[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4367588B2 - Steel pipe with excellent resistance to sulfide stress cracking - Google Patents

Steel pipe with excellent resistance to sulfide stress cracking Download PDF

Info

Publication number
JP4367588B2
JP4367588B2 JP30764599A JP30764599A JP4367588B2 JP 4367588 B2 JP4367588 B2 JP 4367588B2 JP 30764599 A JP30764599 A JP 30764599A JP 30764599 A JP30764599 A JP 30764599A JP 4367588 B2 JP4367588 B2 JP 4367588B2
Authority
JP
Japan
Prior art keywords
tin
steel
ssc resistance
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30764599A
Other languages
Japanese (ja)
Other versions
JP2001131698A (en
Inventor
朋彦 大村
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30764599A priority Critical patent/JP4367588B2/en
Publication of JP2001131698A publication Critical patent/JP2001131698A/en
Application granted granted Critical
Publication of JP4367588B2 publication Critical patent/JP4367588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油井やガス井用のケーシングやチュービング、掘削用のドリルパイプ、輸送用のラインパイプさらには化学プラント用配管などに用いる耐硫化物応力割れ性に優れた鋼管に関する。
【0002】
【従来の技術】
近年のエネルギー事情の逼迫に伴い、これまで敬遠されてきた硫化水素を多く含む原油や天然ガスが活用される情勢になってきており、それらの掘削、輸送、および貯蔵等が必要となってきた。その上、油井やガス井の深井戸化、輸送効率の向上、さらには低コスト化のためにこの分野で用いられる鋼材、特に鋼管についてはこれまで以上に高強度化が要求されている。
【0003】
すなわち、従来広く用いられていた耐硫化物応力割れ性に優れた、降伏応力(YS)が、552〜621MPa(80ksi級:80〜90ksi)の鋼管や621〜686MPa(90ksi級:90〜100ksi)の鋼管に代わって、最近では耐硫化物応力割れ性に優れた降伏応力が758〜862MPa(110ksi級:110〜125ksi)の高強度鋼管や862〜965MPa(125ksi級)の高強度鋼管が使用されるようになった。さらには、降伏応力が965MPa(140ksi級:140ksi以上)以上の耐硫化物応力割れ性に優れた超高強度鋼管に対する要求も高まりつつある。
【0004】
一般に、鋼材はその強度が増すほど硫化物応力割れ(以下、SSCと記す)性が大きくなる。従って、硫化水素を多く含む環境下で使用される鋼材の高強度化に対し、最も大きな課題となるのはSSCに対する抵抗性(以下、耐SSC性と記す)の改善である。
【0005】
上記の耐SSC性の改善には、▲1▼鋼を高清浄度化する ▲2▼鋼材の組織をマルテンサイトが約80%以上の組織とする、▲3▼高温焼戻し処理する、▲4▼鋼材の組織を細粒組織とする、などの対策が講じられてきた。
【0006】
SSCは、遅れ破壊と同様に水素脆化の一種と考えられている。このため、オーステナイト粒界の強化、換言すればオーステナイト粒界の脆化の防止をおこなうことが耐SSC性の改善に有効と考えられ、不純物元素としてのPやSをできるだけ少なくするのが上記▲1▼の対策である。
【0007】
一般に、鋼を焼入れ、焼戻しして同じ強度レベルに調質処理する場合の靭性は、不完全焼入れ組織を低温で焼戻し処理した場合よりも、充分な焼入れをおこなった組織を高温で焼戻し処理した方が遥かに優れているのはよく知られたことである。このような知見に基づいた耐SSC性改善対策が上記▲2▼と▲3▼である。
【0008】
上記▲4▼の鋼材組織の細粒化対策は、鋼材の強度が高くなるとその脆性割れは主として結晶粒単位で進展するので、組織を細粒化すると割れに対する抑止力が増すという考えに基づいている。その上、細粒化そのものも強度上昇に寄与し、さらに、細粒化すれば単位体積当たりの粒界面積が増加するので間接的に不純物元素の粒界偏析が軽減され粒界脆化が防止されることから、組織の細粒化が耐SSC性の改善に有効であると考えられてきた。
【0009】
鋼材組織の細粒化の手法として一般に利用されるのは、変態、加工変形および加工変形後の再結晶時の粒成長抑止などである。鋳造後の鋼塊を熱間で鋼管など所定の形状の鋼材に成形する際には、必然的に加工変形が加えられ、加工と再結晶の繰り返しにより細粒化される。例えば、特開昭61−9519号公報には、急速加熱法を適用する「耐硫化物腐食割れ性に優れた高強度鋼の製法」が開示されている。特開昭59−232220号公報には、鋼を2回焼入れする「耐硫化物腐食割れ性に優れた高強度鋼の製法」が開示されている。
【0010】
また最近、Nb、V等の微細炭窒化物を形成する元素を適正量添加すれば、耐SSC性の改善に有効であることも究明された。
【0011】
特開平10−280037号公報には微細炭化物を形成するNbを多量含有した鋼を高温から焼入れることにより、耐硫化物応力割れ性に優れた鋼管の製造方法が示されている。
【0012】
特に降伏応力が758MPa以上の高強度鋼では、上記の種種の手法を用い実験室レベルで鋼板を製造して検討した結果では、耐SSC性の大きな改善効果が得られた。しかし、実管の製造工程で量産した場合は必ずしも充分な耐SSC性が得られないことが多かった。鋼の清浄度や熱処理条件の不安定なことがこれらの一因と考えられていたが、原因は明らかにされていなかった。
【0013】
本発明の課題は、降伏応力が758〜862MPa(110ksi)の高強度でありながら、実機による生産ラインで製造しても安定した耐SSC性を備えた鋼管を提供することにある。
【0014】
具体的な耐SSC性の目標は、NACE(National Association of Corrosion Engineers)TM0177−96A法に規定された浴(硫化水素で飽和した25℃の0.5%酢酸+5%食塩水)中で定荷重試験をおこなった時の割れ発生限界応力(σth)が鋼材の規格最小応力(SMYS:Simulated Minimum YS)の85%以上である。なお、758〜862MPa(110ksi級)における鋼材の規格最小応力(SMYS)は758MPaである。この条件を満たせば、その鋼材は昨今の厳しい腐食環境下での使用に充分耐え得ることが知られている。
【0015】
【課題を解決するための手段】
本発明者らは、降伏応力が758〜862MPa(110ksi)の高強度でありながら、実機による生産ラインで量産しても安定した耐SSC性を備えた鋼管を開発するため鋭意実験、検討した結果、下記の知見を得た。
【0016】
a)実管生産ラインで製造されたYSが758〜862MPaの高強度鋼管の耐SSC性が不安定になるのは、耐SSC性を改善するために添加されているTiにより形成されるTi系窒化物、すなわちTiNの析出形態に起因している。
【0017】
b)耐SSC試験の結果、孔食の起点は粗大なTiNが露出した部位であり、TiNは酸不溶性、導電性であるため腐食環境でカソードサイトとして働いてTiN周囲の地鉄を溶解して孔食となり、その地鉄を溶解させる強さ(孔食の大きさ)は、TiNの大きさに依存している。
【0018】
c)大きな孔食は、その成長時には孔内部での腐食が顕著で、拡散性水素を鋼中にトラップし吸蔵水素を局部的に増大させる。そのような状態で孔底に応力集中が起こりSSCが発生する。
【0019】
d)孔食の発生する臨界のTiNの大きさは、直径5μmであり、直径が5μm未満の大きさのTiNは腐食の起点とならない。
【0020】
e)しかし、直径が5μm以上の大きなTiNであっても、断面1mm2当たり10個以下の量ならば耐SSC性を損なうことはない。
【0021】
f)したがって、Tiを含有させないか、含有させる場合は、TiNの大きさと析出量を規制する必要がある。
【0022】
f)上記のような機構で孔食を発生させて、実生産ラインで製造した鋼管の耐SSC性を顕著に低下させる介在物はTiN以外にない。
【0023】
本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
【0024】
質量%で、C:0.22〜0.35%、Si:0.05〜0.5%、Mn:0.1〜1%、P:0.025%以下、S:0.01%以下、Cr:0.1〜1.08%、Mo:0.1〜1%、Al:0.005〜0.1%、B:0.0001〜0.01%、Nb:0.005〜0.5%、N:0.005%以下、O(酸素):0.01%以下、Ni:0.1%以下、Ti:0.001〜0.03%で、かつ0.00008/N%以下、V:0〜0.5%、W:0〜1%、Zr:0〜0.1%、Ca:0〜0.01%を含み、残部はFeおよび不純物からなり、かつ直径5μm以上のTiNの数が断面1mm 当たり10個以下であることを特徴とする降伏応力が758〜862MPaでありかつ割れ発生限界応力(σth)が鋼材の規格最小応力(SMYS)の85%以上である耐硫化物応力割れ性に優れた鋼管。
【0025】
TiNの直径とは、前記断面を研磨して光学顕微鏡で観察したTiNの長短と短径の平均値とする。TiNは、EDX(エネルギー分散型X線マイクロアナライザー)等の成分分析手法を用いることにより同定でき、介在物中のTiの重量%が50%以上のものをTiNとする。また、1mm2 当たり10個とは、1mm2当たりの個数を10箇所測定し、その平均値が10個であることを意味する。
【0026】
【発明の実施の形態】
以下、本発明の鋼管の化学組成およびTiNに関して規定した理由について詳しく説明する。なお化学組成の%は質量%を示す。
【0027】
C:0.22〜0.35%
Cは、焼入れ性を高めて強度を向上させるのに有効な元素である。しかし、その含有量が0.22%未満では、焼入れ性が低下し耐SSC性が低下することがある。一方、0.35%を超えると、炭化物が増加して拡散性水素のトラップサイトが多くなって耐SSC性が低下する。さらに、焼割れ感受性も増大する。したがって、Cの含有量を0.22〜0.35%とした。C含有量の好ましい上限は0.3%である。
【0028】
Si:0.05〜0.5%
Siは、鋼の脱酸に有効な元素であり、焼戻し軟化抵抗を高めて耐SSC性を向上させる元素でもある。脱酸の目的からは0.05%以上の含有量とする必要がある。しかし、その含有量が0.5%を超えると靭性が低下するし、粒界強度が低くなるので耐SSC性も却って低下してしまう。したがって、Siの含有量は0.05〜0.5%とした。なお、Si含有量の上限は0.3%とすることが好ましい。
【0029】
Mn:0.1〜1%
Mnは、鋼の焼入れ性を確保するのに有効な元素である。この目的からは0.1%以上の含有量が必要である。しかし、1%を超えて含有させると粒界に偏析して耐SSC性および靭性の低下を招く。したがって、Mnの含有量を0.1〜1%とした。なお、Mn含有量の上限は望ましくは0.5%である。
【0030】
P:0.025%以下
Pは不純物として鋼中に不可避的に存在するが、粒界に偏析して耐SSC性を劣化させてしまう。特に、その含有量が0.025%を超えると耐SSC性の劣化が著しくなる。このため、その含有量は0.025%以下にする必要がある。なお、耐SSC性を高めるためにPの含有量はできるだけ低くすることが望ましい。
【0031】
S:0.01%以下
SはPと同様に不純物として鋼中に不可避的に存在するが、粒界に偏析することと、硫化物系の介在物を多量に生成することによって耐SSC性を低下させてしまう。特に、その含有量が0.01%を超えると耐SSC性の低下が著しくなる。したがって、その含有量は0.01%以下にする必要がある。なお、耐SSC性を高めるためにSの含有量はできるだけ低くすることが望ましい。
【0032】
Cr:0.1〜1.08%
Crは、焼入れ性を上げるとともに焼戻し軟化抵抗を高めて高温焼戻しを可能にし、耐SSC性を向上させる作用がある。前記の効果を確実に得るためにはCrの含有量は0.1%以上とする必要がある。しかし、Crを1.08%を超えて含有させると、硫化水素を含む酸性の湿潤環境ではCrが活性溶解して腐食速度が大きくなり、却って耐SSC性の低下を招く。したがって、Crの含有量を0.1〜1.08%とした。なお、Cr含有量の上限は0.5%とすることが好ましい。
【0033】
Mo:0.1〜1%
Moは焼入れ性を向上させるとともに、焼戻し軟化抵抗を高めて高温焼戻しを可能にし、耐SSC性を向上させる作用を有する。しかし、その含有量が0.1%未満では前記の効果が得られない。一方、1%を超えて含有させると、焼戻しで針状のMo炭化物が析出して拡散性水素をトラップして吸蔵水素濃度を増し、かつその周辺の応力集中により耐SSC性を却って低下させる。したがって、Moの含有量を0.1〜1%とした。
【0034】
Al:0.005〜0.1%
Alは、鋼の脱酸に必要な元素である。しかし、その含有量が0.005%未満ではその効果は得難い。一方、0.1%を超えて含有させると粗大なAl23介在物が多くなって靭性および耐SSC性が低下する。したがって、Alの含有量を0.005〜0.1%とした。Al含有量の望ましい範囲は0.01〜0.05%である。なお、本明細書でいうAlとは所謂「sol.Al(酸可溶Al)」のことである。
【0035】
B:0.0001〜0.01%
Bは、微量で鋼の焼入れ性を向上させる作用を有する。しかし、その含有量が0.0001%未満ではその効果が充分でなく、一方0.01%を超えると粒界にCr23(C、B)6を析出させ、靭性および耐SSC性が低下するため、Bの含有量は0.0001〜0.01%とした。なお、B含有量の望ましい範囲は、0.0002〜0.002%である。
【0036】
Nb:0.005〜0.5%
Nbは、通常の焼入れ、焼戻し熱処理では未固溶の炭化物として存在し、ピニング効果により細粒化に有効な元素である。また直接焼入れ法により焼入れ時に完全に固溶させれば、焼戻し軟化抵抗に活用でき、耐SSC性を高めることもできる。この効果を得るためにはNbを0.005%以上含有させる必要がある。一方、0.5%を超えて含有させると、Nb炭化物が拡散性水素のトラップサイトとなって水素吸蔵量が増えるので耐SSC性が低下する。したがって、Nbの含有量は0.005〜0.5%とした。
【0037】
N:0.005%以下
Nは不純物として鋼中に存在し、粒界に偏析して靭性および耐SSC性を低下させる。また、Tiと結合してTiNを形成するが、その含有量が0.005%を超えるとTiNが粗大化し、耐SSC性が著しく低下する。したがって、Nの含有量を0.005%以下とした。なお、Nは大気中などから溶鋼中に侵入し、その含有量を0(ゼロ)にすることは工業的に極めて難しいが、できるだけ少なくすることが望ましい。
【0038】
O(酸素):0.01%以下
Oは不純物として鋼中に存在し、粒界に偏析して靭性および耐SSC性を低下させる。しかし、その含有量が0.01%までであれば許容できるので、Oの上限を0.01%とした。なお、Oは大気中などから溶鋼中に侵入し、その含有量を0(ゼロ)にすることは工業的に極めて難しいが、できるだけ少なくすることが望ましい。
【0039】
Ni:0.1%以下
Niは不純物として鋼中に存在し、本発明で規定するの化学組成の鋼においては耐SSC性を低下させる。特に、Niの含有量が0.1%を超えると耐SSC性の低下が著しくなる。したがって、Niの含有量を0.1%以下とするが、できるだけ少なくすることが望ましい。
【0040】
Ti:0.001〜0.03%で、かつ0.00008/N%以下
Tiは本発明においては、TiNの形成と耐SSC性の相関の観点から、重要な元素の一つで、TiNの悪影響を避けるためには含有させないのがよい。しかし、Tiは鋼中の不純物であるNをTiNとして固定し、耐SSC性を改善する作用を有し、N固定に必要とするよりも過剰なTiは、炭化物となって微細に析出し、焼戻し軟化抵抗を高める効果を有する。また、Nの固定は、焼入れ性向上のために添加するBがBNとなるのを抑制し、Bを固溶状態に維持して充分な焼入れ性を確保するために有効である。したがって、必要により含有させる。含有させて上記効果を得るには、0.005%以上とするのが好ましい。一方、その含有量が0.03%を超えると、粗大なTiNが析出して孔食起点となり、耐SSC性を著しく低下させる。
また、TiNの大きさは耐SSC性に影響し、小さい程よいが、後述するように孔食の起点とならない直径が5μm未満の小さいTiNにするには、TiとNを下記の関係を満たすように制御する必要がある。
【0041】
また、TiNの大きさは耐SSC性に影響し、小さい程よいが、後述するように孔食の起点とならない直径が5μm未満の小さいTiNにするには、TiとNを下記の関係を満たすように制御する必要がある。
【0042】
Ti≦0.00008/N (Ti、Nは含有量で質量%)
Tiが上記の式を満たさない場合、粗大化したTiNが増加して耐SSC性を低下させる。この式は下記のような試験の結果求めたものである。
【0043】
図2は、TiおよびN含有量を種々変化させ鋼を熱間鍛造、熱間圧延した後、焼入れ、焼戻し熱処理を施た鋼板の縦断面を光学顕微鏡で観察し、TiNの大きさと個数を求め、NとTi含有量との関係で整理した図である。図中の数字は、1mm2 当たりの直径が5μm以上のTiNの個数を示す。この図から、直径が5μm以上のTiNの個が1mm2 当たり10個以下になるTi含有量は0.00008/N以下であることが分かる。
【0044】
図1は、直径が5μm以上のTiNの1mm2 当たりの析出個数と耐SSC性との関係を示す図で、C:0.27%、Cr:0.5%、Mo:0.7%を含有する鋼を基本にしてTiおよびN含有量を種々変化させ、直径が5μm以上のTiNの1mm2 当たりの個数の異なる鋼を製造して耐SSC試験をおこなった結果である。
【0045】
図1から明らかなように、直径が5μm 以上のTiNの個数が1mm2 当たり10個以下ならば、破断限界応力が85%以上で、実用上問題ないことが分かる。このような試験からTi含有量は、0.00008/N以下とした。
【0046】
V:0〜0.5%
Vは必要により含有させる元素で、焼戻し時に微細な炭化物として析出して焼戻し軟化抵抗を高め、高温焼戻しを可能とすることにより耐SSC性を改善する作用を有する。含有させる場合、前記効果を確実に得るにため0.005%以上の含有量とすることが好ましい。一方、0.5%を超えると効果が飽和して強化に寄与しなくなることに加え、VCが拡散性水素のトラップサイトとなって水素吸蔵量が増えるので却って耐SSC性が低下する。このため、上限は0.5%とした。
【0047】
W:0〜1%
Wは必要により含有させる元素で、焼入れ性を高めるとともに、焼戻し軟化抵抗を高めて高温焼戻しを可能にし、耐SSC性を向上させる作用を有する。含有させる場合、前記の効果を確実に発揮させるには、0.3%以上とすることが好ましい。しかし、1%を超えて含有させると前記の効果が飽和するか、低下するのに加え、多量の炭化物が拡散性水素のトラップサイトとなって却って耐SSC性が低下する。したがって、Wの上限は1%とした。なお、W含有量の上限は0.7%とすることが好ましい。
【0048】
Zr:0〜0.1%
Zrも必要により含有させる元素であって、含有させればTiと同様に鋼中の不純物であるNをZrNとして固定する作用がある。この作用を確実に得るには、0.005%以上とするのが好ましい。また、過剰に含有させるとTi同様に粗大なZrNが析出し、孔食起点となり耐SSC性を低下させることがある。好ましくは0.05%以下である。Zrを含有させる場合は、Tiの一部を代替として用いればよい。
【0049】
Ca:0〜0.01%
Caは必要により含有させる元素であって、含有させれば鋼中のSと結合して硫化物を形成し、介在物の形状を改善して耐SSC性を向上させる。したがって、前記の効果を確保したい場合に含有させるのがよい。なお、前記の効果を確実に得るには、Caは0.0001%以上の含有量とすることが好ましい。しかし、その含有量が0.01%を超えると、却って耐SSC性が低下するばかりか靭性も低下し、また鋼材表面に地疵などの欠陥が発生し易くなる。したがって、Caの上限は0.01%とした。
【0050】
TiN:断面1mm2あたりの直径5μm以上のTiNの数が10個以下
TiNは、実生産ラインで製造された鋼管の耐SSC性に影響し、その析出形態により耐SSC性を左右する。耐SSC性は、大きなTiNが存在する場合にそれが起点となって発生する孔食に起因しており、孔食の発生する臨界のTiNの大きさは、直径5μmであり、直径が5μm未満の大きさのTiNは腐食の起点とならない。また、直径が5μm以上のTiNであっても、下記の方法で求めた断面1mm2当たり10個以下の量ならば耐SSC性を損なうことはない。
【0051】
TiNの大きさ、個数を求めるには、樹脂埋めした鋼板断面をバフ研磨仕上げして光学顕微鏡(100倍)で観察し、1mm2あたりの視野で観察された直径が5μm以上のTiNの個数を数えればよい。断面1mm2当たり10個とは、1mm2当たりの個数を10ヶ所測定し、その平均値が10個であることを意味する。
介在物は、SEMで大きさを確認しつつEDX等の成分分析手法を用い、介在物中のTiの質量%が50%以上のものをTiNとして同定する。Ti量が50%未満のTiNは、Nb系炭窒化物であり、鋳込み時に完全に鋼中に固溶し、後の熱処理時に析出するため、粗大化しないので孔食の起点とならないため除外する。
鋼管の量産時には、ビレットの鋳込み条件によって粗大なTiNが未固溶のまま残存する場合が多い。これは実生産ラインの大量鋳込み材の場合は、実験室溶製材に比べて、鋳込み時にTiNの浮上による除去がなされにくいことや、成分偏析により介在物の析出にむらができ易いことが原因である。
【0052】
実管のSSC試験をおこなった場合、孔食が多数発生して耐SSC性が低下する場合が多かったが、その孔食起点は粗大なTiNが露出した部位であった。TiNは一般に酸不溶性の介在物であり、高い耐食性を持つため、それ自体が試験液中で溶け落ちることは無い。しかし酸化物系介在物とは異なり導電性であるため、鋼中に介在物として存在する状態で腐食性液中に浸漬されるとカソードサイトとして働き、TiN周囲の地鉄の低合金鋼の腐食を促進してしまう。
【0053】
この場合の周囲の地鉄を溶解させる強さは、TiNの大きさに依存している。この理由は、TiNが大きいほどカソードサイトとして働く面積が大きくなり、カソードサイトの面積が大きいほどアノードサイトとなる周囲の地鉄との間に流れる電流は大きくなり、より腐食が促進されるためである。
【0054】
孔食の発生する臨界のTiNの大きさは5μmであり、これ未満の大きさのTiNは孔食起点とならない。初期の孔食の大きさはTiNの周囲が溶解することでTiNが剥がれ落ちた程度の大きさ(5μm)である。[このような微小な孔食は大部分が時間経過とともに消失するが、初期の孔食数が多ければ確率的に大きな孔食に成長するのものも現れ、長時間の試験期間の間に破断の起点となる可能性が高くなるのである。]
大きな孔食は、孔の底で応力集中を起こす効果と、孔食の発生と成長時には周囲の地鉄に比べ孔食内部では盛んな腐食が起こっているため、拡散性水素を鋼中にトラップし、吸蔵される水素濃度を局部的に増してSSCを起こし易くするのである。
【0055】
上記のような機構で孔食を発生させ、実生産工程で耐SSC性を顕著に低下させる介在物は他には例が無い。例えば、析出強化に有効なNb系、V系、Mo系の微細な炭化物は、微細であるが故に総界面積が大きく、吸蔵水素を増すことで耐SSC性を低下させることがあるが、実験室溶製材と実管でその析出形態に大きな差は無い。
【0056】
また、粗大なCaO系またはAl23系の酸化物は、腐食液中で自身が溶け落ちることにより孔食を発生することがあるが、これらは導電性介在物ではないので、カソードサイトとはならない。従って、孔食を起こす場合はTiNよりもはるかに大きいサイズの場合に限られる。
【0057】
また、Zrの窒化物であるZrNもTiNと同様に導電性であるが、TiNに比べるとZrNは成長速度が遅いため、微細に析出し、実管製造時も粗大化しない。
【0058】
TiNの析出量は当然のことながらTi量とN量に依存するが、TiNの大きさはTi量とN量だけでは決定されず、鋳込み時のTiNの除去効果や偏析に大きく依存する。従って、製造段階で粗大なTiNの析出を回避する手段としては、タンディッシュヒーター等により溶鋼温度を上昇させて、鋳込み時に粗大介在物を浮上し易くして除去する方法が効果的である。
【0059】
【実施例】
表1に示す化学組成の17種の鋼を溶製し、各150トン鋼塊とし、熱間鍛造して丸ビレットとし、ピアサーで穿孔してホローシェルとし、マンドレルミルにて外径250mm、肉厚16mmのシームレス鋼管を製造した後、焼入れ、焼戻し熱処理を施した。焼入れ、焼戻し処理条件を変えて鋼記号A〜Fは758MPa級に、G〜I、L〜Nは862MPa級に、およびJ、K、O〜Qは965MPa級に強度調整した。
【0060】
【表1】

Figure 0004367588
【0061】
各鋼管から、長手方向に平行に引張試験片を採取し、常温(室温)で引張試験をおこなって、降伏応力(YS)を測定した。
【0062】
また、平行部の直径が6.35mmで、長さが25.4mmの丸棒引張試験片を採取し、NACETM0177−96A法に準拠した方法で耐SSC性の評価をおこなった。すなわち、硫化水素で飽和した25℃の0.5%酢酸+5%食塩水中での定荷重試験で、硫化水素の分圧はC110が1気圧、C125〜C140は1気圧の試験は過酷なことから0.1気圧で試験し、負荷応力を変化させ、720時間の試験時間中に破断しなかった最大応力を測定した。その最大応力が規格最小応力(SMYS)の85%以上のものを耐SSC性が良好と判定し、評価を○とし、85%未満は×とした。
【0063】
一回の定荷重試験の残材もしくはその近い位置から10個の試料を切り出し、SEMでTiNの大きさを測定しつつEDX分析してTiを50%以上含有しているTiNを同定し、直径5μm以上のTiNを計数した。この測定は1試料1mm2 の面積で測定し、10個の平均個数を求めた。
【0064】
上記の各種試験結果を表2に示す。
【0065】
【表2】
Figure 0004367588
【0066】
表2から明らかなように、YSが786〜807MPaと高強度であっても、化学組成および直径が5μm以上のTiN数が本発明で規定する範囲内にある場合は、いずれも定荷重試験において降伏応力の85%以上の負荷応力でも破断をせず、耐SSC性は良好である。
【0067】
これに対し、本発明の規定を外れた比較例の場合、すべて定荷重試験での破断限界応力が85%未満であり、耐SSC性に劣っている。
【0068】
【発明の効果】
本発明によれば実生産ラインで製造してもYSが758〜862MPa(110ksi)の高強度でも安定した耐SSC性を有する鋼管が得られ、油井やガス井用のケーシングやチュービング、掘削用のドリルパイプ、輸送用のラインパイプ、さらには化学プラント用配管などに用いて優れた効果を発揮し、産業上極めて有効である。
【図面の簡単な説明】
【図1】直径が5μm以上のTiNの1mm2 当たりの個数と耐SSC性との関係を示す図である。
【図2】TiおよびN含有量と直径が5μm以上のTiNの析出個数との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe having excellent sulfide stress cracking resistance used for casings and tubing for oil wells and gas wells, drill pipes for excavation, line pipes for transportation, and piping for chemical plants.
[0002]
[Prior art]
With the recent tightening of energy situation, crude oil and natural gas containing a lot of hydrogen sulfide, which has been shunned until now, has come to be used, and it has become necessary to drill, transport, and store them. . In addition, steel materials, particularly steel pipes used in this field for deep wells in oil and gas wells, improved transport efficiency, and cost reduction are required to have higher strength than ever.
[0003]
That is, the yield stress (YS) excellent in sulfide stress cracking resistance, which has been widely used conventionally, is 552 to 621 MPa (80 ksi class: 80 to 90 ksi), 621 to 686 MPa (90 ksi class: 90 to 100 ksi). In recent years, high strength steel pipes with yield stresses of 758 to 862 MPa (110 ksi class: 110 to 125 ksi) and high strength steel pipes of 862 to 965 MPa (125 ksi class) excellent in sulfide stress cracking resistance have been used. It became so. Furthermore, there is an increasing demand for an ultra-high-strength steel pipe having a yield stress of 965 MPa (140 ksi class: 140 ksi or more) and excellent in sulfide stress cracking resistance.
[0004]
In general, the strength of sulfide stress cracking (hereinafter referred to as SSC) increases as the strength of steel increases. Therefore, the most important issue for increasing the strength of steel materials used in an environment containing a large amount of hydrogen sulfide is improving the resistance to SSC (hereinafter referred to as SSC resistance).
[0005]
To improve the above SSC resistance, (1) increase the cleanliness of the steel (2) make the steel structure a martensite structure of about 80% or more, (3) perform high temperature tempering treatment, (4) Measures have been taken such as making the structure of steel material a fine-grained structure.
[0006]
SSC is considered a kind of hydrogen embrittlement as well as delayed fracture. For this reason, strengthening the austenite grain boundary, in other words, preventing embrittlement of the austenite grain boundary is considered to be effective in improving the SSC resistance, and the above-mentioned ▲ is to reduce P and S as impurity elements as much as possible. This is measure 1 ▼.
[0007]
Generally, the toughness when quenching and tempering steel to the same strength level is the toughness of tempering a sufficiently quenched structure at a higher temperature than when an incompletely quenched structure is tempered at a lower temperature. It is well known that is far superior. The measures for improving SSC resistance based on such knowledge are the above (2) and (3).
[0008]
The measure for refining the steel structure of (4) above is based on the idea that if the strength of the steel increases, the brittle cracks progress mainly in crystal grain units, so that the finer the structure increases the deterrence against cracking. Yes. In addition, grain refinement itself contributes to strength increase, and further grain refinement increases grain boundary area per unit volume, which indirectly reduces grain boundary segregation of impurity elements and prevents grain boundary embrittlement. Therefore, it has been considered that the refinement of the structure is effective in improving the SSC resistance.
[0009]
Generally used as a technique for refining the steel structure is transformation, deformation, and grain growth inhibition during recrystallization after deformation. When a steel ingot after casting is hot-formed into a steel material having a predetermined shape such as a steel pipe, processing deformation is inevitably applied, and it is refined by repeated processing and recrystallization. For example, Japanese Patent Application Laid-Open No. 61-9519 discloses “a method for producing high-strength steel excellent in resistance to sulfide corrosion cracking” to which a rapid heating method is applied. Japanese Patent Application Laid-Open No. 59-232220 discloses “a method for producing a high-strength steel excellent in resistance to sulfide corrosion cracking” by quenching steel twice.
[0010]
Recently, it has also been investigated that the addition of an appropriate amount of an element that forms fine carbonitrides such as Nb and V is effective in improving SSC resistance.
[0011]
Japanese Patent Application Laid-Open No. 10-280037 discloses a method of manufacturing a steel pipe excellent in sulfide stress cracking resistance by quenching steel containing a large amount of Nb forming fine carbides from a high temperature.
[0012]
Particularly in the case of high-strength steel having a yield stress of 758 MPa or more, the results of studying steel sheets manufactured at the laboratory level using the above-described various methods showed a significant improvement effect in SSC resistance. However, when mass production is performed in the manufacturing process of the actual pipe, sufficient SSC resistance is not always obtained. The instability of steel cleanliness and heat treatment conditions was thought to be one of these factors, but the cause was not clarified.
[0013]
An object of the present invention is to provide a steel pipe having a high yield strength of 758 to 862 MPa (110 ksi class ) and having a stable SSC resistance even when manufactured on a production line using an actual machine.
[0014]
The specific SSC resistance target is constant load in a bath (0.5% acetic acid + 5% saline solution at 25 ° C. saturated with hydrogen sulfide) specified in NACE (National Association of Corrosion Engineers) TM0177-96A method. The crack initiation limit stress (σth) at the time of the test is 85% or more of the standard minimum stress (SMYS: Simulated Minimum YS ) of the steel material . In addition, the standard minimum stress (SMYS) of the steel material in 758-862 MPa (110 ksi class) is 758 MPa. It is known that if this condition is satisfied, the steel material can sufficiently withstand the use in the recent severe corrosive environment.
[0015]
[Means for Solving the Problems]
The inventors of the present invention conducted intensive experiments and studies to develop a steel pipe having a high yield strength of 758 to 862 MPa (110 ksi class ) but having stable SSC resistance even in mass production on an actual production line. As a result, the following knowledge was obtained.
[0016]
a) The SSC resistance of high strength steel pipes with YS of 758 to 862 MPa manufactured in an actual pipe production line is unstable because of the Ti system formed by Ti added to improve the SSC resistance. It originates in the precipitation form of nitride, ie, TiN.
[0017]
b) As a result of the SSC resistance test, the starting point of pitting corrosion is the site where coarse TiN is exposed. Since TiN is acid-insoluble and conductive, it works as a cathode site in a corrosive environment and dissolves the surrounding iron around TiN. The strength (pitting corrosion size) that causes pitting corrosion and dissolves the base iron depends on the size of TiN.
[0018]
c) Large pitting corrosion is markedly corroded inside the pores during growth, trapping diffusible hydrogen in the steel and locally increasing the stored hydrogen. In such a state, stress concentration occurs at the hole bottom and SSC occurs.
[0019]
d) The critical TiN size at which pitting occurs is 5 μm in diameter, and TiN having a diameter of less than 5 μm does not serve as a starting point for corrosion.
[0020]
e) However, even with a large TiN having a diameter of 5 μm or more, the SSC resistance is not impaired if the amount is 10 or less per 1 mm 2 of the cross section.
[0021]
f) Therefore, when Ti is not contained or when it is contained, it is necessary to regulate the size and the amount of precipitation of TiN.
[0022]
f) There is no inclusion other than TiN that causes pitting corrosion by the mechanism as described above and significantly reduces the SSC resistance of the steel pipe manufactured in the actual production line.
[0023]
The present invention has been made based on such findings, and the gist thereof is as follows.
[0024]
In mass%, C: 0.22 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less Cr: 0.1 to 1.08%, Mo: 0.1 to 1%, Al: 0.005 to 0.1%, B: 0.0001 to 0.01%, Nb: 0.005 to 0 0.5%, N: 0.005% or less, O (oxygen): 0.01% or less, Ni: 0.1% or less, Ti: 0.001 to 0.03%, and 0.00008 / N% Hereinafter, V: 0 to 0.5%, W: 0 to 1%, Zr: 0 to 0.1%, Ca: 0 to 0.01%, the balance is Fe and impurities, and the diameter is 5 μm or more The yield stress is 758 to 862 MPa, and the crack initiation limit stress (σth) is the standard minimum stress of steel (characterized in that the number of TiN is 10 or less per 1 mm 2 in cross section. Steel pipe with excellent resistance to sulfide stress cracking, which is 85% or more of SMYS).
[0025]
The diameter of TiN is the average value of the long and short diameters of TiN observed with an optical microscope after polishing the cross section. TiN can be identified by using a component analysis technique such as EDX (energy dispersive X-ray microanalyzer), and TiN in which the weight percentage of Ti in inclusions is 50% or more is defined as TiN. In addition, the 10 per 1 mm 2, the number per 1 mm 2 was measured at 10 positions, which means that the average value of ten.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason specified about the chemical composition and TiN of the steel pipe of this invention is demonstrated in detail. In addition,% of a chemical composition shows the mass%.
[0027]
C: 0.22 to 0.35%
C is an element effective for improving the hardenability and improving the strength. However, if the content is less than 0.22% , the hardenability is lowered and the SSC resistance may be lowered. On the other hand, if it exceeds 0.35%, carbides increase and the number of diffusible hydrogen trap sites increases and the SSC resistance decreases. In addition, the cracking susceptibility is also increased. Therefore, the content of C is set to 0.22 to 0.35%. The upper limit with preferable C content is 0.3%.
[0028]
Si: 0.05-0.5%
Si is an element effective for deoxidation of steel, and is also an element that increases temper softening resistance and improves SSC resistance. For the purpose of deoxidation, the content must be 0.05% or more. However, if its content exceeds 0.5%, the toughness decreases and the grain boundary strength decreases, so the SSC resistance also decreases. Therefore, the Si content is set to 0.05 to 0.5%. In addition, it is preferable that the upper limit of Si content shall be 0.3%.
[0029]
Mn: 0.1 to 1%
Mn is an effective element for ensuring the hardenability of steel. For this purpose, a content of 0.1% or more is necessary. However, if it exceeds 1%, it segregates at the grain boundary and causes a decrease in SSC resistance and toughness. Therefore, the Mn content is set to 0.1 to 1%. Note that the upper limit of the Mn content is desirably 0.5%.
[0030]
P: 0.025% or less P is unavoidably present in the steel as an impurity, but segregates at the grain boundary and deteriorates the SSC resistance. In particular, when the content exceeds 0.025%, the SSC resistance is significantly deteriorated. For this reason, the content needs to be 0.025% or less. In order to improve the SSC resistance, it is desirable that the P content be as low as possible.
[0031]
S: 0.01% or less Although S is unavoidably present in steel as an impurity like P, SSC resistance is improved by segregating at grain boundaries and generating a large amount of sulfide inclusions. It will decrease. In particular, when the content exceeds 0.01%, the SSC resistance is significantly lowered. Therefore, the content needs to be 0.01% or less. In addition, in order to improve SSC resistance, it is desirable to make S content as low as possible.
[0032]
Cr: 0.1 to 1.08%
Cr increases the hardenability and increases the temper softening resistance to enable high temperature tempering, thereby improving the SSC resistance. In order to surely obtain the above effect, the Cr content needs to be 0.1% or more. However, if Cr is contained in an amount exceeding 1.08% , Cr is actively dissolved in an acidic wet environment containing hydrogen sulfide and the corrosion rate is increased, and on the contrary, the SSC resistance is lowered. Therefore, the content of Cr is set to 0.1 to 1.08% . In addition, it is preferable that the upper limit of Cr content shall be 0.5%.
[0033]
Mo: 0.1 to 1%
Mo has the effect of improving hardenability, increasing temper softening resistance, enabling high-temperature tempering, and improving SSC resistance. However, if the content is less than 0.1%, the above effect cannot be obtained. On the other hand, when the content exceeds 1%, needle-like Mo carbide precipitates by tempering, traps diffusible hydrogen, increases the concentration of occluded hydrogen, and lowers the SSC resistance due to stress concentration in the vicinity. Therefore, the content of Mo is set to 0.1 to 1%.
[0034]
Al: 0.005 to 0.1%
Al is an element necessary for deoxidation of steel. However, if the content is less than 0.005%, it is difficult to obtain the effect. On the other hand, if the content exceeds 0.1%, coarse Al 2 O 3 inclusions increase and the toughness and SSC resistance deteriorate. Therefore, the Al content is set to 0.005 to 0.1%. A desirable range of the Al content is 0.01 to 0.05%. In addition, Al as used in this specification is what is called "sol.Al (acid-soluble Al)."
[0035]
B: 0.0001 to 0.01%
B has the effect of improving the hardenability of the steel in a small amount. However, if the content is less than 0.0001%, the effect is not sufficient. On the other hand, if it exceeds 0.01%, Cr 23 (C, B) 6 is precipitated at the grain boundaries, and the toughness and SSC resistance are lowered. Therefore, the B content is set to 0.0001 to 0.01%. In addition, the desirable range of B content is 0.0002 to 0.002%.
[0036]
Nb: 0.005 to 0.5%
Nb exists as an undissolved carbide in normal quenching and tempering heat treatment, and is an element effective for fine graining due to the pinning effect. In addition, if the solid solution is completely dissolved by the direct quenching method, it can be used for temper softening resistance and SSC resistance can be improved. In order to acquire this effect, it is necessary to contain Nb 0.005% or more. On the other hand, if the content exceeds 0.5%, the Nb carbide becomes a diffusible hydrogen trap site and the hydrogen storage amount increases, so the SSC resistance decreases. Therefore, the Nb content is set to 0.005 to 0.5%.
[0037]
N: 0.005% or less N is present in the steel as an impurity and segregates at the grain boundary to lower toughness and SSC resistance. Further, TiN is combined with Ti to form TiN. If the content exceeds 0.005%, TiN becomes coarse and the SSC resistance is remarkably lowered. Therefore, the N content is set to 0.005% or less. It is extremely difficult industrially to enter N into the molten steel from the atmosphere or the like and make its content 0 (zero), but it is desirable to reduce it as much as possible.
[0038]
O (oxygen): 0.01% or less O is present as an impurity in the steel and segregates at the grain boundary to lower toughness and SSC resistance. However, since the content is acceptable up to 0.01%, the upper limit of O is set to 0.01%. Note that it is extremely difficult industrially to enter O into the molten steel from the atmosphere or the like and to make its content 0 (zero), but it is desirable to reduce it as much as possible.
[0039]
Ni: 0.1% or less Ni is present in the steel as an impurity, and lowers the SSC resistance in the steel having the chemical composition defined in the present invention. In particular, when the Ni content exceeds 0.1%, the SSC resistance is significantly lowered. Therefore, the Ni content is 0.1% or less, but it is desirable to reduce it as much as possible.
[0040]
Ti: 0.001 to 0.03% and 0.00008 / N% or less In the present invention, Ti is one of the important elements from the viewpoint of the correlation between the formation of TiN and the SSC resistance. In order to avoid adverse effects, it should not be contained. However, Ti has the effect of fixing N as an impurity in steel as TiN and improving the SSC resistance. Excess Ti than that required for N fixation becomes carbide and precipitates finely, It has the effect of increasing the temper softening resistance. Further, the fixation of N is effective for suppressing B added to improve hardenability to become BN, and maintaining B in a solid solution state to ensure sufficient hardenability. Therefore, it is contained if necessary. In order to obtain the above-mentioned effect by containing, the content is preferably 0.005% or more. On the other hand, when the content exceeds 0.03%, coarse TiN precipitates and becomes a pitting corrosion starting point, and the SSC resistance is remarkably lowered.
Further, the size of TiN affects SSC resistance and should be as small as possible. However, as will be described later, in order to make TiN smaller than 5 μm in diameter, which does not cause pitting corrosion, Ti and N should satisfy the following relationship: Need to control.
[0041]
Further, the size of TiN affects SSC resistance and should be as small as possible. However, as will be described later, in order to make TiN smaller than 5 μm in diameter, which does not cause pitting corrosion, Ti and N should satisfy the following relationship: Need to control.
[0042]
Ti ≦ 0.00008 / N (Ti and N are contained in mass%)
When Ti does not satisfy the above formula, coarse TiN increases and the SSC resistance decreases. This equation is obtained as a result of the following test.
[0043]
Fig. 2 shows the size and number of TiN obtained by observing the longitudinal section of a steel sheet that has been subjected to hot forging and hot rolling with various changes in the Ti and N contents and then subjected to quenching and tempering treatment with an optical microscope. It is the figure arranged by the relationship between N and Ti content. The numbers in the figure indicate the number of TiN having a diameter of 5 μm or more per 1 mm 2 . From this figure, it can be seen that the Ti content at which the number of TiN having a diameter of 5 μm or more is 10 or less per 1 mm 2 is 0.00008 / N or less.
[0044]
FIG. 1 is a graph showing the relationship between the number of precipitates per 1 mm 2 of TiN having a diameter of 5 μm or more and SSC resistance. C: 0.27%, Cr: 0.5%, Mo: 0.7% This is a result of conducting an SSC resistance test by producing various steels per 1 mm 2 of TiN having a diameter of 5 μm or more by varying Ti and N contents based on the steel contained.
[0045]
As can be seen from FIG. 1, if the number of TiN having a diameter of 5 μm or more is 10 or less per 1 mm 2 , the fracture limit stress is 85% or more, which indicates that there is no practical problem. From such a test, the Ti content was set to 0.00008 / N or less.
[0046]
V: 0 to 0.5%
V is an element that is included as necessary, and has the effect of improving SSC resistance by precipitating as fine carbides during tempering to increase temper softening resistance and enabling high temperature tempering. When it is contained, the content is preferably 0.005% or more in order to reliably obtain the above-described effect. On the other hand, if it exceeds 0.5%, the effect is saturated and does not contribute to strengthening. In addition, since VC becomes a diffusible hydrogen trap site and the hydrogen storage amount increases, the SSC resistance decreases. For this reason, the upper limit was made 0.5%.
[0047]
W: 0 to 1%
W is an element to be contained as necessary, and has an effect of improving hardenability, increasing temper softening resistance, enabling high-temperature tempering, and improving SSC resistance. When it is contained, the content is preferably set to 0.3% or more in order to reliably exhibit the above effects. However, if the content exceeds 1%, the above effect is saturated or lowered, and in addition, a large amount of carbide becomes a diffusible hydrogen trap site, and the SSC resistance is lowered. Therefore, the upper limit of W is 1%. The upper limit of the W content is preferably 0.7%.
[0048]
Zr: 0 to 0.1%
Zr is also an element to be included as necessary, and if included, has the effect of fixing N, which is an impurity in the steel, as ZrN, similarly to Ti. In order to reliably obtain this action, the content is preferably 0.005% or more. Moreover, when it contains excessively, coarse ZrN like Ti may precipitate, it may become a pitting corrosion origin and may reduce SSC resistance. Preferably it is 0.05% or less. When Zr is contained, a part of Ti may be used as an alternative.
[0049]
Ca: 0 to 0.01%
Ca is an element to be contained as necessary. When Ca is contained, it combines with S in the steel to form a sulfide, improves the shape of inclusions and improves the SSC resistance. Therefore, it is preferable to contain it when it is desired to ensure the above effects. In addition, in order to acquire the said effect reliably, it is preferable to make content of Ca 0.0001% or more. However, if its content exceeds 0.01%, not only the SSC resistance is lowered but also the toughness is lowered, and defects such as earth are easily generated on the steel material surface. Therefore, the upper limit of Ca is set to 0.01%.
[0050]
TiN: The number of TiN having a diameter of 5 μm or more per 1 mm 2 of cross section is 10 or less. TiN affects the SSC resistance of a steel pipe manufactured in an actual production line, and affects the SSC resistance depending on the form of precipitation. The SSC resistance is caused by pitting corrosion that occurs when large TiN is present. The critical TiN size where pitting corrosion occurs is 5 μm in diameter, and the diameter is less than 5 μm. TiN having a size of 5 mm does not serve as a starting point for corrosion. Further, even when TiN has a diameter of 5 μm or more, SSC resistance is not impaired as long as it is 10 or less per 1 mm 2 of cross section obtained by the following method.
[0051]
In order to obtain the size and number of TiN, the cross section of the steel plate filled with resin is buffed and observed with an optical microscope (100 times), and the number of TiN having a diameter of 5 μm or more observed in a visual field per 1 mm 2 Just count. The 10 per section 1 mm 2, the number per 1 mm 2 was measured 10 locations, meaning that the average is 10.
Inclusions are identified as TiN when the mass% of Ti in the inclusions is 50% or more by using a component analysis method such as EDX while confirming the size with SEM. TiN with an amount of Ti of less than 50% is an Nb-based carbonitride, and is completely dissolved in steel at the time of casting and deposited during subsequent heat treatment. .
During mass production of steel pipes, coarse TiN often remains undissolved depending on billet casting conditions. This is because, in the case of mass cast material on the actual production line, it is difficult to remove TiN by levitation during casting, and it is easy to cause uneven precipitation of inclusions due to component segregation. is there.
[0052]
When the SSC test of the actual tube was performed, many pitting corrosion occurred and the SSC resistance was often lowered. However, the starting point of the pitting corrosion was a portion where coarse TiN was exposed. TiN is generally an acid-insoluble inclusion and has high corrosion resistance, so that itself does not dissolve in the test solution. However, unlike oxide inclusions, they are conductive, so when immersed in a corrosive liquid in the presence of inclusions in the steel, they act as cathode sites and corrode the low-alloy steel of the steel around TiN. Will be promoted.
[0053]
In this case, the strength to dissolve the surrounding ground iron depends on the size of TiN. The reason for this is that the larger the TiN, the larger the area that acts as the cathode site, and the larger the area of the cathode site, the greater the current that flows between the surrounding iron and the anode site, which promotes corrosion. is there.
[0054]
The critical TiN size at which pitting corrosion occurs is 5 μm, and TiN having a size smaller than this is not a pitting corrosion starting point. The size of the initial pitting corrosion is such a size (5 μm) that TiN is peeled off due to dissolution of the periphery of TiN. [Most of these micro pitting corrosion disappears over time, but if the number of initial pitting corrosion is large, some of them may grow to large pitting corrosion stochastically and break down during a long test period. The possibility of becoming the starting point of is increased. ]
Large pitting corrosion has the effect of stress concentration at the bottom of the hole, and during the generation and growth of pitting corrosion, there is more vigorous corrosion inside the pitting than in the surrounding steel, so diffusible hydrogen is trapped in the steel. Then, the stored hydrogen concentration is locally increased to easily cause SSC.
[0055]
There are no other examples of inclusions that cause pitting corrosion by the mechanism as described above and significantly reduce the SSC resistance in the actual production process. For example, Nb-based, V-based, and Mo-based fine carbides effective for precipitation strengthening have a large total interfacial area because they are fine, and may increase the stored hydrogen, which may reduce the SSC resistance. There is no big difference in the precipitation form between the room melting material and the actual pipe.
[0056]
In addition, coarse CaO-based or Al 2 O 3- based oxides may cause pitting corrosion due to their dissolution in the corrosive liquid, but these are not conductive inclusions. Must not. Therefore, pitting corrosion is limited to a size much larger than TiN.
[0057]
ZrN, which is a nitride of Zr, is also conductive like TiN. However, since ZrN has a slower growth rate than TiN, it precipitates finely and does not become coarse during the production of actual tubes.
[0058]
The amount of TiN deposited naturally depends on the amount of Ti and the amount of N, but the size of TiN is not determined only by the amount of Ti and the amount of N, but greatly depends on the removal effect and segregation of TiN during casting. Therefore, as a means for avoiding coarse TiN precipitation in the production stage, a method of removing the coarse inclusions easily by raising the molten steel temperature with a tundish heater or the like during casting is effective.
[0059]
【Example】
17 types of steels with the chemical composition shown in Table 1 were melted into 150 tons of steel ingots, hot forged into round billets, pierced with piercers into hollow shells, outer diameter 250 mm, meat A seamless steel pipe having a thickness of 16 mm was manufactured and then subjected to quenching and tempering heat treatment. By changing the quenching and tempering treatment conditions, steel symbols A to F were adjusted to 758 MPa class, G to I and L to N were adjusted to 862 MPa class, and J, K and O to Q were adjusted to 965 MPa class.
[0060]
[Table 1]
Figure 0004367588
[0061]
From each steel pipe, a tensile test piece was taken in parallel with the longitudinal direction, a tensile test was performed at room temperature (room temperature), and the yield stress (YS) was measured.
[0062]
In addition, a round bar tensile test piece having a parallel part diameter of 6.35 mm and a length of 25.4 mm was sampled, and the SSC resistance was evaluated by a method based on the NACETM0177-96A method. That is, in a constant load test in 0.5% acetic acid + 5% saline solution at 25 ° C. saturated with hydrogen sulfide, the hydrogen sulfide partial pressure is 110 atmospheres at C110 and 1 atmosphere at C125 to C140 is severe. The test was performed at 0.1 atm, the load stress was changed, and the maximum stress that did not break during the test time of 720 hours was measured. When the maximum stress was 85% or more of the standard minimum stress (SMYS), the SSC resistance was judged to be good, the evaluation was good, and the less than 85% was x.
[0063]
Ten specimens were cut out from the remaining material of a single constant load test or near the same, and TiN containing 50% or more of Ti was identified by EDX analysis while measuring the size of TiN with SEM. TiN of 5 μm or more was counted. This measurement was performed with an area of 1 mm 2 per sample, and the average number of 10 samples was obtained.
[0064]
The various test results are shown in Table 2.
[0065]
[Table 2]
Figure 0004367588
[0066]
As is apparent from Table 2, even if YS is high strength of 786 to 807 MPa, when the number of TiN having a chemical composition and a diameter of 5 μm or more is within the range defined by the present invention, both are constant load tests. No breakage occurs even at a load stress of 85% or more of the yield stress, and the SSC resistance is good.
[0067]
On the other hand, in the comparative examples that deviate from the definition of the present invention, the fracture limit stress in the constant load test is less than 85%, and the SSC resistance is inferior.
[0068]
【The invention's effect】
According to the present invention, even when manufactured on an actual production line, a steel pipe having stable SSC resistance even with high strength of YS of 758 to 862 MPa (110 ksi class ) can be obtained, and casings, tubing and drilling for oil wells and gas wells can be obtained. It is extremely effective in the industry because of its excellent effect when used in drill pipes for transportation, line pipes for transportation, and piping for chemical plants.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of TiN having a diameter of 5 μm or more per 1 mm 2 and SSC resistance.
FIG. 2 is a diagram showing the relationship between the Ti and N content and the number of TiN precipitates having a diameter of 5 μm or more.

Claims (1)

質量%で、C:0.22〜0.35%、Si:0.05〜0.5%、Mn:0.1〜1%、P:0.025%以下、S:0.01%以下、Cr:0.1〜1.08%、Mo:0.1〜1%、Al:0.005〜0.1%、B:0.0001〜0.01%、Nb:0.005〜0.5%、N:0.005%以下、O(酸素):0.01%以下、Ni:0.1%以下、Ti:0.001〜0.03%で、かつ0.00008/N%以下、V:0〜0.5%、W:0〜1%、Zr:0〜0.1%、Ca:0〜0.01%を含み、残部はFeおよび不純物からなり、かつ直径5μm以上のTiNの数が断面1mm 当たり10個以下であることを特徴とする降伏応力が758〜862MPaでありかつ割れ発生限界応力(σth)が鋼材の規格最小応力(SMYS)の85%以上である耐硫化物応力割れ性に優れた鋼管。In mass%, C: 0.22 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less Cr: 0.1 to 1.08%, Mo: 0.1 to 1%, Al: 0.005 to 0.1%, B: 0.0001 to 0.01%, Nb: 0.005 to 0 0.5%, N: 0.005% or less, O (oxygen): 0.01% or less, Ni: 0.1% or less, Ti: 0.001 to 0.03%, and 0.00008 / N% Hereinafter, V: 0 to 0.5%, W: 0 to 1%, Zr: 0 to 0.1%, Ca: 0 to 0.01%, the balance is Fe and impurities, and the diameter is 5 μm or more The yield stress is 758 to 862 MPa, and the crack initiation limit stress (σth) is the standard minimum stress of steel (characterized in that the number of TiN is 10 or less per 1 mm 2 in cross section. Steel pipe with excellent resistance to sulfide stress cracking, which is 85% or more of SMYS).
JP30764599A 1999-10-28 1999-10-28 Steel pipe with excellent resistance to sulfide stress cracking Expired - Fee Related JP4367588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30764599A JP4367588B2 (en) 1999-10-28 1999-10-28 Steel pipe with excellent resistance to sulfide stress cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30764599A JP4367588B2 (en) 1999-10-28 1999-10-28 Steel pipe with excellent resistance to sulfide stress cracking

Publications (2)

Publication Number Publication Date
JP2001131698A JP2001131698A (en) 2001-05-15
JP4367588B2 true JP4367588B2 (en) 2009-11-18

Family

ID=17971544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30764599A Expired - Fee Related JP4367588B2 (en) 1999-10-28 1999-10-28 Steel pipe with excellent resistance to sulfide stress cracking

Country Status (1)

Country Link
JP (1) JP4367588B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60323076D1 (en) * 2002-03-29 2008-10-02 Sumitomo Metal Ind LOW ALLOY STEEL
WO2004097059A1 (en) 2003-04-25 2004-11-11 Tubos De Acero De Mexico, S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
KR100825569B1 (en) 2004-02-04 2008-04-25 수미도모 메탈 인더스트리즈, 리미티드 Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
WO2005090615A1 (en) * 2004-03-24 2005-09-29 Sumitomo Metal Industries, Ltd. Process for producing low-alloy steel excelling in corrosion resistance
JP4140556B2 (en) 2004-06-14 2008-08-27 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP4135691B2 (en) 2004-07-20 2008-08-20 住友金属工業株式会社 Nitride inclusion control steel
MXPA05008339A (en) 2005-08-04 2007-02-05 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes.
JP2009541589A (en) 2006-06-29 2009-11-26 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト Seamless precision steel pipe for hydraulic cylinders with improved isotropic toughness at low temperatures and method for obtaining the same
CA2650212A1 (en) 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods and seamless steel pipe
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
EP2238272B1 (en) 2007-11-19 2019-03-06 Tenaris Connections B.V. High strength bainitic steel for octg applications
CA2686301C (en) 2008-11-25 2017-02-28 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
JP5728836B2 (en) * 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
IT1403688B1 (en) 2011-02-07 2013-10-31 Dalmine Spa STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR.
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
AR088424A1 (en) 2011-08-22 2014-06-11 Nippon Steel & Sumitomo Metal Corp STEEL TUBE FOR PETROLEUM WELL WITH EXCELLENT CORROSION RESISTANCE UNDER VOLTAGE SULFIDE PRESENCE
ES2755750T3 (en) 2012-03-07 2020-04-23 Nippon Steel Corp Method for producing seamless steel pipe having high strength and excellent resistance to sulfide stress cracking
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
CN104903538B (en) 2013-01-11 2018-05-08 特纳瑞斯连接有限公司 Wear-resistant drill pipe tool joint and corresponding drilling rod
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
CN113278890A (en) 2013-06-25 2021-08-20 特纳瑞斯连接有限公司 High chromium heat resistant steel
US20160305192A1 (en) 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
CN105002425B (en) * 2015-06-18 2017-12-22 宝山钢铁股份有限公司 Superhigh intensity superhigh tenacity oil casing pipe steel, petroleum casing pipe and its manufacture method
EP3395991B1 (en) * 2015-12-22 2023-04-12 JFE Steel Corporation High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
CN108495945B (en) 2016-01-27 2020-07-17 杰富意钢铁株式会社 High-strength hot-rolled steel sheet for electric resistance welded steel pipe and method for producing same
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN106381453B (en) * 2016-09-22 2018-12-07 三明市毅君机械铸造有限公司 A kind of cast steel components and its production technology for nuclear power unit
CN107502822B (en) * 2017-09-11 2019-06-14 攀钢集团攀枝花钢铁研究院有限公司 High anti-jamming SEW petroleum casing pipe hot continuous rolling coil of strip and its production method
WO2019131035A1 (en) 2017-12-26 2019-07-04 Jfeスチール株式会社 Low alloy high strength seamless steel pipe for oil wells
BR112020012515B1 (en) * 2017-12-26 2023-11-14 Jfe Steel Corporation HIGH-RESISTANCE AND LOW ALLOY SEAMLESS STEEL TUBE FOR TUBULAR PRODUCTS IN THE PETROLEUM INDUSTRY
JP6551633B1 (en) 2017-12-26 2019-07-31 Jfeスチール株式会社 Low alloy high strength seamless steel pipe for oil well
WO2021131445A1 (en) * 2019-12-24 2021-07-01 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells

Also Published As

Publication number Publication date
JP2001131698A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP4367588B2 (en) Steel pipe with excellent resistance to sulfide stress cracking
JP4973663B2 (en) Low alloy oil well pipe steel and seamless steel pipe
JP3543708B2 (en) Oil well steel with excellent resistance to sulfide stress corrosion cracking and method for producing oil well steel pipe using the same
JP6677310B2 (en) Steel materials and steel pipes for oil wells
JP6304460B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4140556B2 (en) Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
RU2493268C1 (en) High-strength seamless steel pipe with high resistance to sulphide stress cracking for oil wells and its manufacturing method
US11834725B2 (en) Martensitic stainless steel material
US9777352B2 (en) Oil-well steel pipe having excellent sulfide stress cracking resistance
JPWO2018181404A1 (en) Martensitic stainless steel
JP6583533B2 (en) Steel and oil well steel pipes
WO2006109664A1 (en) Ferritic heat-resistant steel
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
EP3438312B1 (en) High-strength steel material and production method therefor
JP6950518B2 (en) Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials
WO2005075694A1 (en) Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
JP6583532B2 (en) Steel and oil well steel pipes
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP2002060893A (en) Oil-well steel having excellent sulfide stress corrosion cracking resistance, and its manufacturing method
JP6551632B1 (en) Low alloy high strength seamless steel pipe for oil well
JP4134377B2 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JP3933089B2 (en) Low alloy steel
JP3451993B2 (en) Cr-containing steel for oil country tubular goods with excellent corrosion resistance to hydrogen sulfide and carbon dioxide
JP6950519B2 (en) Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4367588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees