[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4369820B2 - Switched capacitor amplifier circuit - Google Patents

Switched capacitor amplifier circuit Download PDF

Info

Publication number
JP4369820B2
JP4369820B2 JP2004219939A JP2004219939A JP4369820B2 JP 4369820 B2 JP4369820 B2 JP 4369820B2 JP 2004219939 A JP2004219939 A JP 2004219939A JP 2004219939 A JP2004219939 A JP 2004219939A JP 4369820 B2 JP4369820 B2 JP 4369820B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
switched capacitor
amplifier circuit
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219939A
Other languages
Japanese (ja)
Other versions
JP2005065250A (en
JP2005065250A5 (en
Inventor
晃 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004219939A priority Critical patent/JP4369820B2/en
Publication of JP2005065250A publication Critical patent/JP2005065250A/en
Publication of JP2005065250A5 publication Critical patent/JP2005065250A5/ja
Application granted granted Critical
Publication of JP4369820B2 publication Critical patent/JP4369820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

本発明は、オフセットキャンセル型スイッチトキャパシタ増幅回路に関する。   The present invention relates to an offset cancel type switched capacitor amplifier circuit.

従来のオフセットキャンセル型スイッチトキャパシタ増幅回路は、オペアンプの持っているオフセット電圧を容量に蓄えることで、オフセット電圧を出力に生じないように構成されている(例えば、特許文献1参照)。   A conventional offset cancel type switched capacitor amplifier circuit is configured so that an offset voltage is not generated in an output by storing an offset voltage of an operational amplifier in a capacitor (see, for example, Patent Document 1).

従来のオフセットキャンセル型スイッチトキャパシタ増幅回路の回路構成の例を図2に示す。リセットフェーズΦ1においてスイッチ回路123、124、125、128、129、132が閉じる。このとき容量101、102、103、104は、スイッチ回路123、124、125、129を通じて放電される。一定の時間の後、スイッチ回路123、124、125、128、129、132が開いて、リセットフェーズΦ1が終了する。   An example of the circuit configuration of a conventional offset cancel type switched capacitor amplifier circuit is shown in FIG. In the reset phase Φ1, the switch circuits 123, 124, 125, 128, 129, 132 are closed. At this time, the capacitors 101, 102, 103, and 104 are discharged through the switch circuits 123, 124, 125, and 129. After a certain time, the switch circuits 123, 124, 125, 128, 129, 132 are opened, and the reset phase Φ1 ends.

次にサンプリングフェーズΦ2に移る。スイッチ回路121、122、126、130、128、132が閉じる。入力端子141の電圧は容量101に、入力端子142の電圧は容量102に電荷として蓄えられる。容量101の電荷の変化分に等しいだけ容量103の電荷が変化する。同時に容量102の電荷の変化分に等しいだけ容量104の電荷が変化する。これによって、出力端子151の電圧が変化する。
出力端子151の電圧は、次式で与えられる。
Vout=−(C1/C2)×(Vin1-Vin2)
Next, the process proceeds to the sampling phase Φ2. The switch circuits 121, 122, 126, 130, 128, 132 are closed. The voltage at the input terminal 141 is stored as a charge in the capacitor 101, and the voltage at the input terminal 142 is stored as a charge in the capacitor 102. The charge of the capacitor 103 changes by an amount equal to the change in the charge of the capacitor 101. At the same time, the charge in the capacitor 104 changes by an amount equal to the change in the charge in the capacitor 102. As a result, the voltage at the output terminal 151 changes.
The voltage at the output terminal 151 is given by the following equation.
Vout = − (C1 / C2) × (Vin1-Vin2)

オペアンプの持っている入力オフセット電圧はリセットフェーズΦ1において容量101、102に蓄えられる。サンプリングフェーズΦ2のときの容量101の両端間の電位の変化分は入力端子141の電圧とスイッチ123に与えられる基準電圧の差となる。同様にサンプリングフェーズΦ2のときの容量102の両端間の電位の変化分は入力端子142の電圧とスイッチ124に与えられる基準電圧の差となる。したがって、容量101、102の両端間に蓄えられる電圧の変化分は、入力電圧と基準電圧の差となり、オフセット電圧は含まれない。そのため、オペアンプの持つオフセット電圧は増幅されず、キャンセルされる。
米国特許4543534号公報「Offset compensated switched capacitor circuits」
The input offset voltage of the operational amplifier is stored in the capacitors 101 and 102 in the reset phase Φ1. The change in potential between both ends of the capacitor 101 during the sampling phase Φ 2 is the difference between the voltage at the input terminal 141 and the reference voltage applied to the switch 123. Similarly, the change in potential across the capacitor 102 during the sampling phase Φ2 is the difference between the voltage at the input terminal 142 and the reference voltage applied to the switch 124. Therefore, the change in the voltage stored between both ends of the capacitors 101 and 102 is the difference between the input voltage and the reference voltage, and does not include the offset voltage. For this reason, the offset voltage of the operational amplifier is not amplified and canceled.
US Pat. No. 4,543,534 “Offset compensated switched capacitor circuits”

しかし従来のスイッチトキャパシタ増幅回路では、オペアンプの持つオフセット電圧はキャンセルできるものの、入力電圧それ自身がオフセット電圧やオフセット温度特性をもつとき、そのオフセット電圧を増幅して出力してしまうという欠点を有していた。   However, the conventional switched capacitor amplifier circuit can cancel the offset voltage of the operational amplifier, but when the input voltage itself has an offset voltage or offset temperature characteristic, the offset voltage is amplified and output. It was.

本発明は、このような課題を解決するもので、出力電圧を演算増幅器にフィードバックするサンプリング容量に印加する電圧を、基準電圧とは別の第1および第2の参照電圧とし、どちらか一方に温度特性も持たせるなど別々に制御できる構成とした。
さらに、シングルエンド出力の時に、演算増幅器の出力端子と反対の端子に接続した容量に印加する電圧を、基準電圧とは別の第3の参照電圧とした。
The present invention solves such a problem. A voltage applied to a sampling capacitor that feeds back an output voltage to an operational amplifier is set as a first reference voltage and a second reference voltage different from the reference voltage, A configuration that can be controlled separately, such as having temperature characteristics.
Further, the voltage applied to the capacitor connected to the terminal opposite to the output terminal of the operational amplifier at the time of single-end output is set as a third reference voltage different from the reference voltage.

本発明のスイッチトキャパシタ増幅回路は、上記のような構成とすることで入力電圧の持つオフセット電圧と温度特性を、低ノイズにてキャンセルして信号成分のみを増幅することができる。   The switched capacitor amplifying circuit of the present invention can amplify only the signal component by canceling the offset voltage and temperature characteristics of the input voltage with low noise by adopting the above configuration.

以下に、この発明の実施例を図面に基づいて説明する。図1は、この発明によるスイッチトキャパシタ増幅回路の構成図の一例である。リセットフェーズΦ1においてスイッチ回路123が閉じ、容量101はノード111に接続され、スイッチ回路124が閉じ、容量102はノード112に接続され、スイッチ回路125が閉じ、容量103はVref1に接続され、スイッチ回路129が閉じ、容量104はVref2に接続される。一定の時間の後、スイッチ回路123、124、125、129が開いて、リセットフェーズΦ1が終了する。リセットフェーズΦ1の間に、容量101に蓄えられた電荷は
q=C1×VREF
容量102に蓄えられた電荷は
q=C1×(VREF−VOFF)
容量103に蓄えられた電荷は
q=C2×Vref1
容量104に蓄えられた電荷は
q=C2×Vref2
となる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an example of a configuration diagram of a switched capacitor amplifier circuit according to the present invention. In the reset phase Φ1, the switch circuit 123 is closed, the capacitor 101 is connected to the node 111, the switch circuit 124 is closed, the capacitor 102 is connected to the node 112, the switch circuit 125 is closed, and the capacitor 103 is connected to Vref1. 129 is closed and the capacitor 104 is connected to Vref2. After a certain time, the switch circuits 123, 124, 125, 129 are opened, and the reset phase Φ1 ends. During the reset phase Φ1, the charge stored in the capacitor 101 is
q = C1 × VREF
The charge stored in the capacitor 102 is
q = C1 × (VREF−VOFF)
The charge stored in the capacitor 103 is
q = C2 × Vref1
The charge stored in the capacitor 104 is
q = C2 × Vref2
It becomes.

次にサンプリングフェーズΦ2に移る。スイッチ回路121、122、126、130、128、132が閉じる。入力端子141の電圧は容量101に、入力端子142の電圧は容量102に電荷として蓄えられる。容量101の電荷の変化分に等しいだけ容量103の電荷が変化する。同時に容量102の電荷の変化分に等しいだけ容量104の電荷が変化する。これによって、出力端子151の電圧が変化する。サンプリングフェーズΦ2において容量101に蓄えられた電荷は
q=C1×Vin1
容量102に蓄えられた電荷は
q=C1×Vin2
となる。
Next, the process proceeds to the sampling phase Φ2. The switch circuits 121, 122, 126, 130, 128, 132 are closed. The voltage at the input terminal 141 is stored as a charge in the capacitor 101, and the voltage at the input terminal 142 is stored as a charge in the capacitor 102. The charge of the capacitor 103 changes by an amount equal to the change in the charge of the capacitor 101. At the same time, the charge in the capacitor 104 changes by an amount equal to the change in the charge in the capacitor 102. As a result, the voltage at the output terminal 151 changes. The charge stored in the capacitor 101 in the sampling phase Φ2 is
q = C1 × Vin1
The charge stored in the capacitor 102 is
q = C1 × Vin2
It becomes.

したがって、リセットフェーズΦ1からサンプリングフェーズΦ2に変わった後の容量101の電荷量の変化分は、
Δq=C1×(Vin1−VREF)
容量102の電荷量の変化分は、
Δq=C1×(Vin2−(VREF−VOFF))
容量103の電荷量の変化分は、
Δq=C2×(VOUT−Vref1)
容量104の電荷量の変化分は、
Δq=C2×(VREF−Vref2)
となる。
Therefore, the amount of change in the charge amount of the capacitor 101 after the change from the reset phase Φ1 to the sampling phase Φ2 is
Δq = C1 × (Vin1−VREF)
The change in the amount of charge in the capacitor 102 is
Δq = C1 × (Vin2− (VREF−VOFF))
The change in the amount of charge in the capacitor 103 is
Δq = C2 × (VOUT−Vref1)
The change in the amount of charge in the capacitor 104 is
Δq = C2 × (VREF−Vref2)
It becomes.

入力端子141の電圧Vin1が信号電圧Vinpとオフセット電圧Vosから成り、入力端子142の電圧Vin2が信号電圧Vinnのみから成るとき、
出力端子151の電圧Voutは、
Vout=−(C1/C2)×((Vin1−Vin2)−(VREF−(VREF−VOFF)))+(Vref1−Vref2+VREF)
=−(C1/C2)×( (Vinp + Vos −Vinn)−VOFF))+(Vref1−Vref2+VREF)
=−(C1/C2)×((Vinp−Vinn)+ (Vos−VOFF))+(Vref1−Vref2+VREF)
で与えられる。
When the voltage Vin1 at the input terminal 141 consists of the signal voltage Vinp and the offset voltage Vos, and the voltage Vin2 at the input terminal 142 consists only of the signal voltage Vinn,
The voltage Vout of the output terminal 151 is
Vout = − (C1 / C2) × ((Vin1−Vin2) − (VREF− (VREF−VOFF))) + (Vref1−Vref2 + VREF)
= − (C1 / C2) × ((Vinp + Vos −Vinn) −VOFF)) + (Vref1−Vref2 + VREF)
= − (C1 / C2) × ((Vinp−Vinn) + (Vos−VOFF)) + (Vref1−Vref2 + VREF)
Given in.

つまりVOFF =Vosに調整することで、低ノイズで入力電圧のオフセット電圧をキャンセルでき、更にVos=VOFFが成り立たない場合でもVref1−Vref2で微調整を行うことが可能である。また、Vref1とVref2はノイズが大きいが増幅されないため、出力電圧には影響が少ない事がわかる。   That is, by adjusting VOFF = Vos, the offset voltage of the input voltage can be canceled with low noise, and even when Vos = VOFF does not hold, fine adjustment can be performed with Vref1-Vref2. Also, it can be seen that Vref1 and Vref2 have a large noise but are not amplified, and thus have little influence on the output voltage.

更に、Vref1とVref2のどちらか一方に温度特性を持たせることにより、入力電圧のオフセット電圧の温度依存性をキャンセルすることが可能となる。たとえば、Vref1は温度特性をもたない参照電圧で、Vref2は温度特性をもつものとする。このようにすることで、温度依存性をもつVref2を用いて入力電圧のオフセット電圧の温度依存性をキャンセルし、Vref1を用いて入力電圧のオフセット電圧の絶対値を合わせこむことが可能となる。   Furthermore, it is possible to cancel the temperature dependence of the offset voltage of the input voltage by providing one of Vref1 and Vref2 with temperature characteristics. For example, Vref1 is a reference voltage having no temperature characteristic, and Vref2 is temperature characteristic. By doing so, it becomes possible to cancel the temperature dependence of the offset voltage of the input voltage using Vref2 having temperature dependence, and to adjust the absolute value of the offset voltage of the input voltage using Vref1.

Vref1とVref2を与えるノードをスイッチで切り替えることで、温度依存性の極性と逆向きの極性の温度補正を与えることが可能になる。   By switching the node that provides Vref1 and Vref2 with a switch, it becomes possible to provide temperature correction with a polarity opposite to the temperature-dependent polarity.

このように本発明の回路方式では、入力電圧の持つオフセット電圧と温度依存性を低ノイズでキャンセルし信号成分のみを増幅することができる。   Thus, in the circuit system of the present invention, the offset voltage and temperature dependency of the input voltage can be canceled with low noise, and only the signal component can be amplified.

また2入力2出力を持つ完全差動回路においても、実施することができることは明白である。完全差動回路構成をとることにより、さらに同相ノイズを低減する効果が得られる。   It is obvious that the present invention can also be implemented in a fully differential circuit having two inputs and two outputs. By taking a fully differential circuit configuration, an effect of further reducing common-mode noise can be obtained.

またこの実施例に示した回路はスイッチトキャパシタ増幅回路の一例であり、他の形式のスイッチトキャパシタ増幅回路においても、実施することが可能であることは明白である。   The circuit shown in this embodiment is an example of a switched capacitor amplifier circuit, and it is obvious that the circuit can be implemented in other types of switched capacitor amplifier circuits.

入力電圧に含まれるオフセット電圧の値があらかじめわかっており、一定の場合に与える電圧値は、固定抵抗でもよいが、入力電圧に含まれるオフセット電圧の値が不明の場合は、電圧値をオフセット電圧に合わせて調整できる可変電圧とすることで、出力電圧を見ながらオフセット電圧の調整を行うことが可能である。   The value of the offset voltage included in the input voltage is known in advance, and the fixed voltage value may be a fixed resistor, but if the value of the offset voltage included in the input voltage is unknown, the voltage value is set to the offset voltage. By using a variable voltage that can be adjusted in accordance with the offset voltage, it is possible to adjust the offset voltage while observing the output voltage.

本発明のスイッチトキャパシタ増幅回路の回路図である。It is a circuit diagram of the switched capacitor amplifier circuit of the present invention. 従来のスイッチトキャパシタ増幅回路の回路図である。It is a circuit diagram of the conventional switched capacitor amplifier circuit.

符号の説明Explanation of symbols

100 演算増幅器
101、102、103、104、105、106 容量
111、112 参照電圧
121、122、123、124、125、126、127、128、129、
130、131、132、133、134 スイッチ回路
141、142 入力端子
151 、152 出力端子
100 operational amplifier
101, 102, 103, 104, 105, 106 capacity
111, 112 Reference voltage
121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134 Switch circuit
141, 142 input terminals
151, 152 output terminals

Claims (2)

スイッチトキャパシタ増幅回路において、
オペアンプと、
前記スイッチトキャパシタ増幅回路の第一入力端子と前記オペアンプの第一入力端子との間に設けられ、所定期間に前記スイッチトキャパシタ増幅回路の第一入力端子の電圧から第一基準電圧を減算した電圧に基づき、電荷量が変化する第一容量と、
前記スイッチトキャパシタ増幅回路の第二入力端子と前記オペアンプの第二入力端子との間に設けられ、前記所定期間に前記スイッチトキャパシタ増幅回路の第二入力端子の電圧から第二基準電圧を減算した電圧に基づき、電荷量が変化する第二容量と、
前記オペアンプの第一入力端子と前記オペアンプの出力端子との間に設けられ、前記所定期間に前記オペアンプの出力端子の電圧から第一参照電圧を減算した電圧に基づき、電荷量が変化する第三容量と、
前記オペアンプの第二入力端子と前記第一基準電圧が印加される端子との間に設けられ、前記所定期間に前記第一基準電圧から第二参照電圧を減算した電圧に基づき、電荷量が変化する第四容量と、
を備えていることを特徴とするスイッチトキャパシタ増幅回路。
In a switched capacitor amplifier circuit,
An operational amplifier,
Provided between the first input terminal of the switched capacitor amplifier circuit and the first input terminal of the operational amplifier, and a voltage obtained by subtracting the first reference voltage from the voltage of the first input terminal of the switched capacitor amplifier circuit during a predetermined period. Based on the first capacity, the amount of charge changes,
A voltage provided between the second input terminal of the switched capacitor amplifier circuit and the second input terminal of the operational amplifier, and a voltage obtained by subtracting a second reference voltage from the voltage of the second input terminal of the switched capacitor amplifier circuit during the predetermined period Based on the second capacity, the charge amount changes,
A third amount is provided between the first input terminal of the operational amplifier and the output terminal of the operational amplifier, and the charge amount changes based on a voltage obtained by subtracting the first reference voltage from the voltage of the output terminal of the operational amplifier during the predetermined period. Capacity,
The charge amount is changed based on a voltage obtained by subtracting the second reference voltage from the first reference voltage in the predetermined period, provided between the second input terminal of the operational amplifier and the terminal to which the first reference voltage is applied. With a fourth capacity to
A switched capacitor amplifier circuit comprising:
前記第一参照電圧と前記第二参照電圧とのどちらか一方が、温度特性を持つことを特徴とする請求項1記載のスイッチトキャパシタ増幅回路。   2. The switched capacitor amplifier circuit according to claim 1, wherein one of the first reference voltage and the second reference voltage has a temperature characteristic.
JP2004219939A 2003-07-30 2004-07-28 Switched capacitor amplifier circuit Expired - Fee Related JP4369820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219939A JP4369820B2 (en) 2003-07-30 2004-07-28 Switched capacitor amplifier circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003203922 2003-07-30
JP2004219939A JP4369820B2 (en) 2003-07-30 2004-07-28 Switched capacitor amplifier circuit

Publications (3)

Publication Number Publication Date
JP2005065250A JP2005065250A (en) 2005-03-10
JP2005065250A5 JP2005065250A5 (en) 2007-05-24
JP4369820B2 true JP4369820B2 (en) 2009-11-25

Family

ID=34379904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219939A Expired - Fee Related JP4369820B2 (en) 2003-07-30 2004-07-28 Switched capacitor amplifier circuit

Country Status (1)

Country Link
JP (1) JP4369820B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881819B2 (en) * 2007-09-07 2012-02-22 オンセミコンダクター・トレーディング・リミテッド Battery voltage detection circuit
JP5082952B2 (en) * 2008-03-13 2012-11-28 セイコーエプソン株式会社 Coulomb counter and dynamic range adjustment method

Also Published As

Publication number Publication date
JP2005065250A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US20040130377A1 (en) Switched capacitor amplifier circuit and electronic device
US9136904B2 (en) High bandwidth equalizer and limiting amplifier
JP5044242B2 (en) Amplifier circuit
JP4515241B2 (en) Output amplifier circuit and sensor device using the same
US11863132B2 (en) Switched capacitor amplifier circuit, voltage amplification method, and infrared sensor device
JP4188931B2 (en) Operational amplifier and offset voltage canceling method for operational amplifier
KR101377916B1 (en) Operational amplifier
JP2000022500A (en) Switched capacitor circuit
JP4369820B2 (en) Switched capacitor amplifier circuit
JP4094436B2 (en) Switched capacitor amplifier circuit and electronic device
US8810311B2 (en) Auto-zeroed amplifier with low input leakage
US8471753B1 (en) Pipelined analog-to-digital converter and method for converting analog signal to digital signal
US7633343B2 (en) Fully differential amplifier
JP4087228B2 (en) Switched capacitor amplifier circuit and electronic device
US10148238B2 (en) Amplifier circuit and multipath nested miller amplifier circuit
JP2007208924A (en) Switched capacitor amplifier and method of operating switched capacitor amplifier
JP5538465B2 (en) Sample and hold circuit
JP2009060376A (en) Amplifier circuit, sample holding circuit using the same, and analog-digital converter using the circuit
KR102153872B1 (en) Comparison circuit
US10756685B2 (en) Chopper amplifier with decoupled chopping frequency and threshold frequency
JP2006270442A (en) Q correction of filter circuit
JP2010213043A (en) Track-and-hold circuit and a-d converter
US20150244391A1 (en) Ramp signal generator using programmable gain amplifier
JP6847249B2 (en) Arithmetic amplifier circuit and AD converter
JP2005051362A (en) Switched capacitor amplifier circuit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees