[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4347030B2 - Wind power generation output prediction method - Google Patents

Wind power generation output prediction method Download PDF

Info

Publication number
JP4347030B2
JP4347030B2 JP2003402573A JP2003402573A JP4347030B2 JP 4347030 B2 JP4347030 B2 JP 4347030B2 JP 2003402573 A JP2003402573 A JP 2003402573A JP 2003402573 A JP2003402573 A JP 2003402573A JP 4347030 B2 JP4347030 B2 JP 4347030B2
Authority
JP
Japan
Prior art keywords
power generation
generation output
wind power
membership function
weather forecast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003402573A
Other languages
Japanese (ja)
Other versions
JP2005163608A (en
Inventor
憲介 川崎
直人 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP2003402573A priority Critical patent/JP4347030B2/en
Publication of JP2005163608A publication Critical patent/JP2005163608A/en
Application granted granted Critical
Publication of JP4347030B2 publication Critical patent/JP4347030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、風力発電装置の風力による発電出力を予想する風力発電出力予測方法に関する。   The present invention relates to a wind power generation output prediction method for predicting a power generation output by wind power of a wind power generator.

従来から、風力を利用して発電する風力発電装置が知られている(例えば、特許文献1参照。)。
特開2003−24481号公報
2. Description of the Related Art Conventionally, a wind power generator that generates power using wind power is known (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2003-24481

ところで、この風力発電装置の場合、風力発電装置が施設されているサイトの地形に依存して発電出力が決定されるので、かつ、建設費用がかなりの高額となるため、建設前には風況調査を綿密に行っている。   By the way, in the case of this wind turbine generator, the power generation output is determined depending on the terrain of the site where the wind turbine generator is installed, and the construction cost is considerably high. We are conducting a thorough investigation.

しかしながら、風力発電装置による発電出力値が時々刻々どのように変化するかの予測は、電力系統の需給バランスを知るうえで重要な情報であるにもかかわらず、ほとんど行われていない。   However, prediction of how the power generation output value of the wind power generator changes from moment to moment is rarely performed despite being important information for knowing the supply and demand balance of the power system.

というのは、風力発電の発電出力がサイト周辺の地形の影響を大きく受けるため、単純に気象予報データから予測できないからである。   This is because the power output of wind power generation is greatly affected by the topography around the site, and cannot simply be predicted from weather forecast data.

風力発電は、今後、ますます増加する傾向にあり、風力発電の普及が進めば、その風力発電による発電出力の予想が正確でないと、軽負荷時の火力機の起動停止時期の判断を誤ったり、変動要因の増加により系統運用に支障をきたすおそれがある。   Wind power generation tends to increase in the future, and if wind power generation becomes more widespread, if the prediction of the power generation output by the wind power generation is not accurate, it may be wrong to determine the start and stop timing of a thermal power plant at light load There is a risk that system operation will be hindered due to an increase in fluctuation factors.

本発明は、上記の事情に基づいて為されたもので、その目的とするところは、気象予報データから風力発電装置の発電出力を予想できるようにした風力発電出力予測方法を提供することにある。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide a wind power generation output prediction method capable of predicting the power generation output of a wind power generator from weather forecast data. .

請求項1に記載の風力発電出力予測方法は、風力発電装置のサイトの近隣の気象予報箇所からの現在時刻から所定時間経過後の気象予報データを複数個のファジー集合に区分し、各要素のそのファジー集合に属する割合を表すメンバーシップ関数を定義し、該メンバーシップ関数と当該メンバーシップ関数の重み付けとに基づき前記所定時間経過後の発電出力予想値を示す特性式を定義し、該特性式により得られた発電出力予想値と前記所定時間経過後に前記風力発電装置により実際に得られた発電出力実際値との誤差を求め、その誤差が最小に漸近するように前記メンバーシップ関数の重み付けを修正することにより前記特性式の学習を行い現在時刻から所定時間経過後の発電出力予想値を求めることを特徴とする。   The wind power generation output prediction method according to claim 1 divides weather forecast data after a predetermined time from a current time from a weather forecast location in the vicinity of a wind power generator site into a plurality of fuzzy sets, Defining a membership function representing a ratio belonging to the fuzzy set, defining a characteristic formula indicating a power generation output expected value after the predetermined time based on the membership function and a weight of the membership function, and the characteristic formula An error between the predicted power generation output value obtained by the above and the actual power generation output value actually obtained by the wind power generator after the predetermined time has elapsed, and the membership function is weighted so that the error gradually approaches a minimum. The characteristic expression is learned by correction, and a predicted power generation output value after a predetermined time has elapsed from the current time is obtained.

請求項2に記載の風力発電出力予測方法は、請求項1に記載の風力発電出力予測方法において、前記発電出力実際値を自動的にフィードバックして前記誤差を求めると共に前記メンバーシップ関数の重み付けを修正することを特徴とする。 The wind power generation output prediction method according to claim 2 is the wind power generation output prediction method according to claim 1, wherein the error is obtained by automatically feeding back the actual power generation output value and the membership function is weighted. It is characterized by correction.

請求項1または請求項2に記載の風力発電出力予測方法によれば、ファジィ推論方法を用いて気象予報データから発電出力を予想できるので、気象予報データに基づき簡便に正確な風力発電の発電出力を予想できるという効果を奏する。 According to the wind power output prediction method according to claim 1 or claim 2, it is possible to predict the power output from the weather forecast data by using a fuzzy inference how, convenient accurate wind power on the basis of the weather forecast data generator The effect is that the output can be predicted.

以下に本発明に係わる風力発電出力予測方法を図面を参照しつつ説明する。   A wind power generation output prediction method according to the present invention will be described below with reference to the drawings.

図1は本発明に係わる風力発電出力予測方法を説明するための説明図であって、1は風力発電装置の設備施設箇所であるサイト、2は気象予報データが得られる気象予報箇所である。風力発電出力の予測には、そのサイト1を囲む気象予報箇所2における気象予報データが用いられる。   FIG. 1 is an explanatory diagram for explaining a wind power generation output prediction method according to the present invention, wherein 1 is a site that is a facility facility location of a wind power generator, and 2 is a weather forecast location from which weather forecast data is obtained. For forecasting wind power generation output, weather forecast data at a weather forecast location 2 surrounding the site 1 is used.

いま、時刻tにおいて、サイト1を囲むその近傍のK個の箇所からそれぞれa個の種類の気象予報データが得られるものとする。   Now, at time t, it is assumed that a type of weather forecast data is obtained from each of K locations in the vicinity surrounding the site 1.

ここで、a個の種類の気象予報データとは、風速Vi、風向θi、大気圧Si、風速の3乗値Vi3の4個であるが、これらに限られるものではなく、大気密度ρに関係する気温、湿度、運動エネルギーに比例するVi2をこれらの気象予報データに加えても良い。   Here, “a” types of weather forecast data are four of wind speed Vi, wind direction θi, atmospheric pressure Si, and the cube of the wind speed Vi3, but are not limited to these, and are related to the atmospheric density ρ. Vi2 proportional to the temperature, humidity, and kinetic energy to be added may be added to these weather forecast data.

というのは、風力発電の発電出力は一般に、風速Viの3乗値に大気密度ρを積算して得られた値に比例するからである。   This is because the power generation output of wind power generation is generally proportional to the value obtained by adding the atmospheric density ρ to the cube of the wind speed Vi.

ここでは、気象予報データとして、風速Vi、風向θi、大気圧Si、風速の3乗値Vi3の4個を用いて、時刻tから所定時間T経過後の気象予報データのかたまりX(t,T)が得られたものとする。ここで、X(t,T)の要素数はa×K個である。   Here, as weather forecast data, the wind speed Vi, the wind direction θi, the atmospheric pressure Si, and the cubed value Vi3 of the wind speed are used, and a block X (t, T) of the weather forecast data after a predetermined time T has elapsed from the time t. ) Is obtained. Here, the number of elements of X (t, T) is a × K.

その気象予報データのかたまりを下記に(1)式として示す。

Figure 0004347030
A block of the weather forecast data is shown as equation (1) below.
Figure 0004347030

この気象予報データのかたまりX(t,T)の各要素それぞれをmi個(添え字iはX(t,T)のi番目の要素)に区分して(2)式を定義する。

Figure 0004347030
Each element of the block X (t, T) of the weather forecast data is divided into mi pieces (subscript i is the i-th element of X (t, T)) to define equation (2).
Figure 0004347030

この要素の区分毎にファジー集合Mn(n=1〜aK)を定義する。要素nごとのファジー集合を以下の(3)式で定義する。

Figure 0004347030
A fuzzy set Mn (n = 1 to aK) is defined for each segment of this element. A fuzzy set for each element n is defined by the following equation (3).
Figure 0004347030

各要素nのi番目のファジー集合M(n,i)(i=1〜mn)に属する割合(グレード)を表すメンバーシップ関数をG(n,i)とする。   A membership function representing a ratio (grade) belonging to the i-th fuzzy set M (n, i) (i = 1 to mn) of each element n is defined as G (n, i).

このメンバーシップ関数G(n,i)には、各種のものを用いることができ、例えば、図2に示す三角形関数があるが、ここでは、下記(4)式で示すものを用いる。

Figure 0004347030
Various membership functions G (n, i) can be used. For example, there is a triangular function shown in FIG. 2, but here, the one represented by the following equation (4) is used.
Figure 0004347030

第1番目の気象予報データ箇所からK番目の気象予報データ箇所までの気象予報データを(4)式の右辺に代入して、下記の(5)式に基づきグレードを計算する。

Figure 0004347030
The weather forecast data from the first weather forecast data location to the Kth weather forecast data location is substituted into the right side of equation (4), and the grade is calculated based on the following equation (5).
Figure 0004347030

ただし、i1=1〜m1   However, i1 = 1 to m1


iak=1〜mak
(5)式を用いて風力発電の予想発電出力式としての特性式Ps(t,T)を以下の(6)式で定義する。

Figure 0004347030
...
iak = 1-mak
The characteristic formula Ps (t, T) as an expected power generation output formula of wind power generation is defined by the following formula (6) using formula (5).
Figure 0004347030

ここで、q組の数値予測データと各組に対応した風力発電の発電出力実際値として対象時刻を中心にした一定時間幅内の平均値としてP(t+T)を与えたとき、(6)式で得られた発電出力予想値との誤差Eを下記の(7)式で定義する。

Figure 0004347030
Here, when P (t + T) is given as an average value within a fixed time width centered on the target time as the numerical prediction data of q sets and the actual power generation output value of wind power generation corresponding to each set, Equation (6) The error E from the predicted power generation output value obtained in step 1 is defined by the following equation (7).
Figure 0004347030

この(7)式で示す誤差を最小にする重み付けW(i1,…iak)を(7)式を用いてW(i1,…iak)で偏微分し、下記(8)式の重み付け修正式W(i1,…iak)を得る。

Figure 0004347030
The weighting W (i1,..., Iak) that minimizes the error shown in the equation (7) is partially differentiated with W (i1,..., Iak) using the equation (7), and the weighting correction equation W shown in the following equation (8) Get (i1, ... iak).
Figure 0004347030

ただし、W’(i1,…iak)は修正前の重み付け、γは定数である。   However, W ′ (i1,... Iak) is a weight before correction, and γ is a constant.

(7)式で示す誤差Eが最小に漸近するように(8)式で定義される重み付け修正式W(i1,…iak)を用いて重み付けW(i1,…iak)を修正する。   The weighting W (i1,..., Iak) is corrected using the weighting correction formula W (i1,..., Iak) defined by the expression (8) so that the error E indicated by the expression (7) gradually approaches the minimum.

このように本発明の風力発電出力予測方法によれば、風力発電装置1のサイトを囲む気象予報箇所2からの現在時刻Tから所定時間T経過後の気象予報データを複数個のファジー集合Mnに区分し、各要素のそのファジー集合Mnに属する割合を表すメンバーシップ関数G(n,i)を定義し、メンバーシップ関数G(n,i)とメンバーシップ関数G(n,i)の重み付けW(i1,…iak)とに基づき所定時間T経過後の発電出力予想値を示す特性式Ps(t,T)を定義し、この特性式Ps(t,T)により得られた発電出力予想値と所定時間T経過後に風力発電装置により実際に得られた発電出力実際値との誤差Eを求め、その誤差Eが最小となるようにメンバーシップ関数G(n,i)の重み付けW(i1,…iak)を修正することにより特性式Ps(t,T)の学習を行い、現在時刻tから所定時間T経過後の発電出力予想値を求める。 As described above, according to the wind power generation output prediction method of the present invention, weather forecast data after a predetermined time T has elapsed from the current time T from the weather forecast location 2 surrounding the site of the wind power generator 1 to a plurality of fuzzy sets Mn. A membership function G (n, i) representing the proportion of each element belonging to the fuzzy set Mn is defined, and the weight W of the membership function G (n, i) and the membership function G (n, i) is defined. Based on (i1,..., Iak), a characteristic expression Ps (t, T) indicating a power generation output expected value after a predetermined time T has been defined, and the power generation output expected value obtained by this characteristic expression Ps (t, T) and determine the error E between the actual actual value generation output obtained by wind power generation apparatus after a predetermined time T has elapsed, the membership function so that the error E is minimized G (n, i) of the weighting W (i1, ... learning of characteristic formula Ps (t, T) by modifying iak) There is obtained the power generation output estimated value after the predetermined time T has elapsed from the present time t.

このファジィ推論方法を用いれば、重み付け係数を時間T経過後に得られた実際の発電出力実際値とT時間前の予想した発電出力予想値との差に基づいてその誤差が自動的に最小に漸近するように演算できるので、気象予報データに基づき簡便に正確な風力発電の発電出力を予想できる。 If this fuzzy inference method is used, the error is automatically asymptotically minimized to the minimum based on the difference between the actual power output actual value obtained after the lapse of time T and the predicted power output predicted before T time. because be calculated as, Ru can predict the power output of the simple accurate wind power on the basis of the weather forecast data.

以上、実施例では、風力発電の実際の発電電力出力値として平均値P(t+T)を用いたが、出力変動特性(標準偏差、フーリエ変換、ウエーブレット変換)を与えても良い。 As described above, in the embodiment, the average value P (t + T) is used as the actual generated power output value of wind power generation, but output fluctuation characteristics (standard deviation, Fourier transform, wavelet transform) may be given.

本発明による風力発電出力予測方法は、電力系統の運用分野や電力取引分野に利用できる。   The wind power generation output prediction method according to the present invention can be used in the power system operation field and the power trading field.

気象予報箇所と風力発電装置の設置サイトとの関係を示す模式図である。It is a schematic diagram which shows the relationship between a weather forecast location and the installation site of a wind power generator. メンバーシップ関数の一例を示す模式図である。It is a schematic diagram which shows an example of a membership function.

なし None

Claims (2)

風力発電装置のサイトの近隣の気象予報箇所からの現在時刻から所定時間経過後の気象予報データを複数個のファジー集合に区分し、各要素のそのファジー集合に属する割合を表すメンバーシップ関数を定義し、該メンバーシップ関数と当該メンバーシップ関数の重み付けとに基づき前記所定時間経過後の発電出力予想値を示す特性式を定義し、該特性式により得られた発電出力予想値と前記所定時間経過後に前記風力発電装置により実際に得られた発電出力実際値との誤差を求め、その誤差が最小に漸近するように前記メンバーシップ関数の重み付けを修正することにより前記特性式の学習を行い現在時刻から所定時間経過後の発電出力予想値を求めることを特徴とする風力発電出力予測方法。   Divide the weather forecast data after a predetermined time from the current time from the weather forecast location near the wind turbine generator site into multiple fuzzy sets, and define a membership function that represents the proportion of each element belonging to that fuzzy set And defining a characteristic equation indicating a power generation output expected value after the predetermined time has elapsed based on the membership function and the weighting of the membership function, and the power generation output expected value obtained from the characteristic equation and the predetermined time elapse. An error with the actual power output actually obtained later by the wind turbine generator is obtained, and the characteristic formula is learned by correcting the weighting of the membership function so that the error is asymptotic to the minimum. A wind power generation output prediction method characterized in that a predicted power generation output value after a predetermined time elapses is obtained. 前記発電出力実際値を自動的にフィードバックして前記誤差を求めると共に前記メンバーシップ関数の重み付けを修正することを特徴とする請求項1に記載の風力発電出力予測方法。 The wind power generation output prediction method according to claim 1, wherein the power generation output actual value is automatically fed back to obtain the error, and the weighting of the membership function is corrected.
JP2003402573A 2003-12-02 2003-12-02 Wind power generation output prediction method Expired - Fee Related JP4347030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402573A JP4347030B2 (en) 2003-12-02 2003-12-02 Wind power generation output prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402573A JP4347030B2 (en) 2003-12-02 2003-12-02 Wind power generation output prediction method

Publications (2)

Publication Number Publication Date
JP2005163608A JP2005163608A (en) 2005-06-23
JP4347030B2 true JP4347030B2 (en) 2009-10-21

Family

ID=34726103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402573A Expired - Fee Related JP4347030B2 (en) 2003-12-02 2003-12-02 Wind power generation output prediction method

Country Status (1)

Country Link
JP (1) JP4347030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705158A (en) * 2012-05-25 2012-10-03 江南大学 Feedback control method of wind energy converting system based on fuzzy performance estimator
CN102938093A (en) * 2012-10-18 2013-02-20 安徽工程大学 Wind power forecasting method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631054B2 (en) * 2005-07-28 2011-02-16 国立大学法人 琉球大学 Apparatus and method for leveling generated power in wind farm
JP2007056686A (en) * 2005-08-22 2007-03-08 Univ Of Ryukyus Device for predicting power generated after several hours on basis of predicted wind velocity in wind power generator
KR100802402B1 (en) * 2006-06-15 2008-02-14 한국에너지기술연구원 Forecasting method of wind power generation by classification of wind speed patterns
JP2008077561A (en) * 2006-09-25 2008-04-03 Nippon Telegr & Teleph Corp <Ntt> Energy prediction method, energy prediction device and program
JP5020106B2 (en) * 2008-01-11 2012-09-05 中国電力株式会社 Wind power generation prediction system, method and program
DK2148225T3 (en) 2008-07-22 2017-02-06 Siemens Ag Method and device for predicting wind resources
DK2192456T3 (en) * 2008-11-26 2017-12-11 Siemens Ag Estimation of an achievable power production of a wind turbine by means of a neural network
KR101476522B1 (en) * 2012-12-31 2014-12-24 주식회사 포스코아이씨티 System for predicting energy producing quantity
CN103198235B (en) * 2013-04-27 2015-12-02 国家电网公司 Based on the wind power prediction value Pre-Evaluation method of the longitudinal moment probability distribution of wind power
JP6400467B2 (en) * 2014-12-26 2018-10-03 株式会社日立パワーソリューションズ Wind power generation forecasting method
JP6647072B2 (en) * 2016-02-15 2020-02-14 一般財団法人電力中央研究所 Prediction device, prediction method, and prediction program
JP2017187371A (en) * 2016-04-05 2017-10-12 株式会社日立パワーソリューションズ Weather prediction device and wind power generation
KR101808047B1 (en) * 2016-08-05 2017-12-14 주식회사 해줌 Method and server for forecasting generation of a power plant using solar energy
US11365718B2 (en) 2017-06-07 2022-06-21 Vestas Wind Systems A/S Adaptive estimation of available power for wind turbine
KR102491085B1 (en) * 2021-05-25 2023-01-20 연세대학교 산학협력단 Apparatus and Method for Predicting Generated Power of Wind Power Generator based on Atmospheric Model Forecast
CN113862728B (en) * 2021-09-30 2024-01-09 佛山仙湖实验室 Pressure control method, system, equipment and medium for PEM pure water electrolysis hydrogen production

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878873B2 (en) * 1991-08-26 1999-04-05 株式会社東芝 Power demand forecasting controller
JP3242606B2 (en) * 1997-09-16 2001-12-25 関西電力株式会社 Wind power generation system suitable site selection method
JPH11275762A (en) * 1998-03-24 1999-10-08 Ntt Power And Building Facilities Inc Power storage device
JP3226031B2 (en) * 1998-11-06 2001-11-05 東北電力株式会社 Wind generator installation position determination method and wind power generation amount prediction method
JP2002152975A (en) * 2000-11-10 2002-05-24 Mitsubishi Heavy Ind Ltd Wind mill power generating system
JP4183406B2 (en) * 2001-09-06 2008-11-19 三菱重工業株式会社 Wind power generation control device and control method thereof
JP3950928B2 (en) * 2002-06-18 2007-08-01 東北電力株式会社 Power generation output prediction method, power generation output prediction apparatus, and power generation output prediction system in wind power generation
JP3740099B2 (en) * 2002-08-06 2006-01-25 三菱重工業株式会社 Power network management system and power network management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705158A (en) * 2012-05-25 2012-10-03 江南大学 Feedback control method of wind energy converting system based on fuzzy performance estimator
CN102938093A (en) * 2012-10-18 2013-02-20 安徽工程大学 Wind power forecasting method

Also Published As

Publication number Publication date
JP2005163608A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4347030B2 (en) Wind power generation output prediction method
Giebel et al. The state-of-the-art in short-term prediction of wind power: A literature overview
US8577822B2 (en) Data-driven approach to modeling sensors wherein optimal time delays are determined for a first set of predictors and stored as a second set of predictors
JP2006304402A (en) Control device for dispersed energy system, control method, program, and recording medium
JP7079662B2 (en) Power demand forecasting system, learning device and power demand forecasting method
JP6228316B2 (en) Power generation system and power generation method
Pan et al. Technological change in energy systems: Learning curves, logistic curves and input–output coefficients
JP2007056686A (en) Device for predicting power generated after several hours on basis of predicted wind velocity in wind power generator
CN104915747A (en) Electricity generation performance evaluation method of generator set and equipment thereof
Iliadis et al. Energy management and techno‐economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems
JP2016136001A (en) Prediction device
Douard et al. A probabilistic approach to introduce risk measurement indicators to an offshore wind project evaluation–improvement to an existing tool ecume
CN107092989A (en) The Forecasting Methodology and equipment of short-term wind-electricity power
US20240012407A1 (en) Condition-Based Method for Malfunction Prediction
JP2012034444A (en) Power supply-demand planning device and method thereof
JP2010130762A (en) Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
Kan et al. On the theoretical distribution of the wind farm power when there is a correlation between wind speed and wind turbine availability
Araghi et al. Enhancing the net energy of wind turbine using wind prediction and economic NMPC with high-accuracy nonlinear WT models
Chen et al. Stochastic model predictive controller for wind farm frequency regulation in waked conditions
Ibargüengoytia et al. Wind power forecasting using dynamic Bayesian models
Martini et al. The impact of downtime over the long-term energy yield of a floating wind farm
US11920562B2 (en) Temperature estimation in a wind turbine
Requate et al. Active control of the reliability of wind turbines
JP2020149209A (en) Residual characteristic estimation model creation method and residual characteristic estimation model creation system
EP3889698A1 (en) Method, computer-implemented tool and power plant control device for determining a performance of a hybrid power plant and hybrid power plant system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4347030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150724

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees