JP4366917B2 - アルミニウム電解コンデンサ - Google Patents
アルミニウム電解コンデンサ Download PDFInfo
- Publication number
- JP4366917B2 JP4366917B2 JP2002317860A JP2002317860A JP4366917B2 JP 4366917 B2 JP4366917 B2 JP 4366917B2 JP 2002317860 A JP2002317860 A JP 2002317860A JP 2002317860 A JP2002317860 A JP 2002317860A JP 4366917 B2 JP4366917 B2 JP 4366917B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- capacitor
- salt
- quaternary
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
【発明が属する技術分野】
本発明は、アルミニウム電解コンデンサに関する。
【0002】
【従来の技術】
アルミニウム電解コンデンサは、小型でありながら大きな静電容量を有する点に特徴があり、低周波のフィルターやバイパス用に多用されている。アルミニウム電解コンデンサは、一般に陽極箔と陰極箔とをセパレータを介して巻回し、これをケースに収納して密封した構造を有する(図1及び図2参照)。陽極箔には誘電体層として絶縁性酸化皮膜を形成したアルミニウムが使用され、陰極箔にはエッチング処理を施したアルミニウム箔が一般に使用されている。そして、陽極と陰極の間に介在するセパレータには両極の短絡を防ぐために電解液が含浸されており、真の陰極として機能している。
【0003】
電解液特性の中でも電気伝導率は、電解コンデンサのエネルギー損失やインピーダンス特性等に直接関わることから、高い電気伝導率を有する電解液の開発が盛んに行われている。例えば、γ−ブチロラクトン等の非プロトン性溶媒にフタル酸やマレイン酸等の第四級アンモニウム塩(例えば、特許文献1、特許文献2など)や第四級アミジニウム塩(例えば、特許文献3、特許文献4など)を溶解した電解液が提案されている。しかし、これらの電解液は、イオンの移動度が十分でなく、また陽極アルミニウムの化成性も不十分であるため、一般に定格電圧が35V以下のコンデンサにしか用いることができない。
【0004】
【特許文献1】
特開昭62−145715号公報
【特許文献2】
特開昭62−145713号公報
【特許文献3】
WO95/15572号パンフレット
【特許文献4】
特開平9−283379号公報
【0005】
【発明が解決しようとする課題】
そこで、電気伝導率が高く、熱安定性に優れ、耐電圧のより高い電解コンデンサ用電解液、およびインピーダンスがより低く、熱安定性に優れ、耐電圧のより高い電解コンデンサが求められている。
本発明者等は、このような中で、テトラフルオロアルミン酸イオンを含有する電解コンデンサ用電解液は、これらの性能を満足することを見出した(特願平2002−135387号)。しかしながら、この電解液を用いた電解コンデンサは、初期に有している高電気伝導率、熱安定性、耐電圧性などの特性を長期間維持することが難しいという問題がある。
【0006】
【課題を解決するための手段】
フタル酸、マレイン酸等の第四級アンモニウム塩や第四級アミジニウム塩などの電解質をγ―ブチロラクトンのような非プロトン性極性溶媒中に溶解した電解液を用いる従来のアルミニウム電解コンデンサでは、電解液中の水分は問題視されておらず、例えば、電解液が水分を3重量%程度含有していても、実用上問題はなかった。
【0007】
しかし、本発明者らの検討によれば、電解質として含フッ素アニオンのオニウム塩を用いるアルミニウム電解コンデンサ場合には、電解液中の水分がコンデンサの性能に大きな影響を及ぼすことが判明した。これは、電解液中の水分がアルミニウム電極の表面状態に大きな影響を与えるためと考えられる。そして、電解液中の水分を制限することにより、上記課題、特にコンデンサの漏れ電流特性および寿命特性が改善された、長期安定的に使用しうる電解コンデンサを提供できること見出し、本発明に到達した、
【0008】
即ち、本発明の要旨は、陽極、アルミニウムからなる陰極、及び含フッ素アニオンのオニウム塩を含有する電解液からなるアルミニウム電解コンデンサであって、電解液中の水の濃度が1重量%以下であることを特徴とするアルミニウム電解コンデンサに存する。
【0009】
【発明の実施の形態】
以下に本発明につき、更に詳細に説明する。
アルミニウム電解コンデンサの基本構成は、従来公知のアルミニウム電解コンデンサと同様であり、陽極と陰極とが、電解液を含浸したセパレータを介してケースに収納されている。
【0010】
陽極としては、アルミニウムの表面に酸化アルミニウム皮膜層を形成したものが用いられる。アルミニウムとしては、通常純度99.9%以上のアルミニウムが用いられる。酸化アルミニウム皮膜層は、アルミニウムを酸性溶液中で化学的あるいは電気化学的なエッチングにより拡面処理した後、アジピン酸アンモニウムやホウ酸、リン酸等の水溶液中で化成処理を行う方法などにより形成することができる。陽極の厚さは、通常50〜500μmである。
【0011】
陰極としては、アルミニウムまたはアルミニウム合金が用いられる。アルミニウムとしては、純度99.9%以上のものが用いられる、アルミニウム合金としては、アルミニウム含量99%程度のものが用いられる。アルミニウムの表面はエッチングにより、拡面処理されていてもよい。中でも耐水和性に優れる純度99.9%のアルミニウムが好ましい。陰極の厚さは、通常20〜200μmである。
電解コンデンサの製作に際しては、陽極および陰極は乾燥したものを用いるのが好ましい。通常は表面の付着水が100ppm以下、好ましくは10ppm以下のものを用いる。
【0012】
セパレータとしては、マニラ紙、クラフト紙等の紙、ガラス繊維、ポリプロピレン、ポリエチレン、ポリフェニレンスルフィド等の不織布などが挙げられるが、なかでも紙が好ましい。セパレータの水分量は、その材質によっても異なるが、大気中の水分を吸収するため、通常2重量%程度であり、大気中の湿度が高いと8重量%程度となる。従って、セパレータは乾燥して、付着している水を除去してから、コンデンサの製造に用いることが好ましい。通常は水分が1000ppm以下、好ましくは500ppm、より好ましくは100ppm以下となるように乾燥する。
【0013】
電解液は、含フッ素アニオンのオニウム塩とこれを溶解する溶媒とから主としてなる。
電解コンデンサの組立に用いる電解液は、通常は水分量が5000ppm以下、好ましくは100ppm以下である。
【0014】
含フッ素アニオンとしては、一般式MFn-で表されるアニオン(式中、Mは、B、Al、P、Nb、Sb及びTaからなる群から選ばれる元素を表し、nはMの電荷数によって決まる4または6の数を表す。)で表されるアニオン、パーフルオロアルカンスルホン酸アニオン、ビス(パーフルオロアルカンスルホニル)イミドアニオン、トリス(パーフルオロアルカンスルホニル)メチドアニオン、パーフルオロアルキルフルオロホウ酸アニオン、パーフルオロアルキルフルオロリン酸アニオン等を挙げることができる。なかでも一般式MFn-で表されるアニオンが好ましい。
【0015】
一般式MFn-で表されるアニオンの具体例としては、テトラフルオロホウ酸イオン、テトラフルオロアルミン酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロニオブ酸イオン、ヘキサフルオロアンチモン酸イオン、ヘキサフルオロタンタル酸イオンを挙げることができる。中でも、電気伝導率が高く、熱安定性に優れ、かつ耐電圧性の高い電解液を得ることができるので、テトラフルオロアルミン酸イオン(AlF4 -)が好ましい。
含フッ素アニオンは1種でも2種以上を併用してもよいが、アニオンとしてテトラフルオロアルミン酸イオンと他の含フッ素アニオンとを併用する場合には、含フッ素アニオン中のテトラフルオロアルミン酸イオンの割合は、好ましくは5〜100モル%、より好ましくは30〜100モル%、特に好ましくは、50〜100モル%である。最も好ましくは含フッ素アニオンとしてテトラフルオロアルミン酸イオンのみを用いることである。
【0016】
オニウム塩としては、第四級オニウム塩、アンモニウム塩などが挙げられ、第四級オニウム塩としては、第四級アンモニウム塩、第四級ホスホニウム塩、第四級イミダゾリウム塩、第四級アミジニウム塩などが挙げられる。
【0017】
第四級アンモニウム塩の第四級アンモニウムイオンとしては、以下のものが挙げられる。
(1)テトラアルキルアンモニウム
テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム、トリメチル−n−プロピルアンモニウム、トリメチルイソプロピルアンモニウム、トリメチル−n−ブチルアンモニウム、トリメチルイソブチルアンモニウム、トリメチル−t−ブチルアンモニウム、トリメチル−n−ヘキシルアンモニウム、ジメチルジ−n−プロピルアンモニウム、ジメチルジイソプロピルアンモニウム、ジメチル−n−プロピルイソプロピルアンモニウム、メチルトリ−n−プロピルアンモニウム、メチルトリイソプロピルアンモニウム、メチルジ−n−プロピルイソプロピルアンモニウム、メチル−n−プロピルジイソプロピルアンモニウム、トリエチル−n−プロピルアンモニウム、トリエチルイソプロピルアンモニウム、トリエチル−n−ブチルアンモニウム、トリエチルイソブチルアンモニウム、トリエチル−t−ブチルアンモニウム、ジメチルジ−n−ブチルアンモニウム、ジメチルジイソブチルアンモニウム、ジメチルジ−t−ブチルアンモニウム、ジメチル−n−ブチルエチルアンモニウム、ジメチルイソブチルエチルアンモニウム、ジメチル−t−ブチルエチルアンモニウム、ジメチル−n−ブチルイソブチルアンモニウム、ジメチル−n−ブチル−t−ブチルアンモニウム、ジメチルイソブチル−t−ブチルアンモニウム、ジエチルジ−n−プロピルアンモニウム、ジエチルジイソプロピルアンモニウム、ジエチル−n−プロピルイソプロピルアンモニウム、エチルトリ−n−プロピルアンモニウム、エチルトリイソプロピルアンモニウム、エチルジ−n−プロピルイソプロピルアンモニウム、エチル−n−プロピルジイソプロピルアンモニウム、ジエチルメチル−n−プロピルアンモニウム、エチルジメチル−n−プロピルアンモニウム、エチルメチルジ−n−プロピルアンモニウム、ジエチルメチルイソプロピルアンモニウム、エチルジメチルイソプロピルアンモニウム、エチルメチルジイソプロピルアンモニウム、エチルメチル−n−プロピルイソプロピルアンモニウム、テトラ−n−プロピルアンモニウム、テトライソプロピルアンモニウム、n−プロピルトリイソプロピルアンモニウム、ジ−n−プロピルジイソプロピルアンモニウム、トリ−n−プロピルイソプロピルアンモニウム、トリメチルブチルアンモニウム、トリメチルペンチルアンモニウム、トリメチルヘキシルアンモニウム、トリメチルヘプチルアンモニウム、トリメチルオクチルアンモニウム、トリメチルノニルアンモニウム、トリメチルデシルアンモニウム、トリメチルウンデシルアンモニウム、トリメチルドデシルアンモニウムなどが挙げられる。
【0018】
(2)芳香族置換アンモニウム
トリメチルフェニルアンモニウム、テトラフェニルアンモニウムなどが挙げられる。
(3)脂肪族環状アンモニウム
N,N−ジメチルピロリジニウム、N−エチル−N−メチルピロリジニウム、N,N−ジエチルピロリジニウム、N,N−テトラメチレンピロリジニウムなどのピロリジニウム;N,N−ジメチルピペリジニウム、N−エチル−N−メチルピペリジニウム、N,N−ジエチルピペリジニウム、N,N−テトラメチレンピペリジニウム、N,N−ペンタメチレンピペリジニウムなどのピペリジニウム;N,N−ジメチルモルホリニウム、N−エチル−N−メチルモルホリニウム、N,N−ジエチルモルホリニウムなどのモルホリニウムなどが挙げられる。
【0019】
(4)含窒素ヘテロ環芳香族化合物のイオン
N−メチルピリジニウム、N−エチルピリジニウム、N−n−プロピルピリジニウム、N−イソプロピルピリジニウム、N−n−ブチルピリジニウムなどのピリジニウムが挙げられる。
【0020】
第四級ホスホニウム塩の第四級ホスホニウムイオンとしては、テトラメチルホスホニウム、トリエチルメチルホスホニウム、テトラエチルホスホニウムなどが挙げられる。
【0021】
第四級イミダゾリウム塩の第四級イミダゾリウムイオンとしては、1,3−ジメチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1,2−ジエチル−3−メチルイミダゾリウム、1,3−ジエチル−2−メチルイミダゾリウム、1,2−ジメチル−3−n−プロピルイミダゾリウム、1−n−ブチル−3−メチルイミダゾリウム、1−メチル−3−n−プロピル−2,4−ジメチルイミダゾリウム、1,2,3,4−テトラメチルイミダゾリウム、1,2,3,4,5−ペンタメチルイミダゾリウム、2−エチル−1,3−ジメチルイミダゾリウム、1,3−ジメチル−2−n−プロピルイミダゾリウム、1,3−ジメチル−2−n−ペンチルイミダゾリウム、1,3−ジメチル−2−n−ヘプチルイミダゾリウム、1,3,4−トリメチルイミダゾリウム、2−エチル−1,3,4−トリメチルイミダゾリウム、1,3−ジメチルベンゾイミダゾリウム、1−フェニル−3−メチルイミダゾリウム、1−ベンジル−3−メチルイミダゾリウム、1−フェニル−2,3−ジメチルイミダゾリウム、1−ベンジル−2,3−ジメチルイミダゾリウム、2−フェニル−1,3−ジメチルイミダゾリウム、2−ベンジル−1,3−ジメチルイミダゾリウム、1,3−ジメチル−2−n−ウンデシルイミダゾリウム、1,3−ジメチル−2−n−ヘプタデシルイミダゾリウム2−(2′−ヒドロキシ)エチル−1,3−ジメチルイミダゾリウム、1−(2′−ヒドロキシ)エチル−2,3−ジメチルイミダゾリウム、2−エトキシメチル−1,3−ジメチルイミダゾリウム、1−エトキシメチル−2,3−ジメチルイミダゾリウムなどが挙げられる。
【0022】
第四級アミジニウム塩の第四級アミジニウムイオンとしては、以下のものが挙げられる。
(1)第四級イミダゾリニウム
1,3−ジメチルイミダゾリニウム、1,2,3−トリメチルイミダゾリニウム、1−エチル−3−メチルイミダゾリニウム、1−エチル−2,3−ジメチルイミダゾリニウム、1,3−ジエチルイミダゾリニウム、1,2−ジエチル−3−メチルイミダゾリニウム、1,3−ジエチル−2−メチルイミダゾリニウム、1,2−ジメチル−3−n−プロピルイミダゾリニウム、1−n−ブチル−3−メチルイミダゾリニウム、1−メチル−3−n−プロピル−2,4−ジメチルイミダゾリニウム、1,2,3,4−テトラメチルイミダゾリニウム、2−エチル−1,3−ジメチルイミダゾリニウム、1,3−ジメチル−2−n−プロピルイミダゾリニウム、1,3−ジメチル−2−n−ペンチルイミダゾリニウム、1,3−ジメチル−2−n−ヘプチルイミダゾリニウム、1,3,4−トリメチルイミダゾリニウム、2−エチル−1,3,4−トリメチルイミダゾリニウム、1−フェニル−3−メチルイミダゾリニウム、1−ベンジル−3−メチルイミダゾリニウム、1−フェニル−2,3−ジメチルイミダゾリニウム、1−ベンジル−2,3−ジメチルイミダゾリニウム、2−フェニル−1,3−ジメチルイミダゾリニウム、2−ベンジル−1,3−ジメチルイミダゾリニウムなどが挙げられる。
【0023】
(2)第四級テトラヒドロピリミジニウム
1,3−ジメチルテトラヒドロピリミジニウム、1,3−ジエチルテトラヒドロピリミジニウム、1−エチル−3−メチルテトラヒドロピリミジニウム、1,2,3−トリメチルテトラヒドロピリミジニウム、1,2,3−トリエチルテトラヒドロピリミジニウム、1−エチル−2,3−ジメチルテトラヒドロピリミジニウム、2−エチル−1,3−ジメチルテトラヒドロピリミジニウム、1,2−ジエチル−3−メチルテトラヒドロピリミジニウム、1,3−ジエチル−2−メチルテトラヒドロピリミジニウム、5−メチル−1,5−ジアザビシクロ〔4.3.0〕ノネニウム−5、8−メチル−1,8−ジアザビシクロ〔4.0〕ウンデセニウム−7などが挙げられる。
【0024】
(3)ヒドロキシル基、エーテル基などを有する第四級アミジニウムイオン
1,3−ジメチル−2−n−ウンデシルイミダゾリニウム、1,3−ジメチル−2−n−ヘプタデシルイミダゾリニウム、2−(2′−ヒドロキシ)エチル−1,3−ジメチルイミダゾリニウム、1−(2′−ヒドロキシ)エチル−2,3−ジメチルイミダゾリニウム、2−エトキシメチル−1,3−ジメチルイミダゾリニウム、1−エトキシメチル−2,3−ジメチルイミダゾリニウム、1,2,3−トリメチル−1,4−ジヒドロピリミジニウムなどが挙げられる。
【0025】
アミン塩のアミンとしては、トリメチルアミン、エチルジメチルアミン、ジエチルメチルアミン、トリエチルアミン、ピリジン、ピコリン、ピリミジン、ピリダジン、N−メチルイミダゾール、1,5−ジアザビシクロ〔4.3.0〕ノネン−5、1,8−ジアザビシクロ〔5.4.0〕ウンデン−7などの第三級アミン;ジエチルアミン、ジイソプロピルアミン、イソブチルアミン、ジ−2−エチルヘキシルアミン、ピロリジン、ピペリジン、モルホリン、ヘキサメチレンイミンなどの第二級アミン;エチルアミン、n−プロピルアミン、イソプロピルアミン、t−ブチルアミン、sec−ブチルアミン、2−エチルヘキシルアミンなどの第一級アミン;3−メトキシプロピルアミン、3−エトキシプロピルアミンなどのエーテル基を有するアミン;アンモニアなどが挙げられる。
アンモニウム塩のアンモニウムイオンは、NH4 +である。
【0026】
これらのなかでも、得られる電解液の電気伝導率が高く、また、陰極のアルミニウムの腐食を抑制できるので、好ましいのは第四級オニウム、より好ましいのは第四級アミジニウム塩、最も好ましいのは第四級イミダゾリニウムである。第四級イミダゾリニウムのなかで好ましいのは、1−エチル−2,3−ジメチルイミダゾリニウム、1,2,3,4−テトラメチルイミダゾリニウムである。
また、第四級オニウムイオンの炭素数の和は、高い電気伝導率の電解液を得るという観点から4〜12が好ましい。
【0027】
電解液中の含フッ素アニオンのオニウム塩の濃度は、低いほど電解コンデンサ用電解液の耐電圧が増加する傾向にあるので、所望のコンデンサの定格電圧によって、決定すればよく、50重量%程度の濃厚溶液であっても、常温溶融塩であってもよいが、通常5重量%以上、好ましくは10重量%以上であり、通常40重量%以下、好ましくは35重量%以下である。含フッ素アニオンのオニウム塩の含有量が低すぎると電気伝導率が低く、また高すぎると電解液の粘度が増加したり、低温で析出が起こりやすくなる。
【0028】
電解液は、含フッ素アニオン以外のアニオン成分を含んでいてもよい。これらの具体的な例としては、フタル酸水素イオン、フタル酸イオン、マレイン酸水素イオン、マレイン酸イオン、サリチル酸イオン、安息香酸イオン、アジピン酸水素イオン、アジピン酸イオン等のカルボン酸イオン;ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、ドデシルベンゼンスルホン酸イオン等のスルホン酸イオン;ホウ酸イオン、リン酸イオン等の無機オキソ酸イオンを挙げることができる。
【0029】
なかでも、高い電気伝導率を有する電解液が得られ、熱安定性にも優れるので、フタル酸水素イオンが好ましい。フタル酸水素塩を含フッ素アニオンのオニウム塩と混合して用いる場合、含フッ素アニオンのオニウム塩が主体となることが好ましく、塩の総重量に対して、含フッ素アニオンのオニウム塩が50重量%以上であることが好ましく、より好ましくは60重量%以上、更に好ましくは70重量%以上であり、フッ素含有アニオンのオニウム塩の比率は高いほうが好ましい。
【0030】
電解液が含フッ素アニオンのオニウム塩以外の塩を含んでいる場合、含フッ素アニオンのオニウム塩以外の塩の濃度は、通常0.1重量%以上、好ましくは1重量%以上であり、通常20重量%以下、好ましくは10重量%以下である。
【0031】
電解液を調製するのに用いられる電解質も、通常は水分が1000ppm以下、好ましくは500ppm以下、より好ましくは100ppm以下のものを用いる。電解質の合成原料や、合成過程で使用されるメタノール、アセトニトリル等の各種溶媒は水を含有することが多い。従って、電解質の合成時に使用する溶媒の水分量を低減させたり、モレキュラーシーブやアルミナなどの脱水剤、共沸蒸留等の処理により水を除去した合成原料を用いるなどにより、電解質の水分量を低減することができる。また、水分量の低減された電解質も、保存状態によっては、大気中の水分が混入したり、付着したりしてコンデンサ中に持ちこまれるので、乾燥状態で保存したり、予め乾燥してから電解液の調整に使用することが好ましい。
【0032】
電解液の溶媒としては、炭酸エステル、カルボン酸エステル、リン酸エステル、ニトリル、アミド、スルホン、アルコール、エーテル、スルホキシド、ウレア、ウレタンなどが挙げられる。
【0033】
炭酸エステルとしては、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、炭酸ジフェニル、炭酸メチルフェニル等の鎖状炭酸エステル;炭酸エチレン、炭酸プロピレン、2,3−ジメチル炭酸エチレン、炭酸ブチレン、炭酸ビニレン、2−ビニル炭酸エチレン等の環状炭酸エステルなどが挙げられる。
【0034】
カルボン酸エステルとしては、ギ酸メチル、酢酸メチル、プロピオン酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル等の脂肪族カルボン酸エステル;安息香酸メチル、安息香酸エチル等の芳香族カルボン酸エステル等の芳香族カルボン酸エステル;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトンなどが挙げられる。なかでも好ましいのは、γ−ブチロラクトンである。
【0035】
リン酸エステルとしては、リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル等が挙げられる。
ニトリルとしては、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2−メチルグルタロニトリル等が挙げられる。
【0036】
アミドとしては、N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノン等が挙げられる。
スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等が挙げられる。なかでも好ましいのは、スルホラン及び3−メチルスルホランである。
【0037】
アルコールとしては、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等が挙げられる。
エーテルとしては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、2,6−ジメチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
【0038】
スルホキシドとしては、ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等が挙げられる。
ウレアとしては、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン等が挙げられる。
ウレタンとしては、3−メチル−2−オキサゾリジノン等が挙げられる。
【0039】
これらの溶媒は単独で用いても、2種以上を混合してもよい。
電気伝導率の高い電解液が得られること、広い温度範囲で優れた特性を示すこと、電極材料を腐食しにくいことなどから、γ−ブチロラクトンが好ましい。また、熱安定性の点からスルホラン、3−メチルスルホランが好ましい。スルホラン、3−メチルスルホランはγ−ブチロラクトンと併用しても良い。
【0040】
このような溶媒を用いることにより、使用環境温度110〜150℃での動作を1000時間以上保証する、低インピーダンスで高耐電圧な電解コンデンサが得られる。
溶媒中の水分は得られる電解液中の水分量を左右する大きな要因であり、通常は5000ppm以下、好ましくは1000ppm以下、より好ましくは100ppm以下のものを用いる。
【0041】
アルミニウム電解コンデンサは、通常、箔状の陽極と箔状の陰極とを、電解液を含浸したセパレータを介して巻回又は積層して形成した素子を外装ケースに収納し、外装ケースの開口端部に封口体を挿入し、外装ケースの端部を絞り加工して、封口することにより作製される。
外装ケースとしては、アルミニウム製や樹脂製のケースを用いることができるが、封口が容易で、安価なアルミニウム製ケースが好ましい。
【0042】
封口体としては、ブチルゴム、テフロン(R)ゴムなどのゴムを用いることができる。ブチルゴムとしては、イソブチレンとイソプレンとの共重合体からなる生ゴムにカーボンブラック等の補強材、クレイ、タルク、炭酸カルシウム等の増量材、ステアリン酸、酸化亜鉛等等の加工助材、加硫剤等を添加して混練した後、圧延、成型したゴム弾性体を用いることができる。加硫剤としては、アルキルフェノールホルマリン樹脂;ジクミルペルオキシド、1,1−ジ−(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジ−(t−ブチルペルオキシ)ヘキサン等の過酸化物;p−キノンジオキシム、p,p′−ジベンゾイルキノンジオキシム等のキノイド;イオウ等を用いることができる。
【0043】
封口体としてゴムを用いたアルミニウム電解コンデンサの場合、ある程度ゴムを通して気体が透過するため、高温環境下においてはコンデンサ内部から大気中へ溶媒が揮発し、また高温高湿環境下においては大気中からコンデンサ内部へ水分が混入する。これらの過酷な環境のもとでコンデンサは静電容量の減少等の好ましくない特性変化を起こす恐れがあるので、溶媒蒸気の透過性を低減させるために、ゴム封口体の表面をテフロン(R)等の樹脂でコーティングしたり、ベークライト等の板を貼り付けるのが好ましい。封口体は、材質によっては水分を含有するので、乾燥状態で保存したり、封口体の材質を水の発生しないものを用いることが好ましい。
【0044】
また本発明のアルミニウム電解コンデンサは、ハーメチックシール構造や樹脂ケースに密閉した構造(例えば特開平8−148384号公報に記載)のものであってもよい。ハーメチックシール構造や樹脂ケースに密閉した構造のコンデンサにおいては、気体の透過量が極めて小さいため上述の過酷な環境下においても安定した特性を示す。
本発明のアルミ電解コンデンサの形状は特に限定されず、円筒型、長円型、角型、チップ型などの任意の形状にすることができる。
【0045】
コンデンサ組立時の雰囲気中の水分量は、コンデンサ中への水分の混入をさけるため、相対湿度が50%以下、特に10%以下が好ましい。雰囲気中の水分量は、少なければ少ないほど良い。
本発明に係るアルミニウム電解コンデンサは、コンデンサ中の電解液の水の濃度が1重量%以下であることを特徴とする。コンデンサ中の電解液の水の濃度は、好ましくは0.8重量%以下であり、0.7重量%以下であれば更に好ましい。水の濃度は低いほど好ましいが、実用的には10ppmより低くすることは困難であり、かつ低くする利点もない。
【0046】
含フッ素アニオンを含むオニウム塩を電解質とする電解液は、25℃における電気伝導率が5〜30mS/cm、125℃における耐電圧が100〜250Vであり、従来の非含フッ素アニオン系の電解液と比較して高い電気伝導率、高い耐電圧を兼ね備えていることが特徴である。特に、テトラフルオロアルミン酸の第四級アミジニウム塩を電解質としγ−ブチロラクトンを溶媒とする電解液系で電気伝導率20mS/cm以上、耐電圧150V以上の極めて優れた特性を示し、この電解液を用いたアルミ電解コンデンサは低インピーダンス、高耐電圧、かつ熱安定性に優れたものとなる。しかしながら、この電解液は水の影響を受けやすく、コンデンサ中の電解液に含まれる水分量が多すぎると、コンデンサの漏れ電流が増大し、等価直列抵抗(ESR)などのライフ特性の低下、ガス発生によるコンデンサの膨れ等の問題が起きる。
【0047】
【実施例】
(コンデンサ素子の作製)
陽極箔として、厚さ120μm、純度99.9%のアルミニウム箔を電解エッチングにより拡面化処理し、引き続き化成電圧160Vの陽極酸化処理によりその表面に酸化アルミニウムからなる誘電体を形成し、190mm×13.5mmに切断したものを用いた。
陰極箔として、厚さ30μm、純度99.9%のアルミニウム箔を電解エッチングにより拡面化処理し、200mm×13.5mmに切断したものを用いた。セパレータとして、218mm×150mmに切断した厚さ52μmのマニラ紙を用いた。
図1に示すように、リード線4(ハンダメッキ導線)が溶接されたタブ端子を加締め付け法により取り付けた陽極箔1と陰極箔2の間にセパレータ3を配置して、巻回し、コンデンサ素子巻き止め用粘着テープで固定した。このコンデンサ素子の仕様は、定格電圧100V、定格静電容量55μFである。
【0048】
(電解液の作製)
乾燥したテトラフルオロアルミン酸1−エチル−2,3−ジメチルイミダゾリニウム25重量部を低水分グレードのγ−ブチロラクトン75重量部に溶解し電解液を得た。さらにこの電解液にモレキュラーシーブを加えて脱水した。
この脱水した電解液中に含まれる水分量をカールフィッシャー水分計により測定したところ10ppmであった。
【0049】
(コンデンサ内の電解液中に含まれる水の濃度の測定方法)
アルミ電解コンデンサを露点−80℃のアルゴングローブボックスに入れ、その中でコンデンサを解体してコンデンサ素子から電解液を採取した。この電解液中の水の濃度をカールフィッシャー水分計により測定した。
【0050】
<実施例1>
コンデンサ素子を、真空ラインが接続されたガラス製の密閉容器に入れ、内部を約100Paに減圧した後、125℃で1時間乾燥し、ガラス製の密閉容器ごと放冷した。
露点−80℃のアルゴングローブボックス内で、コンデンサ素子へ電解液を真空含浸し、これを図2に示す10mmφ×20mmLの外装ケース(有底筒状アルミケース)6へ挿入し、次いで、過酸化物で加硫したブチルゴムからなる封口ゴム5をはめ込み、加締めた後、125℃にて1時間、電圧100Vを印加する再化成処理を行い、アルミニウム電解コンデンサを作製した。
【0051】
得られたアルミニウム電解コンデンサ中の電解液に含まれる水分量および室温で100Vの低電圧を印加したときの漏れ電流(二分値)を測定した。また、温度125℃で100時間の無負荷試験を行い、試験前後で120Hzにおける静電容量、100kHzにおける等価直列抵抗(ESR)を測定し、膨れや液漏れなどの外観の観察を行った。結果をまとめて表−1に示す。
【0052】
<実施例2>
コンデンサ素子の乾燥を常圧下で行い、コンデンサ素子の放冷およびアルミニウム電解コンデンサの作製を相対湿度40%の大気中で行うこと以外は実施例1と同様に行ってアルミニウム電解コンデンサを作製した。
実施例1と同様にして得られたコンデンサ内の電解液中の水分量および漏れ電流を測定し、無負荷試験を行った。結果を表−1に示す。
【0053】
<比較例1>
コンデンサ素子の乾燥を行わないこと、コンデンサの作製を相対湿度70%の大気中で行うこと以外は実施例1と同様にしてアルミニウム電解コンデンサを作製した。
実施例1と同様にして得られたコンデンサ内の電解液中の水分量および漏れ電流を測定し、無負荷試験を行った。結果を表1に示す。実施例と比較して無負荷試験後のESRの増加が大きく、封口ゴムの部分にはコンデンサ内でのガス発生による膨れが認められた。
【0054】
【表1】
【0055】
【発明の効果】
本発明のアルミニウム電解コンデンサは、インピーダンス特性、熱安定性、耐電圧性などの優位性を保持して、長期安定的に使用することが可能である。
【0056】
【図面の簡単な説明】
【図1】 本発明の実施例に用いるコンデンサ素子の概略図
【図2】 本発明の実施例に用いるアルミニウム電解コンデンサの断面図
【符号の説明】
1 陽極箔
2 陰極箔
3 セパレータ
4 リード線
5 封口ゴム
6 外装ケース
Claims (1)
- 陽極、アルミニウムからなる陰極、及びテトラフルオロアルミン酸イオンのオニウム塩を含有する電解液からなるアルミニウム電解コンデンサであって、オニウム塩が、第四級アンモニウム塩、第四級ホスホニウム塩、第四級イミダゾリウム塩、第四級アミジニウム塩及びアンモニウム塩からなる群から選ばれる少なくとも一種の塩であり、電解液中の水の濃度が1重量%以下であることを特徴とするアルミニウム電解コンデンサ。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002317860A JP4366917B2 (ja) | 2002-10-31 | 2002-10-31 | アルミニウム電解コンデンサ |
EP11151370A EP2323144A1 (en) | 2002-10-31 | 2003-10-31 | Electrolytic capacitor |
US10/533,234 US7227738B2 (en) | 2002-10-31 | 2003-10-31 | Electrolyte for electrolytic capacitor, electrolytic capacitor and process for producing tetrafluoroaluminate salt of organic onium |
EP03770097A EP1564768A4 (en) | 2002-10-31 | 2003-10-31 | ELECTROLYTE FOR ELECTROLYTIC CAPACITOR, ELECTROLYTIC CAPACITOR, AND PROCESS FOR PRODUCING ORGANIC ONIUM TETRAFLUOROALUMINATE |
CNB2003801025612A CN100466122C (zh) | 2002-10-31 | 2003-10-31 | 电解电容器用电解液及电解电容器、以及有机鎓的四氟铝酸盐的制造方法 |
EP11151369A EP2323145A1 (en) | 2002-10-31 | 2003-10-31 | Electrolytic solution for electrolytic capacitor and electrolytic capacitor as well as method for preparing an organic onium tetrafluoroaluminate |
PCT/JP2003/014014 WO2004040605A1 (ja) | 2002-10-31 | 2003-10-31 | 電解コンデンサ用電解液及び電解コンデンサ、並びに有機オニウムのテトラフルオロアルミン酸塩の製造方法 |
AU2003280692A AU2003280692A1 (en) | 2002-10-31 | 2003-10-31 | Electrolyte for electrolytic capacitor, electrolytic capacitor and process for producing tetrafluoroaluminate salt of organic onium |
US11/733,838 US7397651B2 (en) | 2002-10-31 | 2007-04-11 | Electrolyte for electrolytic capacitor, electrolytic capacitor and process for producing tetrafluoroaluminate salt of organic onium |
US11/733,936 US7295424B2 (en) | 2002-10-31 | 2007-04-11 | Electrolyte for electrolytic capacitor, electrolytic capacitor and process for producing tetrafluoroaluminate salt of organic onium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002317860A JP4366917B2 (ja) | 2002-10-31 | 2002-10-31 | アルミニウム電解コンデンサ |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008135901A Division JP2008244493A (ja) | 2008-05-23 | 2008-05-23 | アルミニウム電解コンデンサ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004153101A JP2004153101A (ja) | 2004-05-27 |
JP4366917B2 true JP4366917B2 (ja) | 2009-11-18 |
Family
ID=32461148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002317860A Expired - Fee Related JP4366917B2 (ja) | 2002-10-31 | 2002-10-31 | アルミニウム電解コンデンサ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4366917B2 (ja) |
CN (1) | CN100466122C (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4847088B2 (ja) * | 2005-09-30 | 2011-12-28 | 有限会社Im&T | イオン性液体を電解液として使用したアルミニウム電解コンデンサ、電解コンデンサ用アルミニウム電極箔及びそのアルミニウム電極箔の製造方法 |
JP2007184302A (ja) * | 2005-12-29 | 2007-07-19 | Nichicon Corp | 電解コンデンサ |
JP4752802B2 (ja) * | 2007-03-31 | 2011-08-17 | 日本ケミコン株式会社 | 電解コンデンサ用電解液 |
CN101935285B (zh) * | 2009-07-02 | 2013-11-06 | 中国科学院过程工程研究所 | 有机鎓的六氟铝酸盐及其制备方法和用途 |
CN102050747B (zh) * | 2009-11-04 | 2013-11-06 | 中国科学院过程工程研究所 | 一种有机鎓四氟铝酸盐的制备方法、以及低温电解制备氧化铝的方法 |
KR102285708B1 (ko) | 2011-07-08 | 2021-08-04 | 패스트캡 시스템즈 코포레이션 | 고온 에너지 저장 장치 |
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
CN102956364B (zh) * | 2011-08-17 | 2015-10-28 | 海洋王照明科技股份有限公司 | 一种双电层电容器电解液以及双电层电容器 |
JP6123067B2 (ja) * | 2012-02-27 | 2017-05-10 | パナソニックIpマネジメント株式会社 | 電気二重層コンデンサに用いる電解液及び電気二重層コンデンサ |
BR112014025791A2 (pt) * | 2012-04-26 | 2017-07-04 | Sanyo Chemical Ind Ltd | solução eletrolítica para capacitor eletrolítico de alumínio e capacitor eletrolítico de alumínio usando a mesma |
US9793059B2 (en) | 2013-03-12 | 2017-10-17 | Sanyo Chemical Industries, Ltd. | Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same |
JP6187740B2 (ja) * | 2013-03-25 | 2017-08-30 | エルナー株式会社 | アルミニウム電解コンデンサの製造方法 |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
JP2018501638A (ja) * | 2014-11-03 | 2018-01-18 | セイケム インコーポレイテッド | 電気エネルギー貯蔵および発電デバイスのための混合アルキル第四級アンモニウムまたはホスホニウム塩に基づく電解質組成物 |
KR20230164229A (ko) | 2015-01-27 | 2023-12-01 | 패스트캡 시스템즈 코포레이션 | 넓은 온도 범위 울트라커패시터 |
CN105938760A (zh) * | 2016-06-01 | 2016-09-14 | 广东黄宝石电子科技有限公司 | 电解电容高压电解液及其制备方法 |
JP2019029597A (ja) * | 2017-08-03 | 2019-02-21 | エルナー株式会社 | アルミニウム電解コンデンサ |
CN109390156B (zh) * | 2017-08-04 | 2019-11-15 | 惠州市宙邦化工有限公司 | 一种消氢剂及其制备方法、铝电解电容器电解液 |
JP6984283B2 (ja) * | 2017-09-28 | 2021-12-17 | 日本ケミコン株式会社 | ゲル電解コンデンサ |
CN107680811A (zh) * | 2017-11-18 | 2018-02-09 | 陈馨雅 | 一种铝电解电容器用电解液 |
CN112435856A (zh) * | 2020-11-05 | 2021-03-02 | 肇庆绿宝石电子科技股份有限公司 | 一种铝电解电容器及其制造方法、应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1032147A (ja) * | 1996-07-12 | 1998-02-03 | Elna Co Ltd | 電解コンデンサ |
JP4285943B2 (ja) * | 2001-05-11 | 2009-06-24 | 三菱化学株式会社 | テトラフルオロアルミン酸有機オニウム塩の製造方法及びテトラフルオロアルミン酸有機オニウム塩 |
-
2002
- 2002-10-31 JP JP2002317860A patent/JP4366917B2/ja not_active Expired - Fee Related
-
2003
- 2003-10-31 CN CNB2003801025612A patent/CN100466122C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004153101A (ja) | 2004-05-27 |
CN1708817A (zh) | 2005-12-14 |
CN100466122C (zh) | 2009-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4366917B2 (ja) | アルミニウム電解コンデンサ | |
JP4924658B2 (ja) | 電解コンデンサ用電解液及びそれを用いた電解コンデンサ | |
US7397651B2 (en) | Electrolyte for electrolytic capacitor, electrolytic capacitor and process for producing tetrafluoroaluminate salt of organic onium | |
JP4802243B2 (ja) | 電解液用添加剤及び電解液 | |
JP2007158203A (ja) | 電解コンデンサ | |
JP4808358B2 (ja) | 電解コンデンサ用電解液及びそれを用いた電解コンデンサ | |
US20090034161A1 (en) | Electrolytic capacitor | |
JP2945890B2 (ja) | 電気二重層コンデンサ | |
US11114695B2 (en) | Electrolyte for electrochemical device, electrolytic solution, and electrochemical device | |
JP3872182B2 (ja) | 電気二重層コンデンサ | |
JP4307820B2 (ja) | アルミニウム電解コンデンサ | |
JP2008244493A (ja) | アルミニウム電解コンデンサ | |
JP2006165001A (ja) | アルミニウム電解コンデンサ | |
JP4707538B2 (ja) | 電解コンデンサの駆動用電解液及びそれを用いた電解コンデンサ | |
JP4866586B2 (ja) | 電解コンデンサ及び電解コンデンサの製造方法 | |
JP2007103503A (ja) | 電解コンデンサ用電解液及び電解コンデンサ | |
JP2007194311A (ja) | 電気二重層キャパシタ | |
JP4707425B2 (ja) | 電気二重層キャパシタ用電解質及び電気二重層キャパシタ | |
JPH1154377A (ja) | 電気二重層コンデンサ | |
JP2007184302A (ja) | 電解コンデンサ | |
JP2008085241A (ja) | 電解コンデンサ | |
JP2009218398A (ja) | 電解液及び電気化学デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090612 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4366917 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |