[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4367146B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4367146B2
JP4367146B2 JP2004022351A JP2004022351A JP4367146B2 JP 4367146 B2 JP4367146 B2 JP 4367146B2 JP 2004022351 A JP2004022351 A JP 2004022351A JP 2004022351 A JP2004022351 A JP 2004022351A JP 4367146 B2 JP4367146 B2 JP 4367146B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
gas recirculation
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004022351A
Other languages
Japanese (ja)
Other versions
JP2005214082A (en
Inventor
陽子 川口
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004022351A priority Critical patent/JP4367146B2/en
Priority to EP05001811A priority patent/EP1559893B1/en
Priority to DE602005000113T priority patent/DE602005000113T2/en
Priority to US11/045,350 priority patent/US7356403B2/en
Publication of JP2005214082A publication Critical patent/JP2005214082A/en
Application granted granted Critical
Publication of JP4367146B2 publication Critical patent/JP4367146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、排気の一部を吸気系に還流する排気還流装置を備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine including an exhaust gas recirculation device that recirculates part of exhaust gas to an intake system.

例えば車両用の内燃機関において、NOxの低減のために排気の一部を吸気系に還流する排気還流装置が従来から知られているが、近年では、NOx低減のみならず、内燃機関のポンピングロス低減を目的として、より広い運転条件の下で多量の排気還流を行うことが、燃費向上技術の一つとして知られている。   For example, in an internal combustion engine for a vehicle, an exhaust gas recirculation device that recirculates a part of exhaust gas to an intake system in order to reduce NOx has been known. However, in recent years, not only NOx reduction but also pumping loss of the internal combustion engine is known. It is known as one of the fuel efficiency improvement techniques to perform a large amount of exhaust gas recirculation under wider operating conditions for the purpose of reduction.

特許文献1には、このような排気還流装置を備えた内燃機関の制御装置として、運転者がアクセルペダルを踏み込んだ内燃機関の加速時に、排気還流量を減量補正するように構成されたものが開示されている。このように加速時に排気還流量を減量することで、燃焼室に導入される吸気中の新気の割合が増え、加速応答性が高くなる。
特開2000−205004号公報
Patent Document 1 discloses a control device for an internal combustion engine equipped with such an exhaust gas recirculation device, which is configured to correct the exhaust gas recirculation amount to a reduced amount when accelerating the internal combustion engine when the driver depresses the accelerator pedal. It is disclosed. By reducing the exhaust gas recirculation amount during acceleration in this way, the ratio of fresh air in the intake air introduced into the combustion chamber is increased, and acceleration response is improved.
JP 2000-205004 A

しかしながら、加速時に、そのときの運転条件に拘わらず常に排気還流量を減量してしまうと、排気還流による燃費向上の効果が大きく減少する。つまり、燃費向上の上では、加速時であっても、できるだけ排気還流を行うことが望ましい。   However, if the exhaust gas recirculation amount is always reduced during acceleration regardless of the operating conditions at that time, the effect of improving the fuel efficiency due to exhaust gas recirculation is greatly reduced. In other words, in order to improve fuel efficiency, it is desirable to perform exhaust gas recirculation as much as possible even during acceleration.

一方、加速時に定常時と同様の排気還流を行うものとすると、特に、比較的高負荷域からの加速の際には、加速応答性のみならず燃費向上の観点からも好ましくない。すなわち、運転者が加速を要求してアクセルペダルを踏み込んだときに、排気還流が行われたままの状態では、トルクの立ち上がりが遅いことから、運転者が無意識のうちにさらにアクセルペダルを踏み増す、という現象が生じ、内燃機関の運転条件が、燃費が極端に悪化する高負荷側の燃費悪化領域に入ってしまう。   On the other hand, if the exhaust gas recirculation is performed at the time of acceleration as in the steady state, it is not preferable from the viewpoint of improving the fuel efficiency as well as the acceleration response, particularly when accelerating from a relatively high load range. In other words, when the driver depresses the accelerator pedal for acceleration, if the exhaust gas recirculation is still performed, the torque rises slowly, so the driver unconsciously further depresses the accelerator pedal. And the operating condition of the internal combustion engine enters a high load side fuel consumption deterioration region where the fuel consumption is extremely deteriorated.

この発明は、排気の一部を吸気系に還流する排気還流装置を備え、かつ内燃機関の運転条件に応じて所定の排気還流率となるように上記排気還流装置を制御する内燃機関の制御装置において、運転者の加速要求を検出する手段と、この加速要求が検出されたときの内燃機関の運転条件から高負荷側の所定の燃費悪化領域までの余裕の大小を判別する手段と、を備え、この余裕が小さい場合に上記排気還流率を減少補正し、そうでない場合には運転条件に応じて所定の排気還流率となるように上記排気還流装置を制御することを特徴としている。
The present invention includes an exhaust gas recirculation device that recirculates part of exhaust gas to an intake system, and controls the exhaust gas recirculation device so as to achieve a predetermined exhaust gas recirculation rate according to the operating conditions of the internal combustion engine. And a means for determining a driver's acceleration request and a means for determining a margin of a margin from the operating condition of the internal combustion engine when the acceleration request is detected to a predetermined fuel consumption deterioration region on the high load side. If the margin is small, the exhaust gas recirculation rate is corrected to decrease , and if not, the exhaust gas recirculation device is controlled so as to obtain a predetermined exhaust gas recirculation rate according to the operating conditions .

すなわち、運転者による加速要求があったときに、内燃機関の運転条件が比較的低負荷側にあって燃費悪化領域までの余裕が大きい場合には、定常時と同じく、運転条件に応じた排気還流率でもって排気還流がなされる。これに対し、燃費悪化領域までの余裕が小さいときには、排気還流率が定常時よりも小さくなるように減少補正され、排気還流量が少なくなる。そのため、トルクの立ち上がりが早くなり、運転者による不必要なアクセル開度の増加つまりアクセルペダルの踏み増しが回避され、燃費悪化領域での運転が抑制される。   In other words, when there is a request for acceleration by the driver, if the operating condition of the internal combustion engine is on a relatively low load side and there is a large margin to the fuel consumption deterioration region, the exhaust corresponding to the operating condition is the same as in the normal state. The exhaust gas is recirculated with the recirculation rate. On the other hand, when the margin to the fuel consumption deterioration region is small, the exhaust gas recirculation rate is reduced and corrected so as to be smaller than that in the steady state, and the exhaust gas recirculation amount decreases. As a result, the torque rises quickly, an unnecessary increase in the accelerator opening by the driver, that is, an increase in the accelerator pedal, is avoided, and the driving in the fuel efficiency deterioration region is suppressed.

上記燃費悪化領域は、燃費が大きく悪化する高負荷側の領域を意味し、必要に応じて適宜に設定することができるが、例えば、低中負荷域では内燃機関の目標空燃比を理論空燃比とし、高負荷域では目標空燃比を理論空燃比以下のリッチな空燃比とする空燃比制御の下では、一般に、目標空燃比が理論空燃比以下となる運転領域つまり燃料増量域において燃料消費率が急激に増大するので、この燃料増量域を上記の燃費悪化領域とみなすことができる。なお、燃料消費率はさらに点火時期等によっても左右されるので、これらの要因を考慮した実際の燃料消費率の特性に基づいて、燃費悪化領域を定めるようにしてもよい。   The fuel efficiency deterioration region means a region on the high load side where the fuel consumption is greatly deteriorated, and can be appropriately set as necessary. For example, in the low and medium load regions, the target air fuel ratio of the internal combustion engine is set to the stoichiometric air fuel ratio. Under the air-fuel ratio control in which the target air-fuel ratio is a rich air-fuel ratio that is less than or equal to the stoichiometric air-fuel ratio in the high load region, in general, the fuel consumption rate in the operating region where the target air-fuel ratio is less than the stoichiometric air-fuel ratio, that is, the fuel increase region Since the fuel consumption increases rapidly, this fuel increase region can be regarded as the fuel consumption deterioration region. Since the fuel consumption rate is further influenced by the ignition timing and the like, the fuel consumption deterioration region may be determined based on the characteristics of the actual fuel consumption rate considering these factors.

上記の余裕の大小は、例えば、加速要求が検出されたときの内燃機関のトルクもしくはトルクの代替となるパラメータ、例えば、吸入空気量、燃料噴射量、スロットル開度、吸気コレクタ内の吸気圧、等に基づいて判別することができる。   The magnitude of the above margin is, for example, the torque of the internal combustion engine when an acceleration request is detected or a parameter that is a substitute for the torque, such as the intake air amount, the fuel injection amount, the throttle opening, the intake pressure in the intake collector, Or the like based on the above.

また、排気還流率の減少補正の程度は、上記の余裕の大小もしくは要求トルクの大小に応じて変化させることが望ましい。   Further, it is desirable to change the degree of correction of the exhaust gas recirculation rate in accordance with the above-mentioned margin or the required torque.

この発明によれば、加速時においても燃費悪化領域までの余裕が大きい場合には大量の排気還流が許容されるので、排気還流による燃費向上がより大きく得られる。また、燃費悪化領域までの余裕が小さい条件からの加速時には排気還流が少量に制限され、運転者による不必要なアクセル開度の増加が回避されるので、燃費悪化領域の多用による燃費悪化を防止することができる。   According to the present invention, a large amount of exhaust gas recirculation is allowed when the allowance to the fuel consumption deterioration region is large even at the time of acceleration, so that the fuel efficiency improvement by exhaust gas recirculation can be obtained more greatly. In addition, the exhaust gas recirculation is limited to a small amount when accelerating from a condition where the margin to the fuel consumption deterioration area is small, and an unnecessary increase in the accelerator opening is avoided by the driver, thus preventing fuel consumption deterioration due to heavy use of the fuel consumption deterioration area. can do.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明に係る制御装置のシステム構成を示す構成説明図であって、火花点火式ガソリン機関である内燃機関1は、燃焼室中心に点火プラグ2を備えるとともに、吸気弁3および排気弁4を備えており、かつ、クランクシャフトの回転を検出するクランク角センサ5が設けられている。   FIG. 1 is an explanatory diagram showing a system configuration of a control device according to the present invention. An internal combustion engine 1 which is a spark ignition gasoline engine includes an ignition plug 2 at the center of a combustion chamber, an intake valve 3 and an exhaust gas. A crank angle sensor 5 that includes a valve 4 and detects rotation of the crankshaft is provided.

排気通路6は、触媒コンバータ7ならびに消音器8を備えており、上記触媒コンバータ7の上流位置に、排気空燃比を検出する空燃比センサ9が設けられている。そして、排気還流装置10として、上記排気通路6から吸気通路11に至る排気還流通路12が設けられているとともに、排気還流量を可変制御する例えばステップモータ型の排気還流制御弁13が該排気還流通路12に介装されている。   The exhaust passage 6 includes a catalytic converter 7 and a silencer 8, and an air-fuel ratio sensor 9 that detects an exhaust air-fuel ratio is provided at an upstream position of the catalytic converter 7. An exhaust gas recirculation passage 12 extending from the exhaust passage 6 to the intake air passage 11 is provided as the exhaust gas recirculation device 10, and a step motor type exhaust gas recirculation control valve 13 for variably controlling the exhaust gas recirculation amount is provided. It is interposed in the passage 12.

上記吸気通路11の下流側部分となる各気筒の吸気ポート入口部には、各吸気ポートに向けて燃料を噴射する燃料噴射弁15がそれぞれ配置されている。そして、各気筒の吸気通路11は、吸気コレクタ16に集合しており、この吸気コレクタ16の入口側の吸気通路11に、電子制御型のスロットル弁17が設けられている。この電子制御型スロットル弁17は、電気モータからなるアクチュエータを備え、エンジンコントロールモジュール(ECM)19から与えられる制御信号によって、その開度が制御される。なお、スロットル弁17の実際の開度を検出する図示せぬセンサを一体に備えており、その検出信号に基づいて、スロットル弁開度が目標開度にクローズドループ制御される。また上記スロットル弁17の上流側に、空気流量を検出するエアフロメータ18が設けられている。   A fuel injection valve 15 that injects fuel toward each intake port is disposed at an intake port inlet of each cylinder, which is a downstream portion of the intake passage 11. The intake passage 11 of each cylinder is gathered in an intake collector 16, and an electronically controlled throttle valve 17 is provided in the intake passage 11 on the inlet side of the intake collector 16. The electronically controlled throttle valve 17 includes an actuator formed of an electric motor, and its opening degree is controlled by a control signal supplied from an engine control module (ECM) 19. Note that a sensor (not shown) that detects the actual opening of the throttle valve 17 is integrally provided, and the throttle valve opening is closed-loop controlled to the target opening based on the detection signal. An air flow meter 18 for detecting the air flow rate is provided upstream of the throttle valve 17.

さらに、運転者により操作されるアクセルペダルの踏込量(アクセルペダル開度APO)を検出するアクセル開度センサ20を備えており、その検出信号は、上記のクランク角センサ5や空燃比センサ9、エアフロメータ18等の検出信号とともに、エンジンコントロールモジュール19に入力されている。エンジンコントロールモジュール19では、これらの検出信号に基づいて、燃料噴射弁15の噴射量や噴射時期、点火プラグ2による点火時期、スロットル弁17の開度、などを制御する。   Further, an accelerator opening sensor 20 for detecting the amount of depression of the accelerator pedal (accelerator pedal opening APO) operated by the driver is provided, and the detection signal thereof is the crank angle sensor 5 or the air-fuel ratio sensor 9 described above. Along with the detection signal from the air flow meter 18 and the like, it is input to the engine control module 19. Based on these detection signals, the engine control module 19 controls the injection amount and injection timing of the fuel injection valve 15, the ignition timing by the spark plug 2, the opening of the throttle valve 17, and the like.

また、上記の内燃機関1は、図示せぬベルト式無段変速機(いわゆるCVT)を介して車両の駆動輪を駆動している。この無段変速機の変速比は、車両の運転状態、主にアクセルペダル開度APOおよび車速に基づいて、連続的に制御される。   The internal combustion engine 1 drives the drive wheels of a vehicle via a belt type continuously variable transmission (so-called CVT) (not shown). The gear ratio of the continuously variable transmission is continuously controlled based on the driving state of the vehicle, mainly the accelerator pedal opening APO and the vehicle speed.

次に、上記実施例の構成における排気還流の制御について説明する。   Next, the exhaust gas recirculation control in the configuration of the above embodiment will be described.

初めに、基本的な排気還流制御、空燃比制御および燃費の特性について説明する。図2は、エンジントルクとエンジン回転数(機関回転速度)とをパラメータとして内燃機関1の運転条件を示した特性図であって、よく知られているように、「WOT」として示す最上部の線が、スロットル弁17を全開としたときの全開特性である。ここで、上記内燃機関1の空燃比制御としては、高負荷側の領域、具体的には、「理論空燃比限界」として示す線よりも高負荷側の領域(燃料増量域)では、理論空燃比よりもリッチな空燃比でもって運転され、「理論空燃比限界」の線よりも下側の低中負荷領域(理論空燃比領域)では、理論空燃比を目標空燃比として運転が行われる。つまり、上記の低中負荷領域では、燃料噴射弁15の燃料噴射量が、空燃比センサ9によるフィードバック制御によって補正され、理論空燃比に精度よく維持される。これに対し、高負荷側の燃料増量域では、燃料噴射量のフィードバック制御が停止され、理論空燃比よりもリッチ側の所定の目標空燃比が得られるように、燃料噴射量が増量される。   First, basic exhaust gas recirculation control, air-fuel ratio control, and fuel consumption characteristics will be described. FIG. 2 is a characteristic diagram showing the operating conditions of the internal combustion engine 1 using the engine torque and the engine speed (engine speed) as parameters, and, as is well known, the uppermost part shown as “WOT”. The line represents the fully open characteristic when the throttle valve 17 is fully open. Here, as the air-fuel ratio control of the internal combustion engine 1, in the high-load side region, specifically, in the high-load side region (fuel increase region) from the line shown as the “theoretical air-fuel ratio limit”, the theoretical air-fuel ratio control. Operation is performed with an air-fuel ratio richer than the fuel ratio, and operation is performed with the stoichiometric air-fuel ratio as the target air-fuel ratio in the low-medium load region (theoretical air-fuel ratio region) below the “theoretical air-fuel ratio limit” line. That is, in the low and medium load region, the fuel injection amount of the fuel injection valve 15 is corrected by the feedback control by the air-fuel ratio sensor 9 and is accurately maintained at the theoretical air-fuel ratio. On the other hand, in the fuel increase region on the high load side, the feedback control of the fuel injection amount is stopped, and the fuel injection amount is increased so that a predetermined target air-fuel ratio richer than the stoichiometric air-fuel ratio is obtained.

図2には、等燃費曲線を等高線状に記入してあり、等高線状の中心部が最も燃費が良好な運転条件となる。つまり、中速中負荷の点で最も良好な燃費が得られ、この点から、高負荷側もしくは低負荷側へ向かうと徐々に燃費は悪化し、同様に、低速側もしくは高速側へ向かうと徐々に燃費は悪化する。特に、上述した高負荷側の燃料増量域では、空燃比がリッチとなることから、燃費が大幅に悪化する。従って、この実施例では、上記の燃料増量域を燃費悪化領域と定義する。なお、燃費は、点火時期等によっても左右されるので、等燃費曲線と「理論空燃比限界」の線とは、僅かに異なった特性となっている。   In FIG. 2, an isofuel curve is drawn in contour lines, and the center of the contour line is the driving condition with the best fuel economy. In other words, the best fuel economy can be obtained in terms of medium speed and medium load. From this point, the fuel efficiency gradually deteriorates toward the high load side or the low load side, and similarly, gradually toward the low speed side or the high speed side. However, fuel consumption deteriorates. In particular, in the fuel increase region on the high load side described above, since the air-fuel ratio becomes rich, fuel consumption is greatly deteriorated. Therefore, in this embodiment, the fuel increase area is defined as a fuel consumption deterioration area. Note that the fuel efficiency depends on the ignition timing and the like, so the isofuel curve and the “theoretical air-fuel ratio limit” line have slightly different characteristics.

また図2には、さらに、排気還流制御における目標とする排気還流率の特性を「EGR1」〜「EGR3」の3本の線でもって等高線状に図示してある。図では「EGR1」の線で囲まれた等高線状の中心部が最も高い排気還流率となる。また、最外周の「EGR3」の線の外側では、排気還流率は0、つまり排気還流は行われない。この図に示すように、本実施例では、運転条件の広い範囲で比較的多量の排気還流が行われる。なお、従来一般に行われている排気還流制御では、「EGR11」〜「EGR13」の3本の等高線状の線で示す低速低負荷側の狭い領域でのみ排気還流が行われ、その排気還流率の値そのものも、本実施例の排気還流率よりも低いものとなっている。つまり、本実施例では、ポンピングロス低減による燃費向上のために、理論空燃比領域の大部分の領域で、できるだけ多くの排気還流を行うようになっている。従って、排気還流が行われている状態で運転者により加速が要求されることが、頻繁に発生する。   Further, in FIG. 2, the characteristics of the target exhaust gas recirculation rate in the exhaust gas recirculation control are shown as contour lines by three lines “EGR1” to “EGR3”. In the figure, the center portion of the contour line surrounded by the line “EGR1” has the highest exhaust gas recirculation rate. Further, outside the outermost “EGR3” line, the exhaust gas recirculation rate is 0, that is, exhaust gas recirculation is not performed. As shown in this figure, in this embodiment, a relatively large amount of exhaust gas recirculation is performed over a wide range of operating conditions. In the exhaust gas recirculation control that is generally performed in the past, exhaust gas recirculation is performed only in a narrow region on the low-speed and low-load side indicated by three contour lines “EGR11” to “EGR13”. The value itself is also lower than the exhaust gas recirculation rate of this embodiment. In other words, in the present embodiment, as much exhaust gas recirculation as possible is performed in most of the theoretical air-fuel ratio region in order to improve fuel efficiency by reducing pumping loss. Therefore, it frequently occurs that the driver requires acceleration while exhaust gas recirculation is being performed.

次に、図3に基づいて、無段変速機の変速比との関係を説明する。図3の特性図には、図2と同様の等燃費曲線を示してあるが、これと併せて、平坦路走行時の走行抵抗に対するエンジントルクとエンジン回転数の特性つまりロード・ロード(R/L)曲線を図示してある。この図に明らかなように、本実施例では、燃費向上を図るために、R/L曲線が等高線状の等燃費曲線の燃費最良点を通るように、無段変速機の変速比が制御される。従来一般の変速比制御では、R/L曲線が、図に「従来」として示すように、燃費最良点よりも低負荷側となる。また、有段の自動変速機では、図に「ATのR/L線」として示すように、さらに低負荷側にR/L曲線が位置する。従って、本実施例では、燃費向上のために、比較的高い負荷でもって内燃機関1が運転されることになる。そのため、例えば平坦路走行中に加速した場合に、燃料増量域までの余裕トルクが比較的小さく、燃費の悪い燃料増量域での運転の頻度が高くなり易い。実際の燃費向上のためには、不必要な燃料増量域での運転を回避することが重要である。   Next, the relationship with the gear ratio of the continuously variable transmission will be described based on FIG. The characteristic diagram of FIG. 3 shows the same fuel efficiency curve as in FIG. 2, and in addition to this, the characteristics of the engine torque and the engine speed with respect to the running resistance when running on a flat road, that is, the road load (R / R). L) Curves are shown. As is apparent from this figure, in this embodiment, in order to improve fuel efficiency, the gear ratio of the continuously variable transmission is controlled so that the R / L curve passes through the best fuel efficiency point of the contoured isofuel consumption curve. The In the conventional general gear ratio control, the R / L curve is on the lower load side than the fuel efficiency best point as shown as “conventional” in the figure. Further, in a stepped automatic transmission, an R / L curve is located on the lower load side as shown as “AT R / L line” in the figure. Therefore, in this embodiment, the internal combustion engine 1 is operated with a relatively high load in order to improve fuel efficiency. Therefore, for example, when accelerating while traveling on a flat road, the margin torque to the fuel increase range is relatively small, and the frequency of operation in the fuel increase range with poor fuel consumption tends to increase. In order to improve the actual fuel consumption, it is important to avoid driving in an unnecessary fuel increase region.

特に、排気還流が行われている領域から加速したときに、燃料増量域までの余裕トルクが小さいと、燃料増量域が使用され易い。これを図4を用いて説明する。例えば、燃料増量域までの余裕トルクが少なくかつ排気還流領域内であるj点で内燃機関1が運転されている状態で、運転者がアクセルペダルを踏み込んで加速しようとしたとすると、多量の排気還流が行われている状態では、燃焼室に流入する新気の量が少なくなっていることから、スロットル弁17が開いてもトルクの立ち上がりが緩慢となる。そのため、加速(特に急加速)しようとしている運転者は、無意識のうちにアクセルペダルを踏み増す傾向があり、その結果、内燃機関1の運転条件は、図4の矢印Aで示すように変化し、不必要に燃料増量域が使用されてしまうことがある。   In particular, when accelerating from a region where exhaust gas recirculation is performed, if the margin torque to the fuel increase region is small, the fuel increase region is likely to be used. This will be described with reference to FIG. For example, if the driver attempts to accelerate by depressing the accelerator pedal while the internal combustion engine 1 is being operated at a point j that has a small margin torque up to the fuel increase range and is within the exhaust gas recirculation range, In the state where the recirculation is performed, the amount of fresh air flowing into the combustion chamber is small, so that the torque rises slowly even if the throttle valve 17 is opened. For this reason, the driver trying to accelerate (particularly sudden acceleration) tends to unconsciously increase the accelerator pedal, and as a result, the operating condition of the internal combustion engine 1 changes as shown by the arrow A in FIG. The fuel increase area may be used unnecessarily.

これに対し、本実施例では、燃料増量域までの余裕トルクが少ない場合には、急加速とみなしうる加速要求があったときに、排気還流率を定常時よりも減少補正する。このように排気還流を少なく制限すると、燃焼室内に流入する新気の量が増え、スロットル弁17の開度増加に伴ってトルクが速やかに上昇するので、運転者による不要なアクセルペダルの踏み増しが回避される。そのため、内燃機関1の運転条件は、j点から矢印Bで示すように変化し、燃料増量域での運転が回避される。   On the other hand, in this embodiment, when there is little margin torque up to the fuel increase range, the exhaust gas recirculation rate is corrected to be lower than that in the steady state when there is an acceleration request that can be regarded as sudden acceleration. If the exhaust gas recirculation is limited in this way, the amount of fresh air flowing into the combustion chamber increases, and the torque quickly increases as the opening of the throttle valve 17 increases. Therefore, an unnecessary accelerator pedal depression by the driver is increased. Is avoided. Therefore, the operating condition of the internal combustion engine 1 changes as indicated by the arrow B from the j point, and the operation in the fuel increase region is avoided.

また、本実施例では、加速であっても緩加速の場合、あるいは加速要求があった時点での余裕トルクが大きい場合には、排気還流率は補正されず、図2のような排気還流率の特性の制御マップ(目標EGRマップ)に従って、排気還流が行われる。そのため、ポンピングロス低減による燃費向上効果が最大限に得られる。   In the present embodiment, the exhaust gas recirculation rate is not corrected and the exhaust gas recirculation rate as shown in FIG. 2 is not corrected when the acceleration is slow but the acceleration is slow, or when the margin torque at the time when the acceleration is requested is large. Exhaust gas recirculation is performed according to the control map (target EGR map). Therefore, the fuel efficiency improvement effect by reducing the pumping loss can be obtained to the maximum.

図5は、上記実施例における排気還流制御の要部を示すフローチャートであって、ステップ1およびステップ2によって、所定の急加速の要求があったか判定する。具体的には、ステップ1で、アクセルペダル開度APOの変化速度VAPOが所定値VAPOaよりも大きいか否か判定する。ステップ2では、アクセルペダル開度APOの値そのものが所定値APOaよりも大きいか否か判定する。つまり、アクセルペダルを、急激に、かつ大きく踏み込んだときに、急加速要求と判定する。ステップ1もしくはステップ2でNOであれば、ステップ4へ進み、目標EGRマップを参照して、通常の排気還流を行う。なお、目標排気還流率が0の領域では、実際には排気還流は行われない。   FIG. 5 is a flowchart showing the main part of the exhaust gas recirculation control in the above embodiment, and it is determined in step 1 and step 2 whether a predetermined sudden acceleration is requested. Specifically, in Step 1, it is determined whether or not the change speed VAPO of the accelerator pedal opening APO is larger than a predetermined value VAPOa. In step 2, it is determined whether or not the value of the accelerator pedal opening APO is larger than a predetermined value APOa. That is, when the accelerator pedal is stepped on rapidly and largely, it is determined that the acceleration is requested. If NO in step 1 or step 2, the routine proceeds to step 4 where normal exhaust gas recirculation is performed with reference to the target EGR map. Note that in the region where the target exhaust gas recirculation rate is 0, exhaust gas recirculation is not actually performed.

急加速要求と判定した場合には、ステップ3で、そのときの機関運転条件に基づき、燃料増量域までの余裕トルクの大小を判定する。この判定の具体的な方法については後述する。ここで、余裕トルクが大であると判定した場合には、上述のステップ4へ進み、目標EGRマップを参照して、通常の排気還流を行う。これに対し、余裕トルクが小であると判定した場合には、ステップ5へ進み、排気還流率を、目標EGRマップの値を減少補正した値として設定する。つまり、排気還流量を定常時よりも少なく制限する。なお、この減少補正の具体的な方法については後述する。   If it is determined that there is a sudden acceleration request, in step 3, the magnitude of the surplus torque up to the fuel increase range is determined based on the engine operating condition at that time. A specific method for this determination will be described later. If it is determined that the margin torque is large, the process proceeds to step 4 described above, and normal exhaust gas recirculation is performed with reference to the target EGR map. On the other hand, if it is determined that the surplus torque is small, the process proceeds to step 5 and the exhaust gas recirculation rate is set as a value obtained by correcting and reducing the value of the target EGR map. That is, the exhaust gas recirculation amount is limited to be smaller than that in the steady state. A specific method for this reduction correction will be described later.

図6は、上記実施例の急加速時における作用を示すタイムチャートであって、上段から順に、アクセルペダル開度APO、アクセルペダル開度変化速度VAPO、要求駆動力P、スロットル弁開度TVO、吸気コレクタ16における吸気負圧boost、排気還流率EGR、エンジントルクTe、実際に発生した駆動力、をそれぞれ示している。この例では、図示するように、アクセルペダル開度APOが所定値APOaを越え、かつアクセルペダル開度変化速度VAPOが所定値APOaよりも大きいことで、急加速要求と判定される。要求駆動力Pは、運転者の加速要求に対し必要な駆動力(トルクと回転速度との積となる)であって、ここでは、アクセルペダル開度APOの変化と基本的に等しいものとみなしている。そして、この要求駆動力Pに従ってスロットル弁開度TVOが制御される。吸気負圧boostは、このスロットル弁開度TVOの変化に伴って変化する。   FIG. 6 is a time chart showing the action at the time of sudden acceleration of the above-described embodiment. In order from the top, the accelerator pedal opening APO, the accelerator pedal opening changing speed VAPO, the required driving force P, the throttle valve opening TVO, An intake negative pressure boost, an exhaust gas recirculation rate EGR, an engine torque Te, and an actually generated driving force in the intake collector 16 are shown. In this example, as shown in the figure, when the accelerator pedal opening APO exceeds a predetermined value APOa and the accelerator pedal opening change speed VAPO is larger than the predetermined value APOa, it is determined that the rapid acceleration is requested. The required driving force P is a driving force (a product of torque and rotational speed) required for the driver's acceleration request, and is considered to be basically equal to the change in the accelerator pedal opening APO here. ing. Then, the throttle valve opening TVO is controlled according to the required driving force P. The intake negative pressure boost changes as the throttle valve opening TVO changes.

排気還流率EGR、エンジントルクTe、実際に発生した駆動力、の三者については、従来の特性を破線で示し、上記実施例の特性を実線で示している。すなわち、従来のものでは、排気還流率EGRとして破線で示すように加速中も運転条件に応じた目標EGRマップの排気還流率が維持され、大量の排気還流がなされるため、エンジントルクTeの立ち上がりが遅くなり、実際の駆動力の立ち上がりが要求駆動力Pよりも遅くなる。この結果、前述したアクセルペダルの踏み増しが生じやすい。これに対し、本実施例では、排気還流率EGRが実線で示すように急加速要求時に低くなり、排気還流が少量に制限される。そのため、実線で示すように、エンジントルクTeの立ち上がりが早くなり、実際の駆動力が要求駆動力Pに沿った形で得られる。なお、図6の例では、急加速の判定後、アクセルペダル開度APOが所定値APOa以下となるまで排気還流率EGRを減少補正しているが、加速の初期に排気還流が制限されることが重要であるので、例えば、急加速判定から一定時間だけ排気還流率を減少補正し、以後は排気還流率を通常の値に復帰するようにしてもよい。   Regarding the three components of the exhaust gas recirculation rate EGR, the engine torque Te, and the actually generated driving force, the conventional characteristics are indicated by broken lines, and the characteristics of the above-described embodiment are indicated by solid lines. That is, in the conventional system, as shown by the broken line as the exhaust gas recirculation rate EGR, the exhaust gas recirculation rate of the target EGR map corresponding to the operating conditions is maintained even during acceleration, and a large amount of exhaust gas recirculation is performed. The actual driving force rises slower than the required driving force P. As a result, the accelerator pedal described above tends to increase. On the other hand, in the present embodiment, the exhaust gas recirculation rate EGR becomes low when the rapid acceleration is requested as shown by the solid line, and the exhaust gas recirculation is limited to a small amount. Therefore, as shown by the solid line, the engine torque Te rises quickly, and the actual driving force is obtained along the required driving force P. In the example of FIG. 6, the exhaust gas recirculation rate EGR is corrected to decrease until the accelerator pedal opening APO becomes equal to or less than the predetermined value APOa after the determination of sudden acceleration. However, exhaust gas recirculation is limited at the initial stage of acceleration. Therefore, for example, the exhaust gas recirculation rate may be corrected to decrease for a certain time from the sudden acceleration determination, and thereafter the exhaust gas recirculation rate may be returned to a normal value.

次に、上述したステップ3の余裕トルクの大小の判定の具体的な方法について説明する。   Next, a specific method for determining the magnitude of the surplus torque in step 3 will be described.

図7は、その第1の実施例を示したもので、各々のエンジン回転数について、理論空燃比限界のトルク値を100%としたときに、ある一定の割合(図のA%)だけ低いトルク値を大小判定の閾値Taとし、急加速要求があったときのトルクが閾値Taよりも低負荷側の領域にあれば余裕トルクが大と判定し、閾値Taよりも高負荷側の領域にあれば余裕トルクが小であると判定する。   FIG. 7 shows the first embodiment. Each engine speed is lower by a certain ratio (A% in the figure) when the torque value at the theoretical air-fuel ratio limit is 100%. The torque value is set as a threshold Ta for magnitude determination, and if the torque at the time of a sudden acceleration request is in a region on the lower load side than the threshold Ta, it is determined that the surplus torque is large, and in a region on the higher load side than the threshold Ta. If so, it is determined that the margin torque is small.

図8は、第2の実施例を示したもので、各々のエンジン回転数について、理論空燃比限界のトルク値から、ある一定のトルク(図のB[Nm])だけ低いトルク値を大小判定の閾値Tbとし、急加速要求があったときのトルクが閾値Tbよりも低負荷側の領域にあれば余裕トルクが大と判定し、閾値Tbよりも高負荷側の領域にあれば余裕トルクが小であると判定する。   FIG. 8 shows the second embodiment. For each engine speed, a torque value lower than the theoretical air-fuel ratio limit torque value by a certain torque (B [Nm] in the figure) is judged to be large or small. If the torque at the time of sudden acceleration request is in the region on the lower load side than the threshold Tb, it is determined that the margin torque is large, and if the torque is in the region on the higher load side than the threshold Tb, the margin torque is present. Judged to be small.

図9は、第3の実施例を示したもので、エンジン回転数に拘わらずに、ある一定のトルク値(図のC[Nm])を大小判定の閾値Tcとし、急加速要求があったときのトルクが閾値Tcよりも低負荷側の領域にあれば余裕トルクが大と判定し、閾値Tcよりも高負荷側の領域にあれば余裕トルクが小であると判定する。特に、上記閾値Tcとなるトルク値Cの値は、エンジン回転数によって異なる理論空燃比限界の最小のトルク値に一致している。   FIG. 9 shows a third embodiment. A constant torque value (C [Nm] in the figure) is set as a magnitude determination threshold value Tc regardless of the engine speed, and a rapid acceleration request is made. If the current torque is in the region on the lower load side than the threshold value Tc, it is determined that the margin torque is large, and if it is in the region on the higher load side than the threshold value Tc, it is determined that the margin torque is small. In particular, the value of the torque value C serving as the threshold value Tc coincides with the minimum torque value at the theoretical air-fuel ratio limit that varies depending on the engine speed.

なお、燃費悪化領域となる理論空燃比限界までの余裕の大小の判定に際し、エンジントルクの代替として、内燃機関1の吸入空気量、燃料噴射パルス幅、スロットル弁開度TVO、吸気負圧boost、等のトルクに相当する他のパラメータを用いることもできる。   It should be noted that when determining whether the margin to the theoretical air-fuel ratio limit, which is the fuel efficiency deterioration region, is substituted for engine torque, the intake air amount of the internal combustion engine 1, the fuel injection pulse width, the throttle valve opening TVO, the intake negative pressure boost, Other parameters corresponding to the torque can also be used.

次に、上述したステップ5の排気還流率の減少補正の具体的な方法について説明する。   Next, a specific method for correcting the decrease in the exhaust gas recirculation rate in step 5 will be described.

図10,図11は、その第1の実施例を示したもので、余裕トルクが小と判定される領域(例えば図7の閾値Taもしくは図8の閾値Tbよりも高負荷側の領域)を、さらに余裕トルクの大きさによって少なくとも2つの領域、例えば第1の領域Dと第2の領域Eとに区分し、それぞれの領域の中央のトルク値d、e(Nm)に対して、通常の目標EGRマップの値よりも低い目標EGR率EGRd、EGReを設定する。そして、図11に示すように、2つの値EGRd、EGReを用いた補間計算により、急加速要求があったときのエンジントルクに応じて、目標EGR率を求める。ここで、余裕トルクが相対的に小さな第2の領域Eの目標EGR率EGReは、余裕トルクが相対的に大きな第1の領域Dの目標EGR率EGRdよりも、低い値に設定される。従って、図11に示すように、余裕トルクが小さくなるほど、目標EGR率は減少する。このように余裕トルクの大小に応じて排気還流率の減少補正の程度を異ならせることにより、踏み増しによる燃料増量域での運転をできるだけ回避しつつ、最大限の排気還流を行って燃費向上を図ることができる。   FIGS. 10 and 11 show the first embodiment. An area in which the margin torque is determined to be small (for example, an area on the higher load side than the threshold Ta in FIG. 7 or the threshold Tb in FIG. 8). Further, it is divided into at least two regions, for example, a first region D and a second region E, according to the magnitude of the margin torque, and the normal torque values d and e (Nm) of each region are normal. Target EGR rates EGRd and EGRe lower than the value of the target EGR map are set. Then, as shown in FIG. 11, a target EGR rate is obtained according to the engine torque when a sudden acceleration request is made by interpolation calculation using two values EGRd and EGRe. Here, the target EGR rate EGRe of the second region E having a relatively small margin torque is set to a value lower than the target EGR rate EGRd of the first region D having a relatively large margin torque. Therefore, as shown in FIG. 11, the target EGR rate decreases as the margin torque decreases. In this way, by varying the degree of correction of the exhaust gas recirculation rate according to the amount of surplus torque, the maximum exhaust gas recirculation is performed to improve fuel efficiency while avoiding operation in the fuel increase range by increasing the pedal as much as possible. Can be planned.

図12,図13は、第2の実施例を示したもので、この実施例では、アクセルペダル開度APOに応じて目標EGR率の減少比率(%)を決定するようにしている。この減少比率は、通常の目標EGRマップの値に対する減少割合を示し、減少比率が0であれば、通常の目標EGRマップの値がそのまま用いられ、減少比率が100(%)であれば、最終的な目標EGR率は0となる。図13に示すように、アクセルペダル開度APOが急加速要求と判定する所定値APOaよりも小さな領域では、減少比率は0であり、アクセルペダル開度APOが大きいほど、減少比率は大きくなり、全開もしくは全開に近い所定のアクセルペダル開度APOにおいて減少比率は100(%)となる。より具体的には、図12に示すように、所定値APOaよりも大きなアクセルペダル開度APOの領域を少なくとも2つの領域、例えば第1の領域Fと第2の領域Gとに区分し、それぞれの中央値APOF、APOGに対する減少比率f、g(%)の値を用いて、アクセルペダル開度APOに応じた減少比率を求める。運転者が要求する要求トルクは、図12に示すように、概ねアクセルペダル開度APOの大小に相関するので、要求トルクに応じて、目標EGR率が減少補正されることになる。このように加速時の要求トルクの大小に応じて排気還流率の減少補正の程度を異ならせることにより、第1の実施例と同じく、踏み増しによる燃料増量域での運転をできるだけ回避しつつ、最大限の排気還流を行って燃費向上を図ることができる。   12 and 13 show the second embodiment. In this embodiment, the reduction ratio (%) of the target EGR rate is determined in accordance with the accelerator pedal opening APO. This reduction ratio indicates the reduction ratio with respect to the value of the normal target EGR map. If the reduction ratio is 0, the value of the normal target EGR map is used as it is, and if the reduction ratio is 100 (%), the final value The target EGR rate is 0. As shown in FIG. 13, in a region where the accelerator pedal opening APO is smaller than a predetermined value APOa that is determined to be a rapid acceleration request, the reduction ratio is 0, and the larger the accelerator pedal opening APO is, the larger the reduction ratio is. At a predetermined accelerator pedal opening APO that is fully open or close to full open, the reduction ratio is 100 (%). More specifically, as shown in FIG. 12, the area of the accelerator pedal opening APO larger than the predetermined value APOa is divided into at least two areas, for example, a first area F and a second area G, respectively. Using the values of the reduction ratios f and g (%) relative to the median values APOF and APOG, the reduction ratio corresponding to the accelerator pedal opening APO is obtained. As shown in FIG. 12, the required torque required by the driver is generally correlated with the magnitude of the accelerator pedal opening APO, so that the target EGR rate is corrected to decrease according to the required torque. In this way, by varying the degree of correction of the exhaust gas recirculation rate reduction according to the magnitude of the required torque during acceleration, as in the first embodiment, while avoiding operation in the fuel increase range by increasing the pedal as much as possible, Maximum exhaust gas recirculation can be performed to improve fuel efficiency.

図14,図15は、第3の実施例を示したもので、この実施例では、アクセルペダル開度APOに応じて目標EGR率の減少補正量を決定し、この減少補正量(減少EGR率)を、通常の目標EGRマップの値から減算して、最終的な目標EGR率を得るようにしている。図15に示すように、アクセルペダル開度APOが急加速要求と判定する所定値APOaよりも小さな領域では、減少補正量は0であり、アクセルペダル開度APOが大きいほど、減少補正量が大となる。より具体的には、図14に示すように、所定値APOaよりも大きなアクセルペダル開度APOの領域を少なくとも2つの領域、例えば第1の領域Hと第2の領域Iとに区分し、それぞれの中央値APOH、APOIに対する減少補正量h、i(%)の値を用いて、アクセルペダル開度APOに応じた減少補正量を求める。運転者が要求する要求トルクは、図14に示すように、概ねアクセルペダル開度APOの大小に相関するので、第2の実施例と同じく、要求トルクに応じて、目標EGR率が減少補正されることになる。この第3の実施例においても、加速時の要求トルクの大小に応じて排気還流率の減少補正の程度を異ならせることにより、踏み増しによる燃料増量域での運転をできるだけ回避しつつ、最大限の排気還流を行って燃費向上を図ることができる。   14 and 15 show a third embodiment. In this embodiment, a reduction correction amount of the target EGR rate is determined according to the accelerator pedal opening APO, and this reduction correction amount (decrease EGR rate). ) Is subtracted from the normal target EGR map value to obtain the final target EGR rate. As shown in FIG. 15, in a region where the accelerator pedal opening APO is smaller than a predetermined value APOa that is determined to be a rapid acceleration request, the decrease correction amount is 0, and the decrease correction amount is larger as the accelerator pedal opening APO is larger. It becomes. More specifically, as shown in FIG. 14, the area of the accelerator pedal opening APO larger than the predetermined value APOa is divided into at least two areas, for example, a first area H and a second area I, respectively. Using the values of the decrease correction amounts h and i (%) for the median values APOH and APOI, a decrease correction amount corresponding to the accelerator pedal opening APO is obtained. As shown in FIG. 14, the required torque requested by the driver is generally correlated with the magnitude of the accelerator pedal opening APO. Therefore, as in the second embodiment, the target EGR rate is corrected to decrease according to the required torque. Will be. Also in this third embodiment, by varying the degree of correction of the reduction in the exhaust gas recirculation rate according to the magnitude of the required torque during acceleration, the operation in the fuel increase range by increasing the pedal stroke is avoided as much as possible, The exhaust gas recirculation can be performed to improve fuel efficiency.

この発明の一実施例を示すシステム構成図。1 is a system configuration diagram showing an embodiment of the present invention. 内燃機関の運転条件に対する、燃費、燃料増量域および排気還流率の特性を示す特性図。The characteristic view which shows the characteristic of a fuel consumption, a fuel increase area, and an exhaust gas recirculation rate with respect to the driving | running condition of an internal combustion engine. 内燃機関の運転条件に対する変速比の特性を示す特性図。The characteristic view which shows the characteristic of the gear ratio with respect to the driving | running condition of an internal combustion engine. 余裕トルクが小さいときの急加速による運転条件の変化を示した特性図。The characteristic view which showed the change of the driving | running condition by sudden acceleration when a margin torque is small. 本発明による排気還流制御を示すフローチャート。3 is a flowchart showing exhaust gas recirculation control according to the present invention. 急加速要求時の種々のパラメータの変化を示したタイムチャート。Time chart showing changes in various parameters when sudden acceleration is requested. 余裕トルクの大小判定の第1の実施例を示す特性図。The characteristic view which shows the 1st Example of magnitude determination of a surplus torque. 余裕トルクの大小判定の第2の実施例を示す特性図。The characteristic view which shows the 2nd Example of magnitude determination of a surplus torque. 余裕トルクの大小判定の第3の実施例を示す特性図。The characteristic view which shows the 3rd Example of the magnitude determination of a surplus torque. 減少補正の第1の実施例を示す特性図。The characteristic view which shows the 1st Example of decrease correction. 同じく第1の実施例の目標EGR率とエンジントルクとの関係を示す特性図。The characteristic view which similarly shows the relationship between the target EGR rate and engine torque of the first embodiment. 減少補正の第2の実施例を示し、要求トルクとアクセルペダル開度との関係を示す特性図。The characteristic view which shows the 2nd Example of reduction | decrease correction | amendment and shows the relationship between a request torque and an accelerator pedal opening degree. 同じく第2の実施例のEGR率減少比率とアクセルペダル開度との関係を示す特性図。Similarly, the characteristic figure which shows the relationship between the EGR rate reduction ratio of 2nd Example, and an accelerator pedal opening degree. 減少補正の第3の実施例を示し、要求トルクとアクセルペダル開度との関係を示す特性図。The characteristic view which shows the 3rd Example of reduction | decrease correction | amendment and shows the relationship between a request torque and an accelerator pedal opening degree. 同じく第3の実施例の減少EGR率とアクセルペダル開度との関係を示す特性図。The characteristic view which shows the relationship between the reduction | decrease EGR rate and accelerator pedal opening degree of a 3rd Example similarly.

符号の説明Explanation of symbols

1…内燃機関
10…排気還流装置
19…エンジンコントロールモジュール
20…アクセル開度センサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 10 ... Exhaust gas recirculation device 19 ... Engine control module 20 ... Accelerator opening sensor

Claims (9)

排気の一部を吸気系に還流する排気還流装置を備え、かつ内燃機関の運転条件に応じて所定の排気還流率となるように上記排気還流装置を制御する内燃機関の制御装置において、運転者の加速要求を検出する手段と、この加速要求が検出されたときの内燃機関の運転条件から高負荷側の所定の燃費悪化領域までの余裕の大小を判別する手段と、を備え、この余裕が小さい場合に上記排気還流率を減少補正し、そうでない場合には運転条件に応じて所定の排気還流率となるように上記排気還流装置を制御することを特徴とする内燃機関の制御装置。 In a control device for an internal combustion engine that includes an exhaust gas recirculation device that recirculates a part of exhaust gas to an intake system and controls the exhaust gas recirculation device so as to have a predetermined exhaust gas recirculation rate in accordance with an operation condition of the internal combustion engine. Means for detecting the acceleration request, and means for discriminating the magnitude of the margin from the operating condition of the internal combustion engine when the acceleration request is detected to a predetermined fuel consumption deterioration region on the high load side. A control device for an internal combustion engine, wherein the exhaust gas recirculation rate is reduced when it is small, and if not, the exhaust gas recirculation device is controlled to a predetermined exhaust gas recirculation rate according to operating conditions . 上記燃費悪化領域は、内燃機関の目標空燃比が理論空燃比以下となる燃料増量域であることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control apparatus for an internal combustion engine according to claim 1, wherein the fuel efficiency deterioration region is a fuel increase region in which a target air-fuel ratio of the internal combustion engine is equal to or less than a theoretical air-fuel ratio. 加速要求が検出されたときの内燃機関のトルクもしくはトルクの代替となるパラメータに基づいて上記の余裕の大小を判別することを特徴とする請求項1または2に記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 1 or 2, wherein the magnitude of the margin is determined based on the torque of the internal combustion engine when an acceleration request is detected or a parameter that is a substitute for the torque. 加速要求が検出されたときの内燃機関のトルクと同一回転速度での上記燃費悪化領域の境界におけるトルクとの差が所定値より小さいときに、上記の余裕が小であると判定することを特徴とする請求項3に記載の内燃機関の制御装置。   When the difference between the torque of the internal combustion engine when the acceleration request is detected and the torque at the boundary of the fuel consumption deterioration region at the same rotational speed is smaller than a predetermined value, it is determined that the margin is small. The control apparatus for an internal combustion engine according to claim 3. 加速要求が検出されたときの内燃機関のトルクが、同一回転速度での上記燃費悪化領域の境界におけるトルクに占める割合が、所定値以上のときに、上記の余裕が小であると判定することを特徴とする請求項3に記載の内燃機関の制御装置。   When the ratio of the torque of the internal combustion engine when the acceleration request is detected to the torque at the boundary of the fuel consumption deterioration region at the same rotational speed is a predetermined value or more, it is determined that the margin is small. The control device for an internal combustion engine according to claim 3. 加速要求が検出されたときの内燃機関のトルクが、上記燃費悪化領域の境界におけるトルクの最小値よりも大きいときに、上記の余裕が小であると判定することを特徴とする請求項3に記載の内燃機関の制御装置。   4. The method according to claim 3, wherein the margin is determined to be small when the torque of the internal combustion engine when the acceleration request is detected is greater than the minimum value of the torque at the boundary of the fuel consumption deterioration region. The internal combustion engine control device described. 上記内燃機関が、車両の運転状態に応じて変速比が可変制御される無段変速機と組み合わされていることを特徴とする請求項1〜6のいずれかに記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the internal combustion engine is combined with a continuously variable transmission whose speed ratio is variably controlled in accordance with a driving state of the vehicle. 上記の余裕が小さいほど排気還流率がより小さくなるように減少補正することを特徴とする請求項1〜7のいずれかに記載の内燃機関の制御装置。   8. The control apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas recirculation rate is reduced and corrected so as to be smaller as the margin is smaller. 加速要求時の要求トルクが大きいほど排気還流率がより小さくなるように減少補正することを特徴とする請求項1〜7のいずれかに記載の内燃機関の制御装置。
The control device for an internal combustion engine according to any one of claims 1 to 7, wherein the correction is made so that the exhaust gas recirculation rate becomes smaller as the required torque at the time of acceleration request becomes larger.
JP2004022351A 2004-01-30 2004-01-30 Control device for internal combustion engine Expired - Fee Related JP4367146B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004022351A JP4367146B2 (en) 2004-01-30 2004-01-30 Control device for internal combustion engine
EP05001811A EP1559893B1 (en) 2004-01-30 2005-01-28 Control apparatus and process for internal combustion engine
DE602005000113T DE602005000113T2 (en) 2004-01-30 2005-01-28 Device and method for controlling an internal combustion engine
US11/045,350 US7356403B2 (en) 2004-01-30 2005-01-31 Control apparatus and process for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022351A JP4367146B2 (en) 2004-01-30 2004-01-30 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005214082A JP2005214082A (en) 2005-08-11
JP4367146B2 true JP4367146B2 (en) 2009-11-18

Family

ID=34905728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022351A Expired - Fee Related JP4367146B2 (en) 2004-01-30 2004-01-30 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4367146B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492556B2 (en) * 2014-11-07 2019-04-03 三菱自動車工業株式会社 Engine control device
JP2017186953A (en) * 2016-04-05 2017-10-12 トヨタ自動車株式会社 Egr controller of internal combustion engine

Also Published As

Publication number Publication date
JP2005214082A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US7356403B2 (en) Control apparatus and process for internal combustion engine
JP4186438B2 (en) Vehicle control apparatus equipped with continuously variable transmission
US7869931B2 (en) Engine controller
JP4407711B2 (en) Control device for torque demand type internal combustion engine
US6742498B2 (en) Apparatus and method for controlling internal combustion engine
US10442436B2 (en) Vehicle driving device
WO2005017336A1 (en) Internal combustion engine controller
JP2007303437A (en) Control device for internal combustion engine
JP3991600B2 (en) Fuel injection amount control device for diesel engine
JP4415509B2 (en) Control device for internal combustion engine
JP4140134B2 (en) Engine control device
JP4367146B2 (en) Control device for internal combustion engine
JP4367147B2 (en) Control device for internal combustion engine
JP4196683B2 (en) Control device for internal combustion engine
JP4367145B2 (en) Control device for internal combustion engine
US7792630B2 (en) Control system and method for internal combustion engine and engine control unit
JP5679186B2 (en) Control device
JP4269956B2 (en) Control device for internal combustion engine with continuously variable transmission
JP4066764B2 (en) Control device for internal combustion engine
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
EP0982485B1 (en) Internal combustion engine
JP3149724B2 (en) Valve timing control device for internal combustion engine
JP4774870B2 (en) Vehicle control device
JP4000923B2 (en) Inlet throttle valve control device for turbocharged diesel engine for vehicle
JP2001248487A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4367146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees