[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4360194B2 - Method and apparatus for concentrating water-soluble organic substances - Google Patents

Method and apparatus for concentrating water-soluble organic substances Download PDF

Info

Publication number
JP4360194B2
JP4360194B2 JP2003417714A JP2003417714A JP4360194B2 JP 4360194 B2 JP4360194 B2 JP 4360194B2 JP 2003417714 A JP2003417714 A JP 2003417714A JP 2003417714 A JP2003417714 A JP 2003417714A JP 4360194 B2 JP4360194 B2 JP 4360194B2
Authority
JP
Japan
Prior art keywords
water
soluble organic
vapor
concentrated
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003417714A
Other languages
Japanese (ja)
Other versions
JP2005177535A (en
Inventor
史郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003417714A priority Critical patent/JP4360194B2/en
Publication of JP2005177535A publication Critical patent/JP2005177535A/en
Application granted granted Critical
Publication of JP4360194B2 publication Critical patent/JP4360194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、水溶性有機物の濃縮方法及び濃縮装置に関し、詳しくは、濃縮に要する熱エネルギーを抑制できると共に、限られた膜面積の分離膜を用いて高濃度の水溶性有機物を得ることができる水溶性有機物の濃縮方法及び濃縮装置に関する。   The present invention relates to a water-soluble organic substance concentration method and concentration apparatus, and more specifically, it can suppress thermal energy required for concentration, and can obtain a high-concentration water-soluble organic substance using a separation membrane having a limited membrane area. The present invention relates to a water-soluble organic substance concentration method and concentration apparatus.

水溶性有機物と水との混合液の濃縮方法としては、最も広く実用化されている技術の一つは蒸留法である。ただし、比較的低濃度の水溶性有機物と水との混合液を濃縮する場合、蒸留法は大量の水分を蒸発させて分離するため多大な熱エネルギーが必要である。例えば、発酵法によるエタノールの製造では連続発酵法や固定化酵素法のようなバイオテクノロジーを駆使した方法の発酵生産性は著しく高い。にもかかわらず発酵液中のエタノール濃度が従来の回分式発酵法より低濃度のため、蒸留法による濃縮・分離のエネルギーが増大してむしろエタノールの製造コストが不利になると云われている。また、化学工業の製造プロセスでは、しばしば低濃度の水溶性有機物と水との混合液が生成するが、蒸留法だけで濃縮・分離して回収するにはコストがかかりすぎる。   As a method for concentrating a mixed solution of a water-soluble organic substance and water, one of the most widely used techniques is a distillation method. However, when concentrating a liquid mixture of a relatively low concentration water-soluble organic substance and water, the distillation method requires a large amount of heat energy because a large amount of water is evaporated and separated. For example, in the production of ethanol by fermentation, fermentation productivity of methods using biotechnology such as continuous fermentation and immobilized enzyme method is remarkably high. Nevertheless, since the ethanol concentration in the fermentation broth is lower than that in the conventional batch fermentation method, it is said that the concentration / separation energy by the distillation method is increased and the ethanol production cost is rather disadvantageous. In addition, in the manufacturing process of the chemical industry, a mixed solution of water-soluble organic matter and water having a low concentration is often generated, but it is too expensive to concentrate and separate by a distillation method alone.

このため、低濃度水溶性有機物と水との混合液を有機液体選択透過型浸透気化膜を有する浸透気化分離モジュールの1次側に供給し、2次側に不活性ガスからなるキャリアガスを流して膜を透過する有機液体成分に富む蒸気を捕集し、引続いて有機液体成分を含有するキャリアガスを水分選択透過型蒸気透過膜を有する蒸気透過分離モジュールの1次側に導入し、該蒸気透過分離モジュールの2次側に乾燥した不活性ガスを流して膜を通してキャリアガス中に含まれる水分を除去し、しかる後、1次側のキャリアガスを凝縮器に導入して冷却し、有機液体成分を凝縮液として取り出す、有機液体水溶液の濃縮液の製造方法が提案されている(特許文献1参照)。   For this reason, a mixed liquid of low-concentration water-soluble organic substance and water is supplied to the primary side of the pervaporation separation module having an organic liquid permselective pervaporation membrane, and a carrier gas composed of an inert gas is allowed to flow on the secondary side. A vapor rich in organic liquid components that permeate through the membrane, and subsequently introduce a carrier gas containing the organic liquid component into the primary side of the vapor permeation separation module having a moisture permselective vapor permeable membrane, A dry inert gas is allowed to flow to the secondary side of the vapor permeation separation module to remove moisture contained in the carrier gas through the membrane, and then the primary side carrier gas is introduced into the condenser to be cooled, and organic A method for producing a concentrated liquid of an organic liquid aqueous solution in which a liquid component is taken out as a condensate has been proposed (see Patent Document 1).

また別に、有機液体を優先的に透過させる分離膜を有する浸透気化分離モジュールと、水を優先的に透過させる分離膜を有する浸透気化分離モジュールとを用いた、有機液体水溶液の濃縮液製造装置が提案されている(特許文献2参照)。   In addition, an apparatus for producing a concentrated liquid of an organic liquid aqueous solution using a pervaporation separation module having a separation membrane that preferentially permeates an organic liquid and a permeation vaporization separation module having a separation membrane that preferentially permeates water. It has been proposed (see Patent Document 2).

この特許文献1及び2に記載の技術は、分離に要する熱エネルギーコストを大幅に節減できるけれども、用いる分離膜の膜面積について膨大な量が必要となり、大幅な設備投資を要する。   Although the techniques described in Patent Documents 1 and 2 can greatly reduce the thermal energy cost required for separation, an enormous amount is required for the membrane area of the separation membrane to be used, and a large capital investment is required.

一方、蒸留塔で予備濃縮された水溶性有機物を水分選択透過性の膜を用いてさらに高度に濃縮させる場合、蒸留塔の塔頂蒸気を蒸気透過膜に導いて水蒸気を分離する方法(蒸気透過法:Vapor Permeation法)と、蒸留塔の留出液を浸透気化膜に導いて水分を分離する方法(浸透気化法:PerVaporation法)が検討されている。水分選択透過性の膜を用いる何れの方法も、水の分子の膜透過は、膜を介して存在する水の分圧差を推進力として起るものであり、透過した蒸気の側を減圧とし、濃縮すべき蒸気または液中の水の分圧が透過側蒸気の水の分圧よりも大きい状態に保って操作することが、必要とされている。
日本国特許第2765032号公報 日本国特許第2780323号公報
On the other hand, when water-soluble organics pre-concentrated in a distillation column are further concentrated using a moisture selective permeable membrane, the vapor at the top of the distillation column is led to a vapor permeable membrane to separate the water vapor (vapor transmission Method: Vapor Permeation method) and a method of separating water by introducing a distillate from a distillation column to a pervaporation membrane (pervaporation method: PerVaporation method) have been studied. In any of the methods using a moisture selective permeable membrane, the membrane permeation of water molecules is caused by a partial pressure difference of water existing through the membrane as a driving force, and the side of the permeated vapor is reduced in pressure. There is a need to operate with the partial pressure of the water to be concentrated or the water in the liquid being greater than the partial pressure of the water of the permeate side steam.
Japanese Patent No. 2765032 Japanese Patent No. 2780323

本発明者は、上記水分選択透過性の膜を用いる蒸気透過法及び浸透気化法技術について、蒸留法との組合わせに関し研究した結果、後記比較例1及び2において詳述するように次のような欠点があることが判明した。   As a result of studies on the combination of the vapor permeation method and the pervaporation method using the moisture selective permeable membrane with the distillation method, the present inventor conducted the following as described in detail in Comparative Examples 1 and 2 below. It turns out that there is a serious drawback.

蒸気透過法の場合、膜分離のための熱エネルギーが不要で、省エネルギーを図ることが出来るが、常圧近辺で操作が行われる蒸留塔の塔頂蒸気の有機液体を高度に濃縮しようとすると、濃縮蒸気の水の分圧が低くなるため、透過蒸気の側を高度の真空にしなければ透過が起らない。また、濃縮が進んだ部分での水透過の推進力、すなわち水の分圧差が小さいため、濃縮に必要な膜面積が多く必要になることが判明した。   In the case of the vapor permeation method, heat energy for membrane separation is unnecessary and energy saving can be achieved. However, when attempting to highly concentrate the organic liquid in the top vapor of the distillation column operated near atmospheric pressure, Since the partial pressure of water in the concentrated steam is low, permeation does not occur unless the permeate steam side is at a high vacuum. Further, it has been found that since the driving force of water permeation at the portion where concentration has progressed, that is, the partial pressure difference of water, is small, a large membrane area is required for concentration.

一方、浸透気化法の場合、操作温度を高くすることによって、水溶性有機物の混合液中における水の分圧が高くなるので、推進力を確保するためには、液が沸騰しないように加圧した上で供給液(水溶性有機物と水との混合液)を加熱昇温すればよい。しかし、浸透気化の場合、透過した水分が気化するので、水の蒸発に必要な熱量を加えなければならない。したがって、供給液(水溶性有機物と水との混合液)中に水分が多いほど、必要な熱エネルギーが多くなることが判明した。   On the other hand, in the case of the osmotic vaporization method, the partial pressure of water in the mixture of water-soluble organic substances increases by increasing the operating temperature. Therefore, in order to ensure the driving force, pressurization is performed so that the liquid does not boil. Then, the temperature of the supply liquid (mixture of water-soluble organic substance and water) may be increased by heating. However, in the case of osmotic vaporization, the permeated water vaporizes, so the amount of heat necessary for water evaporation must be added. Therefore, it has been found that the more heat in the supply liquid (mixture of water-soluble organic matter and water), the more heat energy is required.

そこで、本発明の目的は、濃縮に要する熱エネルギーを抑制できると共に、限られた膜面積の分離膜を用いて高濃度の水溶性有機物を得ることができる水溶性有機物の濃縮方法及び濃縮装置を提供することである。   Therefore, an object of the present invention is to provide a water-soluble organic substance concentration method and concentration apparatus that can suppress thermal energy required for concentration and can obtain a high-concentration water-soluble organic substance using a separation membrane having a limited membrane area. Is to provide.

本発明の上記課題は、下記構成を有する。
1.蒸気透過分離モジュールを用いる蒸気透過法と、浸透気化分離モジュールを用いる浸透気化法とを組合せて、水溶性有機物と水との混合液を濃縮することにより高濃度水溶性有機物を得る水溶性有機物の濃縮方法において、
前記水溶性有機物と水との混合液を蒸留により有機物が濃縮した第1次濃縮蒸気を得、
その後、該第1次濃縮蒸気を、前記蒸気透過分離モジュールを用いる蒸気透過法により濃縮して第2次濃縮蒸気を得、
次いで、該第2次濃縮蒸気を液化し、前記浸透気化分離モジュールを用いる浸透気化法により濃縮して高濃度水溶性有機物を得ること
を特徴とする水溶性有機物の濃縮方法。
The said subject of this invention has the following structure.
1. A combination of a vapor permeation method using a vapor permeation separation module and an osmosis vaporization method using an osmosis vapor separation module to obtain a high-concentration water-soluble organic substance by concentrating a mixed solution of the water-soluble organic substance and water. In the concentration method,
Obtaining a first concentrated steam in which organic matter is concentrated by distillation of a mixture of the water-soluble organic matter and water,
Thereafter, the first concentrated vapor is concentrated by a vapor permeation method using the vapor permeation separation module to obtain a second concentrated vapor,
Next, the second concentrated vapor is liquefied and concentrated by an osmotic vaporization method using the osmosis vapor separation module to obtain a high-concentration water-soluble organic substance.

2.蒸気透過分離モジュールを用いる蒸気透過法と、浸透気化分離モジュールを用いる浸透気化法とを組合せて、水溶性有機物と水との混合液を濃縮することにより高濃度の水溶性有機物を得る水溶性有機物の濃縮方法において、
前記蒸気透過分離モジュールが、一次側に供給される蒸気の中から水蒸気を選択的に二次側に透過させる水分選択透過型蒸気透過膜を有し、
前記浸透気化分離モジュールが、一次側に供給される溶液の中から水分を選択的に二次側に透過させる水分選択透過型浸透気化膜を有し、
前記各膜の二次側の圧力が、一次側の圧力よりもい圧力を有し、
前記水溶性有機物と水との混合液を蒸留により濃縮して第1次濃縮蒸気を得、
その後、該第1次濃縮蒸気を前記水分選択透過型蒸気透過膜に供給し、水分を選択的に透過させることにより濃縮して第2次濃縮蒸気を得、
次いで、該第2次濃縮蒸気を液化して液化濃縮水溶性有機物を生成し、
生成した液化濃縮水溶性有機物を加圧および加熱昇温した後に、
前記水分選択透過型浸透気化膜に供給し、水分を選択的に透過させることにより濃縮して高濃度水溶性有機物を得ること
を特徴とする水溶性有機物の濃縮方法。
2. A water-soluble organic substance that obtains a high-concentration water-soluble organic substance by concentrating a liquid mixture of a water-soluble organic substance and water by combining a vapor permeation method using a vapor permeation separation module and an osmosis vaporization method using an osmosis vapor separation module. In the concentration method of
The vapor permeation separation module has a moisture permselective vapor permeable membrane that selectively permeates water vapor from the vapor supplied to the primary side to the secondary side,
The pervaporation separation module has a moisture permeation type pervaporation membrane that selectively permeates moisture from the solution supplied to the primary side to the secondary side,
The pressure on the secondary side of each membrane has a low have pressure than the primary side,
Concentrating the liquid mixture of the water-soluble organic substance and water by distillation to obtain a first concentrated vapor,
Thereafter, the first concentrated vapor is supplied to the moisture selective permeable vapor permeable membrane and concentrated by selectively allowing moisture to pass through to obtain a second concentrated vapor.
Next, the secondary concentrated vapor is liquefied to produce a liquefied concentrated water-soluble organic substance,
After pressurizing and heating the heated liquefied concentrated water-soluble organic matter,
A method for concentrating a water-soluble organic substance, characterized in that it is supplied to the moisture permselective pervaporation membrane and selectively permeated to obtain a high-concentration water-soluble organic substance.

3.水溶性有機物と水との混合液における水溶性有機物の濃度が3質量%〜50質量%であり、
第1次濃縮蒸気における水溶性有機物の濃度が30質量%〜95質量%であり、
第2次濃縮蒸気における水溶性有機物の濃度が90質量%〜99質量%であり、
高濃度水溶性有機物における水溶性有機物の濃度が95質量%〜99.9質量%であること
を特徴とする前記1又は2に記載の水溶性有機物の濃縮方法。
3. The concentration of the water-soluble organic substance in the mixed liquid of the water-soluble organic substance and water is 3% by mass to 50% by mass,
The concentration of the water-soluble organic substance in the first concentrated steam is 30% by mass to 95% by mass,
The concentration of the water-soluble organic substance in the secondary concentrated steam is 90% by mass to 99% by mass,
3. The method for concentrating a water-soluble organic material according to 1 or 2 above, wherein the concentration of the water-soluble organic material in the high-concentration water-soluble organic material is 95% by mass to 99.9% by mass.

4.水溶性有機物と水との混合液を濃縮することにより高濃度水溶性有機物を得る水溶性有機物の濃縮装置において、
前記水溶性有機物と水との混合液を蒸留により濃縮して第1次濃縮蒸気を得る蒸留塔と、
該第1次濃縮蒸気を水分選択透過型蒸気透過膜に供給し、水分を選択的に透過させることにより濃縮して第2次濃縮蒸気を得る蒸気透過分離モジュールと、
該第2次濃縮蒸気を液化して液化濃縮水溶性有機物を生成する濃縮蒸気凝縮器と、
生成した液化濃縮水溶性有機物を加圧する加圧ポンプと、
該加圧した液化濃縮水溶性有機物を加熱昇温する浸透気化加熱器と、
該加圧および加熱した液化濃縮水溶性有機物を水分選択透過型浸透気化膜に供給し、水分を選択的に透過させることにより濃縮して高濃度水溶性有機物を得る浸透気化分離モジュールと
を有することを特徴とする水溶性有機物の濃縮装置。
4). In a water-soluble organic substance concentration apparatus that obtains a high-concentration water-soluble organic substance by concentrating a mixture of a water-soluble organic substance and water,
A distillation column for concentrating the liquid mixture of the water-soluble organic substance and water by distillation to obtain a first concentrated vapor;
A vapor permeation separation module that supplies the first concentrated vapor to a moisture selective permeation type vapor permeable membrane and selectively permeates moisture to obtain a second concentrated vapor;
A concentrated steam condenser for liquefying the secondary concentrated steam to produce a liquefied concentrated water-soluble organic substance;
A pressure pump for pressurizing the produced liquefied concentrated water-soluble organic matter;
A pervaporation heater for heating and heating the pressurized liquefied concentrated water-soluble organic matter;
A permeable vapor separation module that supplies the pressurized and heated liquefied concentrated water-soluble organic matter to a moisture selective permeation type pervaporation membrane and selectively permeates the moisture to obtain a high concentration water-soluble organic matter. An apparatus for concentrating water-soluble organic substances.

5.水溶性有機物と水との混合液における水溶性有機物の濃度が3質量%〜50質量%であり、
第1次濃縮蒸気における水溶性有機物の濃度が30質量%〜95質量%であり、
第2次濃縮蒸気における水溶性有機物の濃度が90質量%〜99質量%であり、
高濃度水溶性有機物における水溶性有機物の濃度が95質量%〜99.9質量%であること
を特徴とする前記4に記載の水溶性有機物の濃縮装置。
5. The concentration of the water-soluble organic substance in the mixed liquid of the water-soluble organic substance and water is 3% by mass to 50% by mass,
The concentration of the water-soluble organic substance in the first concentrated steam is 30% by mass to 95% by mass,
The concentration of the water-soluble organic substance in the secondary concentrated steam is 90% by mass to 99% by mass,
5. The water-soluble organic substance concentrating device according to 4 above, wherein the concentration of the water-soluble organic substance in the high-concentration water-soluble organic substance is 95% by mass to 99.9% by mass.

本発明は、蒸留塔で予備濃縮された水溶性有機物を水分選択透過性の分離膜を用いてさらに高濃度に濃縮させるために発明されたものであり、本発明によれば、蒸留塔より塔頂留出分を蒸気の状態で水分選択透過型蒸気透過膜に供給し、水分を透過させて有機液体を濃縮させ、次いで有機液体が濃縮した蒸気を液化して生成した液を加圧した後、加熱昇温し、水分選択透過型浸透気化膜に供給して、水分を透過させるので、濃縮に要する熱エネルギーを抑制できると共に、限られた膜面積の分離膜を用いて高濃度の水溶性有機物を得ることができる。   The present invention was invented in order to concentrate a water-soluble organic substance pre-concentrated in a distillation column to a higher concentration using a moisture selective permeable separation membrane. After the top distillate is supplied in a vapor state to a moisture selective permeable vapor permeable membrane, the moisture is permeated to concentrate the organic liquid, and then the vapor formed by liquefying the vapor concentrated in the organic liquid is pressurized. Heating temperature is raised and supplied to a moisture permselective pervaporation membrane, allowing moisture to permeate, so that the heat energy required for concentration can be suppressed, and a high concentration water-solubility can be achieved using a separation membrane with a limited membrane area Organic matter can be obtained.

図1に示す濃縮装置を使用して、本発明の濃縮方法により10質量%のエタノール水溶液を濃縮する方法を説明するが、本発明はこれに限定されない。なお図1、図4及び図5において、濃縮装置を構成する各部材間を連結する経路のうち、実線で示された経路は液体の流路を示し、点線で示された経路は蒸気の流路を示す。   A method of concentrating a 10% by mass ethanol aqueous solution by the concentration method of the present invention using the concentration apparatus shown in FIG. 1 will be described, but the present invention is not limited to this. 1, 4, and 5, among the paths connecting the members constituting the concentrator, the path indicated by a solid line indicates a liquid flow path, and the path indicated by a dotted line indicates a vapor flow. Showing the road.

図1に示す濃縮装置は、エタノール発酵液1を蒸留する蒸留塔10(この実施例では、第1蒸留塔101と、この第1蒸留塔101によって濃縮されたエタノールを蒸留する第2蒸留塔111とから成っている。)と、蒸留塔10の塔頂からの蒸気を分離するための蒸気透過分離モジュール20と、この蒸気透過分離モジュール20によって濃縮された後に凝縮されたエタノール液を分離するための浸透気化分離モジュール30とを具備している。   1 is a distillation column 10 for distilling the ethanol fermentation liquid 1 (in this embodiment, a first distillation column 101 and a second distillation column 111 for distilling ethanol concentrated by the first distillation column 101). And a vapor permeation separation module 20 for separating the vapor from the top of the distillation column 10, and an ethanol liquid condensed after being concentrated by the vapor permeation separation module 20 The pervaporation separation module 30 is provided.

蒸留塔10は棚段式、充填塔等、蒸留操作に適したものであれば特に限定されない。第1蒸留塔101の中段には、エタノール液(発酵液)1を供給するための供給部を有している。各蒸留塔101、111における塔底の液の一部はリボイラ102、112によって加熱されて蒸気となり、塔内を流下する液体と熱交換及び物質交換をしながら塔内を上昇する。このため塔底においては蒸気の成分のほとんどは水であるが、塔頂の近くではエタノール濃度が大きくなる。なお、塔底から取り出された液の残部は、缶出液11として取り出される。   The distillation column 10 is not particularly limited as long as it is suitable for distillation operation, such as a plate type or a packed column. A middle part of the first distillation column 101 has a supply unit for supplying an ethanol liquid (fermented liquid) 1. A part of the liquid at the bottom of each of the distillation columns 101 and 111 is heated by the reboilers 102 and 112 to become vapor, and rises in the column while exchanging heat and materials with the liquid flowing down the column. For this reason, most of the components of the vapor are water at the bottom of the tower, but the ethanol concentration increases near the top of the tower. In addition, the remainder of the liquid taken out from the tower bottom is taken out as a bottomed liquid 11.

第2蒸留塔111の塔頂から留出した蒸気は、蒸気透過分離モジュール20に送られるが、その一部は塔頂凝縮器12によって凝縮され第2蒸留塔111の塔頂に還流される。   The vapor distilled from the top of the second distillation column 111 is sent to the vapor permeation separation module 20, and a part thereof is condensed by the top condenser 12 and is refluxed to the top of the second distillation column 111.

各蒸留塔101、111の操作圧力は50〜150kPaとするのが好ましい。操作圧力が150kPa超であると、(1)蒸留塔101、111の建設コストが高くなる、(2)塔底の温度を高くする必要が生じるため、エネルギーコストが高くなる、(3)水に対するエタノールの比揮発度が小さくなる等の問題がある。一方、操作圧力が50kPaより小さいと、塔頂から留出した蒸気の凝縮温度が低過ぎるため、通常の冷却用水により塔頂蒸気を凝縮できなくなる。尚、リボイラ102、112は、外部からスチームを供給し、その凝縮熱により加熱する。   The operating pressure of each distillation column 101, 111 is preferably 50 to 150 kPa. If the operating pressure exceeds 150 kPa, (1) the construction cost of the distillation towers 101 and 111 becomes high, (2) the temperature at the bottom of the tower needs to be raised, and the energy cost becomes high, (3) against water There are problems such as a low relative volatility of ethanol. On the other hand, if the operating pressure is less than 50 kPa, the condensation temperature of the steam distilled from the top of the tower is too low, so that the top steam cannot be condensed with normal cooling water. The reboilers 102 and 112 are supplied with steam from the outside and heated by the condensation heat.

蒸気透過分離モジュール20には、第2蒸留器111から留出した蒸気が導入されるようになっており、導入された蒸気のうちの水蒸気が透過成分として取り出され、残りの成分が非透過成分として流出して、濃縮蒸気凝縮器21に送られる。   Vapor distilled from the second distiller 111 is introduced into the vapor permeation separation module 20, and water vapor out of the introduced vapor is taken out as a permeation component, and the remaining components are non-permeation components. And then sent to the concentrated vapor condenser 21.

濃縮蒸気凝縮器21は、蒸気透過分離モジュール20から流出した蒸気の非透過成分を凝縮して凝縮液を生成し、凝縮液槽22は、当該凝縮液を貯めるようになっている。   The concentrated vapor condenser 21 condenses the non-permeate component of the vapor flowing out from the vapor permeation separation module 20 to generate a condensate, and the condensate tank 22 stores the condensate.

加圧ポンプ23は、上記凝縮液槽22に貯められた凝縮液を所定の圧力まで昇圧して、浸透気化分離モジュール30に送り出すようになっている。   The pressurizing pump 23 pressurizes the condensate stored in the condensate tank 22 to a predetermined pressure and sends it to the pervaporation separation module 30.

浸透気化熱交換器31は、加圧ポンプ23によって送り出された凝縮液と浸透気化分離モジュール30から流出された濃縮エタノールとを熱交換することによって、予備加熱し、凝縮液の温度を上昇させるようになっている。   The pervaporation heat exchanger 31 preheats the condensate sent out by the pressurization pump 23 and the concentrated ethanol discharged from the pervaporation separation module 30 so as to increase the temperature of the condensate. It has become.

浸透気化加熱器32は、加圧ポンプ23によって送り出されたエタノール液および浸透気化分離モジュール30より流出したエタノール液の温度を、外部から導入された加熱蒸気によって所定の温度まで加熱するようになっている。   The pervaporation heater 32 heats the ethanol liquid sent out by the pressurizing pump 23 and the ethanol liquid flowing out from the pervaporation separation module 30 to a predetermined temperature by heating steam introduced from the outside. Yes.

浸透気化分離モジュール30は、加圧ポンプ23により加圧され、浸透気化熱交換器31、浸透気化加熱器32によって加熱されたエタノール液から水分を分離するようになっている。   The pervaporation separation module 30 is configured to separate water from the ethanol liquid pressurized by the pressurizing pump 23 and heated by the pervaporation heat exchanger 31 and the pervaporation heater 32.

尚、上記蒸気透過分離モジュール20は、水分選択透過型蒸気透過膜を有しており、かつ該分離膜の透過側を減圧する真空ポンプ24を備え、冷却用水によって透過蒸気を冷却凝縮する凝縮器25を介して減圧している。   The vapor permeation separation module 20 has a moisture selective permeation type vapor permeable membrane, and includes a vacuum pump 24 that depressurizes the permeation side of the separation membrane, and a condenser that cools and condenses the permeated vapor with cooling water. 25, the pressure is reduced.

上記浸透気化分離モジュール30の各々は、水分透過型浸透気化膜を有しており、かつ該分離膜の透過側を減圧する真空ポンプ34を備え、冷却用水によって透過水分を冷却凝縮する凝縮器35を介して減圧している。   Each of the pervaporation / separation modules 30 has a moisture permeation type pervaporation membrane, and includes a vacuum pump 34 that depressurizes the permeation side of the separation membrane, and a condenser 35 that cools and condenses permeated water with cooling water. The pressure is reduced through.

蒸気透過分離モジュール20、浸透気化分離モジュール30としては、多孔質からなる管状の支持体に分離膜を成膜した管状分離膜を具備するシェルアンドチューブ型モジュールが好ましい。両モジュールは同様の構造を有しているので、先ず、蒸気透過分離モジュールについて説明し、その後、浸透気化分離モジュールについては、蒸気透過分離モジュールとの相異点のみを説明する。   As the vapor permeation separation module 20 and the pervaporation separation module 30, a shell and tube type module including a tubular separation membrane in which a separation membrane is formed on a porous tubular support is preferable. Since both modules have the same structure, the vapor permeation separation module will be described first, and then, only the differences from the vapor permeation separation module will be described for the pervaporation separation module.

図2に、本発明の濃縮方法に使用できる蒸気透過分離モジュール20の一例を示す。但し、本発明における「第1次又は第2次濃縮蒸気」を単に蒸気という。
この蒸気透過分離モジュール20は、筒状のシェル41と、シェル41の両端に固定された支持板42a,42bと、支持板42a,42bにより支持されシェル41の長手方向に延在する複数の外管43と、外管43の長手方向に設けられた管状分離膜44と、支持板42a,42bを覆うようにシェル41に取り付けられたチャンネル45a,45bとを具備する。チャンネル45aから蒸気F1の入口46が突出し、シェル41から非透過蒸気F3の出口47が外方に突出する。蒸気出口47は支持板42bに近い位置に設けられている。チャンネル45bには、膜透過蒸気F2の出口48が設けられている。またチャンネル45a,45bのフランジは支持板42a,42bに気密に係合している。
FIG. 2 shows an example of a vapor permeation separation module 20 that can be used in the concentration method of the present invention. However, the “primary or secondary concentrated steam” in the present invention is simply referred to as steam.
The vapor permeation separation module 20 includes a cylindrical shell 41, support plates 42a and 42b fixed to both ends of the shell 41, and a plurality of outer plates supported by the support plates 42a and 42b and extending in the longitudinal direction of the shell 41. A tube 43, a tubular separation membrane 44 provided in the longitudinal direction of the outer tube 43, and channels 45a and 45b attached to the shell 41 so as to cover the support plates 42a and 42b are provided. An inlet 46 of the steam F1 protrudes from the channel 45a, and an outlet 47 of the non-permeated steam F3 protrudes outward from the shell 41. The steam outlet 47 is provided at a position close to the support plate 42b. The channel 45b is provided with an outlet 48 for the membrane-permeated vapor F2. The flanges of the channels 45a and 45b are airtightly engaged with the support plates 42a and 42b.

各支持板42a,42bは複数の開口部421a,421bを有し、それぞれの開口部421aと開口部421bとはシェル41の長手方向に対向するように正確に位置決めされている。各開口部421aには外管43の先端部431が固定され、それに対向する開口部421bには同じ外管43の後端部432が係合しており、もって各外管43は支持板42a,42bにより支持されている。各外管43には支持板42bに近い位置に蒸気通過口433が形成されている。   Each support plate 42 a, 42 b has a plurality of openings 421 a, 421 b, and each opening 421 a and opening 421 b are accurately positioned so as to face each other in the longitudinal direction of the shell 41. The front end 431 of the outer tube 43 is fixed to each opening 421a, and the rear end 432 of the same outer tube 43 is engaged with the opening 421b opposite to the opening 421a. Thus, each outer tube 43 has a support plate 42a. , 42b. A steam passage port 433 is formed in each outer tube 43 at a position close to the support plate 42b.

図3は、支持板42a,42bに支持された外管43及び管状分離膜44の詳細な構造を示す。管状分離膜44の先端(チャンネル45a側)は封止端441、後端(チャンネル45b側)は開放端442となっている。封止端441は封止部材49により封止されている。開放端442は支持部材410に係合し、支持部材410は外管43の後端部432に螺合している。また外管43は支持板42aに近い位置で内面から突出する複数のピン部434を有しており、ピン部434の先端は封止部材49に当接することにより管状分離膜44を支持している。   FIG. 3 shows the detailed structure of the outer tube 43 and the tubular separation membrane 44 supported by the support plates 42a and 42b. The front end (channel 45a side) of the tubular separation membrane 44 is a sealed end 441, and the rear end (channel 45b side) is an open end 442. The sealing end 441 is sealed with a sealing member 49. The open end 442 engages with the support member 410, and the support member 410 is screwed into the rear end portion 432 of the outer tube 43. The outer tube 43 has a plurality of pin portions 434 projecting from the inner surface at a position close to the support plate 42 a, and the tip of the pin portion 434 supports the tubular separation membrane 44 by contacting the sealing member 49. Yes.

図2及び図3に示すように、蒸気入口46からシェル41に蒸気F1を供給すると、透過蒸気F2は管状分離膜44を透過し、膜透過蒸気出口48から流出する。管状分離膜44を透過しない残りの蒸気F3(非透過蒸気)は、外管43と管状分離膜44との間隙を通過し、通過口433から流出する。次いで非透過蒸気F3は外管43の外側を通過し、蒸気出口47から流出する。   As shown in FIGS. 2 and 3, when the steam F <b> 1 is supplied from the steam inlet 46 to the shell 41, the permeated steam F <b> 2 permeates the tubular separation membrane 44 and flows out from the membrane permeated steam outlet 48. The remaining steam F3 (non-permeated steam) that does not permeate the tubular separation membrane 44 passes through the gap between the outer tube 43 and the tubular separation membrane 44 and flows out from the passage port 433. Next, the non-permeate vapor F <b> 3 passes outside the outer tube 43 and flows out from the vapor outlet 47.

分離膜44としては特に限定されず、高分子PVA、ポリイミド等からなっていても良いが、ゼオライト、ジルコニア等の無機物からなるのが好ましく、ゼオライトからなるのがより好ましい。例えば、多孔質アルミナからなる管状の支持体にゼオライトの薄膜を形成したものは、特に好ましく使用できる。ゼオライトとしては特に限定されず、ZSM−5型、A型、Y型等のなかから濃縮する水溶性有機物により適宜選択することができる。   The separation membrane 44 is not particularly limited and may be made of polymer PVA, polyimide or the like, but is preferably made of an inorganic material such as zeolite or zirconia, and more preferably made of zeolite. For example, a tubular support made of porous alumina having a zeolite thin film formed thereon can be used particularly preferably. The zeolite is not particularly limited, and can be appropriately selected depending on the water-soluble organic substance to be concentrated from ZSM-5 type, A type, Y type and the like.

浸透気化分離モジュールは、上記蒸気透過分離モジュールと基本的には同様の構造を有しており、次の点が異なっている。   The pervaporation separation module has basically the same structure as the vapor permeation separation module, and differs in the following points.

すなわち、上記蒸気透過分離モジュールにおいては、上記蒸気入口(この場合は、溶液入口)46から濃縮する溶液の蒸気が導入されていたが、浸透気化分離モジュールにおいては、液体である濃縮しようとする溶液が導入される。導入された溶液が管状分離膜44と接するところで、水分を主とする蒸気が管状分離膜44を透過し、膜透過蒸気出口48から流出する。また、管状分離膜44で水分が除去された溶液は、外管43と管状分離膜44との間隙を通過し、通過口433から流出し、蒸気出口(この場合は、溶液出口)47から流出する点が異なる。   That is, in the vapor permeation separation module, the vapor of the solution to be concentrated is introduced from the vapor inlet (in this case, the solution inlet) 46, but in the pervaporation separation module, the solution to be concentrated is a liquid. Is introduced. Where the introduced solution comes into contact with the tubular separation membrane 44, the vapor mainly composed of water passes through the tubular separation membrane 44 and flows out from the membrane permeation vapor outlet 48. The solution from which moisture has been removed by the tubular separation membrane 44 passes through the gap between the outer tube 43 and the tubular separation membrane 44, flows out from the passage port 433, and flows out from the vapor outlet (in this case, the solution outlet) 47. The point to do is different.

本発明の濃縮方法により濃縮する水溶性有機物は、エタノール、メタノール、i−プロピルアルコール、アセトン、ジオキサン、DMF等特に限定されないが、アルコールであるのが好ましく、エタノール又はi−プロピルアルコールであるのがより好ましい。   The water-soluble organic substance to be concentrated by the concentration method of the present invention is not particularly limited, such as ethanol, methanol, i-propyl alcohol, acetone, dioxane, DMF, but is preferably an alcohol, and preferably ethanol or i-propyl alcohol. More preferred.

本発明の実施例を以下に示す。
(実施例1)
この実施例1は、図1に示す濃縮装置を用い、エタノール8質量%の発酵液から蒸留によって90質量%までエタノールを濃縮した後、本発明の方法によって水分を分離し、低含水率のエタノールを得た実施例を示すものである。
Examples of the present invention are shown below.
(Example 1)
In Example 1, the concentration apparatus shown in FIG. 1 was used to concentrate ethanol from a fermentation solution of 8% by mass of ethanol to 90% by mass, and then water was separated by the method of the present invention. The Example which obtained is shown.

発酵液中のエタノールは第1蒸留塔101及び第2蒸留塔111で蒸留し、第2蒸留塔111の塔頂で90質量%に濃縮した。   Ethanol in the fermentation liquid was distilled in the first distillation column 101 and the second distillation column 111 and concentrated to 90% by mass at the top of the second distillation column 111.

第2蒸留塔111は塔頂の圧力をほぼ大気圧である110kPa(一次側圧力)で運転し、塔頂の蒸気は一部を凝縮させてエタノール濃度を90質量%に保つよう還流をかけ、8.9kg/hを蒸気透過分離モジュール20に導いた。この分離モジュール20では、蒸気透過法によって水を分離し、エタノールを濃縮した。用いたモジュール20を構成する分離膜のエレメントは管状のアルミナ支持体の外表面にA型ゼオライトを膜状に生成させたものであり、モジュール20に包含される管状膜エレメント群の各管の内側(二次側)を、真空ポンプ24によって8.5kPaに減圧することにより0.52kg/hの水分が膜を透過した。これにより分離モジュール20出口の蒸気は、エタノール濃度が95.6質量%に高まった。モジュール20に含まれる膜の表面積は0.36mであった。分離膜を透過した水分は凝縮器25を用い、冷却用水で冷やして凝縮させたが、凝縮した液中に含まれるエタノールは0.3質量%であった。 The second distillation column 111 is operated at a pressure at the top of the column of 110 kPa (primary side pressure), which is approximately atmospheric pressure, and the vapor at the top of the column is partially condensed and refluxed to maintain the ethanol concentration at 90% by mass, 8.9 kg / h was led to the vapor permeation separation module 20. In this separation module 20, water was separated by a vapor permeation method and ethanol was concentrated. The element of the separation membrane constituting the module 20 used is obtained by forming A-type zeolite in the form of a membrane on the outer surface of a tubular alumina support, and inside the tubes of the tubular membrane element group included in the module 20. The (secondary side) was depressurized to 8.5 kPa by the vacuum pump 24, so that water of 0.52 kg / h permeated the membrane. As a result, the vapor at the outlet of the separation module 20 increased in ethanol concentration to 95.6% by mass. The surface area of the membrane contained in module 20 was 0.36 m 2 . The water that permeated through the separation membrane was condensed by cooling with cooling water using the condenser 25, and the ethanol contained in the condensed liquid was 0.3% by mass.

次いで、分離モジュール20を出た95.6質量%のエタノール蒸気を濃縮蒸気凝縮器21で冷却して液化し、凝縮液槽22に貯留し、この貯留した凝縮液を加圧ポンプ23で700kPa(一次側圧力)に昇圧した後、浸透気化過熱器32によって135℃に加熱して浸透気化法によるエタノール濃縮を行った。浸透気化に用いた分離モジュール30は蒸気透過と同様A型ゼオライトの管状膜エレメントより構成されたものであるが、浸透気化の場合は溶液中の水分が膜を介して気化するのでその潜熱によってモジュール内で液の温度が降下する。このため浸透気化加熱器32による昇温と浸透気化分離モジュール30による水分分離が交互に行われる装置構成とし、浸透気化分離モジュール30内の溶液の温度を130〜135℃に保った。膜面積0.3mの膜を用い、透過側(二次側)の圧力を真空ポンプ34によって1.5kPaに減圧することにより0.346kg/hの水分が膜を透過して99.7質量%のエタノール8.03kg/hが得られた。透過した蒸気は凝縮器35で1℃の冷媒を用いて冷却して凝縮させたが、凝縮した液に含まれるエタノールは1質量%であった。浸透気化のための加熱熱量は221kcal/hであった。水分透過の推進力となる膜の内外の水の分圧差はモジュール出口部分で4.05kPaであった。 Next, 95.6% by mass of the ethanol vapor exiting the separation module 20 is cooled and liquefied by the concentrated vapor condenser 21 and stored in the condensate tank 22, and the stored condensate is 700 kPa ( The pressure was increased to (primary side pressure) and then heated to 135 ° C. by the pervaporation superheater 32 to perform ethanol concentration by permeation vaporization. The separation module 30 used for pervaporation is composed of an A-type zeolite tubular membrane element, similar to vapor permeation, but in the case of pervaporation, the moisture in the solution is vaporized through the membrane, so the latent heat generates the module. The temperature of the liquid drops inside. For this reason, it was set as the apparatus structure by which the temperature rise by the pervaporation heater 32 and the water separation by the pervaporation separation module 30 are performed alternately, and the temperature of the solution in the pervaporation separation module 30 was maintained at 130-135 degreeC. Using a membrane having a membrane area of 0.3 m 2 and reducing the pressure on the permeate side (secondary side) to 1.5 kPa by the vacuum pump 34, 0.346 kg / h of moisture permeates the membrane and 99.7 masses. % Ethanol 8.03 kg / h was obtained. The permeated vapor was cooled and condensed in the condenser 35 using a 1 ° C. refrigerant, but ethanol contained in the condensed liquid was 1% by mass. The amount of heat for pervaporation was 221 kcal / h. The difference in partial pressure of water inside and outside the membrane, which is the driving force for moisture permeation, was 4.05 kPa at the module outlet.

このとき浸透気化熱交換器31を用いて、加圧ポンプ23によって浸透気化過熱器32に送られる凝縮液を予備加熱した。   At this time, the condensate sent to the pervaporation superheater 32 was preheated by the pressurization pump 23 using the pervaporation heat exchanger 31.

この本発明の実施例1では、90質量%のエタノール液を99.7質量%まで濃縮するのに要する熱エネルギーは221kcalであり、用いた分離モジュール20、30の膜面積は合計で0.66mである。 In Example 1 of the present invention, the heat energy required to concentrate 90% by mass of ethanol solution to 99.7% by mass is 221 kcal, and the membrane area of the separation modules 20 and 30 used is 0.66 m in total. 2 .

(比較例1)
図4に示すブロック図は、エタノール90質量%を含む蒸留塔の塔頂蒸気を蒸気透過法のみによって低含水率化を図る実験例に用いた装置構成であり、図1と同一の符号を付した部材は同一のものを示す。
(Comparative Example 1)
The block diagram shown in FIG. 4 is an apparatus configuration used in an experimental example for reducing the water content of the vapor at the top of a distillation column containing 90% by mass of ethanol only by the vapor permeation method. The same members are the same.

まず、上記実施例1の方法と同様に塔頂蒸気8.9kg/hを得、これを0.36mの第1分離モジュール201に導きエタノール濃度が95.6質量%になるまで濃縮した。 First, 8.9 kg / h of the top vapor was obtained in the same manner as in Example 1 above, and this was led to the 0.36 m 2 first separation module 201 and concentrated until the ethanol concentration was 95.6% by mass.

次いでこの濃縮蒸気を第2分離モジュール211に導き、蒸気透過法によってさらに濃縮を進めた。第2分離モジュール211の透過側は上記実施例1の方法と同様に1.5kPaに減圧した。この場合、蒸気透過であるので第2分離モジュール211の操作のために熱エネルギーを加える必要はない。第2分離モジュール211では、膜面積を0.3mとしたときに到達するエタノール濃度は98.7質量%である。膜面積を1mまで増やせばエタノールは99.4質量%まで濃縮するが、この濃度において水分透過の推進力となる膜の内外の水分の分圧差がわずか0.04kPaとなるので、これ以上膜面積を増しても水の透過は進まず、エタノールは濃縮しなかった。 Next, this concentrated vapor was guided to the second separation module 211 and further concentrated by the vapor permeation method. The permeation side of the second separation module 211 was depressurized to 1.5 kPa as in the method of Example 1 above. In this case, since it is vapor permeable, it is not necessary to apply heat energy for the operation of the second separation module 211. In the second separation module 211, the ethanol concentration reached when the membrane area is 0.3 m 2 is 98.7% by mass. If the membrane area is increased to 1 m 2, ethanol will be concentrated to 99.4% by mass. At this concentration, the partial pressure difference between the inside and outside of the membrane, which becomes the driving force for moisture permeation, is only 0.04 kPa. Even when the area was increased, water permeation did not progress and ethanol was not concentrated.

即ちこの方法は膜分離のために熱エネルギーを加える必要は無いが到達できるエタノールの濃度が低い。尚、図4中、241、242は、上記実施例1における真空ポンプ24と同じ真空ポンプを示し、251、252は、上記実施例1における凝縮器25と同じ凝縮器を示し、26は、凝縮液槽22から濃縮エタノールを取出すポンプを示す。   That is, in this method, it is not necessary to add heat energy for membrane separation, but the concentration of ethanol that can be reached is low. In FIG. 4, 241 and 242 indicate the same vacuum pump as the vacuum pump 24 in the first embodiment, 251 and 252 indicate the same condenser as the condenser 25 in the first embodiment, and 26 indicates the condensation. The pump which takes out concentrated ethanol from the liquid tank 22 is shown.

(比較例2)
図5に示されるブロック図は、エタノール90質量%を含む蒸留塔の塔頂蒸気を冷却して液化させた後、浸透気化法のみによって低含水率化を図る実験例に用いた装置構成であり、図1と同一の符号を付した部材は同一のものを示す。
(Comparative Example 2)
The block diagram shown in FIG. 5 is an apparatus configuration used in an experimental example in which the vapor at the top of the distillation column containing 90% by mass of ethanol is cooled and liquefied, and then the moisture content is reduced only by the pervaporation method. The members denoted by the same reference numerals as those in FIG.

先ず、上記実施例1の方法と同様に、エタノール90質量%を含む塔頂蒸気8.9kg/hを得、これを塔頂凝縮器12によって凝縮し、凝縮液槽22に貯留し、この貯留した凝縮液を加圧ポンプ23で700kPaに昇圧した後、浸透気化加熱器32を用いて135℃に加熱してゼオライト膜の浸透気化分離モジュール30に供給した。膜を介した水の気化によりモジュール30内の溶液の温度が低下するので、液を一旦モジュール30から取り出し、浸透気化加熱器32によって再加熱して次のモジュール30へと送る操作を繰り返した。   First, similarly to the method of Example 1 above, 8.9 kg / h of the top vapor containing 90% by mass of ethanol is obtained, and this is condensed by the top condenser 12 and stored in the condensate tank 22. After the pressure of the condensed liquid was increased to 700 kPa with the pressurizing pump 23, the condensed liquid was heated to 135 ° C. using the pervaporation heater 32 and supplied to the pervaporation separation module 30 of the zeolite membrane. Since the temperature of the solution in the module 30 decreases due to the vaporization of water through the membrane, the operation of taking out the liquid from the module 30 once, reheating it by the pervaporation heater 32 and sending it to the next module 30 was repeated.

このとき浸透気化熱交換器31を用いて、加圧ポンプ23によって浸透気化加熱器32に送られる凝縮液を予備加熱した。   At this time, the condensate sent to the pervaporation heater 32 was preheated by the pressurizing pump 23 using the pervaporation heat exchanger 31.

浸透気化と液の加熱はモジュール内の溶液の温度が130〜135℃に保たれるように繰り返して行った。エタノール濃度が95.6質量%に進むまでモジュール30の透過側の圧力は8.5kPaに保ち、それ以上の濃度の部分では1.5kPaとすると、合計膜面積0.6mの分離モジュールによってエタノール濃度を99.7質量%に高めることが出来た。 The pervaporation and the heating of the liquid were repeated so that the temperature of the solution in the module was maintained at 130 to 135 ° C. If the pressure on the permeate side of the module 30 is kept at 8.5 kPa until the ethanol concentration reaches 95.6% by mass, and 1.5 kPa at higher concentrations, the separation module with a total membrane area of 0.6 m 2 The concentration could be increased to 99.7% by mass.

しかし、この場合、膜分離のために必要な熱エネルギーは495kcal/hであり、実施例1の方法に比べてはるかに多い。尚、図5中。341、342は、上記実施例1における真空ポンプ24と同じ真空ポンプを示し、351、352は、上記実施例1における凝縮器25と同じ凝縮器を示す   However, in this case, the thermal energy required for membrane separation is 495 kcal / h, which is much more than the method of Example 1. In FIG. Reference numerals 341 and 342 denote the same vacuum pump as the vacuum pump 24 in the first embodiment, and reference numerals 351 and 352 denote the same condenser as the condenser 25 in the first embodiment.

本発明の濃縮装置の概略の構成を説明するブロック図である。It is a block diagram explaining the schematic structure of the concentration apparatus of this invention. 蒸気透過分離モジュールの一例を示す断面図である。It is sectional drawing which shows an example of a vapor permeable separation module. 蒸気透過分離モジュールの管状分離膜及び外管を示す拡大断面図である。It is an expanded sectional view which shows the tubular separation membrane and outer tube | pipe of a vapor permeable separation module. 蒸気透過法のみを用いた濃縮装置の概略の構成を説明するブロック図である。It is a block diagram explaining the schematic structure of the concentration apparatus using only a vapor permeation method. 浸透気化法のみを用いた濃縮装置の概略の構成を説明するブロック図である。It is a block diagram explaining the schematic structure of the concentration apparatus using only the pervaporation method.

符号の説明Explanation of symbols

1 エタノール液(発酵液)
10 蒸留塔
11 缶出液
12 塔頂凝縮器
20 蒸気透過分離モジュール
21 濃縮蒸気凝縮器
22 凝縮液槽
23 加圧ポンプ
24 真空ポンプ
25 凝縮器
26 ポンプ
30 浸透気化分離モジュール
31 浸透気化熱交換器
32 浸透気化加熱器
34 真空ポンプ
35 凝縮器
101 第1蒸留塔
102 リボイラ
111 第2蒸留塔
112 リボイラ
201 蒸気透過分離モジュール
211 蒸気透過分離モジュール
241 真空ポンプ
242 真空ポンプ
251 凝縮器
252 凝縮器
341 真空ポンプ
342 真空ポンプ
351 凝縮器
352 凝縮器
1 Ethanol solution (fermented solution)
DESCRIPTION OF SYMBOLS 10 Distillation tower 11 Bottom liquid 12 Top condenser 20 Steam transmission separation module 21 Condensation steam condenser 22 Condensate tank 23 Pressure pump 24 Vacuum pump 25 Condenser 26 Pump 30 Pervaporation separation module 31 Pervaporation heat exchanger 32 Pervaporation heater 34 Vacuum pump 35 Condenser 101 First distillation column 102 Reboiler 111 Second distillation column 112 Reboiler 201 Steam permeation separation module 211 Steam permeation separation module 241 Vacuum pump 242 Vacuum pump 251 Condenser 252 Condenser 341 Vacuum pump 342 Vacuum pump 351 Condenser 352 Condenser

Claims (5)

蒸気透過分離モジュールを用いる蒸気透過法と、浸透気化分離モジュールを用いる浸透気化法とを組合せて、水溶性有機物と水との混合液を濃縮することにより高濃度水溶性有機物を得る水溶性有機物の濃縮方法において、
前記水溶性有機物と水との混合液を蒸留により有機物が濃縮した第1次濃縮蒸気を得、
その後、該第1次濃縮蒸気を、前記蒸気透過分離モジュールを用いる蒸気透過法により濃縮して第2次濃縮蒸気を得、
次いで、該第2次濃縮蒸気を液化し、前記浸透気化分離モジュールを用いる浸透気化法により濃縮して高濃度水溶性有機物を得ること
を特徴とする水溶性有機物の濃縮方法。
A combination of a vapor permeation method using a vapor permeation separation module and an osmosis vaporization method using an osmosis vapor separation module to obtain a high concentration water-soluble organic substance by concentrating a mixture of the water-soluble organic substance and water. In the concentration method,
Obtaining a first concentrated steam in which organic matter is concentrated by distillation of a mixture of the water-soluble organic matter and water,
Thereafter, the first concentrated vapor is concentrated by a vapor permeation method using the vapor permeation separation module to obtain a second concentrated vapor,
Next, the second concentrated vapor is liquefied and concentrated by an osmotic vaporization method using the osmosis vapor separation module to obtain a high-concentration water-soluble organic substance.
蒸気透過分離モジュールを用いる蒸気透過法と、浸透気化分離モジュールを用いる浸透気化法とを組合せて、水溶性有機物と水との混合液を濃縮することにより高濃度の水溶性有機物を得る水溶性有機物の濃縮方法において、
前記蒸気透過分離モジュールが、一次側に供給される蒸気の中から水蒸気を選択的に二次側に透過させる水分選択透過型蒸気透過膜を有し、
前記浸透気化分離モジュールが、一次側に供給される溶液の中から水分を選択的に二次側に透過させる水分選択透過型浸透気化膜を有し、
前記各膜の二次側の圧力が、一次側の圧力よりもい圧力を有し、
前記水溶性有機物と水との混合液を蒸留により濃縮して第1次濃縮蒸気を得、
その後、該第1次濃縮蒸気を前記水分選択透過型蒸気透過膜に供給し、水分を選択的に透過させることにより濃縮して第2次濃縮蒸気を得、
次いで、該第2次濃縮蒸気を液化して液化濃縮水溶性有機物を生成し、
生成した液化濃縮水溶性有機物を加圧および加熱昇温した後に、
前記水分選択透過型浸透気化膜に供給し、水分を選択的に透過させることにより濃縮して高濃度水溶性有機物を得ること
を特徴とする水溶性有機物の濃縮方法。
A water-soluble organic substance that obtains a high-concentration water-soluble organic substance by concentrating a liquid mixture of a water-soluble organic substance and water by combining a vapor permeation method using a vapor permeation separation module and an osmosis vaporization method using an osmosis vapor separation module. In the concentration method of
The vapor permeation separation module has a moisture permselective vapor permeable membrane that selectively permeates water vapor from the vapor supplied to the primary side to the secondary side,
The pervaporation separation module has a moisture permeation type pervaporation membrane that selectively permeates moisture from the solution supplied to the primary side to the secondary side,
The pressure on the secondary side of each membrane has a low have pressure than the primary side,
Concentrating the liquid mixture of the water-soluble organic substance and water by distillation to obtain a first concentrated vapor,
Thereafter, the first concentrated vapor is supplied to the moisture selective permeable vapor permeable membrane and concentrated by selectively allowing moisture to pass through to obtain a second concentrated vapor.
Next, the secondary concentrated vapor is liquefied to produce a liquefied concentrated water-soluble organic substance,
After pressurizing and heating the heated liquefied concentrated water-soluble organic matter,
A method for concentrating a water-soluble organic substance, characterized in that it is supplied to the moisture permselective pervaporation membrane and selectively permeated to obtain a high-concentration water-soluble organic substance.
水溶性有機物と水との混合液における水溶性有機物の濃度が3質量%〜50質量%であり、
第1次濃縮蒸気における水溶性有機物の濃度が30質量%〜95質量%であり、
第2次濃縮蒸気における水溶性有機物の濃度が90質量%〜99質量%であり、
高濃度水溶性有機物における水溶性有機物の濃度が95質量%〜99.9質量%であること
を特徴とする請求項1又は2に記載の水溶性有機物の濃縮方法。
The concentration of the water-soluble organic substance in the mixed liquid of the water-soluble organic substance and water is 3% by mass to 50% by mass,
The concentration of the water-soluble organic substance in the first concentrated steam is 30% by mass to 95% by mass,
The concentration of the water-soluble organic substance in the secondary concentrated steam is 90% by mass to 99% by mass,
The concentration method of the water-soluble organic substance according to claim 1 or 2, wherein the concentration of the water-soluble organic substance in the high-concentration water-soluble organic substance is 95 mass% to 99.9 mass%.
水溶性有機物と水との混合液を濃縮することにより高濃度水溶性有機物を得る水溶性有機物の濃縮装置において、
前記水溶性有機物と水との混合液を蒸留により濃縮して第1次濃縮蒸気を得る蒸留塔と、
該第1次濃縮蒸気を水分選択透過型蒸気透過膜に供給し、水分を選択的に透過させることにより濃縮して第2次濃縮蒸気を得る蒸気透過分離モジュールと、
該第2次濃縮蒸気を液化して液化濃縮水溶性有機物を生成する濃縮蒸気凝縮器と、
生成した液化濃縮水溶性有機物を加圧する加圧ポンプと、
該加圧した液化濃縮水溶性有機物を加熱昇温する浸透気化加熱器と、
該加圧および加熱した液化濃縮水溶性有機物を水分選択透過型浸透気化膜に供給し、水分を選択的に透過させることにより濃縮して高濃度水溶性有機物を得る浸透気化分離モジュールと
を有することを特徴とする水溶性有機物の濃縮装置。
In a water-soluble organic substance concentration apparatus that obtains a high-concentration water-soluble organic substance by concentrating a mixture of a water-soluble organic substance and water,
A distillation column for concentrating the liquid mixture of the water-soluble organic substance and water by distillation to obtain a first concentrated vapor;
A vapor permeation separation module that supplies the first concentrated vapor to a moisture selective permeation type vapor permeable membrane and selectively permeates moisture to obtain a second concentrated vapor;
A concentrated steam condenser for liquefying the secondary concentrated steam to produce a liquefied concentrated water-soluble organic substance;
A pressure pump for pressurizing the produced liquefied concentrated water-soluble organic matter;
A pervaporation heater for heating and heating the pressurized liquefied concentrated water-soluble organic matter;
A permeable vapor separation module that supplies the pressurized and heated liquefied concentrated water-soluble organic substance to a moisture selective permeation type pervaporation membrane and selectively permeates the moisture to obtain a high-concentration water-soluble organic substance. An apparatus for concentrating water-soluble organic substances.
水溶性有機物と水との混合液における水溶性有機物の濃度が3質量%〜50質量%であり、
第1次濃縮蒸気における水溶性有機物の濃度が30質量%〜95質量%であり、
第2次濃縮蒸気における水溶性有機物の濃度が90質量%〜99質量%であり、
高濃度水溶性有機物における水溶性有機物の濃度が95質量%〜99.9質量%であること
を特徴とする請求項4に記載の水溶性有機物の濃縮装置。
The concentration of the water-soluble organic substance in the mixed liquid of the water-soluble organic substance and water is 3% by mass to 50% by mass,
The concentration of the water-soluble organic substance in the first concentrated steam is 30% by mass to 95% by mass,
The concentration of the water-soluble organic substance in the secondary concentrated steam is 90% by mass to 99% by mass,
The concentration device of the water-soluble organic substance in the high-concentration water-soluble organic substance is 95% by mass to 99.9% by mass.
JP2003417714A 2003-12-16 2003-12-16 Method and apparatus for concentrating water-soluble organic substances Expired - Fee Related JP4360194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417714A JP4360194B2 (en) 2003-12-16 2003-12-16 Method and apparatus for concentrating water-soluble organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417714A JP4360194B2 (en) 2003-12-16 2003-12-16 Method and apparatus for concentrating water-soluble organic substances

Publications (2)

Publication Number Publication Date
JP2005177535A JP2005177535A (en) 2005-07-07
JP4360194B2 true JP4360194B2 (en) 2009-11-11

Family

ID=34780131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417714A Expired - Fee Related JP4360194B2 (en) 2003-12-16 2003-12-16 Method and apparatus for concentrating water-soluble organic substances

Country Status (1)

Country Link
JP (1) JP4360194B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275690A (en) * 2006-04-03 2007-10-25 Ngk Insulators Ltd Method for separating and recovering organic liquid from organic liquid aqueous solution
JP2011050860A (en) * 2009-09-02 2011-03-17 Hitachi Zosen Corp Anhydrization method of hydrated organic substance
JP5621965B2 (en) * 2010-06-08 2014-11-12 川研ファインケミカル株式会社 Alumina composite separation membrane and method for producing the same
JP6440156B2 (en) * 2014-07-29 2018-12-19 オルガノ株式会社 Organic solvent purification system and method
CN105289018A (en) * 2015-11-13 2016-02-03 中国海洋石油总公司 MVR-vapor permeation coupling device and method used for organic solvent dehydration
RU169234U1 (en) * 2016-11-24 2017-03-13 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А. В. Топчиева Российской академии наук (ИНХС РАН) DEVICE FOR CONTINUOUS CONCENTRATION OF BUTANOL FROM DILUTED BINARY WATER-BUTANOL MEDIA
JP2020075865A (en) * 2017-03-17 2020-05-21 三菱ケミカル株式会社 Water-alcohol separation system and water-alcohol separation method for producing alcohol
KR20200066344A (en) * 2017-11-21 2020-06-09 코우지로 오카와 Solvent dewatering system and solvent dewatering method
JP7498034B2 (en) * 2019-07-19 2024-06-11 日本碍子株式会社 Separation device and method for operating the separation device

Also Published As

Publication number Publication date
JP2005177535A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP3764894B2 (en) Method for concentrating water-soluble organic substances
WO2009123223A1 (en) Purification treatment method for fermented alcohol
US9266803B2 (en) Liquid separation by membrane assisted vapor stripping process
JP5369765B2 (en) Method for purifying fermentation alcohol
WO2009123222A1 (en) Purification treatment method for fermented alcohol
JP4831934B2 (en) Water-soluble organic substance concentrator
JP6196807B2 (en) Water-soluble organic substance concentration method and water-soluble organic substance concentration apparatus
US20110266219A1 (en) Process for separating liquid mixtures
US8608966B2 (en) Method and apparatus for dewatering a mixture of ethanol and water
JP2007275690A (en) Method for separating and recovering organic liquid from organic liquid aqueous solution
JP4360194B2 (en) Method and apparatus for concentrating water-soluble organic substances
US9149769B2 (en) Dehydration system and dehydration method
CA2676899C (en) Method for transporting fluid
US5512179A (en) Membrane process for separation of fluid mixtures
WO2014042530A1 (en) Improved membrane gas desorption
JPS63258601A (en) Method for concentrating organic matter aqueous solution
WO2014077739A2 (en) Method for separating and concentrating organic substances from liquid mixtures and device for the implementation thereof
JP2010083825A (en) Alcohol dehydration system
JPS63258602A (en) Methods for separating volatile mixtures
JPH02307513A (en) Liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees