[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4361330B2 - Anode container for sodium-sulfur battery and manufacturing method thereof - Google Patents

Anode container for sodium-sulfur battery and manufacturing method thereof Download PDF

Info

Publication number
JP4361330B2
JP4361330B2 JP2003297218A JP2003297218A JP4361330B2 JP 4361330 B2 JP4361330 B2 JP 4361330B2 JP 2003297218 A JP2003297218 A JP 2003297218A JP 2003297218 A JP2003297218 A JP 2003297218A JP 4361330 B2 JP4361330 B2 JP 4361330B2
Authority
JP
Japan
Prior art keywords
anode container
polishing
brush
sprayed film
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003297218A
Other languages
Japanese (ja)
Other versions
JP2005071690A (en
Inventor
孝志 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003297218A priority Critical patent/JP4361330B2/en
Publication of JP2005071690A publication Critical patent/JP2005071690A/en
Application granted granted Critical
Publication of JP4361330B2 publication Critical patent/JP4361330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電力負荷調整用などの2次電池として利用されるナトリウム−硫黄電池を構成する陽極容器およびその製造方法に関する。 The present invention relates to an anode container constituting a sodium-sulfur battery used as a secondary battery for power load adjustment and the like, and a method for manufacturing the same.

電力の平準化やピークカットなどの機能を実現するための電力貯蔵システムにナトリウム−硫黄電池が使用されているが、そのナトリウム−硫黄電池の構造は、例えば、図14にその断面図を模式的に示した通りのものである。 A sodium-sulfur battery is used in a power storage system for realizing functions such as power leveling and peak cut. The structure of the sodium-sulfur battery is schematically shown in FIG. It is as shown in.

製造時におけるその電池構造は、有底筒状のベータアルミナ固体電解質管12がその上端外周面でα−アルミナの絶縁リング13の内周面とガラス接合され、更に、絶縁リング13の上面に接合された陰極金具14及びその陰極金具14に溶接された陰極蓋15と絶縁リング13とベータアルミナ固体電解質管12とで区画された陰極室が、有底筒状の金属性安全管16とその安全管16内側にナトリウム及び少量のアジ化ナトリウムを収納したナトリウム収納容器17を配設しており、一方、陽極室は、絶縁リング13の下面に接合された陽極金具18と、その陽極金具18に溶接された陽極容器19と、更にはその陽極容器19に溶接された底蓋20と、絶縁リング13と、ベータアルミナ固体電解質管12とで区画され、硫黄を含浸したカーボンマットが配設され、その上部には窒素などの不活性ガスが充填された構造である。 The battery structure at the time of manufacture is such that a bottomed cylindrical beta-alumina solid electrolyte tube 12 is glass-bonded to the inner peripheral surface of the α-alumina insulating ring 13 at its upper end outer peripheral surface and further bonded to the upper surface of the insulating ring 13. The cathode chamber 14 partitioned by the cathode fitting 14 and the cathode lid 15, the insulating ring 13 and the beta alumina solid electrolyte tube 12 welded to the cathode fitting 14 is a bottomed cylindrical metallic safety tube 16 and its safety. A sodium storage container 17 containing sodium and a small amount of sodium azide is disposed inside the tube 16, while the anode chamber is connected to an anode fitting 18 joined to the lower surface of the insulating ring 13 and the anode fitting 18. A welded anode container 19, and further a bottom lid 20 welded to the anode container 19, an insulating ring 13, and a beta alumina solid electrolyte tube 12, are impregnated with sulfur. Carbon mat is arranged, at its upper portion a structure that inert gas is filled, such as nitrogen.

各部材による単電池組み立て後、電池作動温度までの昇温過程で、ナトリウム収納容器17内のナトリウムは溶融し、ナトリウム収納容器17内の上部に内包されていたアジ化ナトリウムの分解で発生した窒素ガスの圧力によりナトリウム収納容器17の底部に設けられている小孔より溶融ナトリウムが陰極室内に流出して陰極室内を充填状態にする。 After assembling the unit cell, the sodium in the sodium container 17 is melted in the process of raising the temperature to the battery operating temperature, and nitrogen generated by decomposition of sodium azide contained in the upper part of the sodium container 17 Due to the pressure of the gas, molten sodium flows into the cathode chamber from a small hole provided in the bottom of the sodium container 17 and fills the cathode chamber.

290℃〜385℃の温度で電池は作動し、ナトリウムはベータアルミナ固体電解質管12中をナトリウムイオンとしてイオン伝導し、陽極室の溶融硫黄と反応し、多硫化ナトリウムを生成して放電反応が進行する。充電の際は逆の反応が進み、陰極室に溶融ナトリウムが戻される。 The battery operates at a temperature of 290 ° C. to 385 ° C., and sodium conducts ion conduction in the beta alumina solid electrolyte tube 12 as sodium ions, reacts with molten sulfur in the anode chamber, generates sodium polysulfide, and the discharge reaction proceeds. To do. The reverse reaction proceeds during charging, and the molten sodium is returned to the cathode chamber.

上述の構成のナトリウム−硫黄電池において、アルミニウム合金製の陽極容器は、陽極活物質の多硫化ナトリウムに対する耐食性の問題から、その内周面に防食用の溶射皮膜を有するものが用いられている。 In the sodium-sulfur battery having the above-described configuration, an anode container made of an aluminum alloy has a corrosion sprayed coating on its inner peripheral surface because of the problem of corrosion resistance against sodium polysulfide as an anode active material.

ナトリウム−硫黄電池を組み立て後、充放電の電池作動をさせた場合、充放電サイクルの初期において電池の内部抵抗が高く、所定の電流が流せず、電気エネルギーの効率が低いという問題がある。 When the battery is operated for charging / discharging after assembling the sodium-sulfur battery, there is a problem that the internal resistance of the battery is high at the initial stage of the charging / discharging cycle, a predetermined current cannot flow, and the efficiency of electric energy is low.

充放電サイクルを10サイクル程度繰り返せば、漸次内部抵抗は低下していくが、出荷前のセル検査において充放電を繰り返すことは生産性が非常に悪く、費用コストも高くなるとの大きな問題を生ずる。 If the charging / discharging cycle is repeated about 10 cycles, the internal resistance gradually decreases. However, repeating charging / discharging in the cell inspection before shipment causes a serious problem that productivity is very poor and cost is high.

この問題を解決するために、本発明者らは、特許文献1に記載の通り、陽極容器における電気抵抗と被覆層における表面の酸素含有率との関係に着眼して、ナトリウム−硫黄電池の初期特性を向上させてきた。具体的には、円筒状の陽極容器の内周面にプラズマ溶射によって形成された高クロム−鉄系合金からなる被覆層を研磨し、形成された被覆層が、表面から少なくとも5μmの深さの間の酸素含有量が2.0重量%以下である陽極容器の製造方法である。
特開平8−180899号公報
In order to solve this problem, as described in Patent Document 1, the present inventors focused on the relationship between the electrical resistance in the anode container and the oxygen content of the surface in the coating layer, and the initial stage of the sodium-sulfur battery. The characteristics have been improved. Specifically, a coating layer made of a high chromium-iron alloy formed by plasma spraying is polished on the inner peripheral surface of a cylindrical anode container, and the formed coating layer has a depth of at least 5 μm from the surface. This is a method for producing an anode container having an oxygen content of 2.0% by weight or less.
JP-A-8-180899

しかしながら、この方法においては、被覆層における表面層部の酸素含有量の測定をEPMA分析法に基づき、皮膜のみを採取して分析するものであり、多大の労力と時間を要し、生産性が低く、又、コスト高である。 However, in this method, the measurement of the oxygen content of the surface layer portion in the coating layer is based on the EPMA analysis method, and only the film is collected and analyzed, which requires a lot of labor and time, and the productivity is high. Low and costly.

従って、本発明は、上記した従来の問題に鑑みてなされたものであり、その目的とするところは、ナトリウム−硫黄電池を組み立て後、充放電の電池作動をさせた場合、充放電サイクルの初期において電池の内部抵抗が小さく、電気エネルギー効率を高めるナトリウム−硫黄電池用陽極容器を提供することにある。又、その陽極容器を簡便に、高生産性、かつ低コストで、高品質に製造する陽極容器の製造方法を提供することにある。 Therefore, the present invention has been made in view of the above-described conventional problems, and the object of the present invention is to provide an initial charge / discharge cycle when the battery is charged and discharged after the sodium-sulfur battery is assembled. It is an object of the present invention to provide an anode container for a sodium-sulfur battery in which the internal resistance of the battery is small and the electric energy efficiency is increased. It is another object of the present invention to provide a method for manufacturing an anode container that can be manufactured simply, with high productivity, at low cost and with high quality.

発明によれば、金属材料からなる円筒状の陽極容器基体の内周面にプラズマ溶射してCr−Fe合金からなるプラズマ溶射膜を形成し、次いで得られたプラズマ溶射膜を研磨することにより研磨面を有する溶射皮膜を内周面に形成したナトリウム−硫黄電池用陽極容器の製造方法において、前記プラズマ溶射膜を研磨する方法が、該プラズマ溶射膜を有する陽極容器基体を固定して、研磨用ブラシを回転させながら上下に移動して研磨する方法であって、該研磨用ブラシのブラシ材質が金属製ねじりワイヤーブラシであり、該ワイヤーブラシ直径が該陽極容器基体内径の1.05〜1.15倍であって、該ワイヤーブラシの断面硬さ(Hv)が430以上であり、該ワイヤーブラシを構成するワイヤー一本の線直径が0.2〜0.8mm、該ワイヤーブラシの回転数が900〜1400rpm、該ワイヤーブラシトラバース速度が60〜80mm/secの範囲で研磨し、該溶射皮膜に対する研磨面積率が10%以上となるまで該プラズマ溶射膜を研磨することを特徴とするナトリウム−硫黄電池用陽極容器の製造方法(第1の製造方法)が提供される。 According to the present invention, plasma spraying is performed on the inner peripheral surface of a cylindrical anode container base made of a metal material to form a plasma sprayed film made of a Cr—Fe alloy, and then the obtained plasma sprayed film is polished. In the manufacturing method of an anode container for a sodium-sulfur battery in which a sprayed coating having a polished surface is formed on an inner peripheral surface, the method of polishing the plasma sprayed film is performed by fixing the anode container base having the plasma sprayed film and polishing. A method for polishing by rotating up and down while rotating a brush for polishing, wherein the brush material is a metal twisted wire brush, and the wire brush diameter is 1.05-1 of the inner diameter of the anode container base. 15 times, the cross-sectional hardness (Hv) of the wire brush is 430 or more, and the wire diameter of one wire constituting the wire brush is 0.2 to 0.8 mm, 900~1400rpm the rotational speed of the wire brush, that said wire brush traverse speed is polished in the range of 60 to 80 mm / sec, to polish the plasma spray film to the polishing area ratio solution morphism film is 10% or more A manufacturing method (first manufacturing method) of a characteristic anode container for a sodium-sulfur battery is provided.

又、本発明によれば、内周面に防食用溶射皮膜を有するナトリウム−硫黄電池用陽極容器の製造方法において、大気中でプラズマ溶射によって陽極容器基体内周面にCr−Fe合金からなるプラズマ溶射膜を形成した後、該プラズマ溶射膜表面を研磨して、研磨面におけるクロム酸化物含有量が該プラズマ溶射膜の表面におけるクロム酸化物含有量よりも10%以上小さくなるまで研磨し、前記プラズマ溶射膜を研磨する方法が、該プラズマ溶射膜を有する陽極容器基体を固定して、研磨用ブラシを回転させながら上下に移動して研磨する方法であって、該研磨用ブラシのブラシ材質が金属製ねじりワイヤーブラシであり、該ワイヤーブラシ直径が該陽極容器基体内径の1.05〜1.15倍であって、該ワイヤーブラシの断面硬さ(Hv)が430以上であり、該ワイヤーブラシを構成するワイヤー一本の線直径が0.2〜0.8mm、該ワイヤーブラシの回転数が900〜1400rpm、該ワイヤーブラシトラバース速度が60〜80mm/secの範囲で研磨することを特徴とするナトリウム−硫黄電池用陽極容器の製造方法(第2の製造方法)が提供される。 According to the present invention, in the method for manufacturing a sodium-sulfur battery anode container having an anti-corrosion spray coating on the inner peripheral surface, a plasma comprising a Cr-Fe alloy is formed on the inner peripheral surface of the anode container base by plasma spraying in the air. After forming the sprayed film, the plasma sprayed film surface is polished and polished until the chromium oxide content on the polished surface is 10% or more lower than the chromium oxide content on the surface of the plasma sprayed film , A method for polishing a plasma sprayed film is a method in which an anode container base having the plasma sprayed film is fixed, and the polishing brush is moved up and down while rotating, and the brush material of the polishing brush is made of A twisted wire brush made of metal, the wire brush diameter is 1.05-1.15 times the inner diameter of the anode container base, and the cross-sectional hardness (Hv) of the wire brush 430 or more, the wire diameter of one wire constituting the wire brush is 0.2 to 0.8 mm, the rotation speed of the wire brush is 900 to 1400 rpm, and the wire brush traverse speed is 60 to 80 mm / sec. A method for manufacturing an anode container for a sodium-sulfur battery (second manufacturing method) is provided.

本発明に係る第1および第2の製造方法においては、前記プラズマ溶射膜を形成する方法が、円筒状の陽極容器基体を回転させながら、溶射ガンを上下に移動させて大気中でプラズマ溶射する際、溶射ガンのアルゴンガスを用いた1次ガスの流速が30〜40L/min、水素を用いた2次ガスの流速が4.0〜5.5L/min、プラズマ出力が12〜15KW、金属粉末粒度が5〜60μm、溶射距離が45〜55mmの範囲でプラズマ溶射してプラズマ溶射膜を形成する方法であることが好ましい。 In the first and second manufacturing methods according to the present invention, the method for forming the plasma sprayed film is to perform plasma spraying in the atmosphere by moving the spray gun up and down while rotating the cylindrical anode container base. At this time, the flow rate of the primary gas using the argon gas of the spray gun is 30 to 40 L / min, the flow rate of the secondary gas using hydrogen is 4.0 to 5.5 L / min, the plasma output is 12 to 15 kW, the metal A method in which a plasma sprayed film is formed by plasma spraying in a range where the powder particle size is 5 to 60 μm and the spraying distance is 45 to 55 mm is preferable.

更に、本発明の第1および第2の製造方法においては、前記ワイヤーブラシを構成するワイヤー一本の線直径が0.3mm〜0.4mmであることが更に好ましい。 Furthermore, in the 1st and 2nd manufacturing method of this invention, it is still more preferable that the wire diameter of one wire which comprises the said wire brush is 0.3 mm-0.4 mm.

本発明のナトリウム−硫黄電池用陽極容器を用いて電池を組み立てれば、充放電サイクルの初期において電池の内部抵抗が低く、電気エネルギー効率の高いナトリウム−硫黄電池が得られる。又、本発明に係る第1および第2のナトリウム−硫黄電池用陽極容器の製造方法によれば、労力が少なく、生産性が高く、コストを低減でき、更に、プラズマ溶射膜を過度に研磨する必要はなく、研磨の無駄を省き、研磨時間、研磨コストを大幅に低減するという格別の効果が得られる。 If a battery is assembled using the anode container for sodium-sulfur batteries of the present invention, a sodium-sulfur battery with low internal resistance and high electric energy efficiency can be obtained at the beginning of the charge / discharge cycle. In addition, according to the first and second method for manufacturing an anode container for a sodium-sulfur battery according to the present invention, the labor is low, the productivity is high, the cost can be reduced, and the plasma sprayed film is excessively polished. This is not necessary, and it is possible to obtain a special effect of eliminating waste of polishing and greatly reducing polishing time and polishing cost.

以下に、本発明のナトリウム−硫黄電池用陽極容器について、その実施形態の1例を説明するが、本発明は、これらに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、各種変更が可能であり、又、種々の修正、改良を加え得るものである。 Hereinafter, one example of the embodiment of the anode container for a sodium-sulfur battery according to the present invention will be described. However, the present invention is not limited to these examples and is not deviated from the scope of the present invention. However, various changes can be made based on the knowledge of those skilled in the art, and various modifications and improvements can be added.

本発明のナトリウム−硫黄電池用陽極容器は、内周面にCr−Fe合金からなる防食用溶射皮膜を形成したナトリウム−硫黄電池用陽極容器であって、その溶射皮膜が、大気中でプラズマ溶射によって形成された後に研磨されて形成された研磨面を有する溶射皮膜であって、溶射皮膜面積に対する研磨面積率が10%以上であることを特徴とする。 The anode container for a sodium-sulfur battery according to the present invention is an anode container for a sodium-sulfur battery in which an anti-corrosion spray coating made of a Cr-Fe alloy is formed on the inner peripheral surface, and the spray coating is plasma sprayed in the atmosphere. A thermal spray coating having a polished surface formed by polishing after being formed by the method, wherein the polishing area ratio with respect to the thermal spray coating area is 10% or more.

本発明のナトリウム−硫黄電池用陽極容器を用いて、電池を組み立てた場合、電池の初期内部抵抗が著しく低い電池が得られるとの格別の効果が得られる。 When the battery is assembled by using the sodium-sulfur battery anode container of the present invention, a special effect is obtained that a battery having an extremely low initial internal resistance can be obtained.

溶射皮膜面積に対する研磨面積率の具体的な計測方法は、走査電子顕微鏡を用い、溶射皮膜面の計測領域の二次電子像を撮影後、皮膜研磨領域をトレースし、画像解析し、計測領域面積に対する各研磨面積の総和の百分率として求める。 The specific method for measuring the polishing area ratio with respect to the sprayed coating area is to use a scanning electron microscope, take a secondary electron image of the measurement area on the sprayed coating surface, trace the coating polishing area, analyze the image, and measure the area of the measurement area. It is obtained as a percentage of the sum total of each polished area.

図1に陽極容器基体5としてアルミニウム円筒体を用いた本発明のナトリウム−硫黄電池用陽極容器1を示す。溶射皮膜面2を高さ方向に5分割し、各領域(P1〜P5)における研磨面積率を求め、その結果を表1に示した。図2に研磨面を有する溶射皮膜2の走査電子顕微鏡による二次電子像の写真を1例として示す。図3は図2に対応した溶射皮膜研磨領域のトレース図(画像解析結果)である。図3は、図1における領域P5の溶射皮膜研磨領域を示しており、研磨面3の個数は36個、研磨面の面積総和は67027μm2、計測領域面積は214076μm2であり、研磨面積率は31.31%と計算される。 FIG. 1 shows an anode container 1 for a sodium-sulfur battery according to the present invention using an aluminum cylinder as the anode container substrate 5. The thermal spray coating surface 2 was divided into five in the height direction, the polishing area ratio in each region (P1 to P5) was determined, and the results are shown in Table 1. FIG. 2 shows, as an example, a photograph of a secondary electron image of a thermal spray coating 2 having a polished surface by a scanning electron microscope. FIG. 3 is a trace diagram (image analysis result) of the thermal spray coating polishing region corresponding to FIG. FIG. 3 shows a thermal spray coating polishing region in the region P5 in FIG. 1. The number of polishing surfaces 3 is 36, the total area of the polishing surfaces is 67027 μm 2 , the measurement region area is 214076 μm 2 , and the polishing area ratio is Calculated at 31.31%.

本発明のナトリウム−硫黄電池用陽極容器1の例においては、表1に示す通り、研磨面積率は30〜37%の範囲であり、溶射皮膜2は全域がほぼ均一に研磨されており、溶射皮膜面積に対する平均研磨面積率は約33%である。 In the example of the anode container 1 for a sodium-sulfur battery of the present invention, as shown in Table 1, the polishing area ratio is in the range of 30 to 37%, and the entire area of the sprayed coating 2 is polished almost uniformly. The average polished area ratio with respect to the film area is about 33%.

研磨面積率の異なる各種ナトリウム−硫黄電池用陽極容器を作成し、夫々電池を組み立て、各電池について電池作動時における初期内部抵抗を測定し、その結果を図4に示した。図4に示す通り、研磨面積率が0、即ち、未研磨状態の陽極容器を用いた電池の場合、その初期内部抵抗は7mΩであるが、研磨面積率が上昇するにつれて電池の初期内部抵抗は減少する。 Various sodium-sulfur battery anode containers having different polishing area ratios were prepared, batteries were assembled, and the initial internal resistance of each battery during battery operation was measured. The results are shown in FIG. As shown in FIG. 4, in the case of a battery using an anode container with a polished area ratio of 0, ie, an unpolished anode container, the initial internal resistance is 7 mΩ, but as the polished area ratio increases, the initial internal resistance of the battery is Decrease.

研磨面積率が10%以上の陽極容器を用いた場合は初期内部抵抗が著しく低下し、約3mΩ以下の低い初期内部抵抗を有する電池が得られる。研磨面積率が20%以上の陽極容器を用いた場合は約2.5mΩ以下の低い初期内部抵抗を有する電池が得られるから好ましい。又、耐腐食性の点から溶射皮膜のクロム含有量は60重量%以上であることが好ましい。又、電池の耐用年数の点から溶射皮膜の厚みは40μm以上が好ましい。 When an anode container having a polished area ratio of 10% or more is used, the initial internal resistance is remarkably reduced, and a battery having a low initial internal resistance of about 3 mΩ or less can be obtained. When an anode container having a polished area ratio of 20% or more is used, a battery having a low initial internal resistance of about 2.5 mΩ or less can be obtained. From the viewpoint of corrosion resistance, the chromium content of the sprayed coating is preferably 60% by weight or more. Further, the thickness of the thermal spray coating is preferably 40 μm or more from the viewpoint of the service life of the battery.

プラズマ溶射膜を研磨して、研磨面積率を高めるにつれて、研磨面を有する溶射皮膜の面粗度(Ra)は低下する。研磨面積率と面粗度(Ra)の関係を図5に示す。図5に示す通り、研磨面積率10%は面粗度(Ra)6μmに対応する。従って、溶射皮膜の面粗度(Ra)を6μm以下となるまで研磨することが好ましい。 As the plasma sprayed film is polished to increase the polishing area ratio, the surface roughness (Ra) of the sprayed coating having a polished surface decreases. The relationship between the polishing area ratio and the surface roughness (Ra) is shown in FIG. As shown in FIG. 5, a polishing area ratio of 10% corresponds to a surface roughness (Ra) of 6 μm. Therefore, it is preferable to polish until the surface roughness (Ra) of the thermal spray coating is 6 μm or less.

研磨面積率のみならず、溶射皮膜の厚さ及び溶射皮膜の面粗度(Ra)の異なる各種陽極容器を夫々作成し、夫々電池を組み立て、各電池について電池作動時における初期内部抵抗を測定した。その結果を表2に示す。表2に記載の陽極容器はいずれも陽極容器基体としてアルミニウムの円筒体を用い、その内周面に73%Cr−Fe合金の溶射皮膜を形成したものである。溶射皮膜の面粗度(Ra)はJIS B0601の規定に基づく面粗度を示す。研磨面積率は溶射皮膜面を高さ方向に5分割し、各領域における研磨面積率を求め、5分割領域全体の平均研磨面積率を示す。観察倍率は200倍で行った。 Not only the polishing area ratio, but also various anode containers with different spray coating thickness and spray coating surface roughness (Ra) were prepared, batteries were assembled, and the initial internal resistance of each battery during operation was measured. . The results are shown in Table 2. Each of the anode containers shown in Table 2 uses an aluminum cylindrical body as an anode container base, and a sprayed coating of 73% Cr—Fe alloy is formed on the inner peripheral surface thereof. The surface roughness (Ra) of the thermal spray coating indicates the surface roughness based on JIS B0601. The polished area ratio is obtained by dividing the sprayed coating surface into five parts in the height direction, obtaining the polished area ratio in each region, and indicating the average polished area ratio of the entire five divided regions. The observation magnification was 200 times.

表2に示す通り、本発明の陽極容器である実施例1〜実施例6は、研磨面積率がいずれも10%以上であり、溶射皮膜の面粗度(Ra)は6μm以下であって、皮膜厚みが49μm以上の実施例を示したものである。いずれも、各陽極容器を用いて組み立てた電池は、充放電時の電池の初期内部抵抗は3.1mΩ以下である。一方、研磨面積率がいずれも10%より低い比較例1〜比較例4においては、各陽極容器を用いて組み立てた電池は、充放電時の電池の初期内部抵抗は5.3mΩ以上の高い値を示した。 As shown in Table 2, Examples 1 to 6 which are anode containers of the present invention have a polished area ratio of 10% or more, and the surface roughness (Ra) of the sprayed coating is 6 μm or less, The example whose film thickness is 49 micrometers or more is shown. In any case, the battery assembled using each anode container has an initial internal resistance of 3.1 mΩ or less during charging and discharging. On the other hand, in Comparative Examples 1 to 4 where the polishing area ratios are all lower than 10%, the batteries assembled using each anode container had a high initial internal resistance of the battery at the time of charge / discharge of 5.3 mΩ or higher. showed that.

次に、溶射皮膜表面の酸素含有量と研磨面積率の関係を図6に示す。図6に示す通り、研磨面積率10%における溶射皮膜表面部の酸素含有量は4.0重量%である。即ち、溶射皮膜表面の酸素含有量が4.0重量%以下になるまで研磨した陽極容器を用いて電池を組み立てれば、初期内部抵抗の小さい電池が得られる。溶射皮膜表面の酸素含有量は表面部深さ5μmを採取して、分析した値である。 Next, the relationship between the oxygen content on the surface of the sprayed coating and the polishing area ratio is shown in FIG. As shown in FIG. 6, the oxygen content of the sprayed coating surface portion at a polishing area ratio of 10% is 4.0% by weight. That is, if a battery is assembled using an anode container that has been polished until the oxygen content on the surface of the thermal spray coating is 4.0% by weight or less, a battery having a low initial internal resistance can be obtained. The oxygen content on the surface of the thermal spray coating is a value obtained by analyzing a surface depth of 5 μm.

次に、本発明のナトリウム−硫黄電池用陽極容器の製造方法について説明する。本発明の第1のナトリウム−硫黄電池用陽極容器の製造方法は、金属材料からなる円筒状の陽極容器基体の内周面にプラズマ溶射してCr−Fe合金からなるプラズマ溶射膜を形成し、次いで得られたプラズマ溶射膜を研磨することにより研磨面を有する溶射皮膜を内周面に形成したナトリウム−硫黄電池用陽極容器の製造方法において、該溶射皮膜に対する研磨面積率が10%以上となるまで該プラズマ溶射膜を研磨することを特徴とする。 Next, the manufacturing method of the anode container for sodium-sulfur batteries of this invention is demonstrated. In the first method for producing an anode container for a sodium-sulfur battery of the present invention, plasma spraying is performed on the inner peripheral surface of a cylindrical anode container base made of a metal material to form a plasma sprayed film made of a Cr-Fe alloy, Next, in the method for manufacturing an anode container for a sodium-sulfur battery, in which the obtained plasma sprayed film is polished to form a sprayed film having a polished surface on the inner peripheral surface, the polishing area ratio with respect to the sprayed film becomes 10% or more. The plasma sprayed film is polished to a maximum.

具体的には、図7に示す通り、陽極容器の基体5としてアルミニウム合金製の円筒体を用い、この陽極容器基体5を回転治具6により所定の回転速度で回転させ、陽極基体5内に溶射ガン7を所定のトラバース速度で降下させながら、陽極容器基体5内周面に大気中でプラズマ溶射する。プラズマ溶射膜4の厚みに応じて溶射ガン7を陽極容器基体5内を上下往復移動させ溶射する。 Specifically, as shown in FIG. 7, a cylindrical body made of an aluminum alloy is used as the base 5 of the anode container, and this anode container base 5 is rotated at a predetermined rotational speed by a rotating jig 6, Plasma spraying is performed in the air on the inner peripheral surface of the anode container base 5 while lowering the spray gun 7 at a predetermined traverse speed. In accordance with the thickness of the plasma sprayed film 4, the spray gun 7 is reciprocated up and down in the anode container base 5 for spraying.

用いる溶射用金属粉末はCr−Fe合金粉末であって、その粉末粒度は5〜60μmの範囲のものを用いる。溶射ガン7は1次ガスにアルゴンガス、2次ガスに水素を用い、1次ガス流速を30〜40L/min、2次ガス流速を4.0〜5.5L/minに設定し、水素燃焼によりプラズマ域8をつくり、そのプラズマ域8に供給パイプ9から金属粉末を吹き込む。又、溶射ガン出力を12〜15KWに設定し、更に、溶射ガン7と陽極容器基体5との距離、即ち、溶射距離(d)を45〜55mmに設定する。 The metal powder for thermal spraying used is Cr—Fe alloy powder, and the powder particle size is in the range of 5 to 60 μm. The thermal spray gun 7 uses argon gas as the primary gas, hydrogen as the secondary gas, sets the primary gas flow rate to 30 to 40 L / min, sets the secondary gas flow rate to 4.0 to 5.5 L / min, and performs hydrogen combustion. The plasma region 8 is formed by the above, and metal powder is blown into the plasma region 8 from the supply pipe 9. Further, the spray gun output is set to 12 to 15 KW, and the distance between the spray gun 7 and the anode container base 5, that is, the spray distance (d) is set to 45 to 55 mm.

陽極容器基体5の内周面に形成されたプラズマ溶射膜4の表面は図8に局部的に拡大した模式図として示す通り、表面にクロム酸化物およびヒュームが付着した状態にある。この様にして陽極容器基体5の内周面にプラズマ溶射膜4を形成した後、このプラズマ溶射膜4を溶射皮膜に対する研磨面積率が10%以上となるまで研磨する。 The surface of the plasma sprayed film 4 formed on the inner peripheral surface of the anode container base 5 is in a state in which chromium oxide and fume are attached to the surface as shown in the enlarged schematic diagram of FIG. After the plasma sprayed film 4 is formed on the inner peripheral surface of the anode container base 5 in this way, the plasma sprayed film 4 is polished until the polishing area ratio with respect to the sprayed coating becomes 10% or more.

具体的な研磨方法は、図9に示す通り、プラズマ溶射膜4を内周面に有する陽極容器基体5を固定治具11により固定し、研磨用ブラシ10を回転させながら上下に移動して研磨する方法であって、研磨用ブラシ10のブラシ材質が金属製ねじりワイヤーブラシであって、そのワイヤーブラシの断面硬さ(Hv)が430以上であり、ワイヤーブラシを構成するワイヤー1本の線直径が0.2〜0.8mmのものを用い、ワイヤーブラシの回転数を900〜1400rpm、ワイヤーブラシトラバース速度を60〜80mm/secに設定して研磨する。 Specifically, as shown in FIG. 9, the anode container base 5 having the plasma sprayed film 4 on the inner peripheral surface is fixed by a fixing jig 11, and the polishing brush 10 is moved up and down while rotating to polish. The brush material of the polishing brush 10 is a metal twisted wire brush, the wire brush has a cross-sectional hardness (Hv) of 430 or more, and the wire diameter of one wire constituting the wire brush Is 0.2 to 0.8 mm, the number of revolutions of the wire brush is set to 900 to 1400 rpm, and the wire brush traverse speed is set to 60 to 80 mm / sec.

ここで、図10に示すワイヤーブラシの直径(D1)は陽極容器基体5の内径(D2)に対応して設定される。ワイヤーブラシの直径(D1)が陽極容器基体5の内径(D2)の1.05〜1.15倍のものを用いるのが好ましい。陽極容器基体5の内径が85.6mmのものを使用した場合は、直径90〜95mmのワイヤーブラシを用いることが好ましい。又、ワイヤーブラシを構成するワイヤー1本の線直径が0.3〜0.4mmのものを用いことが更に好ましい。ワイヤーブラシの断面硬さ(Hv)が460であるピアノ線製ワイヤーブラシが好ましい。研磨面の局部的に拡大した模式図を図11に示す。 Here, the diameter (D1) of the wire brush shown in FIG. 10 is set corresponding to the inner diameter (D2) of the anode container base 5. It is preferable to use a wire brush having a diameter (D1) of 1.05 to 1.15 times the inner diameter (D2) of the anode container base 5. When the anode container base 5 having an inner diameter of 85.6 mm is used, it is preferable to use a wire brush having a diameter of 90 to 95 mm. In addition, it is more preferable to use a wire brush having a wire diameter of 0.3 to 0.4 mm. The wire brush made from a piano wire whose cross-sectional hardness (Hv) of a wire brush is 460 is preferable. FIG. 11 shows a schematic diagram of a locally enlarged polishing surface.

本発明の第1のナトリウム−硫黄電池用陽極容器の製造方法によれば、研磨面積率の測定は溶射皮膜のみを採取して分析する方法に較べ容易であり、労力が少なく、比較的短時間で測定でき、生産性が高く、コストを低減できるとの顕著な効果を奏する。 According to the first method for producing an anode container for a sodium-sulfur battery of the present invention, the measurement of the polishing area ratio is easier than the method of collecting and analyzing only the sprayed coating, and it requires less labor and is relatively short in time. It is possible to measure with a high productivity, and there is a remarkable effect that the cost can be reduced.

又、プラズマ溶射膜を過度に研磨する必要はなく、研磨面積率が10%以上になる程度に研磨すればよく、研磨の無駄を省き、研磨時間、研磨コストを大幅に低減するという格別の効果が得られる。 In addition, it is not necessary to polish the plasma sprayed film excessively, it is sufficient to polish it to an extent that the polishing area ratio is 10% or more, and it is possible to eliminate the waste of polishing, and to significantly reduce the polishing time and polishing cost. Is obtained.

本発明者らは、研磨面積率と電池の初期内部抵抗の間の相関関係に着目し、本発明の第1のナトリウム−硫黄電池用陽極容器の製造方法を完成させたが、研磨面積率を測定する際に、併せて、研磨するまえのプラズマ溶射膜表面におけるクロム酸化物含有量と研磨後の研磨面におけるクロム酸化物含有量を測定し、研磨前後における皮膜表面のクロム酸化物含有量の減少率と研磨面積率の間の相関関係に着目し、本発明の第2のナトリウム−硫黄電池用陽極容器の製造方法を完成した。 The present inventors paid attention to the correlation between the polishing area ratio and the initial internal resistance of the battery, and completed the first method for producing an anode container for a sodium-sulfur battery of the present invention. When measuring, the chromium oxide content on the plasma sprayed film surface before polishing and the chromium oxide content on the polished surface after polishing are also measured, and the chromium oxide content on the coating surface before and after polishing is measured. Paying attention to the correlation between the reduction rate and the polishing area rate, the second method for producing an anode container for a sodium-sulfur battery of the present invention was completed.

本発明の第2のナトリウム−硫黄電池用陽極容器の製造方法は、内周面に防食用溶射皮膜を有するナトリウム−硫黄電池用陽極容器の製造方法において、大気中でプラズマ溶射によって陽極容器基体内周面にCr−Fe合金からなるプラズマ溶射膜を形成した後、プラズマ溶射膜表面を研磨して、研磨面におけるクロム酸化物含有量がプラズマ溶射膜の表面におけるクロム酸化物含有量よりも10%以上小さくなるまで研磨することを特徴とする。 The second method for producing an anode container for a sodium-sulfur battery according to the present invention is a method for producing an anode container for a sodium-sulfur battery having an anti-corrosion spray coating on the inner peripheral surface thereof. After forming a plasma sprayed film made of a Cr—Fe alloy on the peripheral surface, the surface of the plasma sprayed film is polished, and the chromium oxide content on the polished surface is 10% of the chromium oxide content on the surface of the plasma sprayed film. It is characterized by polishing until it becomes smaller.

皮膜表面のクロム酸化物含有量の測定はX線回折により行い、研磨前後における皮膜表面のクロム酸化物含有量の減少率はX線回折によるピーク強度比より求めた。クロム酸化物はCr23,Cr34,FeCr24の3種類である。 The chromium oxide content on the film surface was measured by X-ray diffraction, and the reduction rate of the chromium oxide content on the film surface before and after polishing was determined from the peak intensity ratio by X-ray diffraction. There are three types of chromium oxides: Cr 2 O 3 , Cr 3 O 4 , and FeCr 2 O 4 .

研磨面積率(%)と研磨前後における皮膜表面のクロム酸化物含有量減少率(%)との関係を図12に示す。図12に示す通り、研磨面におけるクロム酸化物含有量がプラズマ溶射膜の表面におけるクロム酸化物含有量よりも10%以上小さくなるまで研磨することは、本発明の第1のナトリウム−硫黄電池用陽極容器の製造方法における研磨面積率が10%以上になるまで研磨することに相当する。 FIG. 12 shows the relationship between the polishing area ratio (%) and the chromium oxide content reduction rate (%) on the film surface before and after polishing. As shown in FIG. 12, polishing until the chromium oxide content on the polished surface is 10% or more lower than the chromium oxide content on the surface of the plasma sprayed film is for the first sodium-sulfur battery of the present invention. This corresponds to polishing until the polishing area ratio in the method for manufacturing the anode container reaches 10% or more.

各種のクロム酸化物含有量の減少率で製造した陽極容器を用いて電池を組み立て、電池の初期内部抵抗を計測した結果を図13に示す。図12に示す通り、クロム酸化物含有量の減少率が10%以上の場合に電池の初期内部抵抗は著しく低下する。表2に示す実施例1〜実施例6はいずれもクロム酸化物含有量の減少率が10%以上であって、それらを用いて組み立てた電池の初期内部抵抗は3.1mΩ以下である。 FIG. 13 shows the results of assembling a battery using anode containers manufactured at various reduction rates of chromium oxide content and measuring the initial internal resistance of the battery. As shown in FIG. 12, when the decreasing rate of the chromium oxide content is 10% or more, the initial internal resistance of the battery is remarkably lowered. In all of Examples 1 to 6 shown in Table 2, the reduction rate of the chromium oxide content is 10% or more, and the initial internal resistance of the battery assembled using them is 3.1 mΩ or less.

以上の説明の通り、本発明の第2のナトリウム−硫黄電池用陽極容器の製造方法によれば、プラズマ溶射膜および研磨後の溶射皮膜の夫々の表面におけるクロム酸化物含有量をX線回折により求め、クロム酸化物含有量減少率(%)をピーク強度比より求めればよく、溶射皮膜のみを採取して分析する方法に較べ容易であり、労力が少なく、比較的短時間で測定でき、生産性が高く、コストを低減できるとの顕著な効果を奏する。 As described above, according to the second method for producing an anode container for a sodium-sulfur battery of the present invention, the chromium oxide content on the surfaces of the plasma sprayed film and the polished sprayed film is determined by X-ray diffraction. The chromium oxide content reduction rate (%) can be obtained from the peak intensity ratio, which is easier than the method of collecting and analyzing only the sprayed coating, requires less labor, and can be measured in a relatively short time. The effect is high that the cost is reduced.

又、プラズマ溶射膜を過度に研磨する必要はなく、研磨の無駄を省き、研磨時間、研磨コストを大幅に低減するとの格別の効果が得られる。 Further, it is not necessary to polish the plasma sprayed film excessively, and it is possible to obtain an extraordinary effect of eliminating the waste of polishing and greatly reducing the polishing time and the polishing cost.

本発明の陽極容器は、ナトリウム−硫黄電池に好適に用いることができ、その場合、充放電サイクルの初期において電池の内部抵抗が低く、電気エネルギー効率の高いナトリウム−硫黄電池を得ることができる。 The anode container of the present invention can be suitably used for a sodium-sulfur battery. In that case, a sodium-sulfur battery with low internal resistance and high electric energy efficiency can be obtained at the initial stage of the charge / discharge cycle.

本発明のナトリウム−硫黄電池用陽極容器の断面図である。It is sectional drawing of the anode container for sodium-sulfur batteries of this invention. 研磨面を有する溶射皮膜の走査電子顕微鏡による2次電子像写真である。It is a secondary electron image photograph by the scanning electron microscope of the sprayed coating which has a grinding | polishing surface. 図2に対応したトレース図である。FIG. 3 is a trace diagram corresponding to FIG. 2. 研磨面積率(%)と電池の初期内部抵抗の関係を示すグラフであるIt is a graph which shows the relationship between polishing area ratio (%) and the initial internal resistance of a battery. 研磨面積率(%)と溶射皮膜の面粗度(Ra)の関係を示すグラフであるIt is a graph which shows the relationship between polishing area ratio (%) and surface roughness (Ra) of a thermal spray coating. 研磨面積率(%)と溶射皮膜表面における酸素含有量との関係を示すグラフである。It is a graph which shows the relationship between polishing area rate (%) and oxygen content in the sprayed coating surface. 大気中で陽極容器基体の内周面にプラズマ溶射する方法の説明図である。It is explanatory drawing of the method of plasma spraying to the internal peripheral surface of an anode container base | substrate in air | atmosphere. プラズマ溶射膜の局部拡大模式図である。It is a local expansion schematic diagram of a plasma sprayed film. プラズマ溶射膜を有する陽極容器内周面を研磨する方法の説明図である。It is explanatory drawing of the method of grind | polishing the inner peripheral surface of an anode container which has a plasma sprayed film. 研磨ブラシの局部拡大図である。It is a local enlarged view of an abrasive brush. 研磨面を有する溶射皮膜の局部拡大模式図であるIt is a local expansion schematic diagram of a thermal spray coating having a polished surface. 研磨面積率と皮膜表面における研磨前後のクロム酸化物含有量減少率との関係を示すグラフである。It is a graph which shows the relationship between a grinding | polishing area rate and the chromium oxide content decreasing rate before and behind grinding | polishing in the film | membrane surface. 皮膜表面における研磨前後のクロム酸化物含有量減少率と電池の初期内部抵抗との関係を示すグラフである。It is a graph which shows the relationship between the chromium oxide content decreasing rate before and behind grinding | polishing in the film | membrane surface, and the initial stage internal resistance of a battery. 従来のナトリウム−硫黄電池の断面図である。It is sectional drawing of the conventional sodium-sulfur battery.

符号の説明Explanation of symbols

1…本発明のナトリウム−硫黄電池用陽極容器、2…溶射皮膜、3…研磨面、4…プラズマ溶射膜、5…陽極容器基体、6…回転治具、7…溶射ガン、8…プラズマ域、9…供給パイプ、10…研磨用ブラシ、11…固定治具、12…ベータアルミナ固体電解質、13…α−アルミナ絶縁リング、14…陰極金具、15…陰極蓋、16…安全管、17…ナトリウム収納容器、18…陽極金具、19…陽極容器、20…底蓋。 DESCRIPTION OF SYMBOLS 1 ... Anode container for sodium-sulfur batteries of this invention, 2 ... Thermal spray coating, 3 ... Polishing surface, 4 ... Plasma spray coating, 5 ... Anode container base | substrate, 6 ... Rotating jig, 7 ... Thermal spray gun, 8 ... Plasma area , 9 ... Supply pipe, 10 ... Polishing brush, 11 ... Fixing jig, 12 ... Beta alumina solid electrolyte, 13 ... α-alumina insulating ring, 14 ... Cathode fitting, 15 ... Cathode lid, 16 ... Safety tube, 17 ... Sodium container, 18 ... anode fitting, 19 ... anode container, 20 ... bottom lid.

Claims (4)

金属材料からなる円筒状の陽極容器基体の内周面にプラズマ溶射してCr−Fe合金からなるプラズマ溶射膜を形成し、次いで得られたプラズマ溶射膜を研磨することにより研磨面を有する溶射皮膜を内周面に形成したナトリウム−硫黄電池用陽極容器の製造方法において、
前記プラズマ溶射膜を研磨する方法が、該プラズマ溶射膜を有する陽極容器基体を固定して、研磨用ブラシを回転させながら上下に移動して研磨する方法であって、該研磨用ブラシのブラシ材質が金属製ねじりワイヤーブラシであり、該ワイヤーブラシ直径が該陽極容器基体内径の1.05〜1.15倍であって、該ワイヤーブラシの断面硬さ(Hv)が430以上であり、該ワイヤーブラシを構成するワイヤー一本の線直径が0.2〜0.8mm、該ワイヤーブラシの回転数が900〜1400rpm、該ワイヤーブラシトラバース速度が60〜80mm/secの範囲で研磨し、
該溶射皮膜に対する研磨面積率が10%以上となるまで該プラズマ溶射膜を研磨することを特徴とするナトリウム−硫黄電池用陽極容器の製造方法。
Plasma spraying is performed on the inner peripheral surface of a cylindrical anode container base made of a metal material to form a plasma sprayed film made of a Cr-Fe alloy, and then the resulting plasma sprayed film is polished to have a polished surface. In the manufacturing method of the anode container for sodium-sulfur batteries formed on the inner peripheral surface,
The method of polishing the plasma sprayed film is a method of fixing the anode container substrate having the plasma sprayed film and moving it up and down while rotating the polishing brush, and polishing the brush material of the polishing brush Is a metal twisted wire brush, the wire brush diameter is 1.05 to 1.15 times the inner diameter of the anode container base, and the cross-sectional hardness (Hv) of the wire brush is 430 or more. The wire diameter of one wire constituting the brush is 0.2 to 0.8 mm, the rotation speed of the wire brush is 900 to 1400 rpm, the wire brush traverse speed is polished in the range of 60 to 80 mm / sec,
A method for producing an anode container for a sodium-sulfur battery, characterized in that the plasma sprayed film is polished until the polishing area ratio to the sprayed film becomes 10% or more.
内周面に防食用溶射皮膜を有するナトリウム−硫黄電池用陽極容器の製造方法において、
大気中でプラズマ溶射によって陽極容器基体内周面にCr−Fe合金からなるプラズマ溶射膜を形成した後、該プラズマ溶射膜表面を研磨して、研磨面におけるクロム酸化物含有量が該プラズマ溶射膜の表面におけるクロム酸化物含有量よりも10%以上小さくなるまで研磨し、
前記プラズマ溶射膜を研磨する方法が、該プラズマ溶射膜を有する陽極容器基体を固定して、研磨用ブラシを回転させながら上下に移動して研磨する方法であって、該研磨用ブラシのブラシ材質が金属製ねじりワイヤーブラシであり、該ワイヤーブラシ直径が該陽極容器基体内径の1.05〜1.15倍であって、該ワイヤーブラシの断面硬さ(Hv)が430以上であり、該ワイヤーブラシを構成するワイヤー一本の線直径が0.2〜0.8mm、該ワイヤーブラシの回転数が900〜1400rpm、該ワイヤーブラシトラバース速度が60〜80mm/secの範囲で研磨することを特徴とするナトリウム−硫黄電池用陽極容器の製造方法。
In the method for producing an anode container for a sodium-sulfur battery having an anti-corrosion spray coating on the inner peripheral surface,
After forming a plasma sprayed film made of a Cr—Fe alloy on the inner peripheral surface of the anode container base by plasma spraying in the air, the surface of the plasma sprayed film is polished, and the chromium oxide content on the polished surface is the plasma sprayed film. Polish until the chromium oxide content on the surface of the surface becomes 10% or more smaller ,
The method of polishing the plasma sprayed film is a method of fixing the anode container substrate having the plasma sprayed film and moving it up and down while rotating the polishing brush, and polishing the brush material of the polishing brush Is a metal twisted wire brush, the wire brush diameter is 1.05 to 1.15 times the inner diameter of the anode container base, and the cross-sectional hardness (Hv) of the wire brush is 430 or more. The wire diameter of one wire constituting the brush is 0.2 to 0.8 mm, the rotation speed of the wire brush is 900 to 1400 rpm, and the wire brush traverse speed is 60 to 80 mm / sec. A method for manufacturing an anode container for a sodium-sulfur battery.
前記ワイヤーブラシを構成するワイヤー一本の線直径が0.3〜0.4mmであることを特徴とする請求項1又は2に記載のナトリウム−硫黄電池用陽極容器の製造方法。 The method for producing an anode container for a sodium-sulfur battery according to claim 1 or 2 , wherein the wire diameter of one wire constituting the wire brush is 0.3 to 0.4 mm. 前記プラズマ溶射膜を形成する方法が、円筒状の陽極容器基体を回転させながら、溶射ガンを上下に移動させて大気中でプラズマ溶射する際、溶射ガンのアルゴンガスを用いた1次ガスの流速が30〜40L/min、水素を用いた2次ガスの流速が4.0〜5.5L/min、プラズマ出力が12〜15KW、金属粉末粒度が5〜60μm、溶射距離が45〜55mmの範囲でプラズマ溶射してプラズマ溶射膜を形成する方法であることを特徴とする請求項1〜3のいずれかに記載のナトリウム−硫黄電池用陽極容器の製造方法。 In the method of forming the plasma sprayed film, when the spray gun is moved up and down and plasma spray is performed in the atmosphere while rotating the cylindrical anode container base, the flow rate of the primary gas using the argon gas of the spray gun Is 30 to 40 L / min, the flow rate of secondary gas using hydrogen is 4.0 to 5.5 L / min, the plasma output is 12 to 15 kW, the metal powder particle size is 5 to 60 μm, and the spraying distance is 45 to 55 mm. The method for producing an anode container for a sodium-sulfur battery according to any one of claims 1 to 3, wherein the plasma sprayed film is formed by plasma spraying.
JP2003297218A 2003-08-21 2003-08-21 Anode container for sodium-sulfur battery and manufacturing method thereof Expired - Lifetime JP4361330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297218A JP4361330B2 (en) 2003-08-21 2003-08-21 Anode container for sodium-sulfur battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297218A JP4361330B2 (en) 2003-08-21 2003-08-21 Anode container for sodium-sulfur battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005071690A JP2005071690A (en) 2005-03-17
JP4361330B2 true JP4361330B2 (en) 2009-11-11

Family

ID=34403149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297218A Expired - Lifetime JP4361330B2 (en) 2003-08-21 2003-08-21 Anode container for sodium-sulfur battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4361330B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691141B2 (en) * 2008-07-16 2011-06-01 新日本製鐵株式会社 Manufacturing method of inner surface polyolefin coated steel pipe
JP5794017B2 (en) * 2011-07-26 2015-10-14 日産自動車株式会社 Thermal spray coating forming method and thermal spray coating forming apparatus
CN103094585B (en) * 2011-11-02 2016-03-16 通用电气公司 Electrochemical cell
KR20150008145A (en) * 2012-04-24 2015-01-21 아에레우스 테크놀로지스 인크. Coatings, coated surfaces, and methods for production thereof
US9159980B2 (en) 2012-12-27 2015-10-13 General Electric Company Electrochemical cell
JP6165910B1 (en) * 2016-03-17 2017-07-19 日本碍子株式会社 Method for producing positive current collector for sodium-sulfur battery and method for producing sodium-sulfur battery

Also Published As

Publication number Publication date
JP2005071690A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4518791B2 (en) Rechargeable battery cell that can operate at room temperature
CN1158716C (en) Electrodes for secondary cells, process for their production, and secondary cells having such electrodes
CA2240270C (en) Selectively coated bipolar plate
EP2597710B1 (en) Polymer electrolyte fuel cell comprising titanium separator
JP5108976B2 (en) Fuel cell separator
CN1542997A (en) Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
JP6535662B2 (en) Method of manufacturing metal foil for current collector
JP4361330B2 (en) Anode container for sodium-sulfur battery and manufacturing method thereof
CN113675417A (en) Fuel cell, fuel cell bipolar plate and preparation method thereof
JP2008176988A (en) Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
US20150147621A1 (en) Methods for the formation of beta alumina electrolytes, and related structures and devices
CN108232131B (en) Metal fluoride coated ternary material and preparation method thereof
US5962160A (en) Sodium-sulfur battery, and a battery system using same
JP4133701B2 (en) Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet
KR102405718B1 (en) battery
JP4234936B2 (en) Sodium-sulfur battery anode container, method for forming spray coating on inner surface of anode container, and method for determining quality of spray coating
JP4849856B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP4854992B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP2009032429A (en) Lithium reaction electrode
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same
JP3218988B2 (en) Sodium-sulfur secondary battery
JP2969050B2 (en) Sodium-sulfur battery
JP3415106B2 (en) Sodium-sulfur battery
JP3561210B2 (en) Anode container for sodium-sulfur single cell and sodium-sulfur single cell using the same
JP6165910B1 (en) Method for producing positive current collector for sodium-sulfur battery and method for producing sodium-sulfur battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4361330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

EXPY Cancellation because of completion of term