[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4360273B2 - Catalytic combustor - Google Patents

Catalytic combustor Download PDF

Info

Publication number
JP4360273B2
JP4360273B2 JP2004164240A JP2004164240A JP4360273B2 JP 4360273 B2 JP4360273 B2 JP 4360273B2 JP 2004164240 A JP2004164240 A JP 2004164240A JP 2004164240 A JP2004164240 A JP 2004164240A JP 4360273 B2 JP4360273 B2 JP 4360273B2
Authority
JP
Japan
Prior art keywords
catalyst
partial oxidation
oxidation catalyst
temperature
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004164240A
Other languages
Japanese (ja)
Other versions
JP2005344989A (en
Inventor
公美 佐藤
俊郎 藤森
徹 柴沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004164240A priority Critical patent/JP4360273B2/en
Publication of JP2005344989A publication Critical patent/JP2005344989A/en
Application granted granted Critical
Publication of JP4360273B2 publication Critical patent/JP4360273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)

Description

本発明は、燃料を予め空気と混合させて予混合ガスを作り、それを下流の触媒担持部で触媒により燃焼させるようにした触媒燃焼器に関する。   The present invention relates to a catalytic combustor in which fuel is premixed with air to produce a premixed gas, which is burned by a catalyst at a downstream catalyst support.

近年、ガスタービンエンジンにおいては、排ガス組成に関して厳しい環境基準が設けられており、特にNOx(窒素酸化物)の排出量の低減が望まれている。この低NOx化の手段として、燃焼室内に水や蒸気を噴射して燃焼火炎温度を低下させる方法が一般的に採用されているが、この方法では、エンジン熱効率の低下、悪い水質によるタービンなどの腐食に伴なうエンジン寿命の低下、さらには水質をよくするための前処理に要する設備および維持管理費の高騰などの種々の欠点があった。また、このような蒸気を用いないでNOxを低減する方法として、予蒸発、希釈予混合燃焼方法が有効であることがよく知られている。しかし、この方法では、NOx低減に限界があり、北米の特定地域で適用される2〜5ppm(0=15%換算値、たとえば、北カリフォルニア州では2.5ppm)という規制値に適合するためには、排ガス脱硝装置を併用する必要がある。 In recent years, gas turbine engines have strict environmental standards regarding exhaust gas composition, and in particular, reduction of NOx (nitrogen oxide) emissions is desired. As a means for reducing NOx, a method of reducing the combustion flame temperature by injecting water or steam into the combustion chamber is generally adopted. However, in this method, the engine thermal efficiency is lowered, the turbine due to poor water quality, etc. There have been various drawbacks such as a decrease in engine life due to corrosion, and a rise in equipment and maintenance costs required for pretreatment for improving water quality. Further, as a method for reducing NOx without using such steam, it is well known that pre-evaporation and diluted pre-mixed combustion methods are effective. However, this method has a limit in reducing NOx and meets the regulation value of 2 to 5 ppm (0 2 = 15% conversion value, for example, 2.5 ppm in Northern California) applied in a specific region of North America. It is necessary to use an exhaust gas denitration device together.

排ガス脱硝装置を用いずに2〜5ppmという低NOxを実現する方法として、特許文献1に開示されているように予熱した混合気を触媒により燃焼させるものがある。 As a method for realizing low NOx of 2 to 5 ppm without using an exhaust gas denitration device, there is a method in which a preheated air-fuel mixture is burned with a catalyst as disclosed in Patent Document 1.

特許第3364492号Japanese Patent No. 3364492

以下、燃焼触媒について説明する。図4は特許文献1に開示された部分酸化触媒担持部の図面であり、図4(A)は部分酸化触媒担持部を流れ方向に対して直角に切断した断面図、図4(B)は図4(A)の展開図である。図4(A)に示すように、部分酸化触媒担持部aは、共に薄い金属製の平板b、波板cを張り付け、それを渦巻状に巻き付けて円筒状に形成したハニカム構造であり、金属は耐熱ステンレス鋼などが使用される。 Hereinafter, the combustion catalyst will be described. FIG. 4 is a drawing of the partial oxidation catalyst supporting portion disclosed in Patent Document 1. FIG. 4 (A) is a cross-sectional view of the partial oxidation catalyst supporting portion cut at right angles to the flow direction, and FIG. FIG. 5 is a development view of FIG. As shown in FIG. 4 (A), the partial oxidation catalyst supporting part a has a honeycomb structure in which a thin metal flat plate b and corrugated plate c are attached and spirally wound to form a cylindrical shape. Is heat resistant stainless steel.

このように、部分酸化触媒担持部aには平板bと波板cによって多数の略三角形の流路が形成されるが、図4(B)に示すように、壁面上に触媒コーティング層dを有する触媒コーティング流路eと壁面上に触媒コーティング層を有しない触媒なし流路fとが交互に隣り合った配置になっている。触媒は通常、パラジウムなどが使用される。 As described above, a plurality of substantially triangular flow paths are formed by the flat plate b and the corrugated plate c in the partial oxidation catalyst supporting portion a. However, as shown in FIG. 4B, the catalyst coating layer d is formed on the wall surface. The catalyst-coated flow path e having and the catalyst-free flow path f having no catalyst coating layer on the wall surface are alternately arranged adjacent to each other. As the catalyst, palladium or the like is usually used.

図5は部分酸化触媒担持部を流れ方向に対して平行に切断した断面図であり、部分酸化触媒担持部aにおける作用の説明図である。図6は燃焼器内における温度変化を示すグラフである。 FIG. 5 is a cross-sectional view of the partial oxidation catalyst supporting portion cut in parallel to the flow direction, and is an explanatory view of the operation in the partial oxidation catalyst supporting portion a. FIG. 6 is a graph showing temperature changes in the combustor.

触媒燃焼とは、燃料と空気とを予め混合した予混合ガスを周壁に触媒コーティング層を有する細長い流路を通すと、予混合ガスは触媒の作用で反応し、燃焼が行なわれることをいう。触媒燃焼は、燃焼温度を低くすることができるので、NOxの発生が少ないという特徴がある。部分酸化触媒担持部aの入口温度は希薄な燃料濃度でも安定して着火するためには500℃程度必要である。また、触媒温度が1000℃を超えると、触媒が変質したり、金属壁が溶けてしまうので、出口温度は1000℃以下におさえる必要がある。図6は2000KW程度の発電用のガスタービンに触媒燃焼器を使った場合について試算した温度のグラフである。この場合、空気を1.2MPa程度まで圧縮する圧縮機の出口温度は385℃であり、触媒燃焼には低すぎるので、プリバーナ(着火用バーナ)によって500℃に昇温する。予混合ガスはその温度で部分酸化触媒担持部aに流入する。 Catalytic combustion means that when a premixed gas in which fuel and air are premixed is passed through an elongated channel having a catalyst coating layer on the peripheral wall, the premixed gas reacts by the action of the catalyst and combustion is performed. Catalytic combustion is characterized by low NOx generation because the combustion temperature can be lowered. The inlet temperature of the partial oxidation catalyst supporting part a needs to be about 500 ° C. in order to stably ignite even with a lean fuel concentration. Further, if the catalyst temperature exceeds 1000 ° C., the catalyst is denatured or the metal wall is melted, so the outlet temperature needs to be kept at 1000 ° C. or lower. FIG. 6 is a graph of temperature calculated for the case where a catalytic combustor is used in a gas turbine for power generation of about 2000 KW. In this case, the outlet temperature of the compressor that compresses air to about 1.2 MPa is 385 ° C., which is too low for catalytic combustion, so the temperature is raised to 500 ° C. by a preburner (ignition burner). The premixed gas flows into the partial oxidation catalyst support part a at that temperature.

次に部分酸化触媒担持部aにおける反応および流れについて、図5を用いて説明する。500℃に昇温した予混合ガスgは、部分酸化触媒担持部aに流入する。部分酸化触媒担持部aは、壁i(図4では平板bまたは波板c)によって仕切られたハニカム構造であり、先に述べたように、壁iの一方の面に触媒コーティング層dを有し、他方の面は触媒コーティング層を有しない裸の面である。このように壁面が触媒コーティング層dである触媒コーティング流路eと、壁面が裸の面である触媒なし流路fとが交互に隣り合って配置された構造になっている。なお、壁には金属またはセラミックを使用する。 Next, the reaction and flow in the partial oxidation catalyst supporting part a will be described with reference to FIG. The premixed gas g heated to 500 ° C. flows into the partial oxidation catalyst supporting part a. The partial oxidation catalyst supporting portion a has a honeycomb structure partitioned by a wall i (a flat plate b or a corrugated plate c in FIG. 4), and has a catalyst coating layer d on one surface of the wall i as described above. The other surface is a bare surface that does not have a catalyst coating layer. Thus, the catalyst coating flow path e whose wall surface is the catalyst coating layer d and the catalyst-free flow path f whose wall surface is a bare surface are alternately arranged adjacent to each other. Metal or ceramic is used for the wall.

部分酸化触媒担持部a内の触媒コーティング流路e内に流入した予混合ガスgは、触媒の作用で触媒燃焼し、燃焼ガスhとなって部分酸化触媒担持部aから流出する。一方、触媒なし流路fに流入した予混合ガスgは燃焼せず部分酸化触媒担持部aから流出する。   The premixed gas g that has flowed into the catalyst coating flow path e in the partial oxidation catalyst support part a undergoes catalytic combustion by the action of the catalyst, and becomes a combustion gas h and flows out from the partial oxidation catalyst support part a. On the other hand, the premixed gas g flowing into the catalyst-free flow path f does not burn but flows out from the partial oxidation catalyst support part a.

触媒コーティング流路e内での触媒燃焼によって発生した熱により流路内を流れるガスは昇温するが、発生した熱の一部は壁iを通って隣の触媒なし流路f内を流れる予混合ガスgを加熱し、燃焼しない予混合ガスgも昇温する。したがって、部分酸化触媒担持部aの出口では、燃焼ガスhも予混合ガスgも共に高温状態になっている。   The gas flowing in the flow path is heated by heat generated by catalytic combustion in the catalyst coating flow path e, but part of the generated heat is expected to flow in the adjacent catalyst-free flow path f through the wall i. The mixed gas g is heated, and the temperature of the premixed gas g that does not burn is also raised. Therefore, both the combustion gas h and the premixed gas g are in a high temperature state at the outlet of the partial oxidation catalyst supporting portion a.

部分酸化触媒担持部aの下流では圧力、温度、燃料濃度などの条件に応じた着火遅れがあり、未燃の予混合ガスgはこの着火遅れの後、気相反応で燃焼する。   There is an ignition delay downstream of the partial oxidation catalyst carrier a in accordance with conditions such as pressure, temperature, and fuel concentration, and the unburned premixed gas g is combusted by a gas phase reaction after the ignition delay.

再び図6に戻って説明する。図に示すように、部分酸化触媒担持部aの出口の平均温度は950℃であり、気相着火遅れの間は、そのままの温度を保ち、気相反応による燃焼によって、1350℃まで昇温する。この例では、燃焼器出口とタービン入口との間に、図示しないスクロール部があるので、そこで200℃降温し、タービン入口での温度(TIT)は1150℃である。   Returning again to FIG. As shown in the figure, the average temperature at the outlet of the partial oxidation catalyst supporting part a is 950 ° C., and the temperature is kept as it is during the vapor phase ignition delay, and the temperature is raised to 1350 ° C. by combustion by the gas phase reaction. . In this example, since there is a scroll portion (not shown) between the combustor outlet and the turbine inlet, the temperature is lowered by 200 ° C., and the temperature (TIT) at the turbine inlet is 1150 ° C.

このように、部分酸化触媒担持部a内では、触媒コーティング流路eと触媒なし流路fとを交互に配置し、互に壁iを介して熱交換するようにしたので、出口付近においても触媒コーティング層dの温度を触媒が劣化しない1000℃以下に保つことができるとともに、触媒なし流路fを流れる予混合ガスgの温度を気相反応しやすい高温にすることができる。さらに、触媒なし流路fを通る予混合ガスgは、部分酸化触媒担持部aの下流で気相反応で燃焼してガス全体の温度を高めるので、タービンの熱効率を高く維持できる。   In this way, in the partial oxidation catalyst supporting part a, the catalyst coating flow path e and the catalyst-free flow path f are alternately arranged to exchange heat with each other through the wall i. The temperature of the catalyst coating layer d can be maintained at 1000 ° C. or lower at which the catalyst does not deteriorate, and the temperature of the premixed gas g flowing through the catalyst-free flow path f can be set to a high temperature at which gas phase reaction is likely to occur. Furthermore, since the premixed gas g passing through the catalyst-free flow path f is combusted by a gas phase reaction downstream of the partial oxidation catalyst support part a to increase the temperature of the entire gas, the thermal efficiency of the turbine can be maintained high.

部分酸化触媒担持部aにおける燃焼は、低温で行なわれるので、NOxの発生が少ないし、部分酸化触媒担持部aの下流側で行なわれる気相反応による燃焼は高温燃焼ではあるが、予混合ガスgは、燃焼ガスhと混合して燃料が希薄な状態での燃焼なので、NOxの発生が少ない。   Combustion in the partial oxidation catalyst supporting part a is performed at a low temperature, so that the generation of NOx is small, and combustion by a gas phase reaction performed on the downstream side of the partial oxidation catalyst supporting part a is high temperature combustion, but premixed gas Since g is burned in a state where the fuel is lean when mixed with the combustion gas h, generation of NOx is small.

部分酸化触媒担持部aにおける予混合燃料ガスの着火性能は、入口温度、圧力、ガスの種類、流速などが影響する。メタンを主成分とする都市ガスでは、常圧における着火温度は350〜400℃であるが、圧力の上昇に伴い温度も上昇し1MPaを超えると400℃以上となる。また、着火温度は燃料濃度が高いほど低下する傾向にある。   The ignition performance of the premixed fuel gas in the partial oxidation catalyst support a is affected by the inlet temperature, pressure, gas type, flow rate, and the like. In the city gas containing methane as a main component, the ignition temperature at normal pressure is 350 to 400 ° C., but the temperature rises as the pressure rises, and when it exceeds 1 MPa, it becomes 400 ° C. or higher. Moreover, the ignition temperature tends to decrease as the fuel concentration increases.

ガスタービンの燃焼器では低負荷時やアイドリング時には流入する予混合燃料ガスの燃料濃度は低下し着火しにくくなるが、そのような場合でも安定して着火するためには、先に述べたようにプリバーナ(着火用バーナ)によって部分酸化触媒担持部に流入する予混合燃料ガスを500℃程度に昇温する必要がある。しかし、プリバーナの使用はNOx排出につながる。また、プリバーナを低NOx仕様にするためプリバーナだけで拡散燃焼用と予混合燃焼用の2つ以上の燃料系統を準備する必要がある。   In a gas turbine combustor, the fuel concentration of the premixed fuel gas that flows in at low load or idling is reduced, making it difficult to ignite. In such a case, in order to ignite stably, as described above, It is necessary to raise the temperature of the premixed fuel gas flowing into the partial oxidation catalyst carrier by a preburner (ignition burner) to about 500 ° C. However, the use of a preburner leads to NOx emissions. Further, in order to make the preburner have a low NOx specification, it is necessary to prepare two or more fuel systems for diffusion combustion and premixed combustion using only the preburner.

本発明は従来技術のかかる問題点に鑑み案出されたもので、プリバーナではガスタービンの負荷にかかわらず高い濃度の予混合燃料ガスを使用できる点に着目し、プリバーナに触媒燃焼を採用することによって低NOx化を達成できる触媒燃焼器を提供することを目的とする。   The present invention was devised in view of such problems of the prior art, and paying attention to the fact that a preburner can use a high concentration premixed fuel gas regardless of the load of the gas turbine, and adopting catalytic combustion in the preburner. An object of the present invention is to provide a catalytic combustor that can achieve low NOx.

なお、特許文献2には燃料リッチな混合気を使用する触媒燃焼器が開示されている。しかし、特許文献2に開示された技術は、(1)プリバーナではなくメインのバーナに関するものであること、(2)予混合燃料ガスの燃料濃度は量論比未満ではなく、量論比を超える濃度であること、(3)触媒担持部の触媒無し流路を通るガスは予混合燃料ガスではなく空気であること、など本発明とは異なる。また、触媒燃焼では予混合燃料ガスの燃料濃度が量論比に近い場合に最も発熱量が大きいが、特許文献2に開示された触媒燃焼器では量論比を超える濃度で運転しているので、始動時には燃料濃度が量論比に近い状態を通過することになり、その時高温で燃焼触媒が変質したり、金属壁が溶けてしまう虞がある。   Patent Document 2 discloses a catalytic combustor that uses a fuel-rich air-fuel mixture. However, the technique disclosed in Patent Document 2 relates to (1) the main burner, not the pre-burner, and (2) the fuel concentration of the premixed fuel gas is not less than the stoichiometric ratio but exceeds the stoichiometric ratio. This is different from the present invention in that it is a concentration, and (3) the gas passing through the catalyst-free flow path of the catalyst support portion is not premixed fuel gas but air. In catalytic combustion, the calorific value is greatest when the fuel concentration of the premixed fuel gas is close to the stoichiometric ratio, but the catalytic combustor disclosed in Patent Document 2 operates at a concentration exceeding the stoichiometric ratio. When starting, the fuel concentration passes through a state close to the stoichiometric ratio. At this time, the combustion catalyst may change in quality or the metal wall may melt.

特表2003−528283号Special table 2003-528283

上記目的を達成するため本発明の触媒燃焼器は、触媒燃焼器の空気入口流路内に設けられてメインの触媒担持部に流入する空気を触媒着火温度まで上昇させる着火用触媒バーナを有する触媒燃焼器であって、該着火用触媒バーナは部分酸化触媒担持部を有し、該部分酸化触媒担持部に流入する予混合ガスの燃料濃度を、量論比未満であって、部分酸化触媒担持部に流入する空気の温度と圧力条件下で着火可能な濃度以上に保つものである。   In order to achieve the above object, a catalyst combustor according to the present invention is a catalyst having an ignition catalyst burner that is provided in an air inlet passage of the catalyst combustor and raises the air flowing into the main catalyst carrier to the catalyst ignition temperature. The combustor, the ignition catalyst burner having a partial oxidation catalyst support, and the fuel concentration of the premixed gas flowing into the partial oxidation catalyst support is less than the stoichiometric ratio, and the partial oxidation catalyst support The temperature is higher than the concentration that can be ignited under the temperature and pressure conditions of the air flowing into the section.

上記部分酸化触媒担持部の下流側にミキサーと全量酸化触媒担持部とを設けてもよい。   You may provide a mixer and a whole quantity oxidation catalyst support part in the downstream of the said partial oxidation catalyst support part.

次に本発明の作用を説明する。本発明の触媒燃焼器の着火用触媒バーナは部分酸化触媒担持部を有している。部分酸化触媒担持部とは先に図4および図5を用いて説明したように壁面が触媒コーティング層である触媒コーティング流路と、壁面が裸の面である触媒なし流路とが交互に隣り合って配置された構造になっているものをいう。この部分酸化触媒担持部に流入する予混合ガスの燃料濃度を、量論比未満であって、部分酸化触媒担持部に流入する空気の温度と圧力条件下で着火可能な濃度以上に保っているので安定して着火し、部分酸化触媒担持部で発熱して、メインの部分酸化触媒担持部に流入する空気を触媒着火温度(たとえば500℃)まで上昇させることができる。着火用触媒バーナの部分酸化触媒担持部に流入する空気の温度と圧力条件下で着火可能な燃料濃度は実験によって決めることができるが、1例を挙げれば、空気の圧力が1.2MPa、温度が385℃で、当量比が0.3〜0.5あれば着火可能であった。なお、当量比とは実際の燃料/空気比の化学量論的燃料/空気比に対する比である。   Next, the operation of the present invention will be described. The catalyst burner for ignition of the catalytic combustor of the present invention has a partial oxidation catalyst support. As described above with reference to FIGS. 4 and 5, the partial oxidation catalyst supporting portion is alternately adjacent to the catalyst coating flow path whose wall surface is a catalyst coating layer and the non-catalyst flow path whose wall surface is a bare surface. A structure that is arranged together. The fuel concentration of the premixed gas flowing into the partial oxidation catalyst supporting portion is less than the stoichiometric ratio, and is maintained at a level that can be ignited under the temperature and pressure conditions of the air flowing into the partial oxidation catalyst supporting portion. Therefore, it is possible to stably ignite, generate heat in the partial oxidation catalyst support, and raise the air flowing into the main partial oxidation catalyst support to the catalyst ignition temperature (for example, 500 ° C.). The temperature of the air flowing into the partial oxidation catalyst supporting part of the ignition catalyst burner and the fuel concentration that can be ignited under pressure conditions can be determined by experiment. For example, the air pressure is 1.2 MPa, the temperature Was 385 ° C. and the equivalence ratio was 0.3 to 0.5, ignition was possible. The equivalent ratio is the ratio of the actual fuel / air ratio to the stoichiometric fuel / air ratio.

着火用触媒バーナの部分酸化触媒担持部の下流では気相燃焼が起こらないので、気体中には未燃の燃料が混じっている。そこで部分酸化触媒担持部の下流側にミキサーと全量酸化触媒担持部とを設けて気体中の未燃の燃料を酸化する。なお、プリバーナで加熱された空気の全量がメインの部分酸化触媒担持部に流入する場合には、空気中の未燃の燃料はメインの部分酸化触媒担持部やその後の気相反応による燃焼で酸化されるので、この下流側のミキサーと全量酸化触媒担持部は省略しても良いが、バイパスする場合があるときには必要である。   Since gas phase combustion does not occur downstream of the partial oxidation catalyst supporting portion of the ignition catalyst burner, unburned fuel is mixed in the gas. Therefore, a mixer and a whole amount oxidation catalyst support part are provided downstream of the partial oxidation catalyst support part to oxidize unburned fuel in the gas. When the entire amount of air heated by the pre-burner flows into the main partial oxidation catalyst carrier, unburned fuel in the air is oxidized by combustion by the main partial oxidation catalyst carrier and the subsequent gas phase reaction. Therefore, the mixer on the downstream side and the total amount oxidation catalyst supporting portion may be omitted, but are necessary when there is a case where the bypass is sometimes used.

以上述べたように本発明の触媒燃焼器はプリバーナとして触媒バーナを使用したので、従来のプリバーナのように、拡散燃焼や希薄予混合燃焼方式のバーナを使用する必要が無くて燃料系統も1系統でよく、しかも、超低NOx化が実現できる。   As described above, the catalytic combustor of the present invention uses a catalytic burner as a pre-burner. Therefore, unlike the conventional pre-burner, there is no need to use a diffusion combustion or lean premixed combustion type burner, and there is one fuel system. Moreover, ultra-low NOx can be realized.

以下、本発明の1実施形態について図面を参照しつつ説明する。図1は本発明の触媒燃焼器の着火用触媒バーナの断面図であり、図2は本発明の触媒燃焼器の断面図である。触媒燃焼器1は外筒2と内筒4とを有しており、外筒2と内筒4との間に圧縮空気20の通路(空気入口流路)3が形成されている。外筒2の1端は鏡板2aによって封止されている。内筒4の上流側には燃料噴射管5が設けられており、内筒4内に燃料22を噴射する。その下流にはミキサー6が設けられ、更にその下流にメインの部分酸化触媒担持部7が設けられている。部分酸化触媒担持部7は先に図4や図5を用いて説明した部分酸化触媒担持部aと同様の構造のものである。部分酸化触媒担持部7は上流側7aと下流側7bの2段に分かれている。8はメインの部分酸化触媒担持部7の下流側に発生する火炎であり、着火遅れのため部分酸化触媒担持部7の下流端より少し離れている。4aは内筒4の下流側端部の絞りである。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of an ignition catalyst burner of the catalytic combustor of the present invention, and FIG. 2 is a sectional view of the catalytic combustor of the present invention. The catalytic combustor 1 has an outer cylinder 2 and an inner cylinder 4, and a passage (air inlet passage) 3 for compressed air 20 is formed between the outer cylinder 2 and the inner cylinder 4. One end of the outer cylinder 2 is sealed with a mirror plate 2a. A fuel injection pipe 5 is provided on the upstream side of the inner cylinder 4, and fuel 22 is injected into the inner cylinder 4. A mixer 6 is provided downstream thereof, and a main partial oxidation catalyst carrier 7 is further provided downstream thereof. The partial oxidation catalyst carrier 7 has the same structure as the partial oxidation catalyst carrier a described above with reference to FIGS. The partial oxidation catalyst support 7 is divided into two stages, an upstream side 7a and a downstream side 7b. Reference numeral 8 denotes a flame generated on the downstream side of the main partial oxidation catalyst supporting portion 7, which is slightly separated from the downstream end of the partial oxidation catalyst supporting portion 7 due to ignition delay. Reference numeral 4 a denotes a stop at the downstream end of the inner cylinder 4.

9は空気入口流路3内に設けられてメインの部分酸化触媒担持部7に流入する圧縮空気20を触媒着火温度まで上昇させる着火用触媒バーナである。着火用触媒バーナ9は外側ケーシング10と内側ケーシング12とを有し、外側ケーシング10と内側ケーシング12との間に圧縮空気20のバイパス流路21が形成されている。内側ケーシング12の上流側は直径が下流に向かって拡大する拡径部12aとなっており、ここで圧縮空気20の流速を低下させる。拡径部12aの下流側に燃料噴射管11が設けられており、内側ケーシング12内に燃料22を噴射する。その下流にはミキサー13が設けられ、更にその下流に部分酸化触媒担持部14が設けられている。部分酸化触媒担持部14は先に図4や図5を用いて説明した部分酸化触媒担持部aと同様の構造のものである。   An ignition catalyst burner 9 is provided in the air inlet passage 3 and raises the compressed air 20 flowing into the main partial oxidation catalyst support 7 to the catalyst ignition temperature. The ignition catalyst burner 9 has an outer casing 10 and an inner casing 12, and a bypass passage 21 for compressed air 20 is formed between the outer casing 10 and the inner casing 12. The upstream side of the inner casing 12 is a diameter-enlarged portion 12a whose diameter increases toward the downstream, where the flow rate of the compressed air 20 is reduced. A fuel injection pipe 11 is provided on the downstream side of the enlarged diameter portion 12 a and injects fuel 22 into the inner casing 12. A mixer 13 is provided downstream thereof, and a partial oxidation catalyst carrier 14 is further provided downstream thereof. The partial oxidation catalyst carrier 14 has the same structure as the partial oxidation catalyst carrier a described above with reference to FIGS.

内側ケーシング12の下流には絞り15が設けられている。絞り15は部分酸化触媒担持部14を出た気体23とバイパス流路21を通ってきた圧縮空気20との混合を良くし、気相反応による燃焼を抑止するためのものである。16は絞り15の下流に設けられたミキサーである。17は全量酸化触媒担持部である。全量酸化触媒担持部17は先に図4や図5を用いて説明した部分酸化触媒担持部aにおける全ての流路が触媒コーティング流路eになっているものである。   A throttle 15 is provided downstream of the inner casing 12. The throttle 15 is for improving the mixing of the gas 23 exiting the partial oxidation catalyst support 14 and the compressed air 20 passing through the bypass passage 21 and suppressing combustion due to the gas phase reaction. Reference numeral 16 denotes a mixer provided downstream of the diaphragm 15. Reference numeral 17 denotes a total amount oxidation catalyst support. The total amount oxidation catalyst supporting part 17 is such that all the flow paths in the partial oxidation catalyst supporting part a described with reference to FIGS. 4 and 5 are the catalyst coating flow paths e.

次に本実施形態の作用を説明する。本例では図示しない圧縮機で圧縮され触媒燃焼器1の空気入口流路3内に流入する圧縮空気20の圧力は1.2MPa、温度は385℃である。圧縮空気20の1部は着火用触媒バーナ9内に流入し、残部はバイパスする。着火用触媒バーナ9内に流入した圧縮空気20の1部は内側ケーシング12内に流入し、残部はバイパス流路21内を流れる。内側ケーシング12内に流入した圧縮空気20は拡径部12aで減速するが、それは下流の部分酸化触媒担持部14での着火を良くするためである。   Next, the operation of this embodiment will be described. In this example, the pressure of the compressed air 20 compressed by a compressor (not shown) and flowing into the air inlet passage 3 of the catalytic combustor 1 is 1.2 MPa, and the temperature is 385 ° C. A part of the compressed air 20 flows into the ignition catalyst burner 9, and the remaining part is bypassed. Part of the compressed air 20 that has flowed into the ignition catalyst burner 9 flows into the inner casing 12, and the remaining part flows through the bypass passage 21. The compressed air 20 that has flowed into the inner casing 12 is decelerated at the enlarged diameter portion 12a in order to improve ignition at the downstream partial oxidation catalyst support portion 14.

拡径部12aの下流側の燃料噴射管11から内側ケーシング12内に燃料22を噴射する。燃料22の噴射量はミキサー13後の予混合ガス24の燃料濃度が部分酸化触媒担持部14で着火可能な濃度以上になるような噴射量とする。着火可能な燃料濃度の下限値は実験によって決めることができる。図3はかかる実験結果を示すグラフで、横軸は触媒入口ガス温度(℃)、縦軸は触媒出口ガス温度(℃)である。このグラフで直線Aは触媒入口ガス温度と触媒出口ガス温度が同じである状態を示し、曲線C、D、Eは燃料濃度を順次増加させた状態を示している。曲線C、D、Eが直線Bから離れて立ち上がった部分が着火した温度である。この図から分かるように燃料濃度を増加させて行くにつれて、着火温度が低下している。実験によれば圧縮空気の圧力が1.2MPa、温度が385℃であれば燃料濃度は当量比で0.3〜0.5あれば着火可能であった。   The fuel 22 is injected into the inner casing 12 from the fuel injection pipe 11 on the downstream side of the enlarged diameter portion 12a. The injection amount of the fuel 22 is set so that the fuel concentration of the premixed gas 24 after the mixer 13 is equal to or higher than the concentration that can be ignited by the partial oxidation catalyst support unit 14. The lower limit of the ignitable fuel concentration can be determined by experiment. FIG. 3 is a graph showing the results of such an experiment. The horizontal axis represents the catalyst inlet gas temperature (° C.), and the vertical axis represents the catalyst outlet gas temperature (° C.). In this graph, a straight line A indicates a state in which the catalyst inlet gas temperature and the catalyst outlet gas temperature are the same, and curves C, D, and E indicate states in which the fuel concentration is sequentially increased. The temperature at which the portions where the curves C, D, and E rise apart from the straight line B are ignited. As can be seen from this figure, the ignition temperature decreases as the fuel concentration increases. According to experiments, if the pressure of compressed air is 1.2 MPa and the temperature is 385 ° C., the fuel concentration can be ignited if the equivalent ratio is 0.3 to 0.5.

部分酸化触媒担持部14を出た気体22とバイパス流路21を通ってきた圧縮空気20とは絞り15でよく混合し、ミキサー16、全量酸化触媒担持部17を経て気体23に含まれる未燃の燃料は酸化され、着火用触媒バーナ9を流出する。ここで着火用触媒バーナ9をバイパスした圧縮空気20と混合し、内筒4に流入する圧縮空気20を500℃まで昇温する。内筒4では更に燃料が吹き込まれ、ミキサー6を経てメインの部分酸化触媒担持部7に流入する。部分酸化触媒担持部7は上流側7aと下流側7bの2段に分かれており、上流側7aで1/2が酸化され、残りは下流側7bで更に1/2が酸化されるので全体では3/4が酸化される。メインの触媒担持部7を出た気体は着火遅れの後、気相反応で完全燃焼し火炎8を発生させる。   The gas 22 exiting the partial oxidation catalyst carrier 14 and the compressed air 20 passing through the bypass channel 21 are mixed well by the throttle 15 and uncombusted in the gas 23 through the mixer 16 and the total oxidation catalyst carrier 17. The fuel is oxidized and flows out from the ignition catalyst burner 9. Here, the ignition catalyst burner 9 is mixed with the compressed air 20 bypassed, and the temperature of the compressed air 20 flowing into the inner cylinder 4 is increased to 500 ° C. Fuel is further blown into the inner cylinder 4 and flows into the main partial oxidation catalyst support 7 through the mixer 6. The partial oxidation catalyst supporting portion 7 is divided into two stages, an upstream side 7a and a downstream side 7b. 1/2 is oxidized on the upstream side 7a, and the rest is further oxidized on the downstream side 7b, so that the whole is oxidized. 3/4 is oxidized. The gas that exits the main catalyst carrier 7 is completely ignited by a gas phase reaction after an ignition delay and generates a flame 8.

以上述べたように本発明の触媒燃焼器1はプリバーナとして着火用触媒バーナを使用したので、従来のプリバーナのように、拡散燃焼や希薄予混合燃焼方式のバーナを使用する必要が無くて燃料系統も1系統でよく、しかも、超低NOx化が実現できる。 As described above, since the catalytic combustor 1 of the present invention uses the ignition catalyst burner as the preburner, there is no need to use a diffusion burner or lean premixed combustion type burner unlike the conventional preburner. Also, one system is sufficient, and ultra-low NOx can be realized.

本発明は以上述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。たとえば、内筒4内のメインの触媒燃焼の構造は図2に示すものに限らず他の構造のものであっても良い。 The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention. For example, the structure of the main catalytic combustion in the inner cylinder 4 is not limited to that shown in FIG.

本発明の触媒燃焼器の着火用触媒バーナの断面図である。It is sectional drawing of the catalyst burner for ignition of the catalytic combustor of this invention. 本発明の触媒燃焼器の断面図である。It is sectional drawing of the catalytic combustor of this invention. 燃料濃度と着火温度の関係の実験結果を示すグラフである。It is a graph which shows the experimental result of the relationship between a fuel concentration and ignition temperature. (A)は部分酸化触媒担持部を流れ方向に対して直角に切断した断面図、図4(B)は図4(A)の展開図である。(A) is sectional drawing which cut | disconnected the partial oxidation catalyst support part at right angles with respect to the flow direction, FIG.4 (B) is a development view of FIG.4 (A). 部分酸化触媒担持部を流れ方向に対して平行に切断した断面図である。It is sectional drawing which cut | disconnected the partial oxidation catalyst support part in parallel with the flow direction. 2000KW程度の発電用のガスタービンに触媒燃焼器を使った場合について試算した温度のグラフである。It is the graph of the temperature calculated about the case where a catalytic combustor is used for the gas turbine for about 2000KW electric power generation.

符号の説明Explanation of symbols

1 触媒燃焼器
3 空気入口流路
7 メインの部分酸化触媒担持部
9 着火用触媒バーナ
13 ミキサー
14 部分酸化触媒担持部
17 全量酸化触媒担持部
20 空気
24 予混合ガス
DESCRIPTION OF SYMBOLS 1 Catalytic combustor 3 Air inlet flow path 7 Main partial oxidation catalyst carrying part 9 Ignition catalyst burner 13 Mixer 14 Partial oxidation catalyst carrying part 17 Total oxidation catalyst carrying part 20 Air 24 Premixed gas

Claims (2)

外筒と外筒と同心に設けられた内筒とを有する触媒燃焼器の外筒と内筒との間の円環状の空気入口流路内に設けられて、内筒内のメインの部分酸化触媒担持部に流入する空気を触媒着火温度まで上昇させる円筒状の着火用触媒バーナを有する触媒燃焼器であって、該着火用触媒バーナは外筒と外筒と同心に設けられた内筒とを有していて、内筒内に部分酸化触媒担持部を有し、該部分酸化触媒担持部に流入する予混合ガスの燃料濃度を、量論比未満であって、該部分酸化触媒担持部に流入する空気の温度と圧力条件下で着火可能な濃度以上に保つことを特徴とする触媒燃焼器。 The main partial oxidation in the inner cylinder provided in the annular air inlet channel between the outer cylinder and the inner cylinder of the catalyst combustor having the outer cylinder and the inner cylinder provided concentrically with the outer cylinder. A catalytic combustor having a cylindrical ignition catalyst burner that raises the air flowing into the catalyst carrier to the catalyst ignition temperature, the ignition catalyst burner comprising: an inner cylinder provided concentrically with the outer cylinder and the outer cylinder; And having a partial oxidation catalyst supporting portion in the inner cylinder, the fuel concentration of the premixed gas flowing into the partial oxidation catalyst supporting portion is less than the stoichiometric ratio, and the partial oxidation catalyst supporting portion A catalytic combustor characterized in that it is kept at a concentration that can be ignited under the temperature and pressure conditions of the air flowing into it. 着火用触媒バーナの部分酸化触媒担持部の下流側にミキサーと全量酸化触媒担持部とを設けた請求項1記載の触媒燃焼器。 The catalytic combustor according to claim 1, wherein a mixer and a total amount of oxidation catalyst support are provided downstream of the partial oxidation catalyst support of the ignition catalyst burner.
JP2004164240A 2004-06-02 2004-06-02 Catalytic combustor Expired - Fee Related JP4360273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164240A JP4360273B2 (en) 2004-06-02 2004-06-02 Catalytic combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164240A JP4360273B2 (en) 2004-06-02 2004-06-02 Catalytic combustor

Publications (2)

Publication Number Publication Date
JP2005344989A JP2005344989A (en) 2005-12-15
JP4360273B2 true JP4360273B2 (en) 2009-11-11

Family

ID=35497542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164240A Expired - Fee Related JP4360273B2 (en) 2004-06-02 2004-06-02 Catalytic combustor

Country Status (1)

Country Link
JP (1) JP4360273B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111419A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Oxygen separating gas turbine combined system
CN102798123B (en) * 2011-05-26 2016-05-04 中山炫能燃气科技股份有限公司 A kind of infrared metal heater and preparation method thereof
SE536578C2 (en) * 2012-05-15 2014-03-04 Reformtech Heating Holding Ab Fuel injection system for use in a catalytic heater and reactor for conducting catalytic combustion liquid fuels

Also Published As

Publication number Publication date
JP2005344989A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
JP4134311B2 (en) Gas turbine combustor
US5850731A (en) Catalytic combustor with lean direct injection of gas fuel for low emissions combustion and methods of operation
EP1909032A2 (en) Method and apparatus for reducing gas turbine engine emissions
US20070000254A1 (en) Gas turbine combustor
US7444820B2 (en) Method and system for rich-lean catalytic combustion
EP0677707A1 (en) Catalytic gas turbine combustor
JP2009250604A (en) Burner tube premixer and method for mixing air with gas in gas turbine engine
CA2561255A1 (en) Device and method for flame stabilization in a burner
JPS6361723A (en) Catalytic combustion device
US6829896B2 (en) Catalytic oxidation module for a gas turbine engine
JP2003302047A (en) Staged mixing type high-pressure catalyst/flame composite combustion burner
GB2268694A (en) A catalytic combustion chamber
US7469543B2 (en) Rich catalytic injection
JP4360273B2 (en) Catalytic combustor
JPH11270808A (en) Catalyst combustion device
JP2843035B2 (en) Gas turbine combustor
JP3139978B2 (en) Gas turbine combustor
JPH0128843B2 (en)
US20100115954A1 (en) Gas turbine fuel injector with a rich catalyst
JPH0245772B2 (en)
JP4055659B2 (en) Catalytic combustor and operation method thereof
JPS6284215A (en) Catalyst combustion method
Greenwood Low Emissions Combustion Technology For Stationary Gas Turbines Engines.
JPH0139016B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R151 Written notification of patent or utility model registration

Ref document number: 4360273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees