[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4364543B2 - Coil for rotating electrical machine - Google Patents

Coil for rotating electrical machine Download PDF

Info

Publication number
JP4364543B2
JP4364543B2 JP2003099154A JP2003099154A JP4364543B2 JP 4364543 B2 JP4364543 B2 JP 4364543B2 JP 2003099154 A JP2003099154 A JP 2003099154A JP 2003099154 A JP2003099154 A JP 2003099154A JP 4364543 B2 JP4364543 B2 JP 4364543B2
Authority
JP
Japan
Prior art keywords
winding
flat wire
stepped
coil
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099154A
Other languages
Japanese (ja)
Other versions
JP2004312795A (en
Inventor
知 新崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003099154A priority Critical patent/JP4364543B2/en
Publication of JP2004312795A publication Critical patent/JP2004312795A/en
Application granted granted Critical
Publication of JP4364543B2 publication Critical patent/JP4364543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄心の周囲を覆う絶縁部材の巻回部に平角線を複数層に重ねて巻回した回転電機のコイルに関する。
【0002】
【従来の技術】
回転電機の鉄心に巻線を巻回してコイルを構成する場合、巻線の占積率を高めるために円形断面の丸線に代えて長方形断面の平角線を用いることが知られている。丸線を用いた場合には隣接する丸線間の窪みに次の丸線が嵌合することで安定した巻回が可能になるが、平角線を用いた場合には前記窪みができないことで平角線どうしがスリップして位置決めが困難になるため、平角線の繰り出しと連動して移動するガイドを備えた高価な巻線機が必要になってコイルの製造コストが上昇する問題があった。
【0003】
そこで、鉄心の外周を覆う絶縁部材の巻回部に階段状の段差を形成し、この段差により平角線を位置決めしながら巻回するものが、下記特許文献により提案されている。
【0004】
【特許文献】
特開2003−9444号公報
【0005】
【発明が解決しようとする課題】
しかしながら上記従来のものは、階段状の段差を形成することで絶縁部材の肉厚が厚くなり、その分だけ平角線の占積率が低下する問題があるだけでなく、平角線のエッジワイズ曲げ(長方形断面の短辺と直交する方向の曲げ)を伴うために、巻回に先立って平角線を所定の形状に曲げる特殊な成形装置と、その平角線を巻回する特殊な巻線機とが必要になる問題があった。
【0006】
本発明は前述の事情に鑑みてなされたもので、複雑な装置を必要とせずに回転電機のコイルの平角線を高い占積率で整然と巻回することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、鉄心の周囲を覆う絶縁部材の巻回部に平角線を複数層に重ねて巻回した回転電機のコイルであって、絶縁部材の巻回部は巻回軸に直交する断面が方形状であり、平角線の横断面は長辺および短辺を有する長方形状であり、平角線の一方の長辺が絶縁部材の巻回部に対向するように巻回されるものにおいて、絶縁部材の巻き始め部分に対応する巻回部の相対向する一対の辺に沿ってそれぞれ段状突起部を形成し、前記段状突起部の幅Wを、初期ターン部のターン数を自然数Nとし、平角線の長辺の長さをLとしたとき、
(N−0.5)×L≦W≦(N+0.1)×L
に設定することで、そこに巻回された初期ターン部の平角線の倒れを阻止するとともに、前記段状突起部の高さHを、初期ターン部に隣接する実ターン部の層数を3以上の奇数の自然数Noとし、平角線の短辺の長さをSとしたとき、
(No−1.8)×S≦H≦(No−1.0)×S
に設定することで、前記初期ターン部に隣接する複数層の実ターン部の最外層の平角線、前記初期ターン部の平角線に係止て巻回軸の方向へのずれを阻止することを特徴とする回転電機のコイルが提案される。
【0008】
上記構成によれば、鉄心の周囲を覆う絶縁部材の断面方形状の巻回部が、その巻き始め部分に対応する一対の辺に沿って所定幅Wおよび所定高さHの段状突起部を有しているので、段状突起部に巻回した初期ターン部の平角線によって、その初期ターン部に隣接する複数層の実ターン部の最外層の平角線が倒れたりずれたりするのを阻止し、絶縁部材に平角線を整然と巻回して占積率を高めることができる。しかも絶縁部材に一対の段状突起部を形成するだけなので、絶縁部材の巻回部全体に階段状の段差を形成したり、高価な特殊巻き線機を使用したりする必要がなくなり、平角線の占積率を確保しながらコイルの製造コストを低く抑えることができる。
【0009】
特に、初期ターン部のターン数を自然数Nとし、平角線の長辺の長さをLとしたとき、絶縁部材の段状突起部の幅Wを、
(N−0.5)×L≦W≦(N+0.1)×L
に設定することで、初期ターン部の平角線の倒れを確実に阻止しながら、段状突起部に平角線が巻回されないことで発生する無駄空間を最小限に抑えることができ、また初期ターン部に隣接する実ターン部の層数を3以上の奇数の自然数Noとし、平角線の短辺の長さをSとしたとき、絶縁部材の段状突起部の高さHを、
(No−1.8)×S≦H≦(No−1.0)×S
に設定することで、初期ターン部に隣接する複数層の実ターン部の最外層の平角線が巻回軸の方向にずれるのを確実に阻止しながら、初期ターン部の外径が不必要に大きくなるのを防止することができる。
【0010】
また請求項に記載された発明によれば、請求項の構成に加えて、前記段状突起部を、絶縁部材として設けたインシュレータに形成したことを特徴とする回転電機のコイルが提案される。
【0011】
上記構成によれば、絶縁部材としてのインシュレータに段状突起部を形成したので、既存の鉄心に何ら変更を加えることなく、インシュレータに段状突起部を付加するだけで所望の効果を得ることができる。
【0012】
また請求項に記載された発明によれば、請求項の構成に加えて、前記段状突起部を、鉄心の形状により形成したことを特徴とするの回転電機のコイルが提案される。
【0013】
上記構成によれば、鉄心の形状により段状突起部を形成したので、インシュレータを廃止して薄い絶縁皮膜で済ますことができ、コストを削減するとともに、コイルの占積率を更に高めることができる。しかも鉄心をブロックから切削する場合に、段状突起部の分だけ材料の歩留りを高めることができる。
【0014】
尚、実施例のインシュレータ13は本発明の絶縁部材に対応し、実施例の長辺13d,13d′は本発明の辺に対応する。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。 図1〜図14は本発明の第1実施例を示すもので、図1はステータの部分正面図、図2は図1の2方向矢視図、図3はインシュレータの斜視図、図4は図3の4−4線断面図、図5は図4の5−5線拡大断面図、図6は平角線の横断面図、図7は平角線の巻回工程を示す第1分図、図8は平角線の巻回工程を示す第2分図、図9は平角線の巻回工程を示す第3分図、図10は平角線の巻回工程を示す第4分図、図11は図7(A)に対応するコイルの断面図、図12は図7(C)に対応するコイルの断面図、図13は図8(D)に対応するコイルの断面図、図14は段状突起部の幅Wの許容範囲を説明する図である。
【0016】
図1および図2に示すように、ハイブリッド車両の走行用駆動源として用いられる発電電動機の環状をなすステータ10は、同一構造を有する複数個(実施例では24個)のコイル11…を円周方向に結合してなり、図1には24個のコイル11…のうちの5個が示される。各々のコイル11は、多数の鋼板を積層した鉄心12の外周を絶縁部材としての合成樹脂製のインシュレータ(ボビン)13で覆い、そのインシュレータ13に平角線14を複数層に巻回してなる。鉄心12の径方向の外端部は、その円周方向の両端部に凸部12aおよび凹部12bを備えており、それらの凸部12aおよび凹部12bが交互に嵌合することで円周方向に結合される。
【0017】
図3〜図5に示すように、インシュレータ13は鉄心12の外周に嵌合可能なように割り面pで2分割されており、平角線14を巻回すべく外側フランジ部13aおよび内側フランジ部13b間に形成された巻回部13cは、巻回軸Aに直交する断面の形状(図4参照)が、一対の長辺13d,13dおよび一対の短辺13e,13eを有する長方形となっている。内側フランジ部13bには平角線14の巻き始め部分を平角線ホルダ15と協働して係止する2個の切欠13f,13fが形成され、外側フランジ部13aには平角線14の巻き終わり部分を平角線ホルダ16と協働して係止する1個の切欠13gが形成される。
【0018】
インシュレータ13の巻回部13cの長辺13d,13dと内側フランジ部13bとの境界に段状突起部13h,13hが形成される。図5から明らかなように、段状突起部13hの断面は長方形であり、その幅(径方向長さ)はWであり、その高さ(円周方向長さ)はHである。
【0019】
図6に示すように、平角線14の横断面は長方形状であり、その長辺14a,14aの長さはLであり、その短辺14b,14bの長さはSである。そして平角線14の横断面の4個の角部は、中心角が90°の小半径の円弧14c…で構成される。即ち、平角線14は一対の長辺14a,14aに対応する部分に一対の平行面を備えるとともに、一対の短辺14b,14bに対応する部分に一対の平行面を備えることが必要である。
【0020】
本実施例では、段状突起部13hの幅Wは平角線の長辺の長さLに等しく設定され(W=L)、また段状突起部13hの高さHは平角線の短辺の長さSの1.5倍に設定される(H=1.5S)。
【0021】
次に、インシュレータ13に対する平角線14の巻回工程を、図7〜図13に基づいて説明する。
【0022】
先ず、図7(A)および図11に示すように、インシュレータ13の内側フランジ部13bの2個の切欠13f,13fを通過させた平角線14を、インシュレータ13の巻回部13cの外周に沿って径方向内側から径方向外側に向かって螺旋状に1層目の14ターン(厳密には13ターン+3/4ターン)を巻回する。このとき、平角線14の一方の長辺14aがインシュレータ13の巻回部13cに対向するとともに、1ターン毎に平角線14の短辺14b,14bどうしが密着する。そして巻き始めの1ターンにおいて平角線14はインシュレータ13の一対の段状突起部13h,13hおよび一対の短辺13e,13e上に巻回され、2ターン目以降がインシュレータ13の長辺13d,13dおよび短辺13e,13e上に巻回される。
【0023】
巻き始めの1ターンの段状突起部13h,13h上に巻回された平角線14は、2ターン目以降の平角線14に対して、段状突起部13hの高さHである1.5Sだけ外側に突出している。以下、段状突起部13h上に巻回された部分(本実施例では最初の1ターン)を初期ターン部と呼び、それ以降の部分(2ターン目以降)を実ターン部と呼ぶ。
【0024】
続いて、図7(B)に示すように、インシュレータ13の外側フランジ部13aの下面に沿って平角線14を1ターンさせた後に、図7(C)および図12に示すように、1層目の外周に径方向外側から径方向内側に向かって螺旋状に2層目の12ターンを巻回する。この2層目の巻き終わりにおいて、平角線14の短辺14bは初期ターン部の平角線14の短辺14bの上面および段状突起部13h,13hの上面にそれぞれ短辺14bの長さSの半分ずつ乗る状態になる。
【0025】
続いて、図8(D)および図13に示すように、初期ターン部の平角線14の上面および段状突起部13h,13hの上面に沿って平角線14を1ターンさせる。この1ターンにおいて、平角線14の短辺14bは段状突起部13h,13hに巻回された初期ターン部の平角線14の上面に短辺14bの長さSの半分だけ乗る状態になる。そして図8(E)に示すように、2層目の外周に径方向内側から径方向外側に向かって螺旋状に3層目の12ターンを巻回する。
【0026】
続いて、図8(F)に示すように、インシュレータ13の外側フランジ部13aの下面に沿って平角線14を1ターンさせた後に、図9(G)に示すように、3層目の外周に径方向外側から径方向内側に向かって螺旋状に4層目の6ターンを巻回する。この4層目の巻き終わりは、インシュレータ13の巻回部13cの径方向の中間部とされる。
【0027】
続いて、図9(H)に示すように、4層目の外周に径方向内側から径方向外側に向かって螺旋状に1ターンさせた後に、図9(I)に示すように、更に5層目の5ターンを巻回する。この5層目の巻き終わりはインシュレータ13の外側フランジ部13aの下面に達している。
【0028】
続いて、図10(J)に示すように、インシュレータ13の外側フランジ部13aの下面に沿って平角線14を1ターンさせた後に、図10(K)に示すように、5層目の外周に径方向外側から径方向内側に向かって螺旋状に6層目の1ターンを巻回し、最後に図10(L)に示すように平角線14を外側フランジ部13aの切欠13gを通過させて巻回を完了する。
【0029】
このように、平角線14を使用したことにより、隣接する平角線14間の空間が丸線を使用した場合に比べて減少し、コイル11の占積率を高めることができる。またインシュレータ13の径方向内側では平角線14を3層に巻回し、径方向外側では平角線14を6層に巻回することにより、巻き上がったコイル11の外径が径方向外側ほど大きくなるようにし、隣接するコイル11…間の間隙17…(図1参照)を小さくして占積率を更に高めることができる。
【0030】
以上のように、図8(D)および図13で説明した3層目の巻き始めの平角線14が、その径方向内側で段状突起部13h,13hに巻回された初期ターン部の平角線14の上面に短辺14bの長さSの半分だけオーバーラップするので、3層目の巻き始めの平角線14が径方向内側に滑って巻回が乱れるのを未然に防止することができる。しかもインシュレータ13の巻回部13cの全体に階段状の段差を形成したり、巻回に先立って平角線14を所定形状に曲げたり、高価な特殊巻き線機を使用したりする必要がなく、単にインシュレータ13の巻回部13cに一対の段状突起部13h,13hを形成するだけで良いため、コイル11の製造コストが増加することもない。
【0031】
次に、段状突起部13hの幅Wについて考察する。
【0032】
第1実施例では段状突起部13hの幅Wを平角線14の長辺14aの長さLに一致させていたが、幅Wを長さLよりも小さくすることができる。しかしながら、図14(A)に示すように、段状突起部13hの幅Wを平角線14の長辺14aの長さLの0.3倍よりも小さくすると平角線14が倒れてしまうため、安全を見越して幅Wは長さLの0.5倍以上とすることが望ましい。
【0033】
また第1実施例では平角線14が段状突起部13h,13h上に巻回される初期ターン部のターン数が1回であるが、初期ターン部のターン数を2回以上とすれば、段状突起部13hの幅Wは平角線14の長辺14aの長さLよりも大きくなる。例えば、図14(B)に示すように、初期ターン部のターン数を2回とした場合に、段状突起部13hの幅Wを平角線14の長辺14aの長さLの1.3倍よりも小さくすると、初期ターン部の第2ターンで平角線14が倒れてしまうため、安全を見越して幅Wは長さLの1.5倍以上とすることが望ましい。同様に、初期ターン部のターン数を3回とした場合には幅Wは長さLの2.5倍以上とし、初期ターン部のターン数を4回とした場合には幅Wは長さLの3.5倍以上とすることが望ましい。
【0034】
また図14(C)に示すように、初期ターン部のターン数が1回であっても、段状突起部13hの幅Wを平角線14の長辺14aの長さLよりも大きくすることができる。但し、この場合には段状突起部13hの上部に無駄な空間が発生するため、その無駄な空間を最小限に抑えるために、段状突起部13hの幅Wを平角線14の長辺14aの長さLの1.1倍よりも小さくすることが望ましい。同様にして、初期ターン部のターン数が2回である場合には、段状突起部13hの幅Wを平角線14の長辺14aの長さLの2.1倍よりも小さくすることが望ましい。
【0035】
以上のことを纏めると、初期ターン部のターン数を自然数N(1,2,3,4…)とし、平角線14の長辺14aの長さをLとしたとき、段状突起部13hの幅Wを、
(N−0.5)×L≦W≦(N+0.1)×L
に設定すれば良いことになる。
【0036】
次に、段状突起部13hの高さHについて考察する。
【0037】
第1実施例では段状突起部13hの高さHを平角線14の短辺14bの長さSの1.5倍に設定していたが、高さHも適宜変更可能である。例えば、実施例では初期ターン部に隣接する実ターン部が3層に巻回されており、段状突起部13hの高さHを平角線14の短辺14bの長さSの1.5倍に設定したことで、3層目の巻き始めの平角線14が短辺14bの長さSの0.5倍だけオーバラップして初期ターン部の平角線14の上に乗るようにしていたが、前記オーバラップ量は0.2S以上あれば平角線14のずれを充分に防止することができる。また前記オーバラップ量は1.0S以上あっても、初期ターン部の外径が不必要に大きくなるだけであるため、実ターン部が3層巻きの場合の段状突起部13hの高さHは、1.2S以上で2.0S以下であれば良いことになる。
【0038】
初期ターン部に隣接する実ターン部の層数は第1実施例の3層に限定されず、3層以上の奇数層であれば良い。図15に示す第2実施例では、初期ターン部に隣接する実ターン部の層数が5層になっており、この場合の段状突起部13hの高さHは3.5Sに設定されている。但し、段状突起部13hの高さHは3.5Sに限定されず、上述したように、高さHは3.2S以上で4.0S以下であれば良いことになる。
【0039】
以上のことを纏めると、初期ターン部に隣接する実ターン部の層数を3以上の奇数の自然数No(3,5,7,9…)とし、平角線14の短辺14bの長さをSとしたとき、インシュレータ13の段状突起部13hの高さHを、
(No−1.8)×S≦H≦(No−1.0)×S
に設定すれば良いことになる。
【0040】
次に、図16に基づいて本発明の第3実施例を説明する。
【0041】
第3実施例はインシュレータ13の断面形状に特徴を有するもので、段状突起部13h,13hを利用して、その裏側に凹部13i,13iを形成したものである。凹部13i,13iを形成したことにより、鉄心12の径方向内側のフランジ12c,12cを鎖線位置から実線位置へと移動させることができ、ステータ10の内径形状を変化させることなく、鉄心12の径方向の高さを減少させることができる。
【0042】
次に、図17に基づいて本発明の第4実施例を説明する。
【0043】
上述した第1〜第3実施例は、鉄心12にインシュレータ13を介して平角線14を巻回してなるコイル11…を複数個結合してステータ10を構成しているが、第4実施例のステータ10は、鋼板を打ち抜き加工して環状に形成した鉄心12に周方向に所定間隔を存して複数の切欠12d…を設け、これらの切欠12d…に装着したインシュレータ13…にそれぞれ平角線14…を巻回したものである。本実施例のインシュレータ13も段状突起部13h,13hを備えることで、第1実施例と同様の作用効果を達成することができる。
【0044】
尚、第4実施例では合成樹脂製のインシュレータ13を鉄心12に装着しているが、鉄心12自体にインシュレータ13の段状突起部13h,13hに対応する段状突起部が形成されているため、インシュレータ13を廃止し、その代わりに鉄心12を絶縁紙、絶縁塗装、絶縁被覆等の薄い絶縁部材で覆っても良い。このようにすれば、インシュレータ13を使用する場合に比べてコストを削減することができ、また絶縁部材が薄いためにコイル11の占積率を更に高めることができる。しかも鉄心12をブロックから切削する場合に、段状突起部の分だけ材料の歩留りを高めることができる。更に、第4実施例のものは、アウターロータタイプのステータ10として示したが、コイル式のロータとしても使用可能である。
【0045】
次に、図18に基づいて本発明の第5実施例を説明する。
【0046】
上述した第1実施例〜第4実施例では本発明をステータ10に適用した例を説明したが、第5実施例では本発明を同期機のロータ18に適用している。ロータ18は複数のコイル11…を図示せぬ回転軸の外周に円周方向に配置したもので、各コイル11の構造は第1実施例〜第4実施例のものと類似している。その相違点は、第1実施例〜第4実施例のものが合成樹脂製のインシュレータ13を備えているのに対し、第5実施例のものはインシュレータ13を廃止し、その代わりに絶縁紙、絶縁塗装、絶縁被覆等の薄い絶縁部材13′で鉄心12を覆っている。
【0047】
絶縁部材13′は、インシュレータ13の外側フランジ部13a、内側フランジ部13b、巻回部13c、長辺13d、段状突起部13h,13h等に対応して外側フランジ部13a′、内側フランジ部13b′、巻回部13c′、長辺13d′、段状突起部13h′,13h′等を備えている。但し、合成樹脂製のインシュレータ13と異なり、絶縁部材13′は厚さが一定であるため、その段状突起部13h′,13h′に対応する鉄心12に必ず段状突起部12e,12eが形成される。絶縁部材13′の段状突起部13h′,13h′の機能はインシュレータ13の段状突起部13h,13hの機能と同じであり、従って第5実施例によれば、第1実施例〜第4実施例と同様の作用効果を達成することができる。
【0048】
それに加えて、第5実施例によれば、コストの嵩むインシュレータ13を廃止して絶縁部材13′を採用したことでコストウンを達成することができ、しかも絶縁部材13′はインシュレータ13よりも薄いためにコイル11の占積率を更に高めることができる。また段状突起部12e,12eを有する鉄心は、プレス成形によっても圧粉成形によって容易に製造可能であり、ブロックから切削して製造する場合には段状突起部12e,12eの分だけ材料の歩留りを高めることができる。
【0049】
尚、第5実施例のものは、アウターロータタイプのコイル式ステータとしても使用可能である。
【0050】
以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0051】
例えば、本発明のコイル11は、ハイブリッド車両の発電電動機以外の任意の回転電機に対して適用することができる。
【0052】
またインシュレータ13あるいは絶縁部材13′の巻回部13c,13c′の断面形状は長方形に限定されず、正方形を含む方形状であれば良い。
【0053】
【発明の効果】
以上のように請求項1に記載された発明によれば、鉄心の周囲を覆う絶縁部材の断面方形状の巻回部が、その巻き始め部分に対応する一対の辺に沿って所定幅Wおよび所定高さHの段状突起部を有しているので、段状突起部に巻回した初期ターン部の平角線によって、その初期ターン部に隣接する複数層の実ターン部の最外層の平角線が倒れたりずれたりするのを阻止し、絶縁部材に平角線を整然と巻回して占積率を高めることができる。しかも絶縁部材に一対の段状突起部を形成するだけなので、絶縁部材の巻回部全体に階段状の段差を形成したり、高価な特殊巻き線機を使用したりする必要がなくなり、平角線の占積率を確保しながらコイルの製造コストを低く抑えることができる。
【0054】
特に、初期ターン部のターン数を自然数Nとし、平角線の長辺の長さをLとしたとき、絶縁部材の段状突起部の幅Wを、
(N−0.5)×L≦W≦(N+0.1)×L
に設定することで、初期ターン部の平角線の倒れを確実に阻止しながら、段状突起部に平角線が巻回されないことで発生する無駄空間を最小限に抑えることができ、また初期ターン部に隣接する実ターン部の層数を3以上の奇数の自然数Noとし、平角線の短辺の長さをSとしたとき、絶縁部材の段状突起部の高さHを、
(No−1.8)×S≦H≦(No−1.0)×S
に設定することで、初期ターン部に隣接する複数層の実ターン部の最外層の平角線が巻回軸の方向にずれるのを確実に阻止しながら、初期ターン部の外径が不必要に大きくなるのを防止することができる。
【0055】
また請求項に記載された発明によれば、絶縁部材としてのインシュレータに段状突起部を形成したので、既存の鉄心に何ら変更を加えることなく、インシュレータに段状突起部を付加するだけで所望の効果を得ることができる。
【0056】
また請求項に記載された発明によれば、鉄心の形状により段状突起部を形成したので、インシュレータを廃止して薄い絶縁皮膜で済ますことができ、コストを削減するとともに、コイルの占積率を更に高めることができる。しかも鉄心をブロックから切削する場合に、段状突起部の分だけ材料の歩留りを高めることができる。
【図面の簡単な説明】
【図1】 第1実施例に係るステータの部分正面図
【図2】 図1の2方向矢視図
【図3】 インシュレータの斜視図
【図4】 図3の4−4線断面図
【図5】 図4の5−5線拡大断面図
【図6】 平角線の横断面図
【図7】 平角線の巻回工程を示す第1分図
【図8】 平角線の巻回工程を示す第2分図
【図9】 平角線の巻回工程を示す第3分図
【図10】 平角線の巻回工程を示す第4分図
【図11】 図7(A)に対応するコイルの断面図
【図12】 図7(C)に対応するコイルの断面図
【図13】 図8(D)に対応するコイルの断面図
【図14】 段状突起部の幅Wの許容範囲を説明する図
【図15】 初期ターン部に隣接する実ターン部の層数を5層にした第2実施例を示す図
【図16】 第3実施例に係るコイルの部分断面図
【図17】 第4実施例に係るステータの部分正面図
【図18】 第5実施例に係るロータの部分正面図
【符号の説明】
12 鉄心
13 インシュレータ(絶縁部材)
13′ 絶縁部材
13c 巻回部
13c′ 巻回部
13d 長辺(辺)
13d′ 長辺(辺)
13h 段状突起部
13h′ 段状突起部
14 平角線
14a 長辺
14b 短辺
A 巻回軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coil for a rotating electrical machine in which flat wires are wound in a plurality of layers on a winding portion of an insulating member covering the periphery of an iron core.
[0002]
[Prior art]
When a coil is formed by winding a winding around an iron core of a rotating electric machine, it is known to use a rectangular wire with a rectangular cross section instead of a circular wire with a circular cross section in order to increase the space factor of the winding. When a round wire is used, stable winding is possible by fitting the next round wire into a recess between adjacent round wires, but when a flat wire is used, the recess cannot be made. Since the rectangular wires slip and positioning becomes difficult, an expensive winding machine equipped with a guide that moves in conjunction with the feeding of the rectangular wires is required, which increases the manufacturing cost of the coil.
[0003]
Therefore, the following patent document proposes a method in which a stepped step is formed in the winding portion of the insulating member covering the outer periphery of the iron core, and winding is performed while positioning the flat wire by the step.
[0004]
[Patent Literature]
Japanese Patent Laid-Open No. 2003-9444
[Problems to be solved by the invention]
However, the above-mentioned conventional one has a problem that the thickness of the insulating member is increased by forming the stepped step, and the space factor of the rectangular wire is reduced accordingly, and the edgewise bending of the rectangular wire is also caused. (Bending in a direction perpendicular to the short side of the rectangular cross section) and a special molding device that bends the flat wire into a predetermined shape prior to winding, and a special winding machine that winds the flat wire. There was a problem that would be necessary.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to neatly wind a rectangular wire of a coil of a rotating electrical machine with a high space factor without requiring a complicated device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a coil for a rotating electrical machine in which a rectangular wire is wound in a plurality of layers on a winding portion of an insulating member covering the periphery of an iron core. The winding part of the insulating member has a rectangular cross section perpendicular to the winding axis, the horizontal cross section of the flat wire is a rectangular shape having a long side and a short side, and one long side of the flat wire is the insulating member. In the case of winding so as to face the winding portion, stepped protrusions are formed along a pair of opposite sides of the winding portion corresponding to the winding start portion of the insulating member, respectively. When the width W of the part is a natural number N and the length of the long side of the rectangular wire is L, the number of turns of the initial turn part is L,
(N−0.5) × L ≦ W ≦ (N + 0.1) × L
By setting the, as well as preventing the collapse of there wound initial turn of the flat wire, the height H of the stepped projections, the number of layers of the real turn portions adjacent to the initial turn portion 3 When the above-mentioned odd natural number is No and the length of the short side of the rectangular wire is S,
(No-1.8) × S ≦ H ≦ (No-1.0) × S
By setting the prevents deviation of the initial turn flat wire of the outermost layer of the real turn portions of the plurality of layers adjacent to the unit, the direction of the initial turn of the flat wire by locking the winding shaft A coil for a rotating electric machine is proposed.
[0008]
According to the said structure, the winding part of the cross-sectional square shape of the insulating member which covers the circumference | surroundings of an iron core has the step-shaped projection part of predetermined width W and predetermined height H along a pair of edge | side corresponding to the winding start part. Therefore, the flat wire of the initial turn part wound around the stepped protrusion prevents the flat wire of the outermost layer of the actual turn part adjacent to the initial turn part from collapsing or shifting. Then, the rectangular wire can be wound around the insulating member in an orderly manner to increase the space factor. Moreover, since only a pair of stepped protrusions are formed on the insulating member, there is no need to form a stepped step on the entire winding portion of the insulating member or use an expensive special winding machine. The coil manufacturing cost can be kept low while securing the space factor.
[0009]
In particular, when the number of turns of the initial turn portion is a natural number N and the length of the long side of the rectangular wire is L, the width W of the stepped protrusion of the insulating member is
(N−0.5) × L ≦ W ≦ (N + 0.1) × L
By setting to, it is possible to minimize the waste space generated by the flat wire not being wound around the stepped protrusion, while preventing the flat wire from falling down at the initial turn portion, and to minimize the initial turn. When the number of layers of the actual turn part adjacent to the part is an odd natural number No of 3 or more and the length of the short side of the rectangular wire is S, the height H of the stepped protrusion of the insulating member is
(No-1.8) × S ≦ H ≦ (No-1.0) × S
By setting to, the outer diameter of the outermost layer of the actual turn part of the multiple layers adjacent to the initial turn part is reliably prevented from shifting in the direction of the winding axis, and the outer diameter of the initial turn part is unnecessary. It can be prevented from becoming large.
[0010]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, a coil for a rotating electrical machine is proposed in which the stepped protrusion is formed in an insulator provided as an insulating member. The
[0011]
According to the above configuration, since the stepped protrusion is formed in the insulator as the insulating member, it is possible to obtain a desired effect only by adding the stepped protrusion to the insulator without making any change to the existing iron core. it can.
[0012]
According to a third aspect of the present invention, in addition to the configuration of the first aspect, a coil for a rotating electrical machine is proposed in which the stepped protrusion is formed in the shape of an iron core.
[0013]
According to the above configuration, since the stepped protrusion is formed by the shape of the iron core, the insulator can be abolished and a thin insulating film can be eliminated, the cost can be reduced, and the space factor of the coil can be further increased. . In addition, when the iron core is cut from the block, the yield of the material can be increased by the amount of the stepped protrusion.
[0014]
The insulator 13 of the embodiment corresponds to the insulating member of the present invention, and the long sides 13d and 13d ′ of the embodiment correspond to the sides of the present invention.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings. 1 to 14 show a first embodiment of the present invention, in which FIG. 1 is a partial front view of a stator, FIG. 2 is a two-way arrow view of FIG. 1, FIG. 3 is a perspective view of an insulator, and FIG. 3 is a sectional view taken along line 4-4 in FIG. 3, FIG. 5 is an enlarged sectional view taken along line 5-5 in FIG. 4, FIG. 6 is a transverse sectional view of a rectangular wire, and FIG. FIG. 8 is a second partial view showing a flat wire winding process, FIG. 9 is a third partial view showing a flat wire winding process, and FIG. 10 is a fourth partial view showing a flat wire winding process. Is a sectional view of the coil corresponding to FIG. 7A, FIG. 12 is a sectional view of the coil corresponding to FIG. 7C, FIG. 13 is a sectional view of the coil corresponding to FIG. 8D, and FIG. It is a figure explaining the tolerance | permissible_range of the width W of a protruding part.
[0016]
As shown in FIGS. 1 and 2, a stator 10 forming a ring of a generator motor used as a driving source for a hybrid vehicle travels around a plurality of (in the embodiment, 24) coils 11... Having the same structure. FIG. 1 shows five of the 24 coils 11... Each coil 11 is formed by covering an outer periphery of an iron core 12 in which a large number of steel plates are laminated with a synthetic resin insulator (bobbin) 13 as an insulating member, and winding a rectangular wire 14 around the insulator 13 in a plurality of layers. The outer end portion in the radial direction of the iron core 12 includes convex portions 12a and concave portions 12b at both ends in the circumferential direction, and the convex portions 12a and the concave portions 12b are alternately fitted in the circumferential direction. Combined.
[0017]
As shown in FIGS. 3 to 5, the insulator 13 is divided into two by a split surface p so as to be fitted to the outer periphery of the iron core 12, and an outer flange portion 13 a and an inner flange portion 13 b are wound around the rectangular wire 14. The winding part 13c formed between them has a rectangular shape having a pair of long sides 13d and 13d and a pair of short sides 13e and 13e in a cross-sectional shape perpendicular to the winding axis A (see FIG. 4). . The inner flange portion 13b is formed with two cutouts 13f and 13f for locking the winding start portion of the flat wire 14 in cooperation with the flat wire holder 15, and the outer flange portion 13a has a winding end portion of the flat wire 14. Is formed in one notch 13g that locks together with the flat wire holder 16.
[0018]
Stepped protrusions 13h and 13h are formed at the boundaries between the long sides 13d and 13d of the winding portion 13c of the insulator 13 and the inner flange portion 13b. As is clear from FIG. 5, the stepped protrusion 13 h has a rectangular cross section, its width (radial length) is W, and its height (circumferential length) is H.
[0019]
As shown in FIG. 6, the cross section of the rectangular wire 14 is rectangular, the lengths of the long sides 14a and 14a are L, and the lengths of the short sides 14b and 14b are S. The four corners of the cross section of the flat wire 14 are constituted by small-radius arcs 14c with a central angle of 90 °. In other words, the rectangular wire 14 needs to have a pair of parallel surfaces at portions corresponding to the pair of long sides 14a and 14a, and a pair of parallel surfaces at portions corresponding to the pair of short sides 14b and 14b.
[0020]
In this embodiment, the width W of the stepped protrusion 13h is set equal to the length L of the long side of the flat wire (W = L), and the height H of the stepped protrusion 13h is the short side of the flat wire. It is set to 1.5 times the length S (H = 1.5S).
[0021]
Next, the winding process of the flat wire 14 around the insulator 13 will be described with reference to FIGS.
[0022]
First, as shown in FIG. 7 (A) and FIG. 11, the rectangular wire 14 that has passed through the two notches 13 f and 13 f of the inner flange portion 13 b of the insulator 13 extends along the outer periphery of the winding portion 13 c of the insulator 13. Then, 14 turns (strictly, 13 turns + 3/4 turns) of the first layer are spirally wound from the radially inner side to the radially outer side. At this time, one long side 14a of the flat wire 14 is opposed to the winding portion 13c of the insulator 13, and the short sides 14b and 14b of the flat wire 14 are in close contact with each other. In the first turn of winding, the rectangular wire 14 is wound around the pair of stepped protrusions 13h and 13h and the pair of short sides 13e and 13e of the insulator 13, and the second and subsequent turns are the long sides 13d and 13d of the insulator 13. And it winds on the short sides 13e and 13e.
[0023]
The flat wire 14 wound on the stepped protrusions 13h and 13h of the first turn of winding is 1.5S, which is the height H of the stepped protrusion 13h with respect to the flat wire 14 after the second turn. Only protrude outwards. Hereinafter, the part wound on the stepped protrusion 13h (first turn in this embodiment) is referred to as an initial turn part, and the subsequent part (after the second turn) is referred to as an actual turn part.
[0024]
Subsequently, as shown in FIG. 7 (B), the flat wire 14 is turned once along the lower surface of the outer flange portion 13a of the insulator 13, and then, as shown in FIG. 7 (C) and FIG. The 12th turn of the second layer is spirally wound around the outer circumference of the eye from the radially outer side to the radially inner side. At the end of winding of the second layer, the short side 14b of the flat wire 14 has the length S of the short side 14b on the upper surface of the short side 14b of the flat wire 14 and the upper surfaces of the stepped protrusions 13h and 13h, respectively. You will get in half.
[0025]
Subsequently, as shown in FIG. 8D and FIG. 13, the flat wire 14 is caused to make one turn along the upper surface of the flat wire 14 in the initial turn portion and the upper surfaces of the stepped protrusions 13 h and 13 h. In this one turn, the short side 14b of the flat wire 14 is put on the upper surface of the flat wire 14 of the initial turn portion wound around the stepped protrusions 13h, 13h by half of the length S of the short side 14b. Then, as shown in FIG. 8E, 12 turns of the third layer are spirally wound around the outer periphery of the second layer from the radially inner side to the radially outer side.
[0026]
Subsequently, as shown in FIG. 8 (F), after the flat wire 14 is turned once along the lower surface of the outer flange portion 13a of the insulator 13, the outer periphery of the third layer is shown in FIG. 9 (G). 6 turns of the fourth layer are spirally wound from the radially outer side to the radially inner side. The winding end of the fourth layer is an intermediate portion in the radial direction of the winding portion 13c of the insulator 13.
[0027]
Subsequently, as shown in FIG. 9 (H), after making one turn spirally from the radially inner side to the radially outer side on the outer periphery of the fourth layer, as shown in FIG. Wind the fifth turn of the layer. The end of winding of the fifth layer reaches the lower surface of the outer flange portion 13a of the insulator 13.
[0028]
Subsequently, as shown in FIG. 10 (J), after the flat wire 14 is turned once along the lower surface of the outer flange portion 13a of the insulator 13, as shown in FIG. 10 (K), the outer periphery of the fifth layer 1 turn of the sixth layer is spirally wound from the radially outer side to the radially inner side, and finally the flat wire 14 is passed through the notch 13g of the outer flange portion 13a as shown in FIG. 10 (L). Complete winding.
[0029]
Thus, by using the flat wire 14, the space between the adjacent flat wires 14 decreases compared with the case where a round wire is used, and the space factor of the coil 11 can be increased. Further, by winding the flat wire 14 in three layers on the radially inner side of the insulator 13 and winding the flat wire 14 in six layers on the radially outer side, the outer diameter of the coil 11 that has been wound up becomes larger toward the radially outer side. In this way, the space 17 between the adjacent coils 11 (see FIG. 1) can be reduced to further increase the space factor.
[0030]
As described above, the flat wire 14 at the beginning of the third layer described in FIG. 8D and FIG. 13 has the flat angle of the initial turn portion wound around the stepped protrusions 13h and 13h on the radial inner side. Since the upper surface of the wire 14 overlaps the half of the length S of the short side 14b, it is possible to prevent the winding of the rectangular wire 14 at the beginning of the third layer from slipping radially inward and disturbing the winding. . Moreover, there is no need to form a stepped step on the entire winding part 13c of the insulator 13, bend the flat wire 14 into a predetermined shape prior to winding, or use an expensive special winding machine, Since the pair of stepped protrusions 13h and 13h need only be formed on the winding portion 13c of the insulator 13, the manufacturing cost of the coil 11 does not increase.
[0031]
Next, the width W of the stepped protrusion 13h will be considered.
[0032]
In the first embodiment, the width W of the stepped protrusion 13h is made equal to the length L of the long side 14a of the flat wire 14, but the width W can be made smaller than the length L. However, as shown in FIG. 14A, when the width W of the stepped protrusion 13h is smaller than 0.3 times the length L of the long side 14a of the flat wire 14, the flat wire 14 falls down. In consideration of safety, the width W is preferably 0.5 times or more of the length L.
[0033]
In the first embodiment, the number of turns of the initial turn part in which the flat wire 14 is wound on the stepped protrusions 13h and 13h is one, but if the number of turns of the initial turn part is two or more, The width W of the stepped protrusion 13 h is larger than the length L of the long side 14 a of the flat wire 14. For example, as shown in FIG. 14B, when the number of turns of the initial turn part is two, the width W of the stepped protrusion 13h is set to 1.3, which is the length L of the long side 14a of the rectangular wire 14. If it is smaller than twice, the flat wire 14 falls down in the second turn of the initial turn part, so that the width W is desirably 1.5 times the length L or more in view of safety. Similarly, when the number of turns in the initial turn part is 3 times, the width W is 2.5 times or more of the length L, and when the number of turns in the initial turn part is 4 times, the width W is length. It is desirable to set it to 3.5 times or more of L.
[0034]
Further, as shown in FIG. 14C, the width W of the stepped protrusion 13h is made larger than the length L of the long side 14a of the rectangular wire 14 even if the number of turns of the initial turn portion is one. Can do. However, in this case, a useless space is generated above the stepped protrusion 13h. Therefore, in order to minimize the useless space, the width W of the stepped protrusion 13h is set to the long side 14a of the rectangular wire 14. It is desirable to make it smaller than 1.1 times the length L. Similarly, when the number of turns of the initial turn portion is two, the width W of the stepped protrusion 13h may be made smaller than 2.1 times the length L of the long side 14a of the flat wire 14. desirable.
[0035]
To summarize the above, when the number of turns in the initial turn part is a natural number N (1, 2, 3, 4...) And the length of the long side 14a of the flat wire 14 is L, the stepped protrusion 13h Width W
(N−0.5) × L ≦ W ≦ (N + 0.1) × L
If you set it to.
[0036]
Next, the height H of the stepped protrusion 13h will be considered.
[0037]
In the first embodiment, the height H of the stepped protrusion 13h is set to 1.5 times the length S of the short side 14b of the flat wire 14, but the height H can be changed as appropriate. For example, in the embodiment, the actual turn part adjacent to the initial turn part is wound in three layers, and the height H of the stepped protrusion 13h is 1.5 times the length S of the short side 14b of the rectangular wire 14. The rectangular wire 14 at the beginning of winding of the third layer is overlapped by 0.5 times the length S of the short side 14b so as to ride on the rectangular wire 14 in the initial turn portion. If the overlap amount is 0.2 S or more, the flat wire 14 can be sufficiently prevented from shifting. Even if the overlap amount is 1.0S or more, the outer diameter of the initial turn portion is only increased unnecessarily, so the height H of the stepped protrusion 13h when the actual turn portion is a three-layer winding is used. Is 1.2 S or more and 2.0 S or less.
[0038]
The number of layers of the actual turn part adjacent to the initial turn part is not limited to the three layers of the first embodiment, and may be an odd number of layers of three or more. In the second embodiment shown in FIG. 15, the number of layers of the actual turn part adjacent to the initial turn part is five, and the height H of the stepped protrusion 13h in this case is set to 3.5S. Yes. However, the height H of the stepped protrusion 13h is not limited to 3.5S, and as described above, the height H may be from 3.2S to 4.0S.
[0039]
To summarize the above, the number of layers of the actual turn part adjacent to the initial turn part is an odd natural number No (3, 5, 7, 9...) Of 3 or more, and the length of the short side 14b of the flat wire 14 is When S, the height H of the stepped protrusion 13h of the insulator 13 is
(No-1.8) × S ≦ H ≦ (No-1.0) × S
If you set it to.
[0040]
Next, a third embodiment of the present invention will be described with reference to FIG.
[0041]
The third embodiment has a feature in the cross-sectional shape of the insulator 13, and uses the stepped protrusions 13h and 13h to form recesses 13i and 13i on the back side. By forming the recesses 13i and 13i, the radially inner flanges 12c and 12c of the iron core 12 can be moved from the chain line position to the solid line position, and the diameter of the iron core 12 can be changed without changing the inner diameter shape of the stator 10. The height of the direction can be reduced.
[0042]
Next, a fourth embodiment of the present invention will be described with reference to FIG.
[0043]
In the first to third embodiments described above, the stator 10 is configured by coupling a plurality of coils 11... Formed by winding a flat wire 14 around the iron core 12 via an insulator 13. The stator 10 is provided with a plurality of notches 12d at predetermined intervals in the circumferential direction on a steel core 12 formed in an annular shape by punching a steel plate, and a rectangular wire 14 is attached to each insulator 13 attached to the notches 12d. It is a roll of…. The insulator 13 of the present embodiment also includes the stepped protrusions 13h and 13h, so that the same effect as that of the first embodiment can be achieved.
[0044]
In the fourth embodiment, the insulator 13 made of synthetic resin is mounted on the iron core 12, but stepped protrusions corresponding to the stepped protrusions 13h and 13h of the insulator 13 are formed on the iron core 12 itself. The insulator 13 may be abolished, and instead the iron core 12 may be covered with a thin insulating member such as insulating paper, insulating coating, or insulating coating. If it does in this way, cost can be reduced compared with the case where the insulator 13 is used, and since the insulating member is thin, the space factor of the coil 11 can further be raised. In addition, when the iron core 12 is cut from the block, the yield of the material can be increased by the stepped protrusion. Furthermore, although the thing of the 4th Example was shown as the outer rotor type stator 10, it can be used also as a coil-type rotor.
[0045]
Next, a fifth embodiment of the present invention will be described with reference to FIG.
[0046]
In the above-described first to fourth embodiments, the example in which the present invention is applied to the stator 10 has been described. In the fifth embodiment, the present invention is applied to the rotor 18 of the synchronous machine. The rotor 18 has a plurality of coils 11 arranged in a circumferential direction on the outer periphery of a rotating shaft (not shown), and the structure of each coil 11 is similar to that of the first to fourth embodiments. The difference is that the first to fourth embodiments are provided with an insulator 13 made of synthetic resin, whereas the fifth embodiment abolishes the insulator 13 instead of insulating paper, The iron core 12 is covered with a thin insulating member 13 'such as insulating coating or insulating coating.
[0047]
The insulating member 13 ′ corresponds to the outer flange portion 13 a, the inner flange portion 13 b, corresponding to the outer flange portion 13 a, the inner flange portion 13 b, the winding portion 13 c, the long side 13 d, the stepped protrusion portions 13 h, 13 h, etc. ', A winding part 13c', a long side 13d ', stepped protrusions 13h', 13h 'and the like. However, unlike the insulator 13 made of synthetic resin, since the insulating member 13 'has a constant thickness, stepped protrusions 12e and 12e are always formed on the iron core 12 corresponding to the stepped protrusions 13h' and 13h '. Is done. The functions of the stepped protrusions 13h 'and 13h' of the insulating member 13 'are the same as the functions of the stepped protrusions 13h and 13h of the insulator 13. Therefore, according to the fifth embodiment, the first to fourth embodiments. The same effect as the embodiment can be achieved.
[0048]
In addition, according to the fifth embodiment, the cost can be reduced by eliminating the costly insulator 13 and adopting the insulating member 13 ', and the insulating member 13' is thinner than the insulator 13. In addition, the space factor of the coil 11 can be further increased. Further, the iron core having the stepped protrusions 12e and 12e can be easily manufactured by press molding as well as by press molding. When manufacturing by cutting from a block, the amount of the material corresponding to the stepped protrusions 12e and 12e is increased. Yield can be increased.
[0049]
The fifth embodiment can be used as an outer rotor type coil stator.
[0050]
Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.
[0051]
For example, the coil 11 of the present invention can be applied to any rotating electric machine other than the generator motor of the hybrid vehicle.
[0052]
Moreover, the cross-sectional shape of the winding part 13c, 13c 'of the insulator 13 or the insulating member 13' is not limited to a rectangle, and may be a square shape including a square.
[0053]
【The invention's effect】
As described above, according to the first aspect of the present invention, the winding portion having a rectangular cross section of the insulating member covering the periphery of the iron core has the predetermined width W and the pair of sides corresponding to the winding start portion. Since it has a stepped protrusion of a predetermined height H, the flatness of the outermost layer of the actual turn part of the plurality of layers adjacent to the initial turn part is determined by the flat wire of the initial turn part wound around the stepped protrusion part. It is possible to prevent the wire from falling or shifting and to wind the rectangular wire around the insulating member in an orderly manner to increase the space factor. Moreover, since only a pair of stepped protrusions are formed on the insulating member, there is no need to form a stepped step on the entire winding portion of the insulating member or use an expensive special winding machine. The coil manufacturing cost can be kept low while securing the space factor.
[0054]
In particular, when the number of turns of the initial turn portion is a natural number N and the length of the long side of the rectangular wire is L, the width W of the stepped protrusion of the insulating member is
(N−0.5) × L ≦ W ≦ (N + 0.1) × L
By setting to, it is possible to minimize the waste space generated by the flat wire not being wound around the stepped protrusion, while preventing the flat wire from falling down at the initial turn portion, and to minimize the initial turn. When the number of layers of the actual turn part adjacent to the part is an odd natural number No of 3 or more and the length of the short side of the rectangular wire is S, the height H of the stepped protrusion of the insulating member is
(No-1.8) × S ≦ H ≦ (No-1.0) × S
By setting to, the outer diameter of the outermost layer of the actual turn part of the multiple layers adjacent to the initial turn part is reliably prevented from shifting in the direction of the winding axis, and the outer diameter of the initial turn part is unnecessary. It can be prevented from becoming large.
[0055]
Further, according to the invention described in claim 2 , since the stepped protrusion is formed in the insulator as the insulating member, it is only necessary to add the stepped protrusion to the insulator without making any change to the existing iron core. A desired effect can be obtained.
[0056]
According to the invention described in claim 3 , since the stepped protrusion is formed by the shape of the iron core, the insulator can be eliminated and a thin insulating film can be used, and the cost is reduced and the coil space is reduced. The rate can be further increased. In addition, when the iron core is cut from the block, the yield of the material can be increased by the amount of the stepped protrusion.
[Brief description of the drawings]
1 is a partial front view of a stator according to a first embodiment. FIG. 2 is a view taken in the direction of the arrow in FIG. 1. FIG. 3 is a perspective view of an insulator. 5] Expanded sectional view taken along line 5-5 in FIG. 4 [FIG. 6] Cross-sectional view of the flat wire [FIG. 7] First partial view showing the winding process of the flat wire [FIG. 8] Shows the winding process of the flat wire Second view [FIG. 9] Third view showing a flat wire winding process [FIG. 10] Fourth view showing a flat wire winding process [FIG. 11] FIG. Sectional view [FIG. 12] Sectional view of coil corresponding to FIG. 7 (C) [FIG. 13] Sectional view of coil corresponding to FIG. 8 (D) [FIG. 14] Explaining allowable range of width W of stepped protrusion FIG. 15 is a diagram showing a second embodiment in which the number of layers of the actual turn portion adjacent to the initial turn portion is five. FIG. 16 is a partial cross-sectional view of a coil according to the third embodiment. 4 Partial front view of a stator according to 施例 Figure 18 is a partial front view of a rotor according to the fifth embodiment EXPLANATION OF REFERENCE NUMERALS
12 Iron core 13 Insulator (insulating member)
13 'insulating member 13c winding part 13c' winding part 13d long side (side)
13d 'Long side (side)
13h Stepped protrusion 13h 'Stepped protrusion 14 Flat wire 14a Long side 14b Short side A Winding axis

Claims (3)

鉄心(12)の周囲を覆う絶縁部材(13,13′)の巻回部(13c,13c′)に平角線(14)を複数層に重ねて巻回した回転電機のコイルであって、 絶縁部材(13,13′)の巻回部(13c,13c′)は巻回軸(A)に直交する断面が方形状であり、平角線(14)の横断面は長辺(14a)および短辺(14b)を有する長方形状であり、平角線(14)の一方の長辺(14a)が絶縁部材(13,13′)の巻回部(13c,13c′)に対向するように巻回されるものにおいて、
絶縁部材(13,13′)の巻き始め部分に対応する巻回部(13c,13c′)の相対向する一対の辺(13d,13d′)に沿ってそれぞれ段状突起部(13h,13h′)を形成し、前記段状突起部(13h,13h′)の幅Wを、初期ターン部のターン数を自然数Nとし、平角線(14)の長辺(14a)の長さをLとしたとき、
(N−0.5)×L≦W≦(N+0.1)×L
に設定することで、そこに巻回された初期ターン部の平角線(14)の倒れを阻止するとともに、前記段状突起部(13h,13h′)の高さHを、初期ターン部に隣接する実ターン部の層数を3以上の奇数の自然数Noとし、平角線(14)の短辺(14b)の長さをSとしたとき、
(No−1.8)×S≦H≦(No−1.0)×S
に設定することで、前記初期ターン部に隣接する複数層の実ターン部の最外層の平角線(14)、前記初期ターン部の平角線(14)に係止て巻回軸(A)の方向へのずれを阻止することを特徴とする回転電機のコイル。
A coil of a rotating electrical machine in which flat wires (14) are wound in a plurality of layers on winding portions (13c, 13c ') of an insulating member (13, 13') covering the periphery of an iron core (12), The winding part (13c, 13c ') of the member (13, 13') has a rectangular cross section perpendicular to the winding axis (A), and the cross section of the flat wire (14) has a long side (14a) and a short side. Winding so that it has a rectangular shape with sides (14b) and one long side (14a) of the flat wire (14) faces the winding portions (13c, 13c ') of the insulating member (13, 13'). In what
Stepped protrusions (13h, 13h ′) along a pair of opposite sides (13d, 13d ′) of the winding portions (13c, 13c ′) corresponding to the winding start portions of the insulating members (13, 13 ′), respectively. ), The width W of the stepped protrusions (13h, 13h ′), the number of turns of the initial turn part is a natural number N, and the length of the long side (14a) of the flat wire (14) is L. When
(N−0.5) × L ≦ W ≦ (N + 0.1) × L
By setting the, with blocking therein falling wound initial turn of the flat wire (14), the height H of the stepped projections (13h, 13h '), adjacent to the initial turn portion When the number of layers of the actual turn part is an odd natural number No of 3 or more and the length of the short side (14b) of the flat wire (14) is S,
(No-1.8) × S ≦ H ≦ (No-1.0) × S
By setting the said initial turn portion flat wire of the outermost layer of the real turn portions of the plurality of layers adjacent to the (14), the initial turn of the flat wire (14) the locking to the winding axis (A coils of a rotary electric machine, characterized in that to prevent the displacement in the direction of).
前記段状突起部(13h)を、絶縁部材(13)として設けたインシュレータに形成したことを特徴とする、請求項1に記載の回転電機のコイル。The coil of the rotating electrical machine according to claim 1, wherein the stepped protrusion (13h) is formed in an insulator provided as an insulating member (13). 前記段状突起部(13h′)を、鉄心(12)の形状により形成したことを特徴とする、請求項1に記載の回転電機のコイル。The coil of the rotating electric machine according to claim 1, wherein the stepped protrusion (13h ') is formed by a shape of an iron core (12).
JP2003099154A 2003-04-02 2003-04-02 Coil for rotating electrical machine Expired - Fee Related JP4364543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099154A JP4364543B2 (en) 2003-04-02 2003-04-02 Coil for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099154A JP4364543B2 (en) 2003-04-02 2003-04-02 Coil for rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2004312795A JP2004312795A (en) 2004-11-04
JP4364543B2 true JP4364543B2 (en) 2009-11-18

Family

ID=33463698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099154A Expired - Fee Related JP4364543B2 (en) 2003-04-02 2003-04-02 Coil for rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4364543B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722584B2 (en) * 2005-06-29 2011-07-13 本田技研工業株式会社 Stator
JP4722588B2 (en) * 2005-06-30 2011-07-13 本田技研工業株式会社 Stator for rotating electrical machine and method for manufacturing the same
JP2007135360A (en) * 2005-11-11 2007-05-31 Sumitomo Electric Ind Ltd Motor core component and motor component
JP4868147B2 (en) * 2006-11-08 2012-02-01 株式会社富士通ゼネラル Axial air gap type electric motor
JP4800913B2 (en) * 2006-11-30 2011-10-26 三菱電機株式会社 Linear motor armature and linear motor
JP2008148515A (en) * 2006-12-13 2008-06-26 Nissan Motor Co Ltd Stator and its manufacturing method
JP4964016B2 (en) * 2007-04-26 2012-06-27 住友電気工業株式会社 Split core for motor
JP2008278628A (en) * 2007-04-27 2008-11-13 Sumitomo Electric Ind Ltd Split stator and method of manufacturing the same
DE102007029306A1 (en) * 2007-06-22 2008-12-24 Robert Bosch Gmbh Electromagnetically excitable coil
JP5332750B2 (en) * 2009-03-10 2013-11-06 日産自動車株式会社 Rotating electric machine
JP5629987B2 (en) * 2009-07-07 2014-11-26 株式会社安川電機 Coil and rotating electric machine equipped with this coil
JP5563315B2 (en) * 2010-01-08 2014-07-30 アスモ株式会社 Armature and brushless motor
JP5560773B2 (en) * 2010-03-02 2014-07-30 トヨタ自動車株式会社 Stator
DE102012208549A1 (en) * 2012-05-22 2013-11-28 Wobben Properties Gmbh Optimized synchronous generator of a gearless wind turbine
CN104584402B (en) 2012-08-30 2017-05-24 株式会社美姿把 Electric motor
JP6172931B2 (en) * 2012-12-18 2017-08-02 株式会社ミツバ Electric motor
CN111316539B (en) * 2017-09-20 2022-03-22 松下知识产权经营株式会社 Insulator, stator including the same, and motor including the same
JP7347965B2 (en) * 2019-06-07 2023-09-20 日立Astemo株式会社 Stator used in rotating electrical machines
EP4167442A4 (en) * 2020-06-11 2024-07-31 Toshiba Ind Products & Systems Corp Insulator, stator, and rotating electrical machine
CN118572925A (en) * 2024-07-03 2024-08-30 库卡机器人(广东)有限公司 Stator insulation frame, stator assembly, motor and industrial robot

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196743A (en) * 1985-02-26 1986-08-30 Nippon Denso Co Ltd Coil bobbin for electric machine
JP3836608B2 (en) * 1998-09-04 2006-10-25 三菱電機株式会社 AC alternator rotor for vehicles

Also Published As

Publication number Publication date
JP2004312795A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4364543B2 (en) Coil for rotating electrical machine
JP5315743B2 (en) Electric rotary motor
EP1555735B1 (en) Rotor for dynamo-electric machine
JP3696813B2 (en) Vehicle alternator stator
US9806573B2 (en) Stator for rotary electric motor
EP1146624A2 (en) Stator core of vehicle rotary electric machine and method of manufacturing the same
US9287744B2 (en) Winding structure, rotating electric machine, and rotating electric machine manufacturing method
CN102104286B (en) Stator and motor provided with the stator
CN104137392A (en) Rotary electric machine
JP2002369418A (en) Stator structure of electric motor
EP2063515A2 (en) Stator for rotary electric machine, and rotary electric machine using the stator
JP2007274809A (en) Stator, and rotating electric machine
JP4028100B2 (en) Stator for rotating electrical machine and method for manufacturing stator
US20130033146A1 (en) Segmented rotor and stator lamination cores
JP5163278B2 (en) Rotating electric machine stator
JP3987063B2 (en) Motor stator and method of manufacturing the same
EP1416608A1 (en) Stator and method for manufacturing stator
JP5154829B2 (en) Split core parts
JP5348397B2 (en) Stator for rotating electrical machine and method for manufacturing the same
JP7451993B2 (en) Insulator and motor
JP3624598B2 (en) Winding structure and winding forming method for electric motor
CN113812066A (en) Rotating electrical machine
US20200083762A1 (en) Polyphase claw pole motor and stator of the polyphase claw pole motor
JP2012075232A (en) Stator for rotating electric machine and method of manufacturing the same
JP3576120B2 (en) Stator core and rotary electric motor using this stator core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4364543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140828

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees