[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4358101B2 - Sewage inflow water quality prediction method and rainwater drainage support system - Google Patents

Sewage inflow water quality prediction method and rainwater drainage support system Download PDF

Info

Publication number
JP4358101B2
JP4358101B2 JP2004381898A JP2004381898A JP4358101B2 JP 4358101 B2 JP4358101 B2 JP 4358101B2 JP 2004381898 A JP2004381898 A JP 2004381898A JP 2004381898 A JP2004381898 A JP 2004381898A JP 4358101 B2 JP4358101 B2 JP 4358101B2
Authority
JP
Japan
Prior art keywords
water
inflow
rainwater
sewer pipe
rainfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004381898A
Other languages
Japanese (ja)
Other versions
JP2006187682A (en
Inventor
和彦 君島
洋一 小野
賢治 梅田
勝也 山本
義孝 小林
正彦 堤
恭介 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004381898A priority Critical patent/JP4358101B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to TW098102637A priority patent/TWI369448B/en
Priority to MYPI2010003085A priority patent/MY147185A/en
Priority to TW94144203A priority patent/TWI310428B/en
Priority to TW098102650A priority patent/TWI369449B/en
Priority to MYPI20055845A priority patent/MY146688A/en
Priority to CN2008101750461A priority patent/CN101387127B/en
Priority to CN2008101750476A priority patent/CN101387128B/en
Publication of JP2006187682A publication Critical patent/JP2006187682A/en
Application granted granted Critical
Publication of JP4358101B2 publication Critical patent/JP4358101B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Flow Control (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、降雨時にポンプ場などに流入する下水流入水の水質を予測すると共に、予測された水質などを用いて排水運転を制御する下水流入水の水質予測方法及び雨水排水支援システムに関する。   The present invention relates to a water quality prediction method and a rainwater drainage support system for predicting the quality of sewage inflow water flowing into a pumping station or the like during rainfall and controlling the drainage operation using the predicted water quality.

一般に、合流式の下水道設備では、下水道管の設置領域に降雨があった場合、雨水が下水道管内に流入する。下水道管の終端部には流入渠を介して雨水ポンプ井や汚水ポンプ井を有するポンプ所や下水処理場が設けられ、雨水を含む流入水を、これら雨水ポンプ井や汚水ポンプ井に滞留させた後、所定の排水先に排水している。   Generally, in a combined sewer system, when there is rainfall in the sewer pipe installation area, rainwater flows into the sewer pipe. A pump station and a sewage treatment plant having rainwater pump wells and sewage pump wells are installed at the end of the sewer pipe through inflow dredges, and inflow water containing rainwater is retained in these rainwater pump wells and sewage pump wells. After that, it is drained to a predetermined drainage destination.

下水道管から流入渠への流入水は、沈砂池を介して前述のように雨水ポンプ井や汚水ポンプ井に貯留される。通常、雨水ポンプ井は汚水ポンプ井より高い流入堰を有するので、通常時の流入水は汚水ポンプ井に流入し、汚水ポンプにより下水処理設備に排水され、下水処理設備によって水処理された後、河川などに排水される。これに対し、降雨により、雨水を含んだ多量の流入水が流入すると、流入渠の水位が上昇し、雨水ポンプ井にも流入水が流れ込む。雨水ポンプ井に貯留された流入水は、雨水ポンプにより河川などに放流される。   The inflow water from the sewer pipe to the inflow trough is stored in the rainwater pump well or the sewage pump well through the sand basin as described above. Normally, rainwater pump wells have higher inflow weirs than sewage pump wells, so normal inflow water flows into sewage pump wells, drained into sewage treatment facilities by sewage pumps, and treated by sewage treatment facilities, Drained into rivers. On the other hand, when a large amount of inflow water containing rainwater flows due to rain, the water level of the inflow trough rises and the inflow water flows into the rainwater pump well. The inflow water stored in the rainwater pump well is discharged into a river by a rainwater pump.

このような下水道設備では、雨水ポンプ井から直接河川に放流した場合、河川の汚染が極力少なくなるように対処しなければならない。すなわち、流入水量や流入水質に応じて、管渠内等への貯留と河川等への放流とを適切に制御する必要がある。また、降雨時には、その初期において下水管渠内等に堆積した汚泥が流出して流入渠に流れ込む、所謂ファーストフラッシュが生じる。このファーストフラッシュに対しても、その発生を捕え適切に対処する必要がある。   In such a sewerage system, when it is discharged directly from a rainwater pump well into a river, measures must be taken to minimize the contamination of the river. That is, it is necessary to appropriately control the storage in the pipe and the discharge into the river according to the inflow water amount and the inflow water quality. In addition, when it rains, so-called first flush occurs, in which sludge accumulated in the sewage pipe basin flows out into the inflow basin. It is necessary to catch the occurrence of this first flash and deal with it appropriately.

従来、この種の下水道設備に関し、降雨量から流入水質を予測して汚濁物質成分除去手段の操作量を制御する発明が提案されている(例えば、特許文献1参照)。また、降雨量から非線形モデルを用いて流入水量を予測する発明も提案されている(例えば、特許文献2参照)。
特開2004−249200号公報 特開2000−56853号公報
Conventionally, regarding this type of sewerage equipment, an invention has been proposed in which the quality of inflow water is predicted from the amount of rainfall and the operation amount of the pollutant component removing means is controlled (see, for example, Patent Document 1). In addition, an invention for predicting the amount of inflow water from a rainfall amount using a nonlinear model has also been proposed (see, for example, Patent Document 2).
JP 2004-249200 A JP 2000-56853 A

しかし、特許文献1の発明では、流入水質の予測方法は水質モデル式から策定しているので、式が煩雑になるという問題があった。また、特許文献2の発明では降雨量から流入水量のみを予測する方法であり、流入水質は予測されておらず、流入水質と組み合わせた適切な制御を行うことができなかった。   However, in the invention of Patent Document 1, since the method for predicting the influent water quality is formulated from the water quality model formula, there is a problem that the formula becomes complicated. Further, the invention of Patent Document 2 is a method for predicting only the influent water amount from the rainfall, and the influent water quality is not predicted, and appropriate control combined with the influent water quality cannot be performed.

本発明の目的は、降雨に伴う流入水の水質を容易かつ的確に予測できる下水流入水の水質予測方法を提供すると共に、この予測された水質またはこの水質と降雨時の流入水量とを用いて流入水の貯留及び排水を適切に制御し、環境に対する影響を軽減することができる雨水排水支援システムを提供することにある。   An object of the present invention is to provide a method for predicting the water quality of sewage inflow water that can easily and accurately predict the quality of the inflow water associated with the rain, and to use the predicted water quality or the water quality and the amount of inflow water during rainfall. The object is to provide a rainwater drainage support system that can appropriately control the storage and drainage of inflow water and reduce the impact on the environment.

本発明による下水流入水の水質予測方法は、下水道管から流入渠への流入水の水質を予測する方法であって、前記下水道管の設置流域における降雨量を所定周期で計測すると共に、前記流入渠へ流入する流入水の水質を所定周期で計測し、この計測された値のうち、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて、非線形ハマーシュタインモデルによるシステム同定手法により将来の流入水質を予測することを特徴とする。 A method for predicting water quality of sewage inflow water according to the present invention is a method for predicting water quality of inflow water from a sewer pipe to an inflow trough, measuring rainfall in a set basin of the sewer pipe at a predetermined period, and The quality of the inflow water flowing into the dredging is measured at a predetermined cycle, and among the measured values, the current inflow water quality, some past inflow water quality, some past rainfall, and some past rainfall It is characterized by predicting the future influent water quality by the system identification method using nonlinear Hammerstein model using the power value of quantity.

本発明による雨水排水支援システムは、下水道管の終端部に設けられた流入渠との間に所定高さの流入堰が設けられた雨水ポンプ井、前記流入渠との間に前記雨水ポンプより低い流入堰が設けられた汚水ポンプ井、この汚水ポンプ井との間に越流堰が設けられ、前記流入渠との間にゲートが設けられた雨水滞水池、のそれぞれ又はいずれかに対して前記下水道管からの流入水を流入させ、これら流入水を所定の排水先に排水する下水道設備における雨水排水支援システムであって、前記下水道管の設置流域における降雨量を計測する計測手段と、前記流入渠へ流入した流入水の水質を計測する計測手段と、
前記各計測手段で計測された降雨量、流入水質をそれぞれ周期的に収集し記憶しておくデータ収集及び記憶手段と、この記憶手段に記憶されたデータのうち、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入水質を予測する予測手段と、この予測手段により予測された流入水質を用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる運転支援手段とを備えたことを特徴とする。
The rainwater drainage support system according to the present invention is lower than the rainwater pump between the rainwater pump well provided with an inflow weir of a predetermined height between the inflow fence provided at the terminal portion of the sewer pipe and the inflow well. The sewage pump well provided with the inflow weir, the overflow weir provided between the sewage pump well and the rainwater catchment basin provided with the gate between the inflow dredging basin, or either A rainwater drainage support system in a sewer facility for flowing inflow water from a sewer pipe and draining the inflow water to a predetermined drainage destination, measuring means for measuring rainfall in the basin where the sewer pipe is installed, and the inflow A measuring means for measuring the quality of the inflow water flowing into the dredging,
Data collection and storage means for periodically collecting and storing the rainfall and inflow water quality measured by each of the measurement means, and the current inflow water quality and the past number of data stored in the storage means. A prediction means for predicting the inflow water quality by a system identification method using a nonlinear Hammerstein model using some inflow water quality, several past rainfalls, and power values of several past rainfalls. Operation for each of the sewage pump that sends water from the sewage pump well to the sewage treatment plant, the storm water pump that drains water from the storm water pump well, and the storm water pond pump that sends water from the storm water pond to the sewage pump well And a driving support means for generating a command to open the gate to the rainwater reservoir .

また、本発明の雨水排水支援システムは、下水道管の設置流域における降雨量を計測する計測手段と、流入渠への流入水量及び流入水質を計測する計測手段と、前記各計測手段で計測された降雨量、流入水量及び流入水質をそれぞれ周期的に収集し記憶しておくデータ収集及び記憶手段と、この記憶手段に記憶されたデータのうち、現時点の流入水量及び過去のいくつかの流入水量、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入水量を予測すると共に、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入水質を予測する予測手段と、この予測手段により予測された流入水量及び流入水質を用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる運転支援手段とを備えた構成でもよい。 Further, the rainwater drainage support system of the present invention is measured by the measuring means for measuring the rainfall in the basin where the sewer pipe is installed, the measuring means for measuring the amount of inflow water and the quality of the inflow water into the inflow trough, and the measurement means. Data collection and storage means for periodically collecting and storing rainfall, inflow water quantity and inflow water quality, and among the data stored in the storage means, current inflow water quantity and some past inflow water quantity, Predicting the influent water volume by the system identification method using the nonlinear Hammerstein model using some past rainfalls and the power values of several past rainfalls, as well as the current influent water quality and the past influent water quality, some rainfall in the past, the inflow water by system identification technique by nonlinear Hammerstein model using the exponential value of a number of rainfall in the past Prediction means for measuring, using the inflow water amount and the inlet water quality predicted by the prediction means, sewage pump water from the sewage pump well to the sewage treatment plant, rainwater pump for draining the rainwater pump well, from said rainwater ponding pond A configuration may be provided that includes an operation command for each of the rainwater reservoir pumps that send water to the sewage pump well, and an operation support means that generates an instruction to open the gate to the rainwater reservoir .

また、本発明の雨水排水支援システムでは、下水道管内にも水質計測手段を設け、データ収集及び記憶手段は下水道管内で計測された水質も周期的に収集し記憶しておき、予測手段は、現時点の下水道管内の水質及び過去のいくつかの下水道管内の水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入渠に流入する前の下水道管内の水質を予測する機能を併せ持ち、運転支援手段は、予測された流入渠に流入する前の下水道管内の水質も用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる構成でもよい。 In the rainwater drainage support system of the present invention, the water quality measuring means is also provided in the sewer pipe, the data collection and storage means periodically collects and stores the water quality measured in the sewer pipe, and the prediction means The water quality in the sewer pipe and the water quality in some past sewer pipes, some past rainfall, and the power value of some past rainfall, it flows into the inflow trough by the system identification method by nonlinear Hammerstein model The sewage pump has a function of predicting the water quality in the sewer pipe before the operation, and the operation support means uses the water quality in the sewer pipe before flowing into the predicted inflow trough to send water from the sewage pump well to the sewage treatment plant. , Rainwater pumps that drain from rainwater pump wells, operation commands for rainwater reservoir pumps that send water from rainwater reservoirs to the sewage pump wells, and rainwater traps It may be configured to cause opening command of the gate to the pond.

また、本発明の雨水排水支援システムでは、下水道管内に流量計測手段を設け、データ収集及び記憶手段は下水道管内で計測された流量も周期的に収集し記憶しておき、予測手段は、現時点の下水道管内の流量及び過去のいくつかの下水道管内の流量、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入渠に流入する前の下水道管内の流量を予測する機能を併せ持ち、運転支援手段は、予測された流入渠に流入する前の下水道管内の流量も用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる構成でもよい。 In the rainwater drainage support system of the present invention, the flow rate measuring means is provided in the sewer pipe, the data collection and storage means periodically collects and stores the flow rate measured in the sewer pipe, and the prediction means Using the non-linear Hammerstein model system identification method , the flow rate in the sewer pipe and the past flow in the sewer pipe, the past rainfall, and the power values of the past rainfalls flow into the inflow trough. Combined with the function of predicting the flow rate in the previous sewer pipe, the operation support means also uses the flow rate in the sewer pipe before flowing into the predicted inflow trough, and sends the sewage pump from the sewage pump well to the sewage treatment plant, Operational instructions for each of a storm water pump that drains from a storm water pump well, a storm water pond pump that sends water from a storm water pond to the sewage pump well, and storm water Opening command of the gate to may be configured to produce.

また、本発明の雨水排水支援システムでは、下水道管内に水位計測手段を設け、データ収集及び記憶手段は下水道管内で計測された水位も周期的に収集し記憶しておき、さらに、気象情報システムからの気象情報を入手し記憶しておくことができ、予測手段は、データ記憶手段から晴天日おける下水道管内の水位を入手して下水道管内の土砂或いは夾雑物高さを求めておき、降雨日における下水道管内流量予測値及び水質予測値から流入渠に流入するファーストフラッシュ水の流量及び水質を予測する機能をさらに有する構成でもよい。 In the rainwater drainage support system of the present invention, the water level measuring means is provided in the sewer pipe, and the data collection and storage means periodically collects and stores the water level measured in the sewer pipe, and further from the weather information system. The forecasting means obtains the water level in the sewer pipe on a clear day from the data storage means, obtains the height of earth and sand or contaminants in the sewer pipe, and in the rainy day The structure which further has a function which estimates the flow volume and water quality of the first flush water which flows into an inflow trough from the flow volume prediction value and water quality prediction value in a sewer pipe may be sufficient.

また、本発明の雨水排水支援システムでは、運転支援手段は、予測された流入水の水質が所定の閾値より悪化している場合は、降雨量の上限閾値を超えない範囲内で雨水ポンプ井に設けた雨水ポンプの運転を行なわずに汚水ポンプ井に設けた汚水ポンプの運転を行なうように運定指令する。   Further, in the rainwater drainage support system of the present invention, the operation support means, when the predicted water quality of the influent water is worse than a predetermined threshold, the rainwater pump well is within the range that does not exceed the upper limit threshold of rainfall. An operation instruction is given so that the sewage pump provided in the sewage pump well is operated without operating the provided rainwater pump.

さらに、本発明の雨水排水支援システムでは、運転支援手段は、予測された流入水量からファーストフラッシュを判別し、このファーストフラッシュ水を雨水滞留池に貯留させ、降雨量が所定値以下になると雨水滞留池のポンプにより滞留水を汚水ポンプ井に返送させるように運転指令する。   Furthermore, in the rainwater drainage support system of the present invention, the operation support means discriminates the first flush from the predicted inflow water amount, stores the first flush water in the rainwater retention pond, and the rainwater retention occurs when the rainfall falls below a predetermined value. An operation command is given to return the accumulated water to the sewage pump well by the pond pump.

本発明によれば、流入水質の計測値や、過去の降雨量などに基きシステム同定手法(非線形ハマーシュタインモデル)により流入水質を予測するので、流入水量の予測と同じ手法により容易に予測することができる。また、これらの予測結果により、流入水の貯留及び排水を適切に制御できるので、環境に対する影響を軽減した運用が可能となる。   According to the present invention, since the inflow water quality is predicted by the system identification method (nonlinear Hammerstein model) based on the measured value of the inflow water quality, the past rainfall, etc., it is easy to predict by the same method as the prediction of the inflow water amount. Can do. Moreover, since the storage and drainage of inflow water can be appropriately controlled based on these prediction results, operation with reduced environmental impact is possible.

以下、本発明による下水流入水の水質予測方法及び雨水排水支援システムの一実施の形態について図面を用いて詳細に説明する。   Hereinafter, an embodiment of a water quality prediction method and rainwater drainage support system according to the present invention will be described in detail with reference to the drawings.

図1は、この実施の形態の全体構成を表している。まず、本発明が適用される下水道設備を説明する。図1において、11は合流式の下水道管で、その設置領域内の生活廃水や産業廃水と共に、その流域に降った雨水が流下する。12は流入渠で、ポンプ所や下水処理場に設けられ、下水道管11からの流入水を一時的に貯留する。   FIG. 1 shows the overall configuration of this embodiment. First, a sewer system to which the present invention is applied will be described. In FIG. 1, reference numeral 11 denotes a confluent sewer pipe, and rainwater that has fallen into the basin flows together with domestic wastewater and industrial wastewater in the installation area. Reference numeral 12 denotes an inflow trough, which is provided in a pump station or a sewage treatment plant, and temporarily stores the inflow water from the sewer pipe 11.

13は雨水ポンプ井、14は汚水ポンプ井、15は雨水水池で、下水道管11からの流入水が、前記流入渠12から図示しない沈砂池を経て流入する。通常、雨水ポンプ井13は、流入渠12との間に汚水ポンプ井14より高い流入堰を有しており、通常時の流入水は流入堰の低い汚水ポンプ井14に流入する。これに対し、降雨時、雨水を含んだ多量の流入水が流入すると流入渠12の水位が上昇し、高い流入堰を越流して雨水ポンプ井13にも流入水が流れ込む。雨水水池15は、汚水ポンプ井14からあふれる流入水を滞留させるもので、汚水ポンプ井14との間に設けた図示しない越流堰や、或いは、流入渠12との間に設けた図示しないゲートを介して流入水を受入れる。 13 rainwater pump well, 14 sewage pump well 15 in rain water bearing ponds, influent from sewer pipe 11, flows through the sand basin (not shown) from the flow dock 12. Usually, the rainwater pump well 13 has an inflow weir higher than the sewage pump well 14 between the inflow trough 12 and the inflow water in the normal time flows into the sewage pump well 14 having a lower inflow weir. On the other hand, when a large amount of inflow water containing rainwater flows in during the rain, the water level of the inflow trough 12 rises, overflows the high inflow weir and flows into the rainwater pump well 13. Rain water bearing reservoir 15 is intended to stay the sewage pump well 14 overflowing flowing water, not shown and overflow weir is provided between the sewage pump well 14, or (not shown) provided between the inflow channel 12 Incoming water is received through the gate.

雨水ポンプ井13には雨水ポンプ16が設けられており、雨水ポンプ井13に流入し貯留された流入水(雨水)は、雨水ポンプ16により河川18などに放流される。また、汚水ポンプ井14には汚水ポンプ17が設けられており、汚水ポンプ井14に流入し貯留された流入水(汚水)は、汚水ポンプ17により図示しない下水処理設備に送られ、下水処理設備によって水処理された後、河川などに排水される。このとき、下水処理場の処理量を越えた汚水は、そのままでは汚水ポンプ井14からあふれてしまうので、汚水ポンプ井14との間に設けた越流堰や、流入渠12との間に設けたゲートから雨水滞池15に送られ、滞留される。雨水滞池15には雨水滞池ポンプ19が設けられており、滞留水は、流入渠12への流入水が充分に低減したタイミングで雨水滞水池ポンプ19により汚水ポンプ井14に返送される。 The rainwater pump well 13 is provided with a rainwater pump 16, and the inflow water (rainwater) flowing into and stored in the rainwater pump well 13 is discharged into the river 18 or the like by the rainwater pump 16. Further, the sewage pump well 14 is provided with a sewage pump 17, and the inflow water (sewage) flowing into and stored in the sewage pump well 14 is sent to a sewage treatment facility (not shown) by the sewage pump 17. After being treated with water, it is drained into rivers. At this time, since the sewage exceeding the treatment amount of the sewage treatment plant overflows from the sewage pump well 14 as it is, it is provided between the overflow weir provided between the sewage pump well 14 and the inflow trough 12. sent to rain water bearing pond 15 from the gate, they are retained. The rain water bearing reservoir 15 and rain water bearing pond pump 19 is provided, standing water is returned by the rainwater ponding pond pump 19 to sewage pump well 14 at the timing at which the influent water is sufficiently reduced to flow into sewer 12 Is done.

すなわち、下水道管11からの流入水は、その終端部に設けられた流入渠12や図示しない沈砂池を介して雨水ポンプ井13や汚水ポンプ井14、さらには雨水滞留池15のいずれか或いはそれぞれに滞留させた後、所定の排水先に排水される。   That is, the inflow water from the sewer pipe 11 is either or each of the rainwater pump well 13, the sewage pump well 14, and further the rainwater retention basin 15 through the inflow trough 12 provided at the end portion thereof or a sand basin (not shown). Then, it is drained to a predetermined drainage destination.

21は地上雨量計、22はレーダ雨量計で、前記下水道管11の設置流域における降雨量を計測する計測手段として用いられる。23は水位計、24は水質計で、それぞれ流入渠12に設けられ、この流入渠12への流入水量及び流入水質を計測する計測手段として用いられる。   21 is a ground rain gauge, and 22 is a radar rain gauge, which are used as measuring means for measuring the rainfall in the installation basin of the sewer pipe 11. 23 is a water level meter, and 24 is a water quality meter, which are provided on the inflow trough 12 and are used as measuring means for measuring the amount of inflow water and the inflow water quality to the inflow trough 12.

次に、これら計測手段からの計測値などに基き、雨水排水支援を行なう演算制御装置31を説明する。この演算制御装置31は、コンピュータシステムにより構成されるもので、データ収集手段32、データ記憶手段33、予測手段34、演算手段35、運転支援手段36、コントローラ部37を有する。この他、天候モード予測手段38を設けてもよい。   Next, the arithmetic and control unit 31 that provides rainwater drainage support based on the measurement values from these measuring means will be described. The arithmetic control device 31 is configured by a computer system, and includes a data collection unit 32, a data storage unit 33, a prediction unit 34, a calculation unit 35, a driving support unit 36, and a controller unit 37. In addition, the weather mode prediction means 38 may be provided.

データ収集手段32は、前記計測手段により計測された降雨量(地上雨量21a及びレーダ雨量22a)、流入水量を得るための流入渠水位23a及び流入水質24aと、前述した各ポンプ16,17,19の運転状態に関するポンプ情報41及びこれら各ポンプ16,17,19の吐出量42を、それぞれ周期的に収集する。データ記憶手段33は、データ収集手段32により周期的に収集された各種データをそれぞれ記憶しておく。   The data collecting means 32 includes the rainfall measured by the measuring means (the ground rainfall 21a and the radar rainfall 22a), the inflow water level 23a and the inflow water quality 24a for obtaining the inflow water amount, and the pumps 16, 17, 19 described above. The pump information 41 relating to the operation state of the pump and the discharge amount 42 of each of the pumps 16, 17, and 19 are periodically collected. The data storage unit 33 stores various data periodically collected by the data collection unit 32.

予測手段34は、上記データ記憶手段33に記憶された各種データを用い、非線形ハマーシュタイン(Hemmerstein)モデルにより流入水質及び流入水量を予測する。システム同定手法(非線形ハマーシュタインモデル)は、簡略化して表すと、以下のモデル式により構成される。すなわち、以下の(1)式により流入水質が、(2)式により流入水量が求められる。   The predicting means 34 predicts the influent water quality and the influent water amount by using a non-linear Hammerstein model using various data stored in the data storage means 33. The system identification method (nonlinear Hammerstein model) is simply expressed by the following model expression. That is, the influent water quality is obtained by the following equation (1), and the influent water amount is obtained by the equation (2).

予測流入水質=現状(t)の流入水質×α1+過去(t-1)の流入水質×α2+過去(t-2)の
流入水質×α3+・・・
+過去(t-1)の降雨量×β1+過去(t-2)の降雨量×β2+・・・
+(過去(t-1)の降雨量)×γ1+(過去(t-2)の降雨量)×γ2+・・・
+(過去(t-1)の降雨量)×δ1+(過去(t-2)の降雨量)×δ2+・・・


・・(1)
予測流入水量=現状(t)の流入水量×α11+過去(t-1)の流入水量×α12+過去(t-2)の
流入水量×α13+・・・
+過去(t-1)の降雨量×β11+過去(t-2)の降雨量×β12・・・
+(過去(t-1)の降雨量)×γ11+(過去(t-2)の降雨量)×γ12+・・・
+(過去(t-1)の降雨量)×δ11+(過去(t-2)の降雨量)×δ12+・・・


・ ・(2)
上記(1)(2)式において、tは現時点を表し、t-1は1回目の過去、t-2は2回目の過去、・・・を表し、α1,α2,α3,・・、α11、α12,α13,・・、β1,β2,・・、β11,β12,・・、γ1,γ2,・・、γ11,γ12,・・、δ1,δ2,・・、δ11,δ12,・・はそれぞれ係数で、下水道管11や流入渠12などの大きさや特性などに応じて、各設備毎に設定する。
Predicted influent quality = Current (t) influent quality x α1 + past (t-1) influent quality x α2 + past (t-2)
Inflow water quality x α3 + ・ ・ ・
+ Past (t-1) rainfall xβ1 + Past (t-2) rainfall xβ2 + ...
+ (Past (t-1) rainfall) 2 x γ1 + (Past (t-2) rainfall) 2 x γ2 + ...
+ (Past (t-1) rainfall) 3 x δ1 + (Past (t-2) rainfall) 3 x δ2 +


(1)
Predicted influent water = Current inflow (t) Inflow water x α11 + Past inflow (t-1) Inflow water x α12 + Past (t-2)
Inflowing water amount × α13 + ...
+ Past (t-1) rainfall x β11 + Past (t-2) rainfall x β12 ...
+ (Past (t-1) rainfall) 2 x γ11 + (Past (t-2) rainfall) 2 x γ12 + ...
+ (Past (t-1 rainfall)) (rainfall of the past (t-2)) 3 × δ11 + 3 × δ12 + ···


(2)
In the above equations (1) and (2), t represents the present time, t-1 represents the first past, t-2 represents the second past,..., Α11, α2, α3,. , Α12, α13, ···, β1, β2, ···, β11, β12, ···, γ1, γ2, ···, γ11, γ12, ···, δ1, δ2, ···, δ11, δ12, ··· Each coefficient is set for each facility according to the size and characteristics of the sewer pipe 11 and the inflow trough 12.

すなわち、流入水質及び流入水量は、過去の降雨量と所定の非線形な関係で追随するので、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて、上記モデル式(1)により将来の流入水質を予測する。同様に、現時点の流入水量及び過去のいくつかの流入水量、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて、上記モデル式(2)により将来の流入水量を求める。   In other words, since the influent water quality and the influent water volume follow the past rainfall in a predetermined non-linear relationship, the current influent water quality, the past several influent water qualities, the past several rainfalls, the past several Using the power value of rainfall, the future influent water quality is predicted by the model equation (1). Similarly, by using the current inflow, some past inflows, some past rainfall, and the power of some past rainfall, the future inflow is calculated by the above model equation (2). Ask.

演算手段35は、予測手段34により予測された流入水質及び流入水量に応じて前記各ポンプ16,17,19の運転量(運転台数や回転速度)などを算出する。運転支援手段36は、予測手段34により予測された流入水量及び流入水質に基いて汚水ポンプ井14、雨水ポンプ井13、雨水滞水池15への流入水の貯留および排水に関する運転/停止指令を生じる。コントローラ部37は、上記運転指令に基き、対応する機器への制御出力を生じる。なお、天候モード予測手段38は、降雨量から、通常降雨モードや豪雨モードなどの天候モードを予測するもので、予測された天候モードにより演算手段35により求められた値を補正することができる。   The calculating means 35 calculates the operation amounts (operating number and rotational speed) of the pumps 16, 17 and 19 according to the influent water quality and the influent water amount predicted by the predicting means 34. The operation support means 36 generates an operation / stop command relating to the storage and drainage of the inflow water to the sewage pump well 14, the rainwater pump well 13, and the stormwater reservoir 15 based on the inflow water amount and the inflow water quality predicted by the prediction means 34. . The controller unit 37 generates a control output to the corresponding device based on the operation command. The weather mode prediction means 38 predicts a weather mode such as a normal rainfall mode or a heavy rain mode from the amount of rainfall, and can correct the value obtained by the calculation means 35 based on the predicted weather mode.

次に、作用を説明する。一般に下水道設備では、降雨初期におけるファーストフラッシュが問題となっている。ファーストフラッシュは、初期降雨時に発生するが、どのタイミングで下水道管渠に堆積した汚泥が流出し、ポンプ場に到達するかわからなかった。そこで、本発明では、降雨時などに堆積した汚泥を含む流入水の流入水質や流入水量を予測することにより、ファーストフラッシュに対しても、適切に対処できるように構成した。例えば、ファーストフラッシュに対しては、できるだけ下水道管渠内あるいは、雨水滞水池に貯留させ、河川への放流をできるだけ抑え、下水処理設備へ送水することで放流規制を遵守し、環境負荷の少ない処理を行うようにしている。   Next, the operation will be described. In general, the first flash in the early stage of rainfall is a problem in sewerage facilities. The first flush occurred during the initial rainfall, but it was not known when the sludge accumulated in the sewer pipes would flow out and reach the pump station. Therefore, the present invention is configured to appropriately cope with the first flush by predicting the inflow water quality and the inflow water amount including the sludge accumulated during the rain. For example, for the first flush, the wastewater is stored in the sewer pipe or in the rainwater reservoir as much as possible, the discharge into the river is suppressed as much as possible, and the water is sent to the sewage treatment facility. Like to do.

ここで、本発明の下水流入水の水質予測方法は、降雨量から流入水質を求めるもので、入力を降雨量または降雨強度、出力を流入水質(大腸菌、COD、BOD、りん、窒素など)として、システム同定手法により流入水質予測値を提供する。すなわち、前述したモデル式(1)により、現状の流入水質計測値と過去のいくつかの流入水質計測値とを用いて回帰演算を行うと共に、過去のいくつかの降雨実測値を用いて重回帰演算を行い、さらに、過去のいくつかのべき乗(例えば2乗、3乗)値を加味することにより、降雨に対して非線形な関係を成す流入水質を予測するものである。   Here, the method for predicting the quality of sewage inflow water according to the present invention obtains the inflow water quality from the amount of rainfall. The input is the amount of rainfall or rainfall intensity, and the output is the inflow water quality (E. coli, COD, BOD, phosphorus, nitrogen, etc.). Inflow water quality prediction value is provided by system identification method. That is, according to the above-described model equation (1), the regression calculation is performed using the current inflow water quality measurement value and the past several inflow water quality measurement values, and the multiple regression using the past several rainfall measurement values. An inflow water quality that has a non-linear relationship with rainfall is predicted by performing calculation and further considering some past power (for example, square and third power) values.

このように、流入渠12への流入水の水質を予測できるので、予測された流入水質に応じて流入水の貯留や排水に対し、運転支援手段36により適切な制御を行うことができる。また、予測手段34において、流入渠12への流入水量を、前記モデル式(2)により予測できるので、この予測流入水量と予測流入水質を用いることにより、より適切な運転制御を行うことができる。以下、詳細に説明する。   Thus, since the quality of the inflow water to the inflow trough 12 can be predicted, appropriate control can be performed by the operation support means 36 for the storage and drainage of the inflow water according to the predicted inflow water quality. In addition, since the prediction means 34 can predict the amount of inflow water to the inflow trough 12 by the model equation (2), more appropriate operation control can be performed by using the predicted inflow water amount and the predicted inflow water quality. . This will be described in detail below.

下水道設備では、下水道管11の設置領域に降雨があった場合、雨水が下水道管11内に流入し、前述のように、その終端部に設けられた流入渠12から、図示しない沈砂池を介して雨水ポンプ井13や汚水ポンプ井14、雨水滞水池15に貯留される。雨水ポンプ井13は汚水ポンプ井14より高い流入堰を有するので、通常時の流入水は汚水ポンプ井14に流入し、汚水ポンプ17により下水処理設備に排水され、下水処理設備によって処理された後、河川などに排水される。また、下水処理場の処理量を越える汚水は、汚水ポンプ井14から雨水滞留池15に送られて滞留する。   In the sewer system, when there is rainfall in the installation area of the sewer pipe 11, the rain water flows into the sewer pipe 11, and, as described above, from the inflow trough 12 provided at the end portion thereof, through a sand basin (not shown). And stored in the rainwater pump well 13, the sewage pump well 14, and the rainwater reservoir 15. Since the storm water pump well 13 has a higher inflow weir than the sewage pump well 14, the normal inflow water flows into the sewage pump well 14 and is drained to the sewage treatment facility by the sewage pump 17 and processed by the sewage treatment facility. Drained into rivers. Moreover, the sewage exceeding the treatment amount of the sewage treatment plant is sent from the sewage pump well 14 to the rainwater retention pond 15 and stays there.

降雨時、雨水を含んだ多量の流入水が流入すると、流入渠12の水位が上昇し、雨水ポンプ井13にも流入水が流れ込む。雨水ポンプ井13に貯留された雨水は、雨水ポンプ16により河川18などに放流される。しかし、降雨時のファーストフラッシュなどによる流入水は、下水道管11内に堆積した堆積汚泥が流出しているので、これが雨水ポンプ井13に流入し、雨水ポンプ16により河川18に放流されると、堆積汚泥を含んだ水質の悪い雨水が吐き出されることになり、環境上好ましくない。そこで、降雨の状況からファーストフラッシュを含む流入水質を予測し、また、下水流入量を予測することで、貯留か排水かを判断し、安全でかつ環境に配慮した制御を行う。   When a large amount of inflowing water containing rainwater flows in during rainfall, the water level of the inflow trough 12 rises and the inflowing water also flows into the rainwater pump well 13. Rainwater stored in the rainwater pump well 13 is discharged to the river 18 and the like by the rainwater pump 16. However, since the inflowing water by the first flush at the time of rainfall, etc., the accumulated sludge accumulated in the sewer pipe 11 flows out, when this flows into the rainwater pump well 13 and is discharged into the river 18 by the rainwater pump 16, Rainwater with poor water quality containing sedimented sludge will be discharged, which is undesirable in the environment. Therefore, the inflow water quality including the first flush is predicted from the rain condition, and the sewage inflow amount is predicted to judge whether the water is stored or discharged, and the control is performed in a safe and environmentally friendly manner.

図1において、降雨時、地上雨量21またはレーダ雨量22にて降雨量を計測し、それらのデータ21a,22aをデータ収集手段32で収集し、データ記憶手段33で記録する。また、同様に流入渠12に設けた水位計24から流入渠水位を得るべく水位データ23aを収集し、水質計23から流入水質データ24aを収集し、データ記憶手段33に記憶する。これらデータ収集手段32によるデータ収集は所定周期で行なわれ、データ記憶手段33は、各周期に収集されたデータをそれぞれ記憶する。   In FIG. 1, during rainfall, the rainfall is measured by the ground rainfall 21 or the radar rainfall 22, and the data 21 a and 22 a are collected by the data collecting means 32 and recorded by the data storage means 33. Similarly, the water level data 23 a is collected from the water level gauge 24 provided in the inflow trough 12, and the inflow water quality data 24 a is collected from the water quality gauge 23 and stored in the data storage means 33. Data collection by these data collection means 32 is performed in a predetermined cycle, and the data storage means 33 stores the data collected in each cycle.

予測手段34は、データ記憶手段33に記録された降雨量と流入水質のデータから、前述した非線形Hemmersteinモデル式(1)(2)により流入水質及び流入水量を予測演算する。非線形Hemmersteinモデルは、降雨量と流入水質または流入水量との非線形な関係に着目したモデルで、降雨量が増加すると流入水質及び流入水量も降雨量のべき乗(例えば2乗、3乗)に比例する仕組みを流入水質及び流入水量に適用した。   The predicting means 34 predicts and calculates the influent water quality and the influent water quantity from the rainfall and inflow water quality data recorded in the data storage means 33 by the above-described nonlinear Hemmerstein model equations (1) and (2). The non-linear Hemmerstein model is a model that focuses on the non-linear relationship between rainfall and inflow water quality or inflow water volume. When the rainfall increases, the inflow water quality and the inflow water volume are proportional to the power of the rainfall (for example, the second power or the third power). The mechanism was applied to influent quality and quantity.

このようにして予測された流入水質の予測値に基き、運転支援手段36により、雨水滞水池15への貯留、流入渠12を含む管渠への貯留、雨水ポンプ16の運転停止および運転台数、汚水ポンプ17の運転停止および運転台数などの決定を行う。例えば、予測された流入水の水質が所定の閾値より悪化している場合は、降雨量の上限閾値を超えない範囲内で雨水ポンプ井13に設けた雨水ポンプ16の運転を行なわずに汚水ポンプ井14に設けた汚水ポンプ17の運転を行なうように運定指令する。また、流入水質が悪化していると予測されている場合は、下水処理場設備(高度処理、標準活性汚泥法、オキシデーションディッチ法など)の稼動を早めるなどのフィードフォーワードとして動作させることもできる。   Based on the predicted value of the influent water quality thus predicted, the operation support means 36 stores the rainwater in the rainwater reservoir 15, the storage in the pipe including the inflow trough 12, the stoppage of the rainwater pump 16, and the number of units operated. The operation stop of the sewage pump 17 and the number of operating units are determined. For example, if the predicted water quality of the influent water is worse than a predetermined threshold, the sewage pump is not operated without operating the rainwater pump 16 provided in the rainwater pump well 13 within a range not exceeding the upper limit threshold of rainfall. The sewage pump 17 provided in the well 14 is instructed to operate. In addition, if it is predicted that the quality of the influent water is deteriorating, it may be operated as a feed forward such as accelerating the operation of sewage treatment plant facilities (advanced treatment, standard activated sludge method, oxidation ditch method, etc.). it can.

このように、地上雨量計21またはレーダ雨量計22のいずれかまたは両方による降雨量から流入水質及び流入水量を予測することができるので、ファーストフラッシュの発生を予測することができる。すなわち、運転支援手段36は、予測された流入水量からファーストフラッシュを判別し、このファーストフラッシュ水を雨水滞池15に貯留させ、降雨量が所定値以下になると雨水滞池15のポンプ19により滞留水を汚水ポンプ井14に返送させるように運転指令できる。例えば、ファーストフラッシュの場合は、流入渠12から雨水滞水池15への図示しないゲートを開き、ファーストフラッシュ水を雨水滞水池15に始から貯留させる。滞留させたファーストフラッシュ水は、流入水量が充分低下した時点、例えば、地上雨量計21またはレーダ雨量計22による雨量の計測ができなくなった時点で、雨水滞水池ポンプ19を使って雨水滞水池15から汚水ポンプ井14へ返送する。汚水ポンプ井14からは、汚水ポンプ17で図示しない下水処理施設に送り、下水処理(高度処理、標準活性汚泥法、オキシデーションディッチ法など)を行ってから河川18へ放流することができ、環境に対する悪影響の少ない運を行うことができる。 Thus, since the inflow water quality and the inflow water amount can be predicted from the rainfall amount by either or both of the ground rain gauge 21 and the radar rain gauge 22, it is possible to predict the occurrence of the first flash. That is, the driving support unit 36 determines the first flush from the predicted inflow water amount, the pump 19 of the first flush water is stored in water reservoir 15 residence rainwater, when rainfall is below a predetermined value rainwater water bearing pond 15 Thus, the operation command can be given to return the accumulated water to the sewage pump well 14. For example, in the case of the first flush, a gate (not shown) from the inflow trough 12 to the rainwater reservoir 15 is opened, and the first flush water is stored in the rainwater reservoir 15 from the beginning. The retained first flush water is used when the rainwater reservoir 15 is used by using the rainwater reservoir pump 19 when the inflow water amount is sufficiently reduced, for example, when the rainfall cannot be measured by the ground rain gauge 21 or the radar rain gauge 22. To the sewage pump well 14. The sewage pump well 14 can be sent to a sewage treatment facility (not shown) by a sewage pump 17 and subjected to sewage treatment (advanced treatment, standard activated sludge method, oxidation ditch method, etc.) and then discharged into the river 18 and the environment. it is possible to perform a little luck rolling of the adverse effects on.

次に、図2で示す実施の形態を説明する。この実施の形態は、図1で示した実施の形態に対し、下水道管11内に、水質、流量、水位の計測手段として、水質計45、流量計46、水位計47を新たに設け、それらの計測データ45a,46a,47aをデータ収集手段3によって所定の周期で収集させ、この収集データをデータ記憶手段33に記憶させている。また、データ収集手段3及びデータ記憶手段33は、図示しない気象情報システムから気象情報を入手し記憶しておくことができる。 Next, the embodiment shown in FIG. 2 will be described. In this embodiment, a water quality meter 45, a flow meter 46, and a water level meter 47 are newly provided in the sewer pipe 11 as means for measuring water quality, flow rate, and water level, compared to the embodiment shown in FIG. measurement data 45a, 46a, 47a is collected at a predetermined period by the data acquisition unit 3 2, and to remember this collected data to the data storage means 33. The data acquisition unit 3 3 and the data storage means 33, may have been obtained by storing weather information from the weather information system, not shown.

また、予測手段34は、前述した流入渠12への流入水質及び流入量の予測に加え、下水道管11内の水質、下水道管11内の流量、下水道管11内から流入渠12に流入する土砂或いは夾雑物量をそれぞれ予測する
すなわち、予測手段34は、現時点の下水道管11内の水質及び過去のいくつかの下水道管11内の水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて、前記モデル式(1)により、流入渠12に流入する前の、下水道管11内における水質計45の設置点での水質を予測する。
In addition to the prediction of the inflow water quality and the inflow amount to the inflow trough 12 described above, the predicting means 34 also includes the water quality in the sewer pipe 11, the flow rate in the sewer pipe 11, and the earth and sand flowing into the inflow trough 12 from Alternatively, the amount of contaminants is predicted, that is, the predicting means 34 is configured so that the water quality in the current sewer pipe 11 and the water quality in some past sewer pipes 11, some past rainfall, and some past rainfall. The water quality at the installation point of the water quality meter 45 in the sewer pipe 11 before flowing into the inflow trough 12 is predicted by the model equation (1) using the power value of.

また、予測手段34は、現時点の下水道管11内の流量及び過去のいくつかの下水道管11内の流量、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて、前記モデル式(2)により、流入渠12に流入する前の、下水道管11内における流量計46の設置点での流量を予測する。   Further, the prediction means 34 uses the current flow rate in the sewer pipe 11 and the flow rate in the past several sewer pipes 11, some past rainfall amounts, and the power value of some past rainfall amounts, From the model equation (2), the flow rate at the installation point of the flow meter 46 in the sewer pipe 11 before flowing into the inflow trough 12 is predicted.

さらに、予測手段34は、データ記憶手段33から晴天日おける下水道管11内の水位を入手して、下水道管11内の土砂或いは夾雑物高さを求めておき、降雨日における下水道管11内流量及び水質から、流入渠12に流入するファーストフラッシュ水の流量及び水質を予測する。   Further, the predicting means 34 obtains the water level in the sewer pipe 11 on a sunny day from the data storage means 33, obtains the height of earth and sand or contaminants in the sewer pipe 11, and the flow rate in the sewer pipe 11 on a rainy day. And the flow quality of the first flush water flowing into the inflow trough 12 and the water quality are predicted from the water quality.

この実施の形態では、下水道管11内に水質計45、流量計46、水位計47を新たに設け、それらの計測データ45a,46a,47aを所定の周期で収集し、記憶させているので、地上雨量計21またはレーダ雨量22のいずれかまたは両方から降雨量を入手することにより、下水道管11内の前記計測手段の設置位置における流量と水質を予測できる。すなわち、流入渠12に流入する前の流量および水質を予測することができる。このため、雨水滞水池15への貯留、雨水ポンプ16の運転停止、汚水ポンプ17の運転/停止の支援、制御を、より確実かつ正確に行うことができる。   In this embodiment, a water quality meter 45, a flow meter 46, and a water level meter 47 are newly provided in the sewer pipe 11, and these measurement data 45a, 46a, 47a are collected and stored at a predetermined cycle. By obtaining the rainfall amount from either or both of the ground rain gauge 21 and the radar rainfall amount 22, it is possible to predict the flow rate and water quality at the installation position of the measuring means in the sewer pipe 11. That is, the flow rate and water quality before flowing into the inflow trough 12 can be predicted. For this reason, it is possible to more reliably and accurately perform storage in the rainwater reservoir 15, stop operation of the rainwater pump 16, support / control of operation / stop of the sewage pump 17.

また、地上雨量計データ21aやレーダ雨量計データ22a、または天気予報などの気象情報システムから晴天日の連続日数を演算し、晴天日の続いている日の下水道管11内の水位47aを計測し、下水道管11内に貯えられている土砂あるいは夾雑物の高さを計測しておく。そして、降雨日における下水道管11内の流量45aおよび管内水質46aから流入渠12に流入する流入水量と流入水質を予測する。通常、晴天日が続くと下水道管11内に夾雑物が付着し、堆積する傾向があり、降雨日にはその夾雑物が流入渠12内へ流入するので、前述のように予め堆積量を求めておけば、ファーストフラッシュ水の流入水量と流入水質とを正確に予測することができる。   Also, the number of consecutive days on a clear day is calculated from the ground rain gauge data 21a, the radar rain gauge data 22a, or a weather information system such as a weather forecast, and the water level 47a in the sewer pipe 11 on the day when the sunny day continues is measured. The height of earth and sand or impurities stored in the sewer pipe 11 is measured. And the inflow water quantity and inflow water quality which flow into the inflow trough 12 from the flow rate 45a in the sewer pipe 11 and the pipe | tube water quality 46a in a rainy day are estimated. Normally, if the sunny day continues, impurities tend to adhere and accumulate in the sewer pipe 11, and the impurities flow into the inflow trough 12 on a rainy day. In this way, the amount of inflow water and the quality of the inflow water of the first flush water can be accurately predicted.

なお、流入水質からBOD-SS負荷(処理場生物重量当たりの有機汚濁物質BODの流入負荷量)を算出してもよい。   The BOD-SS load (inflow load of organic pollutant BOD per treatment plant weight) may be calculated from the influent water quality.

本発明による雨水排水支援システムの一実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of a rainwater drainage support system according to the present invention. 本発明の他の実施の形態を示すシステム構成図である。It is a system block diagram which shows other embodiment of this invention.

符号の説明Explanation of symbols

11 下水道管
12 流入渠
13 雨水ポンプ井
14 汚水ポンプ井
15 雨水滞留池
23,24 流入渠への流入水質及び流入量計測手段
32,33 データ収集及び記憶手段
34 予測手段
36 運転支援手段
45,46,47 下水道管内水質、流量、水位計側手段
DESCRIPTION OF SYMBOLS 11 Sewer pipe 12 Inflow trough 13 Rainwater pump well 14 Sewage pump well 15 Rainwater retention pond 23,24 Inflow water quality and inflow measuring means 32,33 Data collection and storage means 34 Prediction means 36 Operation support means 45,46 , 47 Sewer pipe water quality, flow rate, water level meter means

Claims (8)

下水道管から流入渠への流入水の水質を予測する方法であって、
前記下水道管の設置流域における降雨量を所定周期で計測すると共に、前記流入渠へ流入する流入水の水質を所定周期で計測し、
この計測された値のうち、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて、非線形ハマーシュタインモデルによるシステム同定手法により将来の流入水質を予測する
ことを特徴とする下水流入水の水質予測方法。
A method for predicting the quality of inflow water from a sewer pipe to an inflow basin,
While measuring the amount of rainfall in the installation basin of the sewer pipe at a predetermined cycle, and measuring the quality of the inflow water flowing into the inflow trough at a predetermined cycle,
Of these measured values, system identification using the nonlinear Hammerstein model using the current influent quality and several past influent qualities, several past rainfalls, and the power values of several past rainfalls A method for predicting the quality of sewage inflow water, characterized by predicting the future inflow water quality using a method.
下水道管の終端部に設けられた流入渠との間に所定高さの流入堰が設けられた雨水ポンプ井、前記流入渠との間に前記雨水ポンプより低い流入堰が設けられた汚水ポンプ井、この汚水ポンプ井との間に越流堰が設けられ、前記流入渠との間にゲートが設けられた雨水滞水池、のそれぞれ又はいずれかに対して前記下水道管からの流入水を流入させ、これら流入水を所定の排水先に排水する下水道設備における雨水排水支援システムであって、
前記下水道管の設置流域における降雨量を計測する計測手段と、
前記流入渠へ流入した流入水の水質を計測する計測手段と、
前記各計測手段で計測された降雨量、流入水質をそれぞれ周期的に収集し記憶しておくデータ収集及び記憶手段と、
この記憶手段に記憶されたデータのうち、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入水質を予測する予測手段と、
この予測手段により予測された流入水質を用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる運転支援手段と
を備えたことを特徴とする雨水排水支援システム。
A storm water pump well provided with an inflow weir of a predetermined height between the inflow basin provided at the end portion of the sewer pipe, and a sewage pump well provided with an inflow dam lower than the storm water pump between the inflow basin Inflow water from the sewer pipe is allowed to flow into each or one of the rainwater reservoirs provided with overflow weirs between the sewage pump wells and gates provided between the wells. , A rainwater drainage support system in a sewer facility that drains the inflow water to a predetermined drainage destination,
A measuring means for measuring rainfall in an installation basin of the sewer pipe,
Measuring means for measuring the quality of the inflow water flowing into the inflow trough;
Data collection and storage means for periodically collecting and storing the rainfall and influent water quality measured by each of the measurement means;
Of the data stored in this storage means, the current inflow water quality, some past inflow water quality, some past rainfall, and some power of past rainfall are calculated using the nonlinear Hammerstein model. Predictive means for predicting influent water quality by system identification method ,
Using the influent water quality predicted by this predicting means, the sewage pump that feeds water from the sewage pump well to the sewage treatment plant, the storm water pump that drains water from the storm water pump well, and the storm water pond that feeds water from the storm water reservoir to the sewage pump well A rainwater drainage support system , comprising: an operation command for each of the pumps, and an operation support means for generating an instruction to open the gate to the rainwater reservoir .
下水道管の終端部に設けられた流入渠との間に所定高さの流入堰が設けられた雨水ポンプ井、前記流入渠との間に前記雨水ポンプより低い流入堰が設けられた汚水ポンプ井、この汚水ポンプ井との間に越流堰が設けられ、前記流入渠との間にゲートが設けられた雨水滞水池、のそれぞれ又はいずれかに対して前記下水道管からの流入水を流入させ、これら流入水を所定の排水先に排水する下水道設備における雨水排水支援システムであって、
前記下水道管の設置流域における降雨量を計測する計測手段と、
前記流入渠への流入水量及び流入水質を計測する計測手段と、
前記各計測手段で計測された降雨量、流入水量及び流入水質をそれぞれ周期的に収集し記憶しておくデータ収集及び記憶手段と、
この記憶手段に記憶されたデータのうち、現時点の流入水量及び過去のいくつかの流入水量、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入水量を予測すると共に、現時点の流入水質及び過去のいくつかの流入水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入水質を予測する予測手段と、
この予測手段により予測された流入水量及び流入水質を用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる運転支援手段と
を備えたことを特徴とする雨水排水支援システム。
A storm water pump well provided with an inflow weir of a predetermined height between the inflow basin provided at the end portion of the sewer pipe, and a sewage pump well provided with an inflow dam lower than the storm water pump between the inflow basin Inflow water from the sewer pipe is allowed to flow into each or one of the rainwater reservoirs provided with overflow weirs between the sewage pump wells and gates provided between the wells. , A rainwater drainage support system in a sewer facility that drains the inflow water to a predetermined drainage destination,
A measuring means for measuring rainfall in an installation basin of the sewer pipe,
Measuring means for measuring the amount of inflow water and the quality of the inflow water to the inflow trough;
Data collection and storage means for periodically collecting and storing the rainfall, inflow water quantity and inflow water quality measured by each of the measurement means;
Among the data stored in the storage unit, inflow water amount and number of the inflow water amount of past time, some rainfall in the past, due to the nonlinear Hammerstein model using the exponential value of a number of rainfall in the past A system identification method is used to predict the influent water volume, and the current influent water quality, past influent water quality, past past rainfall, and the past several rainfall power values using a nonlinear Hammerstein model. Predictive means for predicting influent water quality by system identification method ,
Using the inflow water amount and the inflow water quality predicted by the predicting means, the sewage pump that feeds water from the sewage pump well to the sewage treatment plant, the storm water pump that drains water from the storm water pump well, and the sewage pump well that feeds water from the storm water reservoir. A rainwater drainage support system , comprising: an operation command for each of the rainwater reservoir pumps, and an operation support means for generating an instruction to open the gate to the rainwater reservoir .
下水道管内にも水質計測手段を設け、データ収集及び記憶手段は下水道管内で計測された水質も周期的に収集し記憶しておき、
予測手段は、現時点の下水道管内の水質及び過去のいくつかの下水道管内の水質、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入渠に流入する前の下水道管内の水質を予測する機能を併せ持ち、
運転支援手段は、予測された流入渠に流入する前の下水道管内の水質も用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる
ことを特徴とする請求項2または請求項3に記載の雨水排水支援システム。
A water quality measuring means is also provided in the sewer pipe, and the data collection and storage means periodically collects and stores the water quality measured in the sewer pipe,
The prediction method is a system identification method based on the nonlinear Hammerstein model using the current water quality in the sewer pipe and the water quality in the past several sewer pipes, some past rainfall, and the power values of some past rainfall Has the function of predicting the water quality in the sewer pipe before flowing into the inflow trough,
The operation support means also uses the water quality in the sewer pipe before flowing into the predicted inflow basin, using the sewage pump that sends water from the sewage pump well to the sewage treatment plant, the storm water pump that drains from the storm water pump well, and the rainwater reservoir. The rainwater drainage support system according to claim 2 or 3, wherein an operation command for each of the stormwater pond pumps that send water to the sewage pump well and an instruction to open the gate to the stormwater pond are generated. .
下水道管内に流量計測手段を設け、データ収集及び記憶手段は下水道管内で計測された流量も周期的に収集し記憶しておき、
予測手段は、現時点の下水道管内の流量及び過去のいくつかの下水道管内の流量、過去のいくつかの降雨量、過去のいくつかの降雨量のべき乗値を用いて非線形ハマーシュタインモデルによるシステム同定手法により流入渠に流入する前の下水道管内の流量を予測する機能を併せ持ち、
運転支援手段は、予測された流入渠に流入する前の下水道管内の流量も用いて、前記汚水ポンプ井から下水処理場へ送水する汚水ポンプ、雨水ポンプ井から排水する雨水ポンプ、雨水滞水池から前記汚水ポンプ井へ送水する雨水滞水池ポンプ、のそれぞれに対する運転指令、及び雨水滞水池への前記ゲートの開指令を生じる
ことを特徴とする請求項4に記載の雨水排水支援システム。
The flow rate measuring means is provided in the sewer pipe, and the data collection and storage means periodically collects and stores the flow rate measured in the sewer pipe,
The prediction means is a system identification method using a non-linear Hammerstein model using the current flow in the sewer pipe and the flow in the past several sewer pipes, some past rainfall, and the power value of some past rainfall Has the function of predicting the flow rate in the sewer pipe before flowing into the inflow trough,
The operation support means also uses the flow rate in the sewer pipe before flowing into the predicted inflow trough, from the sewage pump well that sends water from the sewage pump well to the sewage treatment plant, from the rainwater pump that drains from the rainwater pump well, from the rainwater reservoir. The rainwater drainage support system according to claim 4, wherein an operation command for each of the stormwater pond pumps that send water to the sewage pump well and an instruction to open the gate to the stormwater pond are generated.
下水道管内に管内の水位計測手段を設け、データ収集及び記憶手段は下水道管内で計測された水位も周期的に収集し記憶しておき、さらに、気象情報システムからの気象情報を入手し記憶しておくことができ、
予測手段は、記憶手段から晴天日おける下水道管内の水位を入手して下水道管内の土砂或いは夾雑物高さを求めておき、降雨日における下水道管内の流量予測値及び水質予測値から流入渠に流入するファーストフラッシュ水の流量及び水質を予測する機能をさらに有する
ことを特徴とする請求項5に記載の雨水排水支援システム。
In the sewer pipe, water level measurement means in the pipe is provided, and the data collection and storage means periodically collects and stores the water level measured in the sewer pipe, and further obtains and stores weather information from the weather information system. Can
The prediction means obtains the water level in the sewer pipe on a clear day from the storage means, obtains the height of earth and sand or contaminants in the sewer pipe, and flows into the inflow trough from the predicted flow rate and water quality in the sewer pipe on a rainy day. The rainwater drainage support system according to claim 5, further comprising a function of predicting a flow rate and water quality of the first flush water.
運転支援手段は、予測された流入水の水質が所定の閾値より悪化している場合は、降雨量の上限閾値を超えない範囲内で雨水ポンプ井に設けた雨水ポンプの運転を行なわずに汚水ポンプ井に設けた汚水ポンプの運転を行なうように運転指令することを特徴とする請求項2乃至請求項6のいずれかに記載の雨水排水支援システム。   If the predicted influent water quality is worse than a predetermined threshold value, the operation support means does not operate the rainwater pump provided in the rainwater pump well within a range not exceeding the upper limit threshold of rainfall. The rainwater drainage support system according to any one of claims 2 to 6, wherein an operation command is given to operate a sewage pump provided in a pump well. 運転支援手段は、予測された流入水量からファーストフラッシュを判別し、このファーストフラッシュ水を雨水滞池に貯留させ、降雨量が所定値以下になると雨水滞留池のポンプにより滞留水を汚水ポンプ井に返送させるように運転指令することを特徴とする請求項3乃至請求項6のいずれかに記載の雨水排水支援システム。 Driving assistance means discriminates the first flush from the predicted inflow water amount, the first flush water is stored in the rainwater water bearing ponds, sewage pump well the accumulated water when the rainfall is below a predetermined value by the pump rainwater retention pond The rainwater drainage support system according to any one of claims 3 to 6, wherein an operation command is issued so as to be returned to the vehicle.
JP2004381898A 2004-12-14 2004-12-28 Sewage inflow water quality prediction method and rainwater drainage support system Active JP4358101B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004381898A JP4358101B2 (en) 2004-12-28 2004-12-28 Sewage inflow water quality prediction method and rainwater drainage support system
MYPI2010003085A MY147185A (en) 2004-12-14 2005-12-13 Rainwater draining support system, rainwater draining support method, rainwater draining control system, and rainwater draining control method
TW94144203A TWI310428B (en) 2004-12-14 2005-12-13 Rainwater draining support system, and rainwater draining support method
TW098102650A TWI369449B (en) 2004-12-14 2005-12-13 Rainwater draining control system, and rainwater draining control method
TW098102637A TWI369448B (en) 2004-12-14 2005-12-13 Rainwater draining support system, and rainwater draining support method
MYPI20055845A MY146688A (en) 2004-12-14 2005-12-13 Rainwater draining support system, rainwater draining support method, rainwater draining control system, and rainwater draining control method
CN2008101750461A CN101387127B (en) 2004-12-14 2005-12-14 Rainwater drain control system and method
CN2008101750476A CN101387128B (en) 2004-12-14 2005-12-14 Rainwater drain support system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381898A JP4358101B2 (en) 2004-12-28 2004-12-28 Sewage inflow water quality prediction method and rainwater drainage support system

Publications (2)

Publication Number Publication Date
JP2006187682A JP2006187682A (en) 2006-07-20
JP4358101B2 true JP4358101B2 (en) 2009-11-04

Family

ID=36795342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381898A Active JP4358101B2 (en) 2004-12-14 2004-12-28 Sewage inflow water quality prediction method and rainwater drainage support system

Country Status (1)

Country Link
JP (1) JP4358101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706033A (en) * 2016-11-24 2017-05-24 北京无线电计量测试研究所 Sponge city performance monitoring system and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728988B2 (en) * 2007-03-19 2011-07-20 株式会社東芝 Pump control device
JP6270337B2 (en) * 2013-04-26 2018-01-31 株式会社東芝 Water treatment equipment and water treatment system
CN104460715B (en) * 2014-11-19 2017-05-03 哈尔滨工业大学 Energy-saving rainwater tank measurement and control system
JP6896391B2 (en) * 2016-09-29 2021-06-30 株式会社東芝 Water intake planning device, water intake system and water intake planning method
CN108803392A (en) * 2018-08-03 2018-11-13 深圳文科园林股份有限公司 A kind of sponge urban rainwater collection with utilize wisdom system
JP7297656B2 (en) * 2019-12-16 2023-06-26 株式会社東芝 Rainwater inflow prediction device, rainwater inflow prediction method, computer program, rainwater pump control system, and rainwater pumping station system
CN112374556B (en) * 2020-11-12 2023-11-21 联智同达(苏州)环境科技有限公司 Sewage abnormal discharge monitoring system and monitoring method thereof
JP7321215B2 (en) * 2021-06-30 2023-08-04 三菱電機株式会社 Sewage treatment plant operation management system, sewage treatment plant operation management method, and sewage treatment plant operation management program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706033A (en) * 2016-11-24 2017-05-24 北京无线电计量测试研究所 Sponge city performance monitoring system and method

Also Published As

Publication number Publication date
JP2006187682A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
KR101030860B1 (en) System and method for decreasing nonpoint pollution source with water storage tank and artificial marsh
JP2010196369A (en) Rainwater drainage control device
JP2007146638A (en) Rainwater storage facility
JP4358101B2 (en) Sewage inflow water quality prediction method and rainwater drainage support system
JP4481920B2 (en) Rainwater drainage support system, rainwater drainage support method, and rainwater drainage control system
JP5189968B2 (en) Sewage treatment system and its operation method and improvement method
JP6845775B2 (en) Water treatment control device and water treatment system
JP2009108537A (en) Rainwater storage facility
JP3839361B2 (en) Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program
CN105113606B (en) Municipal rainwater processing system
JP4739293B2 (en) Rainwater pump control device
JP5010848B2 (en) Sewage treatment plant and its control device
JP4488970B2 (en) Operation management system for combined sewage systems
JP4439831B2 (en) Water quality improvement control device for combined sewerage treatment facilities
JP3625367B2 (en) Sewer system storage facility operation support device
CN105239659A (en) Municipal drainage system
JP3749800B2 (en) Sewer rainwater drainage control device
JP4427509B2 (en) Rainwater storage facility operation system
JP4908333B2 (en) Pump control device
JP3294074B2 (en) Rainwater pump control device and control method
JP4342381B2 (en) Pump control device
JP2009287197A (en) Rainwater drainage control system
JP2002001381A (en) Sewage treatment system and waste water control system
JP4205511B2 (en) Building side dirt leveling device
JP2000110733A (en) Control system for pump of storage facility

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4358101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4