[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4359944B2 - Bearing support device - Google Patents

Bearing support device Download PDF

Info

Publication number
JP4359944B2
JP4359944B2 JP24363398A JP24363398A JP4359944B2 JP 4359944 B2 JP4359944 B2 JP 4359944B2 JP 24363398 A JP24363398 A JP 24363398A JP 24363398 A JP24363398 A JP 24363398A JP 4359944 B2 JP4359944 B2 JP 4359944B2
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearings
bearings
bearing
bearing support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24363398A
Other languages
Japanese (ja)
Other versions
JP2000074053A (en
Inventor
英夫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP24363398A priority Critical patent/JP4359944B2/en
Publication of JP2000074053A publication Critical patent/JP2000074053A/en
Application granted granted Critical
Publication of JP4359944B2 publication Critical patent/JP4359944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Support Of The Bearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受支持構造に関し、特に、軸に取付けられた一対の軸受を、それら軸受に軸方向への荷重が加わった状態で支持する軸受支持装置に関する。
【0002】
【従来の技術】
円錐ころ軸受、単列アンギュラ玉軸受等の、ラジアル荷重と一方向のスラスト荷重とを負荷できる軸受は、通常、軸に沿って2個の軸受を対向配置し、両方向のスラスト荷重を負荷できる状態で使用される。これら2個の軸受は、機械構造内の軸受支持部によって支持されるが、このとき一般に、両軸受の内輪同士又は外輪同士の間隔を軸方向に調整することにより、各軸受に軸方向へ所定の予荷重が加えられる。このような予荷重は、外力による各軸受の軸受隙間の変動を防止するとともに、特に高速回転時の両軸受の心ずれを防止するのに有効である。
【0003】
図4は、従来のこの種の軸受及び軸受支持構造の一例を示す。図示の例では、軸1に一対の円錐ころ軸受2、3が互いに対向して取付けられている。軸1は、一方の円錐ころ軸受2の内輪2aを支持する張出部1aを備えるとともに、軸端に雄ねじ部1bを備え、他方の円錐ころ軸受3の内輪3aが、雄ねじ部1bに隣接して配置される。これら円錐ころ軸受2、3は、いわゆる背面組合せ形式で配置されており、各々の内輪2a、3aの間に、両内輪2a、3a同士の間隔を保持する複数のスペーサ4、5が設置される。
【0004】
軸1は、機械構造内の軸受支持部6に貫通形成された穴6aに非接触に受容される。一対の円錐ころ軸受2、3の各々の外輪2b、3bは、軸受支持部6の穴6aの両端開口に形成された環状凹部6bにそれぞれ嵌着される。この状態で、軸1の雄ねじ部1bにナット7が螺着され、両軸受2、3の内輪2a、3a及び複数のスペーサ4、5が軸1に固定される。
【0005】
両円錐ころ軸受2、3の内輪2a、3a同士の間隔は、複数のスペーサ4、5の軸方向寸法によって規定される。他方、両円錐ころ軸受2、3の外輪2b、3b同士の間隔は、軸受支持部6の両環状凹部6b間の距離によって規定される。したがって、軸1にナット7を螺着したときに、各軸受2、3に軸方向へ所定の予荷重が負荷されるように、複数のスペーサ4、5の軸方向合計寸法すなわち両円錐ころ軸受2、3の内輪2a、3a同士の間隔の目標値が設定される。これらスペーサ4、5は、その軸方向合計寸法を容易に調整できるように、目標値よりも幾分短い軸方向寸法を有する筒状スペーサ4と、筒状スペーサ4に補足使用して間隔を調整する軸方向寸法の小さな環状スペーサ(又はシム)5とから構成される。
【0006】
【発明が解決しようとする課題】
上記した従来の軸受支持構造では、複数のスペーサ4、5の軸方向合計寸法が目標値よりも大きくなると、各軸受2、3に所定の予荷重を負荷できなくなる。したがって通常、1個の筒状スペーサ4と所望個数の環状スペーサ5とを、それらの合計寸法が目標値に近づくまで軸1上に軸方向へ積重ねて使用する。この場合、複数のスペーサ4、5の軸方向合計寸法を目標値に正確に合致させることは困難であるから、両円錐ころ軸受2、3の内輪2a、3aとスペーサ4、5との間に僅かながら隙間が残されるのが普通である。そして、ナット7の締付けトルクを調整することにより、目標値の周辺で両円錐ころ軸受2、3の内輪2a、3a同士の間隔を微調整し、各軸受2、3に軸方向へ所定の予荷重を加えるようにしている。
【0007】
しかしこのとき、ナット7の締付けトルクの調整の不備により過大な締付けトルクが加わり、両円錐ころ軸受2、3の内輪2a、3aとスペーサ4、5との隙間が必要以上に縮小されると、軸受支持部6の構造上、両円錐ころ軸受2、3の外輪2b、3b同士の間隔は実質的に減少しないので、各軸受2、3に加わる予荷重が過剰になり、軸回転時に転動体(ころ)の焼き付き等の損傷が生じる危惧がある。反対に、ナット7の締付けトルクが小さ過ぎると、各円錐ころ軸受2、3に加わる予荷重が不足し、軸回転時のスラスト荷重により各軸受2、3の軸受隙間が容易に拡大されて安定した軸支持が困難となる危惧がある。しかもこの場合、ナット7の締付けトルクのわずかなばらつきによっても、各軸受への予荷重が容易に変動してしまう。したがって上記構成では、ナット7の締付けトルクを厳密に管理することが不可欠である。
【0008】
ところが、ナットの締付けトルクを厳密に管理するためには、一般に締付け装置等の設備費が高騰する課題がある。かといって、比較的安価なインパクトレンチでは、締付けトルクを厳密に管理することは困難である。したがって従来、両軸受間に配置されるスペーサ、特に間隔調整用の環状スペーサ(シム)の寸法精度を向上させ、複数のスペーサの軸方向合計寸法を目標値に可及的に近似させることで、設備投資費の高騰を抑制しつつ、各軸受に加わる予荷重を適正に調整する方策が採られていた。しかし、ナットの締付けトルクのばらつきによる予荷重の変動を排除できる程に、スペーサの寸法精度を向上させることは困難であり、やはり軸受機能の一層の高性能化には対応できない。
【0009】
本発明の目的は、軸に取付けられた一対の軸受を予荷重が加わった状態で支持する軸受支持装置であって、それら軸受を軸に固定するためのナットの締付けトルクを厳密に管理する必要がなく、しかも両軸受の間隔を規定するスペーサの寸法精度に依存せずに、各軸受に加わる軸方向への予荷重を適正に調整でき、以て軸受機能の高性能化を促進できる軸受支持装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の本発明は、動力伝達機構の終減速装置のドライブピニオンのに取付けられた一対の円錐ころ軸受を、それら円錐ころ軸受に軸方向への荷重が加わった状態で支持する軸受支持装置において、一対の円錐ころ軸受のそれぞれの固定側軌道輪が取付けられる弾性構造体を具備し、弾性構造体は、自由端及び固定端を有した椀状の形状を有する弾性変形可能な部材と、この部材を固定端で支持する基部とを備え、弾性変形可能な部材と基部とが、一対の円錐ころ軸受及びそれら円錐ころ軸受を取付けた軸を収容するハウジング組立体を形成し、弾性変形可能な部材の自由端に一方の円錐ころ軸受の固定側軌道輪が取付けられ、基部に他方の円錐ころ軸受の固定側軌道輪が取付けられ、自由端に取付けた固定側軌道輪が基部に取付けた固定側軌道輪に接近するように部材が撓んだときの部材の弾性復元力により、一対の円錐ころ軸受の各々に軸方向への荷重が加わることを特徴とする軸受支持装置を提供する。
【0012】
請求項2に記載の本発明は、請求項1に記載の軸受支持装置において、一対の円錐ころ軸受のそれぞれの回転側軌道輪の間に配置される少なくとも1つのスペーサをさらに具備する軸受支持装置を提供する。
【0013】
【発明の実施の形態】
以下、添付図面を参照して、本発明をその実施形態に基づき詳細に説明する。各図面において、同一又は類似の構成要素には共通の参照符号を付す。
図1は、本発明に係る軸受支持装置を概念的に示す。図1に示すように、本発明に係る軸受支持装置は、軸に取付けられた一対の軸受のそれぞれの固定側軌道輪が取付けられる弾性構造体10を備えることを特徴とするものである。
【0014】
図4の従来技術と同様に、軸12には、張出部12aに隣接して一方の円錐ころ軸受14の内輪14aすなわち回転側軌道輪が取付けられ、軸端の雄ねじ部12bに隣接して他方の円錐ころ軸受16の内輪16aすなわち回転側軌道輪が取付けられる。これら円錐ころ軸受14、16は、いわゆる背面組合せ形式で配置されており、各々の内輪14a、16aの間に、両内輪14a、16a同士の間隔を保持する複数のスペーサ18、20が設置される。
【0015】
一対の円錐ころ軸受14、16の各々の外輪14b、16bすなわち固定側軌道輪は、弾性構造体10に互いに離れる側へ外向きに形成された環状凹部10aにそれぞれ嵌着される。この状態で、軸12の雄ねじ部12bにナット22が螺着され、両軸受14、16の内輪14a、16a及び複数のスペーサ18、20が軸12に固定される。
【0016】
両円錐ころ軸受14、16の内輪14a、16a同士の間隔は、複数のスペーサ18、20の軸方向寸法によって規定される。他方、両円錐ころ軸受14、16の外輪14b、16b同士の間隔は、弾性構造体10の両環状凹部10a間の距離によって規定される。したがって、軸12にナット22を螺着したときに、弾性構造体10の弾性復元力の下で各軸受14、16に軸方向へ所定の予荷重が負荷されるように、複数のスペーサ18、20の軸方向合計寸法すなわち両円錐ころ軸受14、16の内輪14a、16a同士の間隔の目標値が設定される。これらスペーサ18、20は、その軸方向合計寸法を容易に調整できるように、目標値よりも幾分短い軸方向寸法を有する筒状スペーサ18と、筒状スペーサ18に補足使用して間隔を調整する軸方向寸法の小さな環状スペーサ(又はシム)20とから構成される。
【0017】
本発明に係る軸受支持装置では、両円錐ころ軸受14、16の外輪14b、16bが弾性構造体10によって弾性的に支持されるので、上記したように、ナット22の締付けにより両円錐ころ軸受14、16の外輪14b、16b同士が互いに接近して、弾性構造体10がある程度撓んだ状態で、各軸受14、16に軸方向への所定の予荷重が負荷されるようになる。したがって、複数のスペーサ18、20の軸方向合計寸法が上記した目標値よりも大きくなると、ナット22を締付けたときに、両円錐ころ軸受14、16の内輪14a、16aがスペーサ18、20に当接されるまでの範囲で弾性構造体10が多少撓んだとしても、各軸受14、16に所定の予荷重を負荷することはできない。
【0018】
そこで、前述した従来技術と同様に、1個の筒状スペーサ18と所望個数の環状スペーサ20とを、それらの合計寸法が目標値に近づくまで軸12上に軸方向へ積重ねて使用する。この場合、複数のスペーサ18、20の軸方向合計寸法を目標値に正確に合致させる必要はなく、目標値よりも幾分小さい軸方向寸法が得られるまで積重ねればよい。そして、ナット22を締付けて両円錐ころ軸受14、16の内輪14a、16a同士及び外輪14b、16b同士を互いに接近させ、内輪14a、16aがスペーサ18、20に当接されるまでの範囲で弾性構造体10を撓ませる。ここで、ナット22の締付けトルクを調整することにより、目標値の周辺で両円錐ころ軸受14、16の内輪14a、16a同士の間隔を微調整すれば、弾性構造体10の弾性復元力の下で、各軸受14、16に軸方向へ所定の予荷重が負荷されることになる。
【0019】
前述したように従来技術では、ナット7の締付けトルクが例えば一般的なトルクレンチに内在する誤差範囲でばらつきを生じ、実際の締付けトルクが設定値よりも大きくなった場合、両円錐ころ軸受2、3の内輪2a、3a同士がスペーサ4、5に当接されるまでの範囲で接近する一方、両軸受2、3の外輪2b、3b同士が互いに接近できないので、各軸受2、3に過剰な予荷重が加わってしまう課題がある。これを防止するためには、ナット7の締付けトルクを厳密に管理するか、又はスペーサ4、5の軸方向寸法精度を向上させる必要があった。
【0020】
これに対し本発明では、ナット22の実際の締付けトルクが誤差により設定値よりも大きくなった場合に、両円錐ころ軸受14、16の内輪14a、16aがスペーサ18、20に当接されるまで移動したとしても、弾性構造体10の弾性復元力に抗して両円錐ころ軸受14、16の外輪14b、16b同士が互いに接近できるので、各軸受14、16に加わる予荷重が過剰になることは回避される。すなわち、ナット22の締付けトルクが例えば一般的なトルクレンチに内在する誤差範囲でばらつきを生じていても、弾性構造体10の弾性変形により、各軸受14、16に加わる予荷重の変動は低減されるのである。
【0021】
このように本発明の軸受支持装置によれば、ナット22の締付けトルクのばらつきに起因して生じる各円錐ころ軸受14、16への予荷重の変動は、両円錐ころ軸受14、16の内輪14a、16a同士の間隔の変化に対応して、弾性構造体10の弾性変形の下で外輪14b、16b同士の間隔が変化できる構成としたことにより、効果的に低減される。したがって、ナット22の締付けトルクを厳密に管理せずとも、各円錐ころ軸受14、16に加わる予荷重を適正に調整することができる。
【0022】
換言すれば、本発明の軸受支持装置においては、各円錐ころ軸受14、16への予荷重の変動に対し、ナット22の締付けトルクのばらつきの影響は、スペーサ18、20、特に環状スペーサ20の軸方向寸法変化の影響よりも小さくなっている。つまり、実際に使用した複数のスペーサ18、20の軸方向合計寸法が、間隔調整用の環状スペーサ20の1個分に近い寸法だけ目標値よりも小さい場合に、ナット22の締付けトルクのばらつきが大きく、両円錐ころ軸受14、16の内輪14a、16aがスペーサ18、20に当接されるまで移動しても、弾性構造体10の弾性変形により、各軸受14、16への予荷重の変動はさほど大きくならないのである。この場合、両軸受14、16の間隔を規定する複数のスペーサ18、20、特に環状スペーサ20の寸法精度を若干(現状の技術で十分可能な程度に)高めるだけで、予荷重の変動防止効果が大きく向上することは理解されよう。
【0023】
図2は、本発明の一実施形態による軸受支持装置を示す。この軸受支持装置は、軸12に取付けられた一対の円錐ころ軸受14、16のそれぞれの外輪14b、16bが取付けられる弾性構造体として、自由端24a及び固定端24bを有した弾性変形可能な取付部材24と、取付部材24を固定端24bで支持する基部26とを備える。他の構成は図1に示したものと実質的に同一であるので、説明を省略する。
【0024】
取付部材24は、椀状の形状を有し、外周縁にフランジ状に形成された固定端24bで複数のボルト28によって基部26に固定される。取付部材24の自由端24aは、取付部材24の略中心に、軸12を非接触に受容する貫通穴30を画成する。また、取付部材24の自由端24aには、基部26から離れる方向へ延びるスリーブ部32が形成され、それにより、貫通穴30に隣接して外向きの環状凹部34が形成される。基部26には、取付部材24の貫通穴30に軸方向へ重畳する位置に、軸12を非接触に受容する貫通穴36が形成される。基部26の貫通穴36には、取付部材24から離れた側に外向きの環状凹部38が形成される。軸12に取付けられた一方の円錐ころ軸受14の外輪14bは、基部26の環状凹部38に嵌着され、他方の円錐ころ軸受16の外輪16bは、取付部材24の環状凹部34に嵌着される。
【0025】
この実施形態においては、ナット22を締付けたときに、両円錐ころ軸受14、16の内輪14a、16a同士が、複数のスペーサ18、20に当接されるまでの範囲で接近するに伴い、基部26上で取付部材24の自由端24a側が図示のように弾性的に撓んで、外輪14b、16b同士の相互接近を許容する。そこで、ナット22の締付けトルクを調整することにより、弾性構造体10の弾性復元力の下で、各軸受14、16に軸方向へ所定の予荷重を負荷することができる。このような構成による作用効果は、図1を参照して説明した通りである。
【0026】
上記実施形態において、取付部材24の自由端24aと基部26との間に、ばね等の弾性部材を介在させることもできる。それにより、ナット22の締付けトルクのばらつきに対する弾性構造体の弾性変形の程度、つまり各軸受14、16への予荷重の変動の程度を適宜変更することができる。また、取付部材24自体をばねから形成することもできる。
【0027】
図3は、本発明に係る軸受支持装置の適用形態の一例を示す。この例では、軸受支持装置は、動力伝達機構の終減速装置において、ハウジング組立体50にドライブピニオン52を回動自在に支持するための一対の円錐ころ軸受54、56に対して使用されている。
【0028】
図示の終減速装置では、ハウジング組立体50は、基部58と、複数(1つのみ図示)のボルト60によって基部58に固定される第1取付部材62と、複数(1つのみ図示)のボルト64によって第1取付部材62に固定される第2取付部材66とを備える。ドライブピニオン52の軸部52aに取付けられた一方の円錐ころ軸受54は、その外輪54aが第1取付部材62の環状凹部62aに嵌着され、他方の円錐ころ軸受56は、その外輪56aが第2取付部材66の環状凹部66aに嵌着される。それら円錐ころ軸受54、56の間には、動力伝達歯車68が配置される。ドライブピニオン52の軸部52aの軸方向前端にはナット70が螺着され、一対の円錐ころ軸受54、56及び動力伝達歯車68を軸部52aに固定するとともに、各軸受54、56に予荷重を加えるように調整される。
【0029】
この場合、一対の円錐ころ軸受54、56の間に配置される動力伝達歯車68は、図1で説明した筒状スペーサ18の機能を有する。したがって、各軸受54、56に適正な予荷重を加えるために、円錐ころ軸受54、56と動力伝達歯車68との間に、図1で説明した間隔調整用の環状スペーサ20が配置される。また、ハウジング組立体50の第1取付部材62は、図2で説明した基部26に対応し、第2取付部材66は、図2で説明した取付部材24に対応する。
【0030】
このような構成においては、高性能の軸受機能を要求される終減速装置のドライブピニオン52の一対の円錐ころ軸受54、56に対し、本発明に係る軸受支持装置を使用することにより、比較的容易かつ安価な手段で適正な予荷重を負荷することができる。その結果、ドライブピニオン52に使用される一対の円錐ころ軸受54、56の軸受機能の高性能化が促進される。
【0031】
【発明の効果】
以上の説明から明らかなように、本発明によれば、軸に取付けられた一対の軸受に予荷重を加える際に、それら軸受を軸に固定するためのナットの締付けトルクを厳密に管理する必要がなく、しかも両軸受の間隔を規定するスペーサの寸法精度に依存せずに、各軸受に加わる軸方向への予荷重を適正に調整でき、以て軸受機能の高性能化を促進できる軸受支持装置が提供される。
【図面の簡単な説明】
【図1】本発明に係る軸受支持装置を概念的に示す図である。
【図2】本発明の一実施形態による軸受支持装置の断面図である。
【図3】本発明に係る軸受支持装置の適用例を示す終減速装置の断面図である。
【図4】従来の軸受支持構造の断面図である。
【符号の説明】
10…弾性構造体
12…軸
14、16…円錐ころ軸受
14a、16a…内輪
14b、16b…外輪
18…筒状スペーサ
20…環状スペーサ
22…ナット
24…取付部材
24a…自由端
24b…固定端
26…基部
28…ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing support structure, and more particularly to a bearing support device that supports a pair of bearings attached to a shaft in a state where a load in the axial direction is applied to the bearings.
[0002]
[Prior art]
Bearings that can load radial loads and unidirectional thrust loads, such as tapered roller bearings and single-row angular contact ball bearings, are usually arranged with two bearings facing each other along the shaft so that thrust loads in both directions can be loaded. Used in. These two bearings are supported by bearing support portions in the mechanical structure. At this time, in general, the distance between the inner rings or the outer rings of both the bearings is adjusted in the axial direction, whereby each bearing has a predetermined axial direction. The preload is applied. Such a preload is effective in preventing fluctuations in the bearing gaps of the bearings due to external forces, and in particular preventing misalignment of both bearings during high-speed rotation.
[0003]
FIG. 4 shows an example of such a conventional bearing and bearing support structure. In the illustrated example, a pair of tapered roller bearings 2 and 3 are attached to the shaft 1 so as to face each other. The shaft 1 includes an overhanging portion 1a that supports the inner ring 2a of one tapered roller bearing 2, and includes a male screw portion 1b at the shaft end, and the inner ring 3a of the other tapered roller bearing 3 is adjacent to the male screw portion 1b. Arranged. These tapered roller bearings 2 and 3 are arranged in a so-called rear combination form, and a plurality of spacers 4 and 5 are installed between the inner rings 2a and 3a to maintain the distance between the inner rings 2a and 3a. .
[0004]
The shaft 1 is received in a non-contact manner in a hole 6a formed through the bearing support 6 in the mechanical structure. The outer rings 2 b and 3 b of the pair of tapered roller bearings 2 and 3 are fitted into annular recesses 6 b formed at both ends of the hole 6 a of the bearing support portion 6. In this state, the nut 7 is screwed onto the male thread portion 1 b of the shaft 1, and the inner rings 2 a and 3 a of the both bearings 2 and 3 and the plurality of spacers 4 and 5 are fixed to the shaft 1.
[0005]
The interval between the inner rings 2 a and 3 a of the tapered roller bearings 2 and 3 is defined by the axial dimensions of the plurality of spacers 4 and 5. On the other hand, the distance between the outer rings 2 b and 3 b of the both tapered roller bearings 2 and 3 is defined by the distance between both annular recesses 6 b of the bearing support 6. Accordingly, when the nut 7 is screwed onto the shaft 1, the total axial dimension of the plurality of spacers 4, 5, that is, the double tapered roller bearings, so that a predetermined preload is applied to the bearings 2, 3 in the axial direction. A target value for the interval between the inner rings 2a and 3a is set. These spacers 4 and 5 have a cylindrical spacer 4 having an axial dimension slightly shorter than the target value, and the interval is adjusted by supplementing the cylindrical spacer 4 so that the total axial dimension can be easily adjusted. And an annular spacer (or shim) 5 having a small axial dimension.
[0006]
[Problems to be solved by the invention]
In the conventional bearing support structure described above, when the total axial dimension of the plurality of spacers 4 and 5 becomes larger than the target value, it becomes impossible to apply a predetermined preload to the bearings 2 and 3. Therefore, normally, one cylindrical spacer 4 and a desired number of annular spacers 5 are used by being stacked on the shaft 1 in the axial direction until the total dimension thereof approaches the target value. In this case, since it is difficult to accurately match the total axial dimension of the plurality of spacers 4 and 5 with the target value, the gap between the inner rings 2a and 3a of the tapered roller bearings 2 and 3 and the spacers 4 and 5 is difficult. Usually, a slight gap is left. Then, by adjusting the tightening torque of the nut 7, the distance between the inner rings 2a, 3a of the tapered roller bearings 2, 3 is finely adjusted around the target value, and a predetermined pre-load is applied to each bearing 2, 3 in the axial direction. A load is applied.
[0007]
However, at this time, if excessive tightening torque is applied due to inadequate adjustment of the tightening torque of the nut 7, and the gap between the inner rings 2a, 3a of the tapered roller bearings 2, 3 and the spacers 4, 5 is reduced more than necessary, Since the space between the outer rings 2b and 3b of the tapered roller bearings 2 and 3 is not substantially reduced due to the structure of the bearing support 6, the preload applied to the bearings 2 and 3 becomes excessive, and the rolling elements are rotated during shaft rotation. There is a risk of damage such as seizure. On the other hand, if the tightening torque of the nut 7 is too small, the preload applied to the tapered roller bearings 2 and 3 is insufficient, and the bearing gap between the bearings 2 and 3 is easily expanded and stabilized by the thrust load at the time of shaft rotation. There is a risk that it will be difficult to support the shaft. In addition, in this case, even if the tightening torque of the nut 7 is slightly varied, the preload to each bearing easily varies. Therefore, in the above configuration, it is essential to strictly manage the tightening torque of the nut 7.
[0008]
However, in order to strictly manage the tightening torque of the nut, there is a problem that the equipment cost of the tightening device or the like generally increases. However, it is difficult to strictly control the tightening torque with a relatively inexpensive impact wrench. Therefore, conventionally, by improving the dimensional accuracy of the spacers arranged between both bearings, especially the annular spacer (shim) for adjusting the interval, the total axial dimension of the plurality of spacers is approximated to the target value as much as possible. Measures were taken to properly adjust the preload applied to each bearing while restraining the increase in capital investment costs. However, it is difficult to improve the dimensional accuracy of the spacer to such an extent that fluctuations in the preload due to variations in the tightening torque of the nut can be eliminated, and it is still impossible to cope with higher performance of the bearing function.
[0009]
An object of the present invention is a bearing support device for supporting a pair of bearings attached to a shaft in a state where a preload is applied, and it is necessary to strictly control a tightening torque of a nut for fixing the bearings to the shaft. Bearing support that can properly adjust the preload in the axial direction applied to each bearing and promote high performance of the bearing function without depending on the dimensional accuracy of the spacer that defines the distance between both bearings To provide an apparatus.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a pair of tapered roller bearings attached to a shaft portion of a drive pinion of a final reduction gear of a power transmission mechanism is provided in the axial direction on these tapered roller bearings. In the bearing support device that supports in a state in which a load is applied, it includes an elastic structure to which each fixed-side bearing ring of the pair of tapered roller bearings is attached, and the elastic structure has a free end and a fixed end. And a base portion that supports the member at a fixed end, and the elastically deformable member and the base portion are a pair of tapered roller bearings and a shaft portion to which the tapered roller bearings are attached. forming a housing assembly for housing the fixed side raceway of the one tapered roller bearing is attached to the free end of the elastically deformable member, the fixed side raceway of the other tapered roller bearings in the base is mounted, free Take to the edge By the elastic restoring force of the member when the only fixed bearing ring is flexed member to approach the fixed bearing ring attached to the base, that the load in the axial direction is applied to each of the pair of tapered roller bearings A bearing support device is provided.
[0012]
According to a second aspect of the present invention, there is provided the bearing support device according to the first aspect, further comprising at least one spacer disposed between the rotation-side raceways of the pair of tapered roller bearings. I will provide a.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the embodiments with reference to the accompanying drawings. In the drawings, the same or similar components are denoted by common reference numerals.
FIG. 1 conceptually shows a bearing support device according to the present invention. As shown in FIG. 1, the bearing support device according to the present invention is characterized by including an elastic structure 10 to which each fixed-side bearing ring of a pair of bearings attached to a shaft is attached.
[0014]
As in the prior art of FIG. 4, the shaft 12 is provided with an inner ring 14a of one tapered roller bearing 14 adjacent to the overhanging portion 12a, that is, a rotating raceway, and adjacent to the male threaded portion 12b at the shaft end. The inner ring 16 a of the other tapered roller bearing 16, that is, the rotating side race ring is attached. These tapered roller bearings 14 and 16 are arranged in a so-called rear combination form, and a plurality of spacers 18 and 20 are installed between the inner rings 14a and 16a to maintain the distance between the inner rings 14a and 16a. .
[0015]
The outer rings 14b and 16b of each of the pair of tapered roller bearings 14 and 16, that is, the fixed-side raceways are respectively fitted into annular recesses 10a formed outwardly from the elastic structure 10 so as to be away from each other. In this state, the nut 22 is screwed onto the male screw portion 12 b of the shaft 12, and the inner rings 14 a and 16 a and the plurality of spacers 18 and 20 of both the bearings 14 and 16 are fixed to the shaft 12.
[0016]
The interval between the inner rings 14a, 16a of the tapered roller bearings 14, 16 is defined by the axial dimensions of the plurality of spacers 18, 20. On the other hand, the distance between the outer rings 14 b and 16 b of the both tapered roller bearings 14 and 16 is defined by the distance between the annular recesses 10 a of the elastic structure 10. Therefore, when the nut 22 is screwed onto the shaft 12, the plurality of spacers 18, so that a predetermined preload is applied to the bearings 14, 16 in the axial direction under the elastic restoring force of the elastic structure 10. A total dimension of 20 in the axial direction, that is, a target value of the interval between the inner rings 14a and 16a of the tapered roller bearings 14 and 16 is set. The spacers 18 and 20 have a cylindrical spacer 18 having an axial dimension somewhat shorter than the target value and a cylindrical spacer 18 that is used as a supplement so that the total axial dimension can be easily adjusted. And an annular spacer (or shim) 20 having a small axial dimension.
[0017]
In the bearing support device according to the present invention, since the outer rings 14b and 16b of the double tapered roller bearings 14 and 16 are elastically supported by the elastic structure 10, the double tapered roller bearing 14 is tightened by tightening the nut 22, as described above. The outer rings 14b, 16b of the sixteen and sixteen approach each other, and a predetermined preload in the axial direction is applied to the bearings 14, 16 in a state where the elastic structure 10 is bent to some extent. Therefore, if the total axial dimension of the plurality of spacers 18 and 20 is larger than the target value described above, the inner rings 14a and 16a of the tapered roller bearings 14 and 16 will contact the spacers 18 and 20 when the nut 22 is tightened. Even if the elastic structure 10 is slightly bent in the range until contact, a predetermined preload cannot be applied to the bearings 14 and 16.
[0018]
Therefore, similarly to the above-described prior art, one cylindrical spacer 18 and a desired number of annular spacers 20 are used by being stacked in the axial direction on the shaft 12 until their total dimensions approach the target value. In this case, the total axial dimension of the plurality of spacers 18 and 20 need not exactly match the target value, and may be stacked until an axial dimension somewhat smaller than the target value is obtained. Then, the inner ring 14a, 16a and the outer rings 14b, 16b of the tapered roller bearings 14, 16 are brought close to each other by tightening the nut 22, and elastic until the inner rings 14a, 16a are brought into contact with the spacers 18, 20. The structure 10 is bent. Here, by adjusting the tightening torque of the nut 22 to finely adjust the distance between the inner rings 14a, 16a of the tapered roller bearings 14, 16 around the target value, the elastic restoring force of the elastic structure 10 can be reduced. Thus, a predetermined preload is applied to the bearings 14 and 16 in the axial direction.
[0019]
As described above, in the prior art, when the tightening torque of the nut 7 varies within an error range inherent in, for example, a general torque wrench, and the actual tightening torque becomes larger than a set value, the double tapered roller bearing 2, 3, the inner rings 2a and 3a approach each other until they come into contact with the spacers 4 and 5, while the outer rings 2b and 3b of both bearings 2 and 3 cannot approach each other. There is a problem that preload is applied. In order to prevent this, it is necessary to strictly control the tightening torque of the nut 7 or to improve the axial dimensional accuracy of the spacers 4 and 5.
[0020]
On the other hand, in the present invention, when the actual tightening torque of the nut 22 becomes larger than the set value due to an error, the inner rings 14a and 16a of the both tapered roller bearings 14 and 16 are brought into contact with the spacers 18 and 20. Even if it moves, the outer rings 14b, 16b of the tapered roller bearings 14, 16 can approach each other against the elastic restoring force of the elastic structure 10, so that the preload applied to the bearings 14, 16 becomes excessive. Is avoided. That is, even if the tightening torque of the nut 22 varies within an error range inherent in, for example, a general torque wrench, fluctuations in the preload applied to the bearings 14 and 16 are reduced due to elastic deformation of the elastic structure 10. It is.
[0021]
As described above, according to the bearing support device of the present invention, the fluctuation of the preload applied to the tapered roller bearings 14 and 16 caused by the variation in the tightening torque of the nut 22 is caused by the inner ring 14a of the tapered roller bearings 14 and 16. In accordance with the change in the interval between the 16a, the configuration in which the interval between the outer rings 14b and 16b can be changed under the elastic deformation of the elastic structure 10 can be effectively reduced. Therefore, the preload applied to the tapered roller bearings 14 and 16 can be appropriately adjusted without strictly managing the tightening torque of the nut 22.
[0022]
In other words, in the bearing support device of the present invention, the influence of the variation of the tightening torque of the nut 22 on the variation of the preload on the tapered roller bearings 14 and 16 is caused by the spacers 18 and 20, particularly the annular spacer 20. It is smaller than the influence of the dimensional change in the axial direction. In other words, when the total axial dimension of the plurality of spacers 18 and 20 actually used is smaller than the target value by a dimension close to one of the annular spacers 20 for adjusting the distance, variation in the tightening torque of the nut 22 varies. Even if the inner rings 14a and 16a of both tapered roller bearings 14 and 16 move until they abut against the spacers 18 and 20, fluctuations in the preload applied to the bearings 14 and 16 due to elastic deformation of the elastic structure 10 It doesn't get that big. In this case, only by slightly increasing the dimensional accuracy of the plurality of spacers 18, 20, particularly the annular spacer 20, which define the distance between the two bearings 14, 16, the effect of preventing fluctuations in the preload can be achieved. It will be understood that there is a significant improvement.
[0023]
FIG. 2 shows a bearing support device according to an embodiment of the present invention. This bearing support device is an elastically deformable attachment having a free end 24a and a fixed end 24b as an elastic structure to which outer rings 14b, 16b of a pair of tapered roller bearings 14, 16 attached to a shaft 12 are attached. The member 24 and the base part 26 which supports the attachment member 24 with the fixed end 24b are provided. The other configuration is substantially the same as that shown in FIG.
[0024]
The attachment member 24 has a hook-like shape, and is fixed to the base portion 26 by a plurality of bolts 28 at a fixed end 24b formed in a flange shape on the outer peripheral edge. The free end 24 a of the mounting member 24 defines a through hole 30 that receives the shaft 12 in a non-contact manner at the approximate center of the mounting member 24. Further, a sleeve portion 32 extending in a direction away from the base portion 26 is formed at the free end 24 a of the mounting member 24, thereby forming an outward annular recess 34 adjacent to the through hole 30. A through hole 36 for receiving the shaft 12 in a non-contact manner is formed in the base portion 26 at a position overlapping the through hole 30 of the mounting member 24 in the axial direction. An outward annular recess 38 is formed in the through hole 36 of the base 26 on the side away from the mounting member 24. The outer ring 14 b of one tapered roller bearing 14 attached to the shaft 12 is fitted into the annular recess 38 of the base portion 26, and the outer ring 16 b of the other tapered roller bearing 16 is fitted into the annular recess 34 of the mounting member 24. The
[0025]
In this embodiment, when the nut 22 is tightened, as the inner rings 14a and 16a of the tapered roller bearings 14 and 16 approach each other in a range until they abut against the plurality of spacers 18 and 20, the base portion 26, the free end 24a side of the mounting member 24 is elastically bent as shown in the drawing to allow the outer rings 14b and 16b to approach each other. Therefore, by adjusting the tightening torque of the nut 22, a predetermined preload can be applied to the bearings 14 and 16 in the axial direction under the elastic restoring force of the elastic structure 10. The operational effects of such a configuration are as described with reference to FIG.
[0026]
In the above embodiment, an elastic member such as a spring can be interposed between the free end 24 a of the mounting member 24 and the base portion 26. Thereby, the degree of elastic deformation of the elastic structure with respect to the variation in the tightening torque of the nut 22, that is, the degree of fluctuation of the preload applied to the bearings 14, 16 can be appropriately changed. Alternatively, the attachment member 24 itself can be formed from a spring.
[0027]
FIG. 3 shows an example of an application form of the bearing support device according to the present invention. In this example, the bearing support device is used for a pair of tapered roller bearings 54 and 56 for rotatably supporting the drive pinion 52 on the housing assembly 50 in the final reduction gear of the power transmission mechanism. .
[0028]
In the illustrated final reduction gear, the housing assembly 50 includes a base 58, a first mounting member 62 fixed to the base 58 by a plurality (only one shown) of bolts 60, and a plurality (only one shown) of bolts. And a second mounting member 66 fixed to the first mounting member 62 by 64. One tapered roller bearing 54 attached to the shaft portion 52a of the drive pinion 52 has its outer ring 54a fitted in the annular recess 62a of the first mounting member 62, and the other tapered roller bearing 56 has its outer ring 56a in the first position. 2 is fitted into the annular recess 66a of the mounting member 66. A power transmission gear 68 is disposed between the tapered roller bearings 54 and 56. A nut 70 is screwed to the axial front end of the shaft portion 52a of the drive pinion 52 to fix the pair of tapered roller bearings 54 and 56 and the power transmission gear 68 to the shaft portion 52a and to preload the bearings 54 and 56. Adjusted to add.
[0029]
In this case, the power transmission gear 68 disposed between the pair of tapered roller bearings 54 and 56 has the function of the cylindrical spacer 18 described in FIG. Therefore, in order to apply an appropriate preload to the bearings 54 and 56, the annular spacer 20 for adjusting the distance described with reference to FIG. 1 is disposed between the tapered roller bearings 54 and 56 and the power transmission gear 68. The first mounting member 62 of the housing assembly 50 corresponds to the base portion 26 described with reference to FIG. 2, and the second mounting member 66 corresponds to the mounting member 24 described with reference to FIG.
[0030]
In such a configuration, by using the bearing support device according to the present invention for the pair of tapered roller bearings 54 and 56 of the drive pinion 52 of the final reduction device that requires a high performance bearing function, An appropriate preload can be applied by an easy and inexpensive means. As a result, high performance of the bearing function of the pair of tapered roller bearings 54 and 56 used for the drive pinion 52 is promoted.
[0031]
【The invention's effect】
As is apparent from the above description, according to the present invention, when a preload is applied to a pair of bearings attached to the shaft, it is necessary to strictly control the tightening torque of nuts for fixing the bearings to the shaft. Bearing support that can properly adjust the preload in the axial direction applied to each bearing and promote high performance of the bearing function without depending on the dimensional accuracy of the spacer that defines the distance between both bearings An apparatus is provided.
[Brief description of the drawings]
FIG. 1 is a diagram conceptually showing a bearing support device according to the present invention.
FIG. 2 is a cross-sectional view of a bearing support device according to an embodiment of the present invention.
FIG. 3 is a sectional view of a final reduction gear device showing an application example of a bearing support device according to the present invention.
FIG. 4 is a cross-sectional view of a conventional bearing support structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Elastic structure 12 ... Shafts 14, 16 ... Conical roller bearings 14a, 16a ... Inner ring 14b, 16b ... Outer ring 18 ... Cylindrical spacer 20 ... Ring spacer 22 ... Nut 24 ... Mounting member 24a ... Free end 24b ... Fixed end 26 ... Base 28 ... Bolt

Claims (2)

動力伝達機構の終減速装置のドライブピニオンのに取付けられた一対の円錐ころ軸受を、それら円錐ころ軸受に軸方向への荷重が加わった状態で支持する軸受支持装置において、
前記一対の円錐ころ軸受のそれぞれの固定側軌道輪が取付けられる弾性構造体を具備し、
前記弾性構造体は、自由端及び固定端を有した椀状の形状を有する弾性変形可能な部材と、該部材を該固定端で支持する基部とを備え、該部材と該基部とが、前記一対の円錐ころ軸受及びそれら円錐ころ軸受を取付けた前記を収容するハウジング組立体を形成し、該部材の該自由端に一方の前記円錐ころ軸受の前記固定側軌道輪が取付けられ、該基部に他方の前記円錐ころ軸受の前記固定側軌道輪が取付けられ、該自由端に取付けた該固定側軌道輪が該基部に取付けた該固定側軌道輪に接近するように該部材が撓んだときの該部材の弾性復元力により、前記一対の円錐ころ軸受の各々に軸方向への荷重が加わること、
を特徴とする軸受支持装置。
In a bearing support device for supporting a pair of tapered roller bearings attached to a shaft portion of a drive pinion of a final reduction gear of a power transmission mechanism in a state where a load in the axial direction is applied to the tapered roller bearings,
Comprising an elastic structure to which each stationary bearing ring of the pair of tapered roller bearings is mounted;
The elastic structure includes an elastically deformable member having a bowl-like shape having a free end and a fixed end, and a base that supports the member at the fixed end, and the member and the base are forming a housing assembly for housing the shaft portion fitted with a pair of tapered roller bearings and their tapered roller bearings, the fixed bearing ring of one of the tapered roller bearing is mounted on the free end of the member, the The fixed side raceway of the other tapered roller bearing is attached to the base, and the member is bent so that the fixed side raceway attached to the free end approaches the fixed side raceway attached to the base. A load in the axial direction is applied to each of the pair of tapered roller bearings by the elastic restoring force of the member at the time ,
A bearing support device.
前記一対の円錐ころ軸受のそれぞれの回転側軌道輪の間に配置される少なくとも1つのスペーサをさらに具備する請求項1に記載の軸受支持装置。The bearing support device according to claim 1, further comprising at least one spacer disposed between the rotation-side raceways of the pair of tapered roller bearings.
JP24363398A 1998-08-28 1998-08-28 Bearing support device Expired - Fee Related JP4359944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24363398A JP4359944B2 (en) 1998-08-28 1998-08-28 Bearing support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24363398A JP4359944B2 (en) 1998-08-28 1998-08-28 Bearing support device

Publications (2)

Publication Number Publication Date
JP2000074053A JP2000074053A (en) 2000-03-07
JP4359944B2 true JP4359944B2 (en) 2009-11-11

Family

ID=17106731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24363398A Expired - Fee Related JP4359944B2 (en) 1998-08-28 1998-08-28 Bearing support device

Country Status (1)

Country Link
JP (1) JP4359944B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070349A (en) * 2014-09-30 2016-05-09 アイシン・エーアイ株式会社 Bearing structure of revolving shaft
JP6426017B2 (en) * 2015-02-02 2018-11-21 住友重機械工業株式会社 Rotating device
JP2016148366A (en) * 2015-02-10 2016-08-18 セイコーインスツル株式会社 Rolling bearing device and magnetic recording device
JP6758845B2 (en) * 2016-02-12 2020-09-23 住友重機械工業株式会社 Eccentric swing type gear device

Also Published As

Publication number Publication date
JP2000074053A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
EP2035722B1 (en) Tapered roller bearing with displaceable rib
US3552812A (en) Angular-contact bearing construction
JP2001336606A (en) Differential device
JP4359944B2 (en) Bearing support device
US11473620B2 (en) Rolling bearing precompression method, bearing precompression device, bearing assembly, machine, and vehicle
EP1373746B1 (en) Gear shaft bearing assembly
US6682226B2 (en) Cylindrical roller bearing with preload capability
EP1377754B1 (en) Method for forming a taper roller bearing assembly
JPH11108055A (en) Rolling bearing device
JP5453764B2 (en) Bearing device and assembly method thereof
JPH0633234Y2 (en) Ball screw with support bearing and ball screw unit
JP2012117567A (en) Bearing device
JPH0642096Y2 (en) Double row tapered roller bearing preload structure
JP3132911B2 (en) Ball screw device
JP5041146B2 (en) Electric motor
JPH0729301Y2 (en) Crossed roller bearings
JPH0481043B2 (en)
JPS6230609Y2 (en)
JP2010196805A (en) Bearing device
JP5003498B2 (en) Bearing device and assembly method thereof
KR101059147B1 (en) Spindle Support Bearing Preloading Device
JPS61175312A (en) Multiple-row roller bearing device
JP3305177B2 (en) Vertical rolling bearing
JPH081295Y2 (en) Rolling bearing support device for gas turbine
JPH0228730B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees