収することは好ましい例である。 The pressure in the deaerated water tank is atmospheric pressure. For example, a flash steam channel for discharging flash steam is connected to the deaerated water tank, and a pressure control valve for adjusting the pressure in the deaerated water tank is provided in the middle of the flash steam channel. Adjust the pressure inside the water tank to atmospheric pressure. However, the pressure control valve may be omitted. In addition, it is a preferable example that a heat recovery heat exchanger is provided in the middle of the flash steam flow path and the heat of the water vapor generated by the flash is used for preheating the feed water.
減圧部の入口温度は103℃〜115℃となるように脱気用熱交換器を設計する。103℃未満では脱気が不足して溶存酸素濃度が高くなり、腐食防止の目的を達成できない。115℃を越えると脱気用熱交換器のコスト及び排ガス側の圧損が過大になる。より好ましくは105℃以上。この場合、運転中に排ガス温度低下や排ガス量低下等の非定常状態が多少生じても、安定的に溶存酸素濃度を必要なレベルに維持できる。より好ましくは110℃以下。この場合、より脱気用熱交換器のコスト及び排ガス側の圧損を低減できる。 The heat exchanger for deaeration is designed so that the inlet temperature of the decompression section is 103 ° C to 115 ° C. If it is less than 103 degreeC, deaeration is insufficient and dissolved oxygen concentration becomes high and the objective of corrosion prevention cannot be achieved. If it exceeds 115 ° C, the cost of the heat exchanger for deaeration and the pressure loss on the exhaust gas side become excessive. More preferably, it is 105 ° C or higher. In this case, even if an unsteady state such as a decrease in exhaust gas temperature or a decrease in exhaust gas amount occurs during operation, the dissolved oxygen concentration can be stably maintained at a necessary level. More preferably, it is 110 degrees C or less. In this case, the cost of the heat exchanger for deaeration and the pressure loss on the exhaust gas side can be further reduced.
減圧部入口温度の制御として、減圧部に流量調整弁(減圧弁)を用い、減圧部の入口温度の信号により流量を制御することは好ましい方法である。また、減圧部として流量調整弁の後流側に別途絞りを設けてもよい。また、減圧部入口温度の制御としての流量調整弁を用いず、減圧部を絞りだけで構成してもよい。また脱気水タンク内の放出部のフラッシュノズルを絞りとし、これを減圧部とすることも可能である。 As a control of the pressure reducing part inlet temperature, it is a preferable method to use a flow rate adjusting valve (pressure reducing valve) in the pressure reducing part and control the flow rate by a signal of the inlet temperature of the pressure reducing part. In addition, a throttle may be separately provided on the downstream side of the flow rate adjustment valve as the pressure reducing unit. Further, the pressure reducing unit may be configured only by the throttle without using the flow rate adjusting valve for controlling the pressure reducing unit inlet temperature. It is also possible to use the discharge nozzle in the deaerated water tank as a throttle and use it as a decompression unit.
ボイラー用水を脱気水タンクに放出するフラッシュノズルは、複数であってもよい。ノズル経が小さく、かつ多数あるものは、溶存酸素が大気に放出されやすいので好ましい例である。 There may be a plurality of flash nozzles for discharging boiler water into the deaerated water tank. A nozzle having a small nozzle diameter and a large number is preferable because dissolved oxygen is easily released into the atmosphere.
減圧部入口の水圧は0.03MPaG〜0.4MPaGとなるように減圧部を設計する。水圧0.03MPaG未満では脱気が不足して溶存酸素濃度が高くなり、腐食防止の目的を達成できない危険性が高まる。水圧0.4MPaGを越えると、脱気用ポンプのコスト及び電気代が高くなる。また配管等からの水漏れに対する信頼性の点からも問題がある。より好ましくは0.05MPaG〜0.3MPaG。運転中に排ガス温度低下や排ガス量低下等の非定常状態が多少生じても、安定的に溶存酸素濃度を必要なレベルに維持でき、コストを低減できる。 The pressure reducing part is designed so that the water pressure at the inlet of the pressure reducing part is 0.03 MPaG to 0.4 MPaG. If the water pressure is less than 0.03 MPaG, degassing is insufficient and the dissolved oxygen concentration increases, increasing the risk of not achieving the purpose of preventing corrosion. If the water pressure exceeds 0.4 MPaG, the cost and electricity cost of the deaeration pump will increase. There is also a problem from the viewpoint of reliability against water leakage from pipes and the like. More preferably, 0.05 MPaG to 0.3 MPaG. Even if an unsteady state such as a decrease in exhaust gas temperature or a decrease in the amount of exhaust gas occurs during operation, the dissolved oxygen concentration can be stably maintained at a required level, and costs can be reduced.
排ガスを発生させる機器(例えば、ガスエンジン、ガスタービン)の起動時、脱気用熱交換器の温度が低いためにボイラー用水を十分に加熱できない状態が生じる。また、起動時の場合、一般に脱気水タンクの温度は低くなり、溶存酸素濃度は高くなっている。この起動初期時にもボイラ内で蒸気が発生し、蒸気の取り出しによって缶水の水位が下がると給水要求が出る。脱気水タンク内の溶存酸素濃度が高い状態では、給水要求を避ける、又は遅らせることが溶存酸素濃度の高い給水を避ける点で好ましい。その好ましい方法としては以下の手段が可能である。 At the start-up of equipment that generates exhaust gas (for example, a gas engine or a gas turbine), the temperature of the deaeration heat exchanger is low, so that the boiler water cannot be heated sufficiently. Further, at the time of start-up, the temperature of the deaerated water tank is generally low and the dissolved oxygen concentration is high. Even at the initial stage of startup, steam is generated in the boiler, and a water supply request is issued when the water level of the can water drops due to the removal of the steam. In a state where the dissolved oxygen concentration in the degassed water tank is high, it is preferable to avoid or delay the water supply request from the viewpoint of avoiding water supply with a high dissolved oxygen concentration. As the preferable method, the following means are possible.
(1)ボイラーで発生した蒸気を取り出す蒸気供給管への出口に背圧弁を設ける。これにより起動初期時の蒸気供給管への蒸気供給を、ボイラー内の蒸気圧力が背圧弁の設定圧力(例えば0.4MPaG〜0.78MPaGの範囲内にある圧力)以上になるまで停止することができる。これにより、缶内水位の低下を遅らせることができ、起動初期時に発生した蒸気を加熱脱気用熱源にすることも可能になる。 (1) A back pressure valve is provided at the outlet to the steam supply pipe for taking out the steam generated in the boiler. As a result, the steam supply to the steam supply pipe at the initial stage of startup is stopped until the steam pressure in the boiler becomes equal to or higher than the set pressure of the back pressure valve (for example, a pressure within the range of 0.4 MPaG to 0.78 MPaG). it can. Thereby, the fall of the water level in a can can be delayed, and it becomes possible to use the vapor | steam which generate | occur | produced at the initial stage of starting as a heat source for heating deaeration.
(2)ボイラー用水を供給する経路の途中にボイラー用水を加熱する加熱ヒータを設ける。脱気水タンク内に加熱ヒータを設け、直接加熱することは、ボイラーに供給する直前の水を加熱脱気するので好ましい方法である。また、前記のボイラーで発生した蒸気を脱気水タンク内に直接投入する方法は、簡易で好ましい方法である。給水タンクを設ける場合、加熱ヒータを給水タンク内に設けてもよい。加熱ヒータは脱気用熱交換器の入口又は出口に設置し、減圧部入口の温度を脱気設定値まで昇温するようにしてもよい。起動初期の加熱脱気用の加熱ヒータは、蒸気ヒータ又は電気ヒータのどちらでもよい。 (2) A heater for heating the boiler water is provided in the course of supplying the boiler water. Providing a heater in the deaerated water tank and directly heating it is a preferable method because the water immediately before being supplied to the boiler is heated and deaerated. Moreover, the method of directly putting the steam generated in the boiler into the deaerated water tank is a simple and preferable method. When providing a water supply tank, you may provide a heater in a water supply tank. The heater may be installed at the inlet or outlet of the deaeration heat exchanger, and the temperature at the inlet of the decompression unit may be raised to the deaeration set value. The heater for heating and degassing at the initial stage of startup may be either a steam heater or an electric heater.
連続給水する流量は、ボイラーの定格給水量の1.1倍〜2倍となるように脱気用ポンプを選定する。1.1倍未満では排ガスからの熱回収量が小さくなり、また負荷の蒸気使用量が増えて定格以上の給水要求があった場合、脱気水が不足する(脱気水タンクの水面が下限を切る)危険性が高まる。定格水量の2倍を越えると、脱気用熱交換器の出口温度が好ましい範囲まで上昇しない危険性が高まること、脱気用ポンプの容量が無駄に増大すること、ボイラー用水の流路の配管、減圧部、脱気水タンク内のフラッシュノズルサイズが無駄に大きくなること、などの弊害が生じる。 The deaeration pump is selected so that the flow rate for continuous water supply is 1.1 to 2 times the boiler's rated water supply. If it is less than 1.1 times, the amount of heat recovered from the exhaust gas will be small, and if the amount of steam used in the load increases and there is a demand for water supply that exceeds the rating, the deaerated water will be insufficient (the water level of the deaerated water tank is the lower limit). The risk increases. Exceeding twice the rated water volume increases the risk that the outlet temperature of the deaeration heat exchanger will not rise to the preferred range, the capacity of the deaeration pump increases unnecessarily, and piping for the boiler water flow path In addition, the depressurization unit and the flush nozzle size in the deaerated water tank become unnecessarily large, and other disadvantages occur.
本発明の実施例を図面を用いて説明する。図1は実施例の試験設備における給水のフローを示したフロー図である。ボイラー1は、ガスエンジン(例えばイエンバッハ社製 JMS208 332kW 60Hz燃料天然ガス13A約83m3h)で発生した排ガスの熱を吸収し、排ガスの熱で蒸気を発生する排ガスボイラー(例えばサムソン社製 貫流ボイラー エコノマイザー付)である。前記機器による場合、ガスエンジン定格運転時における排ガスボイラ入口の排ガス温度は495℃であった。排ガス発生源(図示せず)で発生した排ガスは、排ガス通路2を通して排出するようにしており、排ガス通路2には、上流側から順にボイラー1、エコノマイザ14、脱気用熱交換器13を設けている。また、給水タンク10と脱気水タンク7からなる2つのタンクを設けており、両タンクはそれぞれ保温施工し、両タンク間を連通管6によって接続している。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing the flow of water supply in the test facility of the example. The boiler 1 absorbs the heat of exhaust gas generated by a gas engine (for example, JMS208 332 kW 60 Hz fuel natural gas 13A approximately 83 m 3 h manufactured by Yenbach) and generates steam by the heat of the exhaust gas (for example, a once-through boiler manufactured by Samsung). With economizer). In the case of the above equipment, the exhaust gas temperature at the exhaust gas boiler inlet during gas engine rated operation was 495 ° C. Exhaust gas generated from an exhaust gas generation source (not shown) is discharged through the
ボイラー1へ給水するボイラー用水は、原水流路22を通してまず給水タンク10にためられる。給水タンク10の下部には脱気用流路5を接続しており、脱気用流路5の他端は脱気水タンク7内のフラッシュノズル8に接続している。脱気用流路5の途中には脱気用熱交換器13を設けており、ボイラー用水は脱気用熱交換器13で加熱する。給水タンク10と脱気用熱交換器13の間には通水量調節弁17と脱気用ポンプ9を設け、脱気用熱交換器13とフラッシュノズル8の間には温度計11、圧力計12、減圧弁18を設けておく。脱気用ポンプ9によって送るボイラー用水量は、通水量調節弁17と減圧弁18によって調節する。フラッシュノズル8は、脱気水タンク7内の水平配管下部に複数の小孔を設けた構造としている。
Boiler water to be supplied to the boiler 1 is first stored in the
脱気水タンク7の下部には脱気水流路23を接続しており、脱気水流路23の他端はボイラー1に接続している。脱気水流路23の途中にはボイラー用ポンプ4とエコノマイザ14を設けており、脱気水はエコノマイザ14によって予熱した後にボイラー1へ供給する。ボイラー1で発生した蒸気は、蒸気供給管15を通して蒸気使用箇所(図示せず)へ供給しており、蒸気供給管15への出口部分に背圧弁20を設ける。背圧弁20は蒸気圧力が0.78MPaGになるように設定しており、これにより同設定圧力になるまでは給水要求を実質的になくした。
A deaerated water channel 23 is connected to the lower part of the deaerated water tank 7, and the other end of the deaerated water channel 23 is connected to the boiler 1. A
脱気水タンク7の上部にはフラッシュ蒸気流路16を接続しており、フラッシュ蒸気流路16の途中には、フラッシュ蒸気の熱で原水流路22を流れる原水を加熱する熱回収用熱交換器3と、脱気水タンク7の圧力を調節する圧力調節弁19を設けておく。
A
また、脱気水タンク7内には、加熱ヒータ21を設けている。加熱ヒータ21は、ガスエンジン(図示せず)の起動初期であるなど、フラッシュ脱気を行うことができない場合、替わりに加熱脱気を行うためのものである。脱気水タンク7内の溶存酸素濃度が高い場合に加熱ヒータ21を作動することで、脱気水タンク7内の水温を上昇させ、溶存酸素を除去する。
A
ガスエンジン(図示せず)が定格運転を行っている場合、ボイラー入口排ガス温度は495℃であり、排ガスは、ボイラー1、エコノマイザ14、脱気用熱交換器13を順に加熱する。ガスエンジン及びボイラー1の運転中は、脱気用ポンプ9を連続運転しておき、給水タンク10にためているボイラー用水を脱気用熱交換器13へと送る。脱気用熱交換器13では、ボイラー用水を加熱するとともに圧力を高める。ボイラー用水の温度と圧力は、減圧弁18の手前に設けている温度計11及び圧力計12で検出しており、通水量調節弁17と減圧弁18の両方により、減圧弁18入口の水圧、温度及び流量を調節する。減圧弁18を通過するボイラー用水は、減圧弁18の絞りによって圧力が低下するが、温度は変化しないためにフラッシュ蒸気を発生する。フラッシュ蒸気はフラッシュノズル8から噴射して溶存酸素を分離し、分離した後の脱気水を脱気水タンク7にためる。
When a gas engine (not shown) is performing a rated operation, the boiler inlet exhaust gas temperature is 495 ° C., and the exhaust gas heats the boiler 1, the
ボイラー1の定格出力は0.28t/hであり、試験中はボイラー内のブローを実施しなかったため、給水量と蒸気発生量はほぼ一致する。ボイラー1が蒸気を発生することでボイラー1内の水位が低下すると、ボイラー用ポンプ4を稼働することで脱気水タンク7内にためておいた脱気水を、脱気水流路23を通して送り、エコノマイザ14で予熱した後にボイラー1へ給水する。
The rated output of the boiler 1 is 0.28 t / h, and since the blow in the boiler was not performed during the test, the amount of water supply and the amount of steam generated are almost the same. When the water level in the boiler 1 is lowered due to the steam generated by the boiler 1, the deaerated water stored in the deaerated water tank 7 by operating the
脱気水タンク7へ連続給水しているボイラー用水量は、脱気水タンク7からボイラー1へ供給している給水量よりも多くしているため、一部の脱気水は連通管6を通って給水タンク10へと還流する。給水タンク10へ還流する脱気水は、高温でありかつ溶存酸素濃度の低いものであるため、給水タンク10にためているボイラー用水の温度を上昇させる作用と溶存酸素濃度を低減する作用が得られる。
Since the amount of boiler water that is continuously supplied to the deaerated water tank 7 is larger than the amount of water supplied from the deaerated water tank 7 to the boiler 1, some of the deaerated water passes through the communication pipe 6. It returns to the
また、脱気水タンク7で発生しているフラッシュ蒸気は、フラッシュ蒸気流路16を通して熱回収用熱交換器3へ送っており、熱回収用熱交換器3でもボイラー用水の予熱を行っている。
The flash steam generated in the deaerated water tank 7 is sent to the heat recovery heat exchanger 3 through the flash
実施例1
ガスエンジン定格運転、脱気用ポンプによる連続給水の流量0.4t/h、給水温度60℃、脱気水タンク内圧力大気圧としておき、減圧部入口温度と減圧部入口圧力を変化させてフラッシュ脱気水の溶存酸素濃度を測定した。減圧部入口温度を、101℃、102℃、105℃、107℃、110℃、115℃、120℃とした場合の溶存酸素濃度を図2に示す。減圧部入口圧力を、0.01MPaG、0.03MPaG、0.1MPaG、0.2MPaG、0.3MPaG、0.5MPaGとした場合の溶存酸素濃度を図3に示す。
Example 1
Gas engine rated operation, continuous feed water flow rate of 0.4t / h by deaeration pump, feed water temperature 60 ° C, deaeration water tank pressure atmospheric pressure, flash by changing decompression part inlet temperature and decompression part inlet pressure The dissolved oxygen concentration of deaerated water was measured. FIG. 2 shows dissolved oxygen concentrations when the inlet temperature of the decompression section is 101 ° C., 102 ° C., 105 ° C., 107 ° C., 110 ° C., 115 ° C., and 120 ° C. FIG. 3 shows the dissolved oxygen concentration when the pressure in the decompression section is 0.01 MPaG, 0.03 MPaG, 0.1 MPaG, 0.2 MPaG, 0.3 MPaG, and 0.5 MPaG.
減圧部入口温度が103℃未満で急激に溶存酸素濃度が上昇し、かつ115℃以上に上げても溶存酸素濃度の低下は小さいことがわかった。また、減圧部入口圧力が0.03MPaG未満では急激に溶存酸素濃度が上昇し、かつ0.4MPaG以上に上げても溶存酸素濃度の低下は小さいことがわかった。 It was found that the dissolved oxygen concentration rapidly increased when the pressure at the inlet of the decompression part was lower than 103 ° C., and the decrease in dissolved oxygen concentration was small even when the temperature was increased to 115 ° C. or higher. It was also found that the dissolved oxygen concentration increased rapidly when the pressure at the inlet of the decompression part was less than 0.03 MPaG, and the decrease in dissolved oxygen concentration was small even when the pressure was increased to 0.4 MPaG or more.
実施例2
連続給水の流量を0.28t/h(蒸気の定格出力と同じ)及び0.8t/h(蒸気の定格出力の約2.9倍)としておき、減圧部入口温度を110℃、減圧部入口圧力を0.15MPaとしてフラッシュ脱気水の溶存酸素濃度を測定しようとした。それ以外は実施例1と同じ条件とした。ところが、連続給水の流量が0.28t/h及び0.8t/hでは、減圧部入口温度が110℃に達しなかったため、測定を中止した。この時の給水タンク内の水温を測定した結果、平均温度は連続給水の流量が0.28t/hの場合は60℃、流量が0.8t/hの場合は85℃であった。連続給水の流量が0.4t/hである実施例1における給水タンクの平均温度は71℃であったことより、減圧部入口温度が110℃に達しない理由は、流量が0.28t/hの場合は給水タンク10内温度が低すぎること、流量が0.8t/hの場合は流量が大きすぎることによる。
Example 2
The flow rate of continuous feed water is set to 0.28 t / h (same as the rated output of steam) and 0.8 t / h (about 2.9 times the rated output of steam). An attempt was made to measure the dissolved oxygen concentration of flash degassed water at a pressure of 0.15 MPa. The other conditions were the same as in Example 1. However, when the flow rate of the continuous water supply was 0.28 t / h and 0.8 t / h, the pressure at the inlet of the pressure reducing part did not reach 110 ° C., so the measurement was stopped. As a result of measuring the water temperature in the water supply tank at this time, the average temperature was 60 ° C. when the flow rate of continuous water supply was 0.28 t / h and 85 ° C. when the flow rate was 0.8 t / h. Since the average temperature of the water supply tank in Example 1 where the flow rate of continuous feed water is 0.4 t / h was 71 ° C., the reason that the inlet temperature of the decompression section did not reach 110 ° C. was that the flow rate was 0.28 t / h. This is because the temperature inside the
1 ボイラー
2 排ガス通路
3 熱回収用熱交換器
4 ボイラー用ポンプ
5 脱気用流路
6 連通管
7 脱気水タンク
8 フラッシュノズル
9 脱気用ポンプ
10 給水タンク
11 温度計
12 圧力計
13 脱気用熱交換器
14 エコノマイザ
15 蒸気供給管
16 フラッシュ蒸気流路
17 通水量調節弁
18 減圧弁
19 圧力調節弁
20 背圧弁
21 加熱ヒータ
22 原水流路
23 脱気水流路
1 boiler
2 Exhaust gas passage
3 Heat exchanger for
5 Flow path for deaeration
6 Communication pipe
7
12
16
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257717A JP4371959B2 (en) | 2004-09-03 | 2004-09-03 | Heating deaerator for boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257717A JP4371959B2 (en) | 2004-09-03 | 2004-09-03 | Heating deaerator for boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006068687A JP2006068687A (en) | 2006-03-16 |
JP4371959B2 true JP4371959B2 (en) | 2009-11-25 |
Family
ID=36149838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004257717A Expired - Fee Related JP4371959B2 (en) | 2004-09-03 | 2004-09-03 | Heating deaerator for boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4371959B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010243013A (en) * | 2009-04-02 | 2010-10-28 | Miura Co Ltd | Exhaust gas heat recovery device |
CN108758609A (en) * | 2018-06-06 | 2018-11-06 | 中广核研究院有限公司 | Working medium circulation utilizes device and its therrmodynamic system |
JP7365751B2 (en) * | 2021-05-20 | 2023-10-20 | 徹太郎 中川 | Dissolved gas replacement device and dissolved gas replacement method |
-
2004
- 2004-09-03 JP JP2004257717A patent/JP4371959B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006068687A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5230683B2 (en) | High temperature drain recovery system | |
JP5593902B2 (en) | Heat pump steam generator | |
JP5008134B2 (en) | Water supply preheating boiler | |
JP2006105442A (en) | Pressure drain collecting system | |
FR2489480A1 (en) | DEVICE FOR CONTROLLING THE WATER LEVEL OF A DEAERATOR | |
JP4371959B2 (en) | Heating deaerator for boiler | |
JPH04302902A (en) | Supercritical boiler with separator for cycle operation and recirculating pump | |
JP5191274B2 (en) | Water supply system in steam power generation facilities | |
JP5041941B2 (en) | Once-through exhaust heat recovery boiler | |
JP2008180158A (en) | Steam recovery facility and steam recovery method | |
JP4905941B2 (en) | Waste heat recovery boiler and its steam pressure control method | |
JP6248753B2 (en) | Boiler system | |
JP2014112018A (en) | Power generation unit, and method of recovering flash tank drain in starting power generation unit | |
JP5497139B2 (en) | Operation method of water supply system in steam power plant | |
JP2004190989A (en) | Start control device and method for variable pressure once-through boiler | |
JP6677063B2 (en) | Heat recovery system | |
JP2622096B2 (en) | Combined refuse power plant with controllable feedwater temperature | |
JP6450957B2 (en) | Circulating fluidized bed boiler and method for starting circulating fluidized bed boiler | |
US20240229683A9 (en) | System for readying sub-critical and super-critical steam generator, servicing method of said sub-critical and super-critical steam generator and method of operation of sub-critical and super-critical steam generator | |
JP4949712B2 (en) | Power plant water supply equipment | |
JP6265002B2 (en) | Boiler system | |
JP5349220B2 (en) | Apparatus and method for suppressing thermal deformation of deaerator | |
JP5482430B2 (en) | Boiler starter and method | |
JPH08170805A (en) | Flashing-proof equipment | |
JP6248754B2 (en) | Boiler system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090901 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4371959 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |