JP4349504B2 - Manufacturing method of high gloss BA finish stainless steel using tandem mill - Google Patents
Manufacturing method of high gloss BA finish stainless steel using tandem mill Download PDFInfo
- Publication number
- JP4349504B2 JP4349504B2 JP32351499A JP32351499A JP4349504B2 JP 4349504 B2 JP4349504 B2 JP 4349504B2 JP 32351499 A JP32351499 A JP 32351499A JP 32351499 A JP32351499 A JP 32351499A JP 4349504 B2 JP4349504 B2 JP 4349504B2
- Authority
- JP
- Japan
- Prior art keywords
- cold rolling
- mill
- rolling
- lever
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は熱間圧延オーステナイト系ステンレス鋼帯を焼鈍酸洗後、冷間圧延を行ない、その後BA焼鈍を行なう、高光沢のBA仕上ステンレス鋼の製造方法に関するものである。
【0002】
【従来の技術】
BA仕上オーステナイト系ステンレス鋼を製造する場合、ホットコイルを焼鈍酸洗後冷間圧延を実施し、その後BA焼鈍することにより製造している。特に、良好な表面光沢を有するBA仕上オーステナイト系ステンレス鋼を得るためにはレバースミルによる冷間圧延を実施しなければならない。従来、高光沢のBA仕上オーステナイト系ステンレス鋼を製造する場合は、ホットコイルを焼鈍酸洗後、全量レバースミルに投入し冷間圧延を実施していた。そのため、レバースミルでのパス回数が多くなり冷間圧延時間が非常に長くなるという問題があった。さらに、冷間圧延する製品板厚が厚い場合にはレバースミルは未圧代用材(ST材)が必要になる。そのため、冷間圧延時間が増加するだけではなくコストも増大する。
【0003】
前述のごとく、冷間圧延を全量レバースミルで実施する場合、冷間圧延時間が増加するために各パス毎に圧延材の製品の温度低下が大きくなる。特に、コイルエッジ部では顕著であり、そのため、コイルエッジ部において加工誘起マルテンサイトが多量に生成する。その結果、製品にエッジクラックが発生し製品歩留が低下する。また、冷間圧延時間が増加することにより圧延能率が非常に悪化する。
【0004】
【発明が解決しようとする課題】
一般的に、光沢を必要としない仕上のオーステナイト系ステンレス鋼の製造においてはタンデム圧延により能率の良い冷間圧延を行なうことができるが、高光沢のBA仕上オーステナイト系ステンレス鋼の製造は、レバースミルで冷間圧延を実施している。レバースミルによる冷間圧延は圧延時間が大幅に長くなり圧延能率が非常に悪い。さらに、製品におけるエッジクラックの発生量も多く製品歩留の悪化が顕著である。また、冷間圧延する製品板厚が厚い場合にはレバースミルは未圧代用材(ST材)が必要になる。
【0005】
タンデムミルでの冷間圧延は能率が高い。短時間で冷間圧延を実施すると加工の発熱により昇温した製品の材料温度が低下しにくく、製品の加工誘起マルテンサイトの発生量も少ない。しかしながら、高光沢のBA仕上オーステナイト系ステンレス鋼を得るためには、ミネラルオイルを使用したレバースミルで冷間圧延することが必要である。本発明の課題は双方の特性を考慮し、これらの限界値を見つけ出し、コントロールすることにより課題を解決するものである。
【0006】
【課題を解決するための手段】
本発明は、熱間圧延オーステナイト系ステンレス鋼帯を焼鈍酸洗後、冷間圧延を施すにあたり、タンデムミルによる冷間圧延後、未焼鈍のままレバースミルによる冷間圧延を行ない、前記タンデムミルによる冷間圧延の圧下率を30%以上とし、前記レバースミルによる冷間圧延の圧下率を少なくとも30%とする、高光沢のBA仕上ステンレス鋼の製造方法を提供するものである。
【0007】
図1は、タンデムミルとレバースミルの圧下率別の板センター部と板エッジ部の加工誘起マルテンサイトの生成量の差を示す。前述のごとく、レバースミルではコイルのセンター部とエッジ部においてはエッジ部の方がセンター部に比べ加工誘起マルテンサイトの生成量が多い。タンデムミルによる冷間圧延では圧下率にかかわらずその差は1.5%以下であるが、レバースミルによる冷間圧延では圧下率が30%以上においてその差は急激に増加しており4.5%〜7.5%に達する。すなわち、レバースミルでは30%以上冷間圧延することにより、エッジ部に加工誘起マルテンサイトが生成するが、タンデムミルでは冷間圧延しても、エッジ部だけ異常に加工誘マルテンサイトの生成量が増加することはない。そのため、レバースミルでの冷間圧延によるエッジ部とセンター部の加工誘起マルテンサイトの差を生じなくするため、タンデムミルによる冷間圧延量を30%以上とし、その後のレバース圧延の圧下量をできるだけ軽減することがのぞましい。
【0008】
図2は、レバースミルでの冷間圧延の圧下率別の光沢度及びBA判定推移を示す。目視判定(光沢)の光沢度860°以上を得るためにはレバースミルでの圧下率が24%以上必要であり、光沢度870°以上を得るためにはレバースミルでの圧下率が30%以上必要である。これらの結果から、高光沢のBA仕上ステンレス鋼を製造するためには、レバースミルによる冷間圧延を圧下率30%以上行なうことが必要であることがわかる。
【0009】
図3は、従来の方法である全量レバースミルにより冷間圧延した場合と、本発明の方法であるタンデムミルにて冷間圧延後レバースミルで冷間圧延した場合の、各パス工程ごとの板幅方向における加工誘起マルテンサイトの生成量を表したものである。パス回数が少ない時はタンデムミルおよびレバースミル共に加工誘起マルテンサイト生成量は少ない。しかし、レバースミルでのパス回数が増加すると加工誘起マルテンサイト生成量が増加し、特に、コイルエッジ部においては顕著に増加している。
【0010】
図4は、全量レバースミルによる冷間圧延と、タンデムミルによる冷間圧延後レバースミルによる冷間圧延を実施した場合の、最終パス後における板幅方向における加工誘起マルテンサイトの生成量を表したものである。従来の製造方法であるレバースミル単独で冷間圧延する場合、コイルエッジ部の加工誘起マルテンサイトの生成量が29%にも達している。これに対し、本発明の製造方法であるタンデムミルによる冷間圧延後レバースミルによる冷間圧延を実施した場合では、途中板厚までの圧延に際し圧延時間がレバースミルに比較し短いことから、圧延材の全幅での温度変化が小さく圧延時に発生する加工誘起マルテンサイトの生成量がコイルエッジ部において25%と比較的低く、コイル幅方向の偏差も小さい。このことは、冷間圧延がレバースミルのみの場合は、コイル全体の加工誘起マルテンサイトの生成量が高いだけではなく、エッジ部において極めて高くなり、その偏差も大きいことを示している。
【0011】
【発明の実施の形態】
連続鋳造にてステンレス鋼(鋼種SUS304)スラブを製造し、熱間圧延後、焼鈍酸洗し、製品板厚3.0mmのホットコイルとした。その後、冷間圧延を行い、さらに、BA焼鈍を行い、板厚0.8mmのBA仕上の製品を製造した。本発明による製造方法および従来の製造方法について、その品質特性、製品歩留、製造性および作業性を評価し比較した。
【0012】
本発明の製造方法では、板厚3.0mmのホットコイルを焼鈍酸洗後、板厚1.14mmまでタンデムミルにより冷間圧延を行ない、その後、レバースミルより最終製品の板厚0.8mmまで冷間圧延を実施して、さらに、BA焼鈍を行なって、BA仕上の製品を製造した。レバースミルによる冷間圧延の圧下量をできるだけ少なくするために最低値の30%とした。すなわち、最終製品の板厚0.8mmの10/7倍の値1.14mmを途中板厚とした。このように、製品板厚から冷間圧延におけるタンデムミルの途中板厚を決定した。その後、BA焼鈍を行なった。
【0013】
従来からの製造方法では、板厚3.0mmのホットコイルを焼鈍後、全量レバースミルにより冷間圧延を行ない、さらに、BA焼鈍を行なって、板厚0.8mmのBA仕上の製品を製造していた。レバースミルによる冷間圧延は板厚3.0mmから実施しなければならないため、多量の未圧代用材(ST材)が必要であった。さらに、パス回数が増加する度に、加工誘起マルテンサイトの生成量も増加し、コイルのエッジ部とセンター部での加工誘起マルテンサイトの生成量に差が生じ、最終パスまでこの影響が続いた。このように、従来からの製造方法では、コイルエッジに多量のクラックが発生し、製品歩留が低下する。
【0014】
しかしながら、本発明の製造方法では、板厚0.8mmの高光沢のBA仕上の製品を得ることができる。また、板幅方向での加工誘起マルテンサイトの生成量の偏差が小さく、その後、レバースミルでの冷間圧延を実施しても板幅方向の加工誘起マルテンサイトの生成量の偏差は小さい。これによりエッジクラックの発生は防止される。表1に実施例および評価を示す。
【0015】
【表1】
【0016】
【発明の効果】
本発明を実施することにより、コイルのエッジクラック等の品質異常を防止することができる。その結果、冷間圧延における歩留改善を達成することができる。さらに、途中板厚までタンデムミルを使用することにより、未圧代用(ST材)付工程の省略、圧延時間の短縮等による作業能率の大幅な向上を達成することができる。
【図面の簡単な説明】
【図1】タンデムミル(TM)とレバースミル(RM)の圧下率別の板センターと板エッジの加工誘起マルテンサイトの生成量差
【図2】レバースミル(RM)での冷間圧延の圧下率別の光沢度及びBA判定推移
【図3】全量レバースミル(RM)とタンデムミル(TM)及びレバースミル(RM)により冷間圧延した場合の各パスにおける加工誘起マルテンサイト生成量の板幅方向推移
【図4】全量レバースミル(RM)とタンデムミル(TM)及びレバースミル(RM)により冷間圧延した場合の最終パスにおける加工誘起マルテンサイト生成量の板幅方向推移[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-gloss BA-finished stainless steel, in which hot-rolled austenitic stainless steel strip is annealed and pickled, cold-rolled, and then subjected to BA annealing.
[0002]
[Prior art]
When producing a BA-finished austenitic stainless steel, the hot coil is manufactured by subjecting the hot coil to annealing pickling and then cold rolling, followed by BA annealing. In particular, in order to obtain a BA-finished austenitic stainless steel having a good surface gloss, cold rolling with a lever mill must be performed. Conventionally, when producing a high-gloss BA-finished austenitic stainless steel, the hot coil was annealed and pickled, and then the entire amount was put into a lever mill and cold rolled. Therefore, there has been a problem that the number of passes in the lever mill increases and the cold rolling time becomes very long. Furthermore, when the product sheet to be cold-rolled is thick, the lever mill requires an unpressurized substitute material (ST material). Therefore, not only the cold rolling time increases but also the cost increases.
[0003]
As described above, when cold rolling is carried out with a full lever smill, since the cold rolling time increases, the temperature drop of the product of the rolled material becomes large for each pass. This is particularly noticeable at the coil edge portion, and therefore a large amount of processing-induced martensite is generated at the coil edge portion. As a result, edge cracks occur in the product and the product yield decreases. In addition, the rolling efficiency is greatly deteriorated by increasing the cold rolling time.
[0004]
[Problems to be solved by the invention]
Generally, in the production of finished austenitic stainless steel that does not require luster, efficient cold rolling can be performed by tandem rolling, but the production of high-gloss BA finished austenitic stainless steel can be done with a lever mill. Cold rolling is performed. Cold rolling with a lever mill greatly reduces the rolling efficiency and the rolling efficiency is very poor. Furthermore, the amount of edge cracks in the product is large, and the product yield is markedly deteriorated. Moreover, when the product sheet thickness to be cold-rolled is thick, the lever mill requires an unpressurized substitute material (ST material).
[0005]
Cold rolling with a tandem mill is highly efficient. When cold rolling is carried out in a short time, the material temperature of the product that has been heated due to the heat generated during processing is unlikely to decrease, and the amount of product-induced martensite generated in the product is small. However, in order to obtain a high-gloss BA-finished austenitic stainless steel, it is necessary to cold-roll with a lever mill using mineral oil. The problem of the present invention is to solve the problem by considering both characteristics and finding and controlling these limit values.
[0006]
[Means for Solving the Problems]
The present invention, after annealing pickling the hot-rolled austenitic stainless steel strip, when subjected to cold rolling, after I that cold rolling tandem mill, have the I that cold rolling Rebasumiru left unannealed row The present invention provides a method for producing high-gloss BA-finished stainless steel, in which the reduction ratio of cold rolling by the tandem mill is 30% or more and the reduction ratio of cold rolling by the lever mill is at least 30% .
[0007]
FIG. 1 shows the difference in the production amount of work-induced martensite at the plate center portion and the plate edge portion according to the rolling reduction of the tandem mill and the lever mill. As described above, in the lever mill, at the center portion and the edge portion of the coil, the edge portion generates more work-induced martensite than the center portion. In cold rolling with a tandem mill, the difference is 1.5% or less regardless of the rolling reduction, but in cold rolling with a lever mill, the difference increases drastically when the rolling reduction is 30% or more, and 4.5% Reach ~ 7.5%. In other words, cold-rolling at 30% or more in the lever mill produces work-induced martensite at the edge, but even with cold rolling in the tandem mill, the amount of work-induced martensite produced abnormally increases only at the edge. Never do. Therefore, in order to eliminate the difference between the work-induced martensite at the edge and the center due to cold rolling in the lever mill, the cold rolling amount by the tandem mill is set to 30% or more, and the rolling reduction of the subsequent lever rolling is reduced as much as possible. I want to do it.
[0008]
FIG. 2 shows the change in glossiness and BA determination according to the rolling reduction ratio of cold rolling with a lever mill. In order to obtain a visual judgment (gloss) glossiness of 860 ° or more, a reduction ratio of 24% or more is required in the lever mill, and in order to obtain a glossiness of 870 ° or more, a reduction ratio of 30% or more is required. is there. From these results, it can be seen that it is necessary to perform cold rolling with a lever mill at a reduction rate of 30% or more in order to produce high gloss BA-finished stainless steel.
[0009]
FIG. 3 shows the sheet width direction for each pass step when cold rolling is performed by a conventional levers mill, which is a conventional method, and when cold rolling is performed by a lever mill after cold rolling by a tandem mill which is the method of the present invention. This shows the amount of processing-induced martensite produced in. When the number of passes is small, the amount of work-induced martensite formation is small for both tandem and lever mills. However, when the number of passes in the lever mill increases, the amount of work-induced martensite generation increases, and particularly increases in the coil edge portion.
[0010]
Fig. 4 shows the amount of work-induced martensite generated in the sheet width direction after the final pass when cold rolling with a full-length lever mill and cold rolling with a lever mill after cold rolling with a tandem mill are performed. is there. When cold rolling is performed with a lever mill alone, which is a conventional manufacturing method, the amount of work-induced martensite generated in the coil edge portion reaches 29%. On the other hand, in the case of carrying out cold rolling by levers mill after cold rolling by tandem mill, which is the production method of the present invention, the rolling time is shorter than that of levers mill in rolling to the plate thickness in the middle. A change in temperature in the entire width is small, and the amount of processing-induced martensite generated during rolling is relatively low at 25% at the coil edge, and the deviation in the coil width direction is also small. This indicates that when cold rolling is only a lever mill, not only the amount of work-induced martensite generated in the entire coil is high but also extremely high at the edge portion and the deviation is large.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A stainless steel (steel type SUS304) slab was manufactured by continuous casting, and after hot rolling, annealed pickling was performed to obtain a hot coil having a product plate thickness of 3.0 mm. Thereafter, cold rolling was performed, and further BA annealing was performed to produce a BA finished product having a plate thickness of 0.8 mm. About the manufacturing method by this invention, and the conventional manufacturing method, the quality characteristic, the product yield, manufacturability, and workability | operativity were evaluated and compared.
[0012]
In the manufacturing method of the present invention, a hot coil having a thickness of 3.0 mm is annealed and pickled, and then cold-rolled to a thickness of 1.14 mm by a tandem mill, and then cooled to a final thickness of 0.8 mm by a lever mill. Hot rolling was performed, and further BA annealing was performed to produce a product with BA finish. In order to minimize the amount of cold rolling by the lever mill, the minimum value is set to 30%. That is, a value of 1.14 mm, which is 10/7 times the plate thickness 0.8 mm of the final product, was used as the intermediate plate thickness. Thus, the intermediate plate thickness of the tandem mill in the cold rolling was determined from the product plate thickness. Thereafter, BA annealing was performed.
[0013]
In the conventional manufacturing method, a hot coil having a thickness of 3.0 mm is annealed, and then the whole is cold-rolled by a lever mill, and further BA annealing is performed to manufacture a BA finished product having a thickness of 0.8 mm. It was. Since cold rolling with a lever mill must be carried out from a plate thickness of 3.0 mm, a large amount of unstressed substitute material (ST material) was required. Furthermore, as the number of passes increases, the amount of work-induced martensite generated also increases, creating a difference in the amount of work-induced martensite produced at the edge and center of the coil, and this effect continued until the final pass. . As described above, in the conventional manufacturing method, a large amount of cracks are generated at the coil edge, and the product yield is lowered.
[0014]
However, in the manufacturing method of the present invention, a product with a high gloss BA finish with a thickness of 0.8 mm can be obtained. Further, the deviation of the production amount of work-induced martensite in the sheet width direction is small, and the deviation of the production amount of work-induced martensite in the sheet width direction is small even after cold rolling with a lever mill. This prevents the occurrence of edge cracks. Table 1 shows examples and evaluations.
[0015]
[Table 1]
[0016]
【The invention's effect】
By implementing the present invention, quality abnormalities such as coil edge cracks can be prevented. As a result, yield improvement in cold rolling can be achieved. Furthermore, by using a tandem mill up to the plate thickness in the middle, it is possible to achieve a significant improvement in work efficiency due to omission of unpressurized substitution (ST material) and shortening of the rolling time.
[Brief description of the drawings]
[Fig. 1] Difference in processing-induced martensite formation at the plate center and plate edge according to the rolling reduction ratio of the tandem mill (TM) and lever mill (RM) [Fig. 2] Cold rolling reduction by lever mill (RM) Glossiness of BA and BA judgment transition [Fig. 3] Transition in the plate width direction of the amount of work-induced martensite formation in each pass when cold rolling is performed with the full amount of lever mill (RM), tandem mill (TM) and lever mill (RM) 4) Transition in the plate width direction of the amount of work-induced martensite formation in the final pass when cold rolling is performed with the entire amount of lever mill (RM), tandem mill (TM) and lever mill (RM).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32351499A JP4349504B2 (en) | 1999-11-15 | 1999-11-15 | Manufacturing method of high gloss BA finish stainless steel using tandem mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32351499A JP4349504B2 (en) | 1999-11-15 | 1999-11-15 | Manufacturing method of high gloss BA finish stainless steel using tandem mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001137909A JP2001137909A (en) | 2001-05-22 |
JP4349504B2 true JP4349504B2 (en) | 2009-10-21 |
Family
ID=18155549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32351499A Expired - Fee Related JP4349504B2 (en) | 1999-11-15 | 1999-11-15 | Manufacturing method of high gloss BA finish stainless steel using tandem mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4349504B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102989771B (en) * | 2011-09-19 | 2015-07-29 | 宝山钢铁股份有限公司 | Low chrome ferritic stainless steel cold continuous rolling manufacture method |
CN107962074A (en) * | 2017-12-04 | 2018-04-27 | 中冶南方工程技术有限公司 | A kind of stainless steel cold-rolled plate continuous process system and method |
-
1999
- 1999-11-15 JP JP32351499A patent/JP4349504B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001137909A (en) | 2001-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6767412B2 (en) | Method for producing non-grain-oriented magnetic steel sheet | |
JP2001181798A (en) | Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet | |
JPH0349967B2 (en) | ||
JPH0730404B2 (en) | New production method of austenitic stainless steel sheet with excellent surface characteristics and materials | |
JP4349504B2 (en) | Manufacturing method of high gloss BA finish stainless steel using tandem mill | |
JPH0681036A (en) | Production of ferritic stainless steel sheet excellent in ridging characteristic and workability | |
JP3272804B2 (en) | Manufacturing method of high carbon cold rolled steel sheet with small anisotropy | |
JP3037734B2 (en) | Method for producing ferritic stainless steel sheet with excellent gloss, corrosion resistance and ridging resistance | |
JP3721640B2 (en) | Manufacturing method of ferritic stainless steel sheet with excellent workability | |
JP3636536B2 (en) | Manufacturing method of ferritic stainless steel sheet with excellent roping resistance | |
JP3728828B2 (en) | Manufacturing method of ferritic stainless steel with excellent surface quality and deep drawability | |
KR100293209B1 (en) | Hot rolling method of ferritic stainless steel sheet for improving formability | |
JP2000080417A (en) | Manufacture of hot rolled austenitic stainless steel strip | |
JPH0348250B2 (en) | ||
JPH0257128B2 (en) | ||
JP3804169B2 (en) | Method for producing ferritic stainless steel sheet with excellent ridging resistance | |
JPS6376706A (en) | Production of thin sheet made of alpha+beta type alloy titanium | |
JP2871292B2 (en) | Manufacturing method of α + β type titanium alloy sheet | |
JP2757735B2 (en) | Austenitic stainless steel sheet or steel strip manufacturing method | |
JP4151443B2 (en) | Thin steel plate with excellent flatness after punching and method for producing the same | |
JP3430810B2 (en) | Manufacturing method of electrical steel sheet with excellent magnetic properties in the longitudinal direction of coil | |
JP3482297B2 (en) | Method for producing low carbon steel sheet with good surface properties and formability | |
JPH07251202A (en) | Manufacture of hot rolled plate of pure titanium | |
JPH09291311A (en) | Method and equipment for manufacturing hot rolled stainless steel plate excellent in surface characteristic and descaling property | |
JPS5935664A (en) | Production of hot-rolled alpha+beta type titanium alloy sheet having excellent suitability to cold rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140731 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |