[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4364365B2 - Method and apparatus for controlling vehicle with electric assist function - Google Patents

Method and apparatus for controlling vehicle with electric assist function Download PDF

Info

Publication number
JP4364365B2
JP4364365B2 JP30311299A JP30311299A JP4364365B2 JP 4364365 B2 JP4364365 B2 JP 4364365B2 JP 30311299 A JP30311299 A JP 30311299A JP 30311299 A JP30311299 A JP 30311299A JP 4364365 B2 JP4364365 B2 JP 4364365B2
Authority
JP
Japan
Prior art keywords
motor
current
speed
vehicle
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30311299A
Other languages
Japanese (ja)
Other versions
JP2001122186A (en
Inventor
孝幸 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP30311299A priority Critical patent/JP4364365B2/en
Publication of JP2001122186A publication Critical patent/JP2001122186A/en
Application granted granted Critical
Publication of JP4364365B2 publication Critical patent/JP4364365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、予め記憶した補助率特性に基づいて人力駆動力に対する電気駆動力を制御する電動補助機能付車両に適用する制御方法および装置に関するものである。
【0002】
【従来の技術】
踏力(人力駆動力)を検出し、この踏力の大きさに応じて電動モータの駆動力(電力駆動力)を制御する電動補助機能付自転車において、踏力に対する電動モータの出力比(補助率、アシスト比)を、車速の増加に対して高車速域で漸減させて前記電動モータを駆動制御する制御方式(高車速域でのアシスト比漸減処理方式)が公知である(特許第2623419号)。
【0003】
この方式は、高速走行時では、不必要なモータ駆動力を与えることを防ぎ、自転車として過大な車速とならないようにするために、アシスト比を車速の増加に対して漸減して制限を与えるものである。すなわち、設定車速未満ではアシスト比を一定とし、この設定車速以上ではアシスト比を減少させる補助率特性(アシスト比特性)を予めメモリしておき、マイクロコンピュータの演算処理サイクルごとにモータ駆動力を演算しながら、モータ駆動力を制御するものである。また、このようにアシスト比を高車速域で漸減することにより、電池の無駄な消耗を防ぐ効果もある。
【0004】
この電動補助機能付自転車の駆動系の構造は、人力駆動系とモータ駆動系の2つの系を並列に設けたものであり、モータ駆動系には一方向クラッチが介在され、モータの無通電時あるいは人力走行による車速がモータの回転速度より速い時にモータが回されるのを防止する構造となっている。また、モータ駆動系の駆動力を伝えるときはクラッチが繋がってその駆動力を伝える構造となっている。
【0005】
人力駆動系の駆動力(踏力)は、クランクペダルから入力されるためにクランク軸の半回転の周期をもって変化する。これはクランクペダルが上死点または下死点に来るときには踏力がほぼ零になるからである。モータはこの踏力がほぼ零になる度にその回転速度がほぼ零になるように、すなわちモータ駆動力が零になるように制御されるので、モータの駆動力はほぼ零の状態から、ペダルを踏み込んだときに得られる踏力に応じた所望の駆動力との間で周期的に変動することになる。
【0006】
この時モータは速度がほぼ零の状態から車速に対応した回転速度に到達するまでの間に一方向クラッチが離れる状態が存在する。この一方向クラッチが切れた状態の時にはモータの駆動力は走行に寄与しないため、モータの加速に要する時間だけモータの駆動力が踏力に対して遅れることとなる。この遅れによりモータの加速に要するエネルギーが無駄に消費されることになる。また、この遅れによって、モータが実際に回り始めたときにクラッチが繋がるためそのショックが車体に伝わり、乗り心地を悪いものにしていた。
【0007】
この問題を解決するために特許第2634121号では、車速が零でなくかつ人力駆動力(踏力)がほぼ零となる時には、その時の車速を発生させるために必要な回転速度でモータを駆動制御する方法がとられている。この方法によれば、一方向クラッチが接続開始する車速に対して、モータの回転速度がほぼ一致するようにモータを駆動するため、モータが回り始めてクラッチがつながる時に発生するショックを軽減することができ、またモータの加速に要するエネルギーが無駄に消費されることを防ぐことが可能となる。
【0008】
【発明が解決しようとする課題】
しかしこのような方法は、連続的に踏力が発生しているときに有効であるが、例えば車速が零ではないがペダル入力がなく惰性で車両が走行している場合においても、常にモータに電圧が印加されるため、電池が無駄に消耗するという不具合があった。
【0009】
またこのような方法を実現させるには、モータ駆動力がほぼ零のときの実車速を検出する必要がある。例えば、クランクや車輪の回転速度を検出するための回転速度センサーが必要となる。上記のようなコスト低減が求められている電動補助機能付自転車等の電動車両においては、モータを制御するために使用されている回転子の位置検出センサーを利用して、モータが回っているときの回転子の回転速度から車速を演算して求めることで、車速センサーをなくしてコストダウンを図ることが可能である。
【0010】
しかしこのようなシステムではモータが止まると車速を得ることができないし、また、クラッチが離れた状態では実車速が検出できない。従って、上記特許で行っていた踏力がなくなってから車速に応じた電流をモータに流すことができないという不具合があった。
【0011】
【発明の目的】
この発明はこのような事情に鑑みなされたものであり、モータ速度がほぼ零の状態から車速に対応した回転速度に到達するまでの間、一方向クラッチが離れることによりモータの駆動力は走行に寄与しないため、モータの加速に要する時間だけモータの駆動力が踏力に対して遅れることによりモータの加速に要するエネルギーが無駄に消費されることを防ぐと共に、車速が零ではないがペダル入力がなく惰性で車両が走行している場合には、電池が無駄に消耗されることがなく、さらに実車速を検出するセンサーを持たず、モータの回転速度から車速を演算するような電動補助機能付車両においても不都合が生じることがない電動補助機能付車両の制御方法を提供することを第1の目的とする。またこの方法の実施に直接使用する電動補助機能付車両の制御装置を提供することを第2の目的とする。
【0012】
【発明の構成】
この発明によれば第1の目的は、人力駆動系と電動駆動系とを並列に設け、人力駆動力(TP)に対する電力駆動力(TM)の比を車速(VSP)と共に変化させる所定の補助率特性に基づいて人力駆動力(TP)に応じた電力駆動力(TM)を発生させる電動補助機能付車両の制御方法において、前記電動駆動系の動力源を電動モータで構成し、前記人力駆動力(TP)がその下限値(TPL)以下の状態ではその時の車速(VSP)に対応するモータの回転速度(v)に保つ連れ回り電流(iID)を供給し、人力駆動力(T P )がその下限値(T PL )以下の状態を保つ間に、モータ回転速度(v)がその下限値(v L )以下になったことをアシスト停止条件として前記連れ回り電流(iID)を遮断することを特徴とする電動補助機能付車両の制御方法、により達成される。
またこのアシスト停止条件を満たす時に、連れ回り電流(i ID )を遮断するから、モータ回転速度(v)が下限値(v L )まで減速したら一定時間を待たずに連れ回り電流(i ID )を切るものである。このためエネルギーの無駄な消費を防止できる。
【0013】
ここにモータは直流無整流子モータ(ブラシレスDCモータ)とし、このモータの回転位置検出器で検出したロータの回転位置を示す信号を用いてモータ回転速度(v)および車速(VSP)を求めることができる。この場合車速(VSP)は、モータ回転速度(v)に電動駆動系の減速比を積算することにより求めることができる。
【0014】
アシスト停止条件は、例えば人力駆動力(踏力TP)がその下限値(TPL)以下の状態が一定時間続いた後モータ回転速度(v)がその下限値(v L )以下になったこととすることができる。すなわちこの状態(TP≦TPL)が一定時間以上続き、さらにv≦v L となったらアシストを停止して連れ回り電流(iID)を遮断し、エネルギーの無駄な消費を防ぐものである。
【0016】
連れ回り電流(iID)を供給している状態からアシスト再開する条件としては、v>vLとなりかつTP≧TPLR(アシスト再開下限値)となることとすることができる。このアシスト再開時(再加速アシスト時)には、補助率(ηA)を最初は補助率特性から求める補助率(η)よりも小さく設定し、時間経過と共に漸増させて一定時間後に補助率特性から求める補助率(η)に一致させるように変化させるのがよい。このようにすることにより、アシスト再開時のショックを小さくして乗り心地を一層向上させることができる。
【0017】
第2の目的は、人力駆動系と電動駆動系とを並列に設け、人力駆動力(TP)に対する電力駆動力(TM)の比を車速(VSP)と共に変化させる所定の補助率特性に基づいて人力駆動力(TP)に応じた電力駆動力(TM)を発生させる電動補助機能付車両の制御装置において、電動駆動系の動力源となる電動モータと、人力駆動力(TP)と前記モータの回転速度(v)とに基づいて連れ回り電流(iID)を求める連れ回り電流設定部と、人力駆動力(TPがその下限値(T PL )以下の状態を保つ間にモータの回転速度(v)がその下限値(v L )以下になったことをアシスト停止条件としてこのアシスト停止条件を判別するアシスト停止条件判別部と、を備え、前記アシスト停止条件判別部がアシスト停止条件を満たすと判別した時に前記連れ回り電流設定部は連れ回り電流(iID)を遮断することを特徴とする電動補助機能付車両の制御装置、により達成される。
【0018】
電動モータはベクトル制御される直流無整流子モータ(ブラシレスDCモータ)とすることができる。この場合には、補助率特性に基づき車速(VSP)と人力駆動力(踏力TP)に対応するモータの目標トルク(TM=TP×η)を求める目標トルク演算部と、この目標トルク(TM)に対応するモータの電流指令値(i0 *)をベクトル制御により求めるトルク電流演算部と、i0 *とiIDとの和(i0 *+iID=i*)を求める加算器と、を備えるものとすることができる。この和i*に基づいてモータ電流を制御する。例えばPWM(Pusle Width Modulation)制御する。
【0019】
この場合には、電流指令値i*には速度電流(iSP)を追加してもよい。すなわち車速(VSP)に対応したモータ回転速度(v)を発生させるのに必要なモータ電流(速度電流iSP)を求める速度電流演算部と、この速度電流(iSP)を電流指令値i*に加えて最終的な電流指令値i*とする加算器とを付加すればよい。このようにすれば一層円滑なモータ速度制御が可能になる。
【0020】
【実施態様】
図1は本発明を電動補助自転車に適用した場合の動力伝達系統を示す図、図2はモータの制御装置の説明図、図3はインバータの構成を説明する図、図4は制御装置の構成を説明するブロック図、図5は動作の概念図、図6はメインフローの動作流れ図、図7は本発明に係るアシスト停止およびアシスト再開時の動作流れ図である。
【0021】
図1において、運転者の踏力は、ペダル(図示せず)により駆動されるクランク軸1と一方向クラッチ2とを介して合力軸3に伝えられる。また3相直流無整流子モータ4の出力は、減速部5および一方向クラッチ6を介して合力軸3に伝えられる。合力軸3の回転はフリーホイールクラッチ7を介して駆動輪である後輪8に伝えられる。
【0022】
人力駆動系はクランク軸1から後輪8に至る伝動系であり、電動駆動系はモータ4から後輪8に至る伝動系である。人力駆動系の駆動力すなわち踏力TPは一方向クラッチ2と合力軸3の間から踏力センサ9により検出される。
【0023】
10はモータ4の制御装置である。この制御装置10は踏力センサ9が検出する踏力TPと、車速センサ11が検出する車速VSPとに基づいてモータ4の出力トルクTMすなわちモータ電流を制御する。12は電池などの直流電源である。ここに車速センサ11は、後輪8や前輪(図示せず)や駆動系の回転部分などの回転速度を検出するセンサ(図示せず)で形成することができる。また車速センサ11は、モータ4の電機子コイルに誘起される逆起電圧により回転速度を検出する回路で構成したり、後記する推定部17で検出する回転速度vと減速比とを用いて計算により求めるもので構成することもできる。
【0024】
この制御装置10は図2,4に示すようにインバータ部13とゲート駆動部14と演算処理部15とを有する。インバータ部13は図3に示すように公知の3相ブリッジ回路で構成される。すなわちMOS−FETやバイポーラトランジスタなどのスイッチング素子Q1〜Q6を2個ずつ直列接続した各組を電源12に並列接続する一方、各組のスイッチング素子Q1とQ2、Q3とQ4、Q5とQ6の間をモータ4の各相の電機子コイルに接続したものである。ゲート駆動部14はスイッチング素子Q1〜Q6を選択的にオン・オフするためのゲート信号を各スイッチング素子Q1〜Q6のゲートに送る。
【0025】
演算処理部15は図4に示すように構成され、マイクロコンピュータ(Micro Processor Unit ,MPU)や種々のメモリなどによって構成される。この実施態様では、モータ4の回転子(ロータ)の回転角θと回転速度vとに基づいて、電機子(ステータ)に供給する電機子電流iU、iV、iWの大きさと位相とを示す電流指令値i*を計算で求める。すなわちベクトル制御を行うものである。
【0026】
回転子の回転角θと速度vは、電機子の3つの相についてそれぞれ設けた回転位置検出器としてのホールIC16(16U、16V、16W)が出力する位置信号P(PU、PV、PW)に基づいて、算出部17で推定する。すなわちホールIC16は電気角で60°ごとに設けられ、回転子が60°回転する度にいずれかの位置信号Pがオン・オフ変化する。
【0027】
算出部17では、この位置信号Pの変化から回転子が電気角60°回ったことを検出し、位置信号Pが変化せずに一定に保たれる時間間隔から回転速度vを検出する。またこの回転速度vを用いて位置信号Pが変化しない時間間隔内における回転角θを演算により求める。この結果回転子の回転中における回転角θを高い分解能で求めることができる。またこの算出部17は、電動駆動系の減速比と駆動輪の径とを用いて車両の速度(車速VSP)を求める。
【0028】
この算出部17で求めた回転角θと回転速度vと車速VSPの推定値は、トルク電流演算部18に入力される。この電流演算部18は目標トルク演算部19で求めたトルク目標値TMと、回転角θおよび回転速度vとに基づいて、電流指令値i0 *の大きさと位相とを計算する(図5参照)。
【0029】
目標トルク演算部19は、車速VSPと踏力TPとに基づいて目標とするモータトルクTMを求める。例えば図4に示すように、設定車速(例えば15km/h)未満の車速VSPに対しては補助率(アシスト比)η(=TM/TP)を1.0とし、この設定車速(例えば15km/h)以上の高速域では車速VSPの増加に伴って補助率ηが直線的に漸減する補助率特性に従って、モータトルクTMの目標値をTM=TP・ηとして求める。なおこの補助率ηは他の設定車速(例えば24km/h)で0になる。
【0030】
このモータ4ではトルクTMは実際の電機子電流iR(iU、iV、iW)に対応する。電流演算部18はこの目標トルク値TMを発生させるために必要となる電機子電流iRの大きさと位相とをベクトル計算により求め、電流指令値i0 *として出力する。
【0031】
なおこの電流指令値i0 *は、実際にはU、V、Wの各相に対して別々に出力される。すなわち電流演算部18は、メモリ20に記憶した正弦波パターンデータを用いて各相の互いに電気角で120°位相がずれた電流指令値i0 *(i0 * U、i0 * V、i0 * W)を出力する。各相の電流指令値i0 *は目標トルク値TMの大きさによって振幅が変化する正弦波であり、その振幅と位相は回転角θと回転速度vと回転部の慣性などに基づいて演算されたものである。
【0032】
図4において21は速度電流演算部である。この速度電流演算部21は、人力駆動力(TP)がその下限値(TPL)より大の時に車速VSPに相当するモータ回転速度(v)とするために必要なモータ電流iSPを計算する(図5参照)。なお人力駆動力(TP)が下限値(TPL)より大の時はモータ4は回転しているから、車速(VSP)の信号が一定レベル以上ならこの条件TP>TPLを満たすと考えられる。
【0033】
22は連れ回り電流設定部であり、モータ回転速度(v)と人力駆動力(TP)に基づいて、人力駆動力(TP)がその下限値(TPL)以下になった時に(TP≦TPL)、この時の回転速度(v)でモータを駆動するために必要な電流すなわち連れ回り電流(iID)を計算する。
【0034】
この連れ回り電流(iID)は加算器23で電流指令値(i0 *)に加算される。この加算値(i0 *+iID)には、さらに加算器24において速度電流(iSP)が加算されて、最終電流指令値i*(=i0 *+iID+iSP)とされる。図5から解るように、電流指令値i0 *は踏力(TP)に相当する成分であり、速度電流(iSP)は車速(VSP)に相当する成分であり、連れ回り電流(iID)は踏力(TP)が零(厳密には下限値TPL以下)の時にその時の回転速度(v)(すなわち無負荷回転速度)にするための成分である。
【0035】
図4で25はアシスト停止条件判別部である。このアシスト停止条件判別部25は、人力駆動力(踏力TP)とモータ回転速度(v)とに基づいてアシスト停止条件を満たすか否かを判定し、この条件を満たす場合に連れ回り電流iIDを遮断する。また速度電流iSPも遮断してアシストを停止する。一方連れ回り電流iIDを供給している間に踏力(TP)がアシスト再開下限値(TPLR)(ただしTPLR>TPL)以上に増加した時には、踏力(TP)を増やして走行を再開したものと考えられるから、アシストを再開する。
【0036】
このアシストの再開(再加速アシスト開始)時には、例えば特開平9−267791号に示された方法を使うことができる。すなわち目標トルク演算部19で補助率(ηA)を補助率特性から求めた正規の補助率(η)よりも小さく設定し、時間経過と共にこの補助率(ηA)を漸増させて一定時間後に正規の補助率(η)に一致させるように制御する。このようにすれば走行中にアシストを再開するときにモータ回転速度が上昇して一方向クラッチが繋がる際のショックを弱め、乗り心地を向上させることができる。
【0037】
加算器23,24で速度電流(iSP)および連れ回り電流(iID)が加算された最終電流指令値i*は減算器25に入力され、ここで電機子の実際の電流値iRとの差(i*−iR)が各相ごとに別々に求められる。この電流値iRは、電機子のUV相巻線の電流(iU、iV)をホールCT(Current Transformer、変流器)(CTU、CTV)などで検出し、W相の電流を計算で求めることができる。この差(i*−iR)は電機子電流誤差信号となり、指示電流制御部26に入力される。電流制御部26ではインバータ13のゲートをPWM方式により駆動するゲート駆動信号が作られ、ゲート駆動部14に送られる。この結果モータ4がPWM制御されて目標トルク値TMを発生し、このモータ出力TMと踏力TPとによって自転車は走行することができる。
【0038】
次に図6,7を用いて動作を説明する。まず図6によってメインフロー動作を説明する。演算処理部15(図2,3)には各センサーの出力が入力される(図6のステップS100)。すなわち、回転位置検出器16の位置信号P、踏力(TP)を検出すトルクセンサ(図示せず)の出力信号(TP)、電池12(図2,3)のバッテリ電圧検出信号などが入力インターフェースを介してデジタル化されて入力される。
【0039】
演算処理部15はこのバッテリ電圧検出信号に基づいてバッテリの充電状態を監視し、電池容量の残量をLEDなどの残量表示手段に表示させる(ステップS102)。演算処理部15は入力情報により種々の動作状態を判断し、それぞれの状態に対応する動作モードを決定してその処理を行う(ステップS104)。この処理モードは、停止モード、発信モード、補助モード、再発進モードなどである。また演算処理部15は、各センサーの出力信号から異常の発生を検出すると、電池保護(例えば過放電防止)などの異常時の所定の処理を行う(ステップS106)。そして以上の動作を繰り返す。
【0040】
アシスト停止およびアシスト再開の動作は図7に従って行われる。まず踏力(TP)がその下限値(TPL)と比較され(ステップS150)、TP≦TPLの時には連れ回り制御を行う(ステップS152)。すなわち。連れ回り電流設定部22がその時の回転速度(v)から連れ回り電流(iID)をモータ4に供給する。この状態で一定時間(例えば0.8秒)経過すると(ステップS154)、モータ回転速度(v)が下限値(vL、例えば150rpm)以下か否か判断される(ステップS156)。下限値以下(v≦vL)なら停車するものと考えられるから直ちにアシストを停止する(ステップS158)。
【0041】
v>vLなら未だ停車せずに走行中であると考えられるから(ステップS156)、連れ回り電流(iID)を流し続ける(ステップS160)。そして踏力(TP)が下限値(TPL)以下で(TP≦TPL、ステップS162)、かつ回転速度(v)が下限値(vL)以下なら(v≦vL、ステップS164)、停車するものと考えられるからアシストを停止する(ステップS158)。回転速度(v)が下限値(vL)より大であれば(ステップS164)。未だ惰性走行中と考えられるので、一定時間(例えば4.2秒)この状態を続けた後(ステップ166)、アシストを停止する(ステップS158)。
【0042】
踏力(TP)が下限値(TPL)より大で(TP>TPL、ステップS162)、かつアシスト再開下限値(TPLR、ただしTPLR>TPL)より小(TP<TPLR、ステップS168)なら、再加速するほど踏力(TP)が大きくないと考えられ、一定時間(例えば4.2秒)の経過後にアシストを停止する(ステップS166,S158)。踏力(TP)が再開下限値(TPLR)より大なら(ステップS168)、惰性走行中に踏力(TP)が増大し始めたと考えられ、再加速アシストを開始する(ステップS170)。
【0043】
この再加速アシストは、前記したように補助率(ηA)を最初に正規の補助率(η)よりも小さく設定し、時間経過に伴って漸増させて正規の補助率(η)に一致させるように制御するものである。また前記ステップS150において踏力(TP)が下限値(TPL)より大ならば正規のアシストを続ける(ステップS172)。
【0044】
【発明の効果】
本発明は以上のように、人力駆動力(TP)がその下限値(TPL)以下の時には連れ回り電流(iID)を供給するから、再加速時にモータ回転速度の加速に要する時間が短くなり、モータの加速に要するエネルギーを減らすことができる。また人力駆動力(TPがその下限値(T PL )以下の状態を保つ間に、モータ回転速度(v)がその下限値(v L )以下になったことをアシスト停止条件としてこのアシスト停止条件を満たす時には連れ回り電流(iID)を遮断するから、惰性走行中に電池の無駄な消耗を防ぐことができる。
【0045】
この場合にアシスト停止条件は車速(VSP)を用いずにモータ回転速度(v)を用いて設定するから、実車速を検出するためのセンサを別途設けることなくモータ回転速度(v)から車速(VSP)演算するような車両に適用することができ、部品点数の増加を招くことがない。請求項の発明によれば請求項1の方法の実施に直接使用する装置が得られる。
【図面の簡単な説明】
【図1】本発明の電動補助自転車に適用した動力伝達系統を示す図
【図2】モータの制御装置の説明図
【図3】インバータを示す図
【図4】制御装置の構成を示す図
【図5】動作の概念図
【図6】メインフローの動作流れ図
【図7】アシスト停止・再開処理の動作流れ図
【符号の説明】
1 クランク軸
4 3相直流無整流子モータ
8 後輪(駆動輪)
10 制御装置
13 インバータ部
14 ゲート駆動部
15 演算処理部
18 トルク電流演算部
19 目標トルク演算部
21 車速電流演算部
22 連れ回り電流設定部
23、24 加算器
25 アシスト停止条件判別部
R(iU、iV、iW) 電機子電流
P(PU、PV、PW) 位置信号
θ 回転角度
SP 車速
P 人力駆動力(踏力)
PL 人力駆動力の下限値
PLR 人力駆動力のアシスト再開下限値
v モータ回転速度
L モータ回転速度の下限値
M 電力駆動力(モータ駆動力)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method and apparatus applied to a vehicle with an electrically assisted function that controls an electric driving force relative to a human driving force based on an auxiliary rate characteristic stored in advance.
[0002]
[Prior art]
In a bicycle with an electric assist function that detects the pedaling force (human driving force) and controls the driving force (electric power driving force) of the electric motor according to the magnitude of the pedaling force, the output ratio of the electric motor to the pedaling force (assist rate, assist) The control method (assist ratio gradual reduction processing method in the high vehicle speed region) is known (Japanese Patent No. 2623419) in which the electric motor is driven and controlled by gradually decreasing the ratio in the high vehicle speed region with respect to the increase in vehicle speed.
[0003]
This method gives a limit by gradually decreasing the assist ratio with respect to the increase in vehicle speed in order to prevent unnecessary motor driving force from being applied at high speed and to prevent excessive vehicle speed as a bicycle. It is. In other words, an assist ratio characteristic (assist ratio characteristic) that keeps the assist ratio constant below the set vehicle speed and decreases the assist ratio above this set vehicle speed is stored in advance, and the motor driving force is calculated for each calculation processing cycle of the microcomputer. Meanwhile, the motor driving force is controlled. In addition, by gradually decreasing the assist ratio in the high vehicle speed range as described above, there is an effect of preventing wasteful consumption of the battery.
[0004]
The structure of the drive system of this bicycle with an electric assist function is a system in which two systems, a human power drive system and a motor drive system, are provided in parallel. A one-way clutch is interposed in the motor drive system and the motor is not energized. Or it has the structure which prevents that a motor is rotated when the vehicle speed by manual driving | running | working is faster than the rotational speed of a motor. Further, when transmitting the driving force of the motor driving system, the clutch is connected to transmit the driving force.
[0005]
The driving force (stepping force) of the human-powered driving system changes with a half rotation period of the crankshaft because it is input from the crank pedal. This is because the pedaling force becomes almost zero when the crank pedal comes to the top dead center or the bottom dead center. Since the motor is controlled so that its rotational speed becomes almost zero each time the pedal force becomes almost zero, that is, the motor driving force becomes zero, the motor driving force is almost zero. It fluctuates periodically with a desired driving force corresponding to the pedaling force obtained when the pedal is depressed.
[0006]
At this time, the motor has a state in which the one-way clutch is disengaged from a state where the speed is substantially zero to a rotational speed corresponding to the vehicle speed. When the one-way clutch is disengaged, the driving force of the motor does not contribute to traveling, and therefore, the driving force of the motor is delayed with respect to the pedaling force for the time required for acceleration of the motor. Due to this delay, the energy required to accelerate the motor is wasted. Also, because of this delay, the clutch is engaged when the motor actually starts to rotate, so that the shock is transmitted to the vehicle body, making the ride uncomfortable.
[0007]
In order to solve this problem, in Japanese Patent No. 2634121, when the vehicle speed is not zero and the manpower driving force (stepping force) is almost zero, the motor is driven and controlled at the rotational speed necessary to generate the vehicle speed at that time. The method is taken. According to this method, since the motor is driven so that the rotational speed of the motor substantially coincides with the vehicle speed at which the one-way clutch starts to be connected, the shock generated when the motor starts to rotate and the clutch is connected can be reduced. In addition, it is possible to prevent wasteful consumption of energy required for accelerating the motor.
[0008]
[Problems to be solved by the invention]
However, such a method is effective when the pedal force is continuously generated. However, for example, even when the vehicle speed is not zero but there is no pedal input and the vehicle is traveling in inertia, the voltage is always applied to the motor. As a result, the battery is wasted.
[0009]
In order to realize such a method, it is necessary to detect the actual vehicle speed when the motor driving force is substantially zero. For example, a rotation speed sensor for detecting the rotation speed of a crank or a wheel is required. In electric vehicles such as bicycles with battery-assisted functions that require cost reduction as described above, when the motor is rotating using the rotor position detection sensor used to control the motor By calculating the vehicle speed from the rotation speed of the rotor, it is possible to eliminate the vehicle speed sensor and reduce the cost.
[0010]
However, in such a system, the vehicle speed cannot be obtained when the motor is stopped, and the actual vehicle speed cannot be detected when the clutch is disengaged. Accordingly, there has been a problem in that the current corresponding to the vehicle speed cannot be supplied to the motor after the pedaling force performed in the above patent is lost.
[0011]
OBJECT OF THE INVENTION
The present invention has been made in view of such circumstances, and the driving force of the motor is driven by the one-way clutch being released until the motor speed reaches a rotational speed corresponding to the vehicle speed from a substantially zero state. Since it does not contribute, the motor driving force is delayed relative to the pedaling force by the time required for motor acceleration, thereby preventing the energy required for motor acceleration from being wasted, and the vehicle speed is not zero but there is no pedal input. When the vehicle is running inertially, the battery is not wasted, the vehicle has an electric assist function that does not have a sensor to detect the actual vehicle speed and calculates the vehicle speed from the rotational speed of the motor. The first object is to provide a method for controlling a vehicle with an electric assist function that does not cause any inconvenience. It is a second object of the present invention to provide a control device for a vehicle with an electrically assisted function that is directly used for carrying out this method.
[0012]
[Structure of the invention]
According to the present invention, a first object is to provide a human power driving system and an electric driving system in parallel, and to change the ratio of the electric power driving force (T M ) to the human driving force (T P ) together with the vehicle speed (V SP ). In a control method of a vehicle with an electric auxiliary function that generates electric power driving force (T M ) according to human power driving force (T P ) based on a predetermined auxiliary rate characteristic, the power source of the electric driving system is configured by an electric motor When the human driving force (T P ) is equal to or lower than the lower limit value (T PL ), a follow-up current (i ID ) that keeps the motor rotation speed (v) corresponding to the vehicle speed (V SP ) at that time is supplied. and, while the human power (T P) is kept the lower limit value (T PL) the following conditions, the motor rotational speed (v) is a lower limit value (v L) Examples assist stop condition that falls below electric auxiliary function with the vehicle, characterized in that interrupting the take Mawari current (i ID) The method is accomplished by.
Further, when the assist stop condition is satisfied, the follow-up current (i ID ) is cut off. Therefore, if the motor rotation speed (v) is reduced to the lower limit value (v L ), the follow-up current (i ID ) is not waited for a certain time. It is what cuts. For this reason, useless consumption of energy can be prevented.
[0013]
Here, the motor is a DC non-commutator motor (brushless DC motor), and the motor rotational speed (v) and the vehicle speed (V SP ) are obtained using signals indicating the rotational position of the rotor detected by the rotational position detector of the motor. be able to. In this case, the vehicle speed (V SP ) can be obtained by adding the reduction ratio of the electric drive system to the motor rotation speed (v).
[0014]
The assist stop condition is, for example, that the motor rotational speed (v) becomes lower than the lower limit value (v L ) after the human power driving force (stepping force T P ) is lower than the lower limit value (T PL ) for a certain period of time. It can be. That can is continued over a certain time in this state (T P ≦ T PL), and further v blocked ≦ v L and turned When turns with stops the assist current (i ID), to prevent wasteful consumption of energy is there.
[0016]
The conditions for restarting the assist from the state in which the accompanying current (i ID ) is supplied can be v> v L and T P ≧ T PLR (assist restart lower limit). When the assist is resumed (at the time of re-acceleration assist), the assist rate (η A ) is initially set smaller than the assist rate (η) obtained from the assist rate characteristic, and gradually increased with the passage of time. It is preferable to change so as to match the auxiliary rate (η) obtained from (1). By doing so, it is possible to reduce the shock at the time of restarting the assist and further improve the riding comfort.
[0017]
The second object is to provide a predetermined auxiliary rate characteristic in which a human power driving system and an electric driving system are provided in parallel, and the ratio of the electric power driving force (T M ) to the human driving force (T P ) is changed together with the vehicle speed (V SP ). In the control device for a vehicle with an electrically assisted function that generates an electric power driving force (T M ) according to the human power driving force (T P ) based on the electric motor, an electric motor serving as a power source of the electric driving system, and a human power driving force (T P ) and a follow-up current setting unit that obtains a follow-up current (i ID ) based on the rotation speed (v) of the motor, and a state where the manpower driving force (T P ) is below the lower limit (T PL ) An assist stop condition discriminating unit for discriminating the assist stop condition based on the fact that the rotation speed (v) of the motor is lower than the lower limit value (v L ) while maintaining the assist stop condition. Part determines that the assist stop condition is met Controller for the electric auxiliary function with the vehicle, characterized in that blocking the Child around current setting unit turns with current (i ID), it is accomplished by.
[0018]
The electric motor may be a vector controlled direct current commutator motor (brushless DC motor). In this case, a target torque calculation unit for obtaining a target torque (T M = T P × η) of the motor corresponding to the vehicle speed (V SP ) and the manpower driving force (stepping force T P ) based on the auxiliary rate characteristic, and the target A torque current calculation unit for obtaining a motor current command value (i 0 * ) corresponding to the torque (T M ) by vector control, and a sum of i 0 * and i ID (i 0 * + i ID = i * ) are obtained. And an adder. The motor current is controlled based on this sum i * . For example, PWM (Pusle Width Modulation) control is performed.
[0019]
In this case, a speed current (i SP ) may be added to the current command value i * . That is, a speed current calculation unit for obtaining a motor current (speed current i SP ) necessary for generating a motor rotation speed (v) corresponding to the vehicle speed (V SP ), and this speed current (i SP ) as a current command value i. What is necessary is just to add the adder which makes final electric current command value i * in addition to * . In this way, smoother motor speed control becomes possible.
[0020]
Embodiment
1 is a diagram showing a power transmission system when the present invention is applied to a battery-assisted bicycle, FIG. 2 is an explanatory diagram of a motor control device, FIG. 3 is a diagram explaining a configuration of an inverter, and FIG. 4 is a configuration of the control device. 5 is a conceptual diagram of the operation, FIG. 6 is an operation flowchart of the main flow, and FIG. 7 is an operation flowchart at the time of assist stop and assist restart according to the present invention.
[0021]
In FIG. 1, a driver's pedaling force is transmitted to a resultant force shaft 3 via a crankshaft 1 and a one-way clutch 2 driven by a pedal (not shown). Further, the output of the three-phase DC non-commutator motor 4 is transmitted to the resultant force shaft 3 via the speed reduction unit 5 and the one-way clutch 6. The rotation of the resultant force shaft 3 is transmitted to the rear wheel 8 which is a driving wheel via a free wheel clutch 7.
[0022]
The human power drive system is a transmission system from the crankshaft 1 to the rear wheel 8, and the electric drive system is a transmission system from the motor 4 to the rear wheel 8. Driving force or pedaling force T P of human-driven system is detected by the depression force sensor 9 between the one-way clutch 2 and the resultant force shaft 3.
[0023]
Reference numeral 10 denotes a control device for the motor 4. The control device 10 controls the output torque T M of the motor 4, that is, the motor current, based on the pedaling force T P detected by the pedaling force sensor 9 and the vehicle speed V SP detected by the vehicle speed sensor 11. Reference numeral 12 denotes a DC power source such as a battery. Here, the vehicle speed sensor 11 can be formed by a sensor (not shown) for detecting the rotational speed of the rear wheel 8, the front wheel (not shown), the rotating part of the drive system, or the like. The vehicle speed sensor 11 is configured by a circuit that detects a rotational speed by a counter electromotive voltage induced in an armature coil of the motor 4 or is calculated using a rotational speed v and a reduction ratio detected by an estimation unit 17 described later. It can also be configured with what is required.
[0024]
As shown in FIGS. 2 and 4, the control device 10 includes an inverter unit 13, a gate driving unit 14, and an arithmetic processing unit 15. As shown in FIG. 3, the inverter unit 13 is formed of a known three-phase bridge circuit. That is, two sets of switching elements Q 1 to Q 6 such as MOS-FETs and bipolar transistors connected in series are connected in parallel to the power supply 12, while the switching elements Q 1 and Q 2 , Q 3 and Q 4 of each set are connected. , Q 5 and Q 6 are connected to the armature coils of each phase of the motor 4. The gate driver 14 sends a gate signal to selectively turn on and off the switching element Q 1 to Q 6 to the gates of the switching elements Q 1 to Q 6.
[0025]
The arithmetic processing unit 15 is configured as shown in FIG. 4 and includes a microcomputer (MPU) and various memories. In this embodiment, the magnitude and phase of the armature currents i U , i V , i W supplied to the armature (stator) based on the rotation angle θ and the rotation speed v of the rotor (rotor) of the motor 4. Is obtained by calculation. That is, vector control is performed.
[0026]
The rotation angle θ and the speed v of the rotor are the position signals P (P U , P V , P) output from the Hall IC 16 (16U, 16V, 16W) as rotational position detectors provided for the three phases of the armature, respectively. W )), the calculation unit 17 estimates. That is, the Hall IC 16 is provided every 60 ° in electrical angle, and any position signal P changes on and off every time the rotor rotates 60 °.
[0027]
The calculation unit 17 detects that the rotor has turned an electrical angle of 60 ° from the change of the position signal P, and detects the rotation speed v from the time interval in which the position signal P is kept constant without changing. Further, by using this rotational speed v, a rotational angle θ within a time interval during which the position signal P does not change is obtained by calculation. As a result, the rotation angle θ during rotation of the rotor can be obtained with high resolution. The calculating unit 17 obtains the vehicle speed (vehicle speed V SP ) using the reduction ratio of the electric drive system and the diameter of the drive wheels.
[0028]
The estimated values of the rotation angle θ, the rotation speed v, and the vehicle speed V SP obtained by the calculation unit 17 are input to the torque current calculation unit 18. The current calculation unit 18 calculates the magnitude and phase of the current command value i 0 * based on the torque target value T M obtained by the target torque calculation unit 19 and the rotation angle θ and the rotation speed v (FIG. 5). reference).
[0029]
The target torque calculator 19 obtains a target motor torque T M based on the vehicle speed V SP and the pedal effort T P. For example, as shown in FIG. 4, for a vehicle speed V SP less than a set vehicle speed (for example, 15 km / h), the assist rate (assist ratio) η (= T M / T P ) is set to 1.0, and this set vehicle speed ( For example, in a high speed region of 15 km / h or more, the target value of the motor torque T M is obtained as T M = T P · η according to the assist rate characteristic in which the assist rate η decreases linearly as the vehicle speed V SP increases. The auxiliary rate η becomes 0 at other set vehicle speeds (for example, 24 km / h).
[0030]
In this motor 4, the torque T M corresponds to the actual armature current i R (i U , i V , i W ). The current calculation unit 18 obtains the magnitude and phase of the armature current i R necessary for generating the target torque value T M by vector calculation, and outputs it as a current command value i 0 * .
[0031]
The current command value i 0 * is actually output separately for each of the U, V, and W phases. That is, the current calculation unit 18 uses the sine wave pattern data stored in the memory 20 to specify current command values i 0 * (i 0 * U , i 0 * V , i, whose phases are shifted from each other by 120 ° in electrical angle. 0 * W ) is output. The current command value i 0 * of each phase is a sine wave whose amplitude changes depending on the magnitude of the target torque value T M , and the amplitude and phase are calculated based on the rotation angle θ, the rotation speed v, the inertia of the rotation unit, and the like. It has been done.
[0032]
In FIG. 4, reference numeral 21 denotes a speed current calculator. The speed current calculation unit 21 calculates a motor current i SP necessary for setting the motor rotation speed (v) corresponding to the vehicle speed V SP when the human driving force (T P ) is larger than the lower limit value (T PL ). Calculate (see FIG. 5). Since the motor 4 rotates when the human driving force (T P ) is larger than the lower limit value (T PL ), this condition T P > T PL is satisfied if the signal of the vehicle speed (V SP ) exceeds a certain level. it is conceivable that.
[0033]
22 is a follow-up current setting unit, and when the human power driving force (T P ) is lower than the lower limit value (T PL ) based on the motor rotation speed (v) and the human power driving force (T P ) (T P ≦ T PL ), and a current necessary for driving the motor at the rotation speed (v) at this time, that is, a follow-up current (i ID ) is calculated.
[0034]
The follower current (i ID ) is added to the current command value (i 0 * ) by the adder 23. To the added value (i 0 * + i ID ), the speed current (i SP ) is further added in the adder 24 to obtain a final current command value i * (= i 0 * + i ID + i SP ). As can be seen from FIG. 5, the current command value i 0 * is a component corresponding to the pedaling force (T P ), the speed current (i SP ) is a component corresponding to the vehicle speed (V SP ), and the accompanying current (i ID ) is a component for setting the rotational speed (v) (that is, no-load rotational speed) when the pedaling force (T P ) is zero (strictly, the lower limit value T PL or less).
[0035]
In FIG. 4, reference numeral 25 denotes an assist stop condition determination unit. The assist stop condition determining unit 25 determines whether or not the assist stop condition is satisfied based on the human driving force (stepping force T P ) and the motor rotation speed (v). Block ID . The speed current i SP is also cut off and the assist is stopped. On the other hand, when the pedaling force (T P ) increases to the assist restart lower limit (T PLR ) (however, T PLR > T PL ) while the follower current i ID is being supplied, the pedaling force (T P ) is increased to drive Because it is thought that has resumed, assist is resumed.
[0036]
When the assist is restarted (re-acceleration assist is started), for example, a method disclosed in JP-A-9-267791 can be used. That auxiliary rate target torque calculating section 19 (η A) was smaller than the auxiliary rate of normal as determined from the auxiliary rate characteristic (eta), the auxiliary constant over time (eta A) a predetermined time after increased gradually to Control is performed so as to match the normal auxiliary rate (η). If it does in this way, when resuming assistance during a run, the motor rotation speed will raise, the shock at the time of a one way clutch being connected can be weakened, and riding comfort can be improved.
[0037]
The final current command value i * obtained by adding the speed current (i SP ) and the follow-up current (i ID ) by the adders 23 and 24 is input to the subtractor 25, where the actual current value i R of the armature and Difference (i * −i R ) is obtained separately for each phase. This current value i R is obtained by detecting the current (i U , i V ) of the armature's UV phase winding with a Hall CT (Current Transformer) (CT U , CT V ), etc. Can be calculated. This difference (i * −i R ) becomes an armature current error signal and is input to the command current control unit 26. The current control unit 26 generates a gate drive signal for driving the gate of the inverter 13 by the PWM method, and sends it to the gate drive unit 14. As a result, the motor 4 is PWM-controlled to generate a target torque value T M , and the bicycle can run by the motor output T M and the pedaling force T P.
[0038]
Next, the operation will be described with reference to FIGS. First, the main flow operation will be described with reference to FIG. The output of each sensor is input to the arithmetic processing unit 15 (FIGS. 2 and 3) (step S100 in FIG. 6). That is, the position signal P of the rotational position detector 16, the output signal (T P ) of a torque sensor (not shown) for detecting the pedaling force (T P ), the battery voltage detection signal of the battery 12 (FIGS. 2 and 3), and the like. It is digitized and input via the input interface.
[0039]
The arithmetic processing unit 15 monitors the state of charge of the battery based on the battery voltage detection signal, and displays the remaining capacity of the battery capacity on a remaining capacity display means such as an LED (step S102). The arithmetic processing unit 15 determines various operation states based on the input information, determines an operation mode corresponding to each state, and performs the processing (step S104). This processing mode includes a stop mode, a transmission mode, an auxiliary mode, a restart mode, and the like. Further, when detecting the occurrence of an abnormality from the output signal of each sensor, the arithmetic processing unit 15 performs predetermined processing at the time of abnormality such as battery protection (for example, overdischarge prevention) (step S106). Then, the above operation is repeated.
[0040]
The assist stop and assist restart operations are performed according to FIG. First, the pedaling force (T P ) is compared with the lower limit value (T PL ) (step S150). When T P ≦ T PL , follow-up control is performed (step S152). That is. The follow-up current setting unit 22 supplies the follow-up current (i ID ) to the motor 4 from the rotation speed (v) at that time. When a certain time (for example, 0.8 seconds) elapses in this state (step S154), it is determined whether the motor rotation speed (v) is equal to or lower than a lower limit value (v L , for example, 150 rpm) (step S156). If it is less than or equal to the lower limit value (v ≦ v L ), it is considered that the vehicle will stop, and the assist is immediately stopped (step S158).
[0041]
If v> v L , it is considered that the vehicle is still running without stopping (step S156), and therefore the follow-up current (i ID ) continues to flow (step S160). If the pedaling force (T P ) is equal to or lower than the lower limit value (T PL ) (T P ≦ T PL , step S162) and the rotational speed (v) is equal to or lower than the lower limit value (v L ) (v ≦ v L , step S164). Since the vehicle is considered to stop, the assist is stopped (step S158). If the rotation speed (v) is larger than the lower limit value (v L ) (step S164). Since it is considered that the vehicle is still coasting, this state is continued for a certain time (for example, 4.2 seconds) (step 166), and then the assist is stopped (step S158).
[0042]
The pedaling force (T P ) is larger than the lower limit value (T PL ) (T P > T PL , step S162) and smaller than the assist resumption lower limit value (T PLR , where T PLR > T PL ) (T P <T PLR) In step S168), it is considered that the pedaling force (T P ) is not increased as the acceleration is re-accelerated, and the assist is stopped after a predetermined time (for example, 4.2 seconds) has elapsed (steps S166 and S158). If the pedaling force (T P ) is greater than the restart lower limit (T PLR ) (step S168), it is considered that the pedaling force (T P ) has started to increase during coasting, and re-acceleration assist is started (step S170).
[0043]
In this reacceleration assist, as described above, the auxiliary rate (η A ) is first set to be smaller than the normal auxiliary rate (η), and is gradually increased with time to match the normal auxiliary rate (η). Is to control. If the pedal effort (T P ) is greater than the lower limit (T PL ) in step S150, regular assist is continued (step S172).
[0044]
【The invention's effect】
As described above, the present invention supplies the accompanying current (i ID ) when the human driving force (T P ) is equal to or lower than the lower limit value (T PL ). This shortens the energy required for accelerating the motor. The assist stop condition is that the motor rotation speed (v) is lower than the lower limit value (v L ) while the human driving force (T P ) is lower than the lower limit value (T PL ). When the stop condition is satisfied, the follow-up current (i ID ) is cut off, so that it is possible to prevent wasteful consumption of the battery during coasting.
[0045]
In this case, since the assist stop condition is set using the motor rotation speed (v) without using the vehicle speed (V SP ), the vehicle speed can be calculated from the motor rotation speed (v) without providing a separate sensor for detecting the actual vehicle speed. (V SP ) The present invention can be applied to a vehicle that performs calculation, and the number of parts is not increased. According to the invention of claim 4 , an apparatus can be obtained which is used directly for carrying out the method of claim 1.
[Brief description of the drawings]
FIG. 1 is a diagram showing a power transmission system applied to a battery-assisted bicycle according to the present invention. FIG. 2 is an explanatory diagram of a motor control device. FIG. 3 is a diagram showing an inverter. FIG. 5 is a conceptual diagram of the operation. FIG. 6 is an operation flowchart of the main flow. FIG. 7 is an operation flowchart of assist stop / restart processing.
1 Crankshaft 4 3-phase DC non-commutator motor 8 Rear wheel (drive wheel)
10 controller 13 inverter unit 14 gate driver 15 processing unit 18 torque current calculation unit 19 target torque calculating section 21 speed current calculating unit 22 Families around the current setting portions 23, 24 adder 25 assist stop condition determining unit i R (i U , i V , i W ) Armature current P (P U , P V , P W ) Position signal θ Rotational angle V SP Vehicle speed T P Manual driving force (stepping force)
T PL human power lower limit T PLR human power assist restarting the lower limit v motor rotation speed v L motor lower limit T M driving power of the rotational speed (motor driving force)

Claims (6)

人力駆動系と電動駆動系とを並列に設け、人力駆動力(TP)に対する電力駆動力(TM)の比を車速(VSP)と共に変化させる所定の補助率特性に基づいて人力駆動力(TP)に応じた電力駆動力(TM)を発生させる電動補助機能付車両の制御方法において、
前記電動駆動系の動力源を電動モータで構成し、前記人力駆動力(TP)がその下限値(TPL)以下の状態ではその時の車速(VSP)に対応するモータの回転速度(v)に保つ連れ回り電流(iID)を供給し、人力駆動力(TP)がその下限値(TPL)以下の状態を保つ間に、モータ回転速度(v)がその下限値(vL)以下になったことをアシスト停止条件として前記連れ回り電流(iID)を遮断することを特徴とする電動補助機能付車両の制御方法。
A human power drive system and an electric drive system provided in parallel, human power (T P) driving power for (T M) a predetermined human power on the basis of the auxiliary rate characteristics which vary with the vehicle speed (V SP) the ratio of In the control method of the vehicle with the electrically assisted function for generating the electric power driving force ( TM ) according to ( TP ),
The power source of the electric drive system is constituted by an electric motor, and when the human driving force (T P ) is equal to or lower than the lower limit value (T PL ), the rotational speed (v of the motor corresponding to the vehicle speed (V SP ) at that time supplying a drag motion current (i ID) kept), while the human power (T P) is kept the lower limit value (T PL) the following conditions, the motor rotational speed (v) is a lower limit value (v L ) A control method for a vehicle with a motor-assisted function, wherein the following current (i ID ) is cut off with the following conditions as an assist stop condition.
電動モータを直流無整流子モータで構成し、モータ回転速度(v)および車速(VSP)は、モータの回転位置検出器の出力信号に基づいて求める請求項1の電動補助機能付車両の制御方法。2. The control of a vehicle with an electric auxiliary function according to claim 1, wherein the electric motor is constituted by a DC non-commutator motor, and the motor rotational speed (v) and the vehicle speed (V SP ) are obtained based on an output signal of the rotational position detector of the motor. Method. アシスト停止条件を、人力駆動力(TP)がその下限値(TPL)以下の状態が一定時間継続した後モータ回転速度(v)がその下限値(vL)以下になったこととする請求項1または2の電動補助機能付車両の制御方法。The assist stop condition is that the motor rotational speed (v) becomes equal to or lower than the lower limit value (v L ) after the state where the human driving force (T P ) is equal to or lower than the lower limit value (T PL ) continues for a predetermined time. The method for controlling a vehicle with an electrically assisted function according to claim 1. 人力駆動系と電動駆動系とを並列に設け、人力駆動力(TP)に対する電力駆動力(TM)の比を車速(VSP)と共に変化させる所定の補助率特性に基づいて人力駆動力(TP)に応じた電力駆動力(TM)を発生させる電動補助機能付車両の制御装置において、
電動駆動系の動力源となる電動モータと、人力駆動力(TP)と前記モータの回転速度(v)とに基づいて連れ回り電流(iID)を求める連れ回り電流設定部と、人力駆動力(TP)がその下限値(TPL)以下の状態を保つ間にモータの回転速度(v)がその下限値(vL)以下になったことをアシスト停止条件としてこのアシスト停止条件を判別するアシスト停止条件判別部と、を備え、
前記アシスト停止条件判別部がアシスト停止条件を満たすと判別した時に前記連れ回り電流設定部は連れ回り電流(iID)を遮断することを特徴とする電動補助機能付車両の制御装置。
A human power drive system and an electric drive system provided in parallel, human power (T P) driving power for (T M) a predetermined human power on the basis of the auxiliary rate characteristics which vary with the vehicle speed (V SP) the ratio of In the control device for a vehicle with an electrically assisted function that generates electric power driving force ( TM ) according to ( TP ),
An electric motor serving as a power source for the electric drive system; a follow-up current setting unit for obtaining a follow-up current (i ID ) based on the manpower drive force (T P ) and the rotation speed (v) of the motor; The assist stop condition is defined as the assist stop condition that the motor speed (v) is lower than the lower limit value (v L ) while the force (T P ) is kept below the lower limit value (T PL ). An assist stop condition determining unit for determining,
The control device for a vehicle with an electrically assisted function, wherein when the assist stop condition determining unit determines that an assist stop condition is satisfied, the accompanying current setting unit interrupts the accompanying current (i ID ).
請求項において、電動モータはベクトル制御される直流無整流子モータであり、モータ回転速度(v)および車速(VSP)はこのモータの回転位置検出器の出力信号に基づいて求められる一方、補助率特性に基づいて車速(VSP)および人力駆動力(TP)に対応するモータの目標トルク(TM)を求める目標トルク演算部と、この目標トルク(TM)に対応したモータの電流指令値(i0 *)をベクトル制御により求めるトルク電流演算部と、前記電流指令値(i0 *)と連れ回り電流(iID)との和を最終電流指令値(i*)とする加算器と、を備える電動補助機能付車両の制御装置。In claim 4 , the electric motor is a vector-controlled DC non-commutator motor, and the motor rotational speed (v) and the vehicle speed (V SP ) are obtained based on the output signal of the rotational position detector of the motor, A target torque calculator for obtaining a target torque (T M ) of the motor corresponding to the vehicle speed (V SP ) and the manpower driving force (T P ) based on the assist rate characteristic, and a motor corresponding to this target torque (T M ) The torque current calculation unit for obtaining the current command value (i 0 * ) by vector control, and the sum of the current command value (i 0 * ) and the accompanying current (i ID ) is the final current command value (i * ). A control device for a vehicle with an electrically assisted function, comprising an adder. 請求項において、人力駆動力(TP)がその下限値(TPL)より大の時に車速(VSP)に対応したモータ回転速度(v)を発生させるのに必要な速度電流(iSP)を求める速度電流演算部と、
電流指令値(i0 *)と連れ回り電流(iID)と前記速度電流(iSP)の和を求めて最終電流指令値(i*)とする加算器と、を備える電動補助機能付車両の制御装置。
According to claim 5, human power (T P) is a lower limit value (T PL) from the vehicle speed when the large (V SP) required to generate the motor rotation speed (v) corresponding to the speed the current (i SP ) For calculating the speed current,
A vehicle with an electric auxiliary function, comprising: an adder for obtaining a final current command value (i * ) by calculating a sum of a current command value (i 0 * ), a follow-up current (i ID ), and the speed current (i SP ) Control device.
JP30311299A 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function Expired - Fee Related JP4364365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30311299A JP4364365B2 (en) 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30311299A JP4364365B2 (en) 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function

Publications (2)

Publication Number Publication Date
JP2001122186A JP2001122186A (en) 2001-05-08
JP4364365B2 true JP4364365B2 (en) 2009-11-18

Family

ID=17917037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30311299A Expired - Fee Related JP4364365B2 (en) 1999-10-25 1999-10-25 Method and apparatus for controlling vehicle with electric assist function

Country Status (1)

Country Link
JP (1) JP4364365B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641740B2 (en) * 2004-05-24 2011-03-02 パナソニック株式会社 Vehicle with auxiliary power unit
JP2007191114A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Vehicle with power assist
JP5211212B2 (en) * 2011-07-27 2013-06-12 株式会社シマノ Bicycle motor control device and bicycle
CN102826160A (en) * 2012-09-05 2012-12-19 苏州科易特自动化科技有限公司 Intelligent power-assisted controller of electric bicycle
CN105539197A (en) * 2015-12-15 2016-05-04 阳光电源股份有限公司 Electric vehicle, electric vehicle motor controller and control method and device of electric vehicle motor controller
EP3564109B1 (en) 2016-12-28 2023-01-25 Yamaha Hatsudoki Kabushiki Kaisha Electric assist system and electric assist vehicle
US12103625B2 (en) 2019-09-13 2024-10-01 Shimano Inc. Human-powered vehicle control device

Also Published As

Publication number Publication date
JP2001122186A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
EP2631165B1 (en) Power-assisted bicycle
JP5689849B2 (en) Motor drive control device
JP3695342B2 (en) Electric motor control device
US8725340B1 (en) Motor drive controller and electric power-assisted vehicle
JP5666639B2 (en) Motor drive control device and electric assist vehicle
EP2711231B1 (en) Controller for driving a motor and electric power-assisted vehicle
JPH10215504A (en) Device for controlling electric vehicle
JP7308198B2 (en) MOTOR CONTROL DEVICE AND METHOD, AND POWER-ASSISTED VEHICLE
EP3459782B1 (en) Motor driving control apparatus and method and motor-assisted vehicle
JPH09294301A (en) Controller and control method for electric vehicle
KR100913501B1 (en) Method for control of hybrid bicycle
EP2644435A1 (en) Two-wheeled electric vehicle
JP4364365B2 (en) Method and apparatus for controlling vehicle with electric assist function
JP4765939B2 (en) Electric vehicle
US20180194430A1 (en) Controller for driving a motor, and electric power assisted vehicle
US20050078431A1 (en) Electric discharge controller, electric discharge control method and its program
JP2002084780A (en) Motor controller
JP4924073B2 (en) Motor control device and vehicle driving force control device
JP6475047B2 (en) Bicycle with electric motor
JP3816300B2 (en) Stall torque control device for electric vehicle driving motor
JP4804681B2 (en) Electric vehicle control device
JP2001128479A (en) Drive control method and device of dc commutatorless motor
JP6106150B2 (en) Motor drive control device and electric assist vehicle
JP2001119803A (en) Method of driving and controlling motor for small electric vehicle and its device
JP3742582B2 (en) Electric vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4364365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees