JP4344073B2 - High strength steel excellent in high temperature strength and method for producing the same - Google Patents
High strength steel excellent in high temperature strength and method for producing the same Download PDFInfo
- Publication number
- JP4344073B2 JP4344073B2 JP2000201951A JP2000201951A JP4344073B2 JP 4344073 B2 JP4344073 B2 JP 4344073B2 JP 2000201951 A JP2000201951 A JP 2000201951A JP 2000201951 A JP2000201951 A JP 2000201951A JP 4344073 B2 JP4344073 B2 JP 4344073B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- temperature
- strength
- less
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば、耐震性の観点からの低降伏比、高靭性と同時に、火災時の高温強度を保証し得る建築用鋼などとしての要求に耐える高張力鋼およびその製造方法に関するもので、鉄鋼業においては厚板ミルへの適用が最も適している。なお、用途としては、建築分野のみならず、土木、海洋構造物、造船、各種の貯槽タンクなどの一般的な溶接構造用鋼として広範な用途に適用できる。
【0002】
【従来の技術】
建築用鋼材は、弾性設計(許容応力度設計)から、1981年6月に施行された新耐震設計基準に基づく終局耐力設計への移行に伴い、低降伏比が求められている。低降伏比化を達成するため、一般に、鋼組織の二相(Dual phase)化、すなわち、降伏を支配する軟質相(通常、フェライト)と引張強さを確保するための硬質相(パーライト、ベイナイト、マルテンサイトなど)を形成させる方法が広く用いられている。具体的には、制御圧延を含む熱間圧延後の鋼または焼入後の鋼を、フェライトとオーステナイトの二相域温度に再加熱して、フェライトとCが濃化されたオーステナイトとし、その後空冷以上の冷速で冷却(、さらにその後焼き戻し処理)する方法が特開平2−266378号公報などに開示されている。このとき、成分的には、C量が高いほど二相組織化が容易となるばかりでなく、硬質相がより硬化し、低降伏比が容易となる。しかし、高C化は、溶接性や低温靭性には不利になるという問題があった。それに対し、低温靭性を改善するためには、低C化や制御圧延が有効であるが、いずれも降伏比を上昇させるため、低温靭性向上と低降伏比化とは相容れず、両立が極めて困難であった。従来、建築用途では、靭性要求レベルが低く、低降伏比化に有利な高C鋼でも特に問題となることはなかったが、阪神大震災を契機とした近年の耐震性能への要求の厳格化傾向には、必ずしも十分に対応できないという問題があった。
【0003】
また、高温強度の保証を目的とした建築用途でのいわゆる耐火鋼は、特開平2−77523号公報他多くの公開公報で、含Mo鋼の製造方法が開示されている。しかし、Moは鋼の焼き入れ性を顕著に高めるとともに、Cとの相互作用が極めて強いために、材質変化が製造条件の変動に敏感で、常温での強度−靭性バランスやそのばらつき、常温強度と高温強度のバランスを考慮した場合、高温強度上は有効であるが、一般的な溶接構造用鋼としては、多く添加されることはなかった。また、Moの多量添加は、溶接性の顕著な劣化に加え、母材および溶接部の靭性も著しく劣化させるため、高温強度を向上させる目的であってもあまり多く添加されることはなかった。
【0004】
【発明が解決しようとする課題】
本発明は、上述した従来技術の問題点をクリアすべく、優れた高温強度とともに、靭性や溶接性にも優れる高張力鋼を得るため、比較的多いMoと炭化物形成元素であるNb、V、Tiの1種以上を複合添加した上で、溶接割れ感受性組成PCMも限定し、さらには製造方法を限定することで、上述した複合特性を有する鋼、および該鋼を工業的に安定して供給可能な方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明のポイントは、比較的多いMoと炭(窒)化物形成元素であるNb、V、Tiの1種以上を複合添加することで高温強度を安定して確保することを第一義とした上で、Mo多量添加による溶接性の劣化や靭性の劣化を保証するため、C、Si、Mnをはじめとする個々の合金元素量およびPCMを限定し、さらには製造条件を限定することで、優れた高温強度と溶接性、靭性などの複合特性を両立し得ることにある。
【0006】
そのために鋼成分をはじめ製造方法を本発明の通り限定したものであるが、その要旨は以下に示す通りである。
【0007】
(1) 鋼成分が質量%で、
C:0.03〜0.15%、
Si:0.6%以下、
Mn:1.6%以下、
P:0.02%以下、
S:0.01%以下、
Mo:1.01〜1.5%、
Al:0.06%以下、
N:0.006%以下、
かつ、
[C−0.13Nb−0.24V−0.25(Ti−3.4N)]
/(0.063Mo)
と定義する量が、0.5〜1.0の範囲を満足するように、
Nb:0.005〜0.1%、
V:0.01〜0.2%、
Ti:0.005〜0.1%
の範囲内で少なくとも1種以上を含有し、
さらに、
PCM=C+Si/30+Mn/20+Cu/20+Ni/60
+Cr/20+Mo/15+V/10+5B
と定義する溶接割れ感受性組成PCMが0.25%以下で、残部が鉄および不可避的不純物からなることを特徴とする高温強度に優れた高張力鋼。
【0008】
(2) 上記鋼成分に加え、質量%で、
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、かつ、Cu添加量の1/2以上、
Cr:0.05〜1.0%、
B:0.0002〜0.003%、
Mg:0.0002〜0.005%
の範囲で1種または2種以上を含有することを特徴とする上記(1)項に記載の高温強度に優れた高張力鋼。
【0009】
(3) 質量%で、
Ca:0.0005〜0.004%、
REM:0.0005〜0.004%
のいずれか1種をさらに含有することを特徴とする上記(1)または(2)項に記載の高温強度に優れた高張力鋼。
【0010】
(4) 上記(1)〜(3)項のいずれか1項に記載の鋼成分からなる鋼片または鋳片を1000〜1250℃の温度範囲に再加熱後、1000℃以下での累積圧下量を30%以上として750℃以上の温度で圧延を終了し、その後放冷または700℃以上の温度から放冷相当以上の冷速で600℃以下の任意の温度まで加速冷却することを特徴とする高温強度に優れた高張力鋼の製造方法。
【0011】
(5) 上記(1)〜(3)項のいずれか1項に記載の鋼成分からなる鋼片または鋳片を熱間圧延後、Ac3以上950℃以下の温度で焼きならしすることを特徴とする高温強度に優れた高張力鋼の製造方法。
【0012】
(6) 上記(1)〜(3)項のいずれか1項に記載の鋼成分からなる鋼片または鋳片を熱間圧延後、Ac3以上950℃以下の温度に再加熱後、焼き入れすることを特徴とする高温強度に優れた高張力鋼の製造方法。
【0013】
(7) 強度調整や靭性改善、あるいは鋼板の残留応力除去の目的で、鋼板をAc1未満の温度で焼き戻しすることを特徴とする上記(4)〜(6)項のいずれか1項に記載の高温強度に優れた高張力鋼の製造方法。
【0014】
(8) 低降伏比化の目的で、鋼板をAc1超Ac3未満のフェライトとオーステナイトの二相共存域に再加熱後、放冷またはそれ以上の冷速で600℃以下の温度まで冷却し、その後さらに必要に応じAc1未満の温度で焼き戻しすることを特徴とする上記(4)〜(6)項のいずれか1項に記載の高温強度に優れた高張力鋼の製造方法。
【0015】
本発明によれば、低降伏比化の結果としての大きな塑性変形能(建築用途などでは耐震性)はもちろん、火災時など高温にさらされる環境でも十分な耐力を有し、また、靭性や溶接性にも優れた高張力鋼が大量かつ安価に供給できるため、種々の用途の広範な溶接鋼構造物の安全性向上に資することが可能となった。
【0016】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
【0017】
本発明が、請求項の通りに鋼組成および製造方法を限定した理由について説明する。
【0018】
Cは、鋼材の特性に最も顕著に効くもので、下限の0.03%は炭(窒)化物形成元素であるMoおよびNb、V、Tiのうちの少なくとも1種を複合添加する本発明において、析出物を生成せしめるための最小量である。しかし、C量が多すぎると溶接性はもちろん、焼入性が必要以上に上がり、鋼材が本来有すべき強度、靭性のバランスなどに悪影響を及ぼすため、上限を0.15%とした。
【0019】
Siは、脱酸上鋼に含まれる元素であるが、多く添加すると溶接性、HAZ靭性が劣化するため、上限を0.6%に限定した。鋼の脱酸はTi、Alのみでも十分可能であり、HAZ靭性、焼入性などの観点から低いほど好ましく、必ずしも添加する必要はない。
【0020】
Mnは、母材の強度、靭性を確保する上で不可欠な元素ではあるが、置換型の固溶強化元素であるMnは、特に600℃超の高温強度にはあまり大きな改善効果はなく、本発明のような比較的多量のMoを含有する鋼において溶接性向上すなわち本発明でのPCM低減の観点から1.6%以下に限定した。Mnの上限を低く抑えることにより、連続鋳造スラブの中心偏析の点からも有利となる。なお、下限については、特に限定しないが、常温での母材の強度、靭性調整上、添加することが望ましい。
【0021】
Pは、本発明鋼においては不純物であり、P量の低減はHAZにおける粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.02%とした。
【0022】
Sは、Pと同様本発明鋼においては不純物であり、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.01%とした。
【0023】
Moは、鋼の高温強度を確保する上で必要不可欠の元素で、本発明においては最も重要な元素の一つである。600℃程度までの高温強度のみの考慮であれば、下限の緩和は可能であるが、600℃超の高温強度(例えば700℃程度)の維持や後述する低降伏比化のためのフェライト+オーステナイトの二相域熱処理およびその後必要に応じ焼き戻しを行ってもなお常温での高強度、高靭性を確保するため、下限を1.01%とした。多すぎる添加は、母材材質の制御(ばらつきの制御や靭性の劣化)が困難になるとともに、溶接性も劣化させるため、1.5%以下に限定した。
【0024】
Alは、一般に脱酸上鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない(0%を含む)。しかし、Al量が多くなると鋼の清浄度が悪くなるだけでなく、溶接金属の靭性が劣化するので上限を0.06%とした。
【0025】
Nは、不可避的不純物として鋼中に含まれるものであるが、後述するTi、Nb、Vを少なくとも1種以上添加する本発明鋼においては、TiNを形成して鋼の性質を高めたり、Nb、Vと結合して炭窒化物を形成して強度を増加させる。このため、N量として最低0.001%必要である。しかしながら、N量の増加はHAZ靭性、溶接性に極めて有害であり、本発明鋼においてはその上限は0.006%である。
【0026】
本発明においては、上述した元素に加え、質量%で
[C−0.13Nb−0.24V−0.25(Ti−3.4N)]/(0.063Mo)
と定義する量が、0.5〜1.0の範囲を満足するように、Nb、V、Tiのうち少なくとも1種以上を後述する範囲内での添加を必須とする。
【0027】
上述した式の意味合いは、添加されたMoが炭化物(Mo2C)として析出する比率を原子量に基づき化学量論的に計算したもので、分子は、NbC、VC、TiC(TiNとしてのTiの消費も考慮)として消費された後のCの残量を示す。前記式の計算値が0.5〜1.0とは、Moが計算上(化学量論的に)、50〜100%がMo2Cとして析出することを意味する。
【0028】
すなわち、本発明が意図するところは、Moが必要以上に固溶状態で存在することなく、計算上、少なくとも50%以上がMo2Cとして析出するだけのC量を確保することである。これは、600℃超の高温下では、固溶体強化の寄与は小さく、析出物による析出強化の方が寄与が大きいためである。
【0029】
Mo添加量に対し、化学量論的に過剰なCは、焼き入れ性の増大やセメンタイトの生成量増加に伴う靭性劣化などにも影響を及ぼすため、前記式でMo添加量と化学量論的に等量となる1.0を上限とした。
【0030】
以下、Nb、V、Tiの添加量の限定範囲について説明する。これらはいずれも炭化物形成元素で、Moとともに、これらの内の1種以上の添加は必須である。
【0031】
Nbは、まず、一般的な効果として、オーステナイトの再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮する上で有用な元素で、最低0.005%の添加が必要である。また、圧延に先立つ再加熱や焼きならしや焼き入れ時の加熱オーステナイトの細粒化にも寄与する。さらに、析出硬化として強度向上効果を有し、Moとの複合添加により高温強度向上にも寄与する。しかし、過剰な添加は、溶接部の靭性劣化を招くため上限を0.1%とした。なお、本発明において必須元素であるMoにもオーステナイトの再結晶温度を上昇させる効果があり、Nb添加は必ずしも必須ではない。
【0032】
Vは、Nbとほぼ同様の作用を有するものであるが、Nbに比べてその効果は小さい。また、Vは焼き入れ性にも影響を及ぼし、高温強度向上にも寄与する。Nbと同様の効果は0.01%未満では効果が少なく、上限は0.2%まで許容できる。
【0033】
Tiは、母材および溶接部靭性に対する要求が厳しい場合には、添加することが好ましい。なぜならばTiは、Al量が少ないとき(例えば0.003%以下)、Oと結合してTi2O3を主成分とする析出物を形成、粒内変態フェライト生成の核となり溶接部靭性を向上させる。また、TiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時に溶接熱影響部組織を細粒化するためである。これらの効果を得るためには、Tiは最低0.005%必要である。しかし多すぎるとTiCを多量に形成し、低温靭性や溶接性を劣化させるので、その上限は0.1%である。
【0034】
次に、必要に応じて含有することができるNi、Cu、Cr、B、Mgの添加理由について説明する。
【0035】
基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度、靭性などの特性を向上させるためである。したがって、その添加量は自ずと制限されるべき性質のものである。
【0036】
Niは、過剰に添加しなければ、溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。一方、過剰な添加は高価なだけでなく、溶接性に好ましくないため、上限を1.0%とした。なお、Cuを添加する場合、熱間圧延時のCu−クラックを防止するため、前記添加範囲を満足すると同時に、Cu添加量の1/2以上とする必要がある。
【0037】
Cuは、Niとほぼ同様の効果、現象を示し、上限の1.0%は溶接性劣化に加え、過剰な添加は熱間圧延時にCu−クラックが発生し製造困難となるため規制される。下限は実質的な効果が得られるための最小量とすべきで0.05%である。これは後述するCrについても同様である。
【0038】
Crは、母材の強度、靭性をともに向上させるため、0.05%以上添加する。しかし、添加量が多すぎると母材、溶接部の靭性および溶接性を劣化させるため、上限を1.0%とした。
【0039】
上記、Cu、Ni、Crは、母材の強度、靭性上の観点のみならず、耐候性にも有効であり、そのような目的においては、溶接性を損ねない範囲で添加することが好ましい。
【0040】
Bは、オーステナイト粒界に偏析し、フェライトの生成を抑制することを介して、焼入性を向上させ、強度向上に寄与する。この効果を享受するため、最低0.0002%以上必要である。しかし、多すぎる添加は焼入性向上効果が飽和するだけでなく、靭性上有害となるB析出物を形成する可能性もあるため、上限を0.003%とした。なお、タンク用鋼などとして、応力腐食割れが懸念されるケースでは、母材および溶接熱影響部の硬さの低減がポイントとなることが多く(例えば、硫化物応力腐食割れ(SCC)防止のためにはHRC≦22(HV≦248)が必須とされる)、そのようなケースでは焼入性を増大させるB添加は好ましくない。
【0041】
Mgは、溶接熱影響部においてオーステナイト粒の成長を抑制し、細粒化する作用があり、溶接部の強靭化が図れる。このような効果を享受するためには、Mgは0.0002%以上必要である。一方、添加量が増えると添加量に対する効果代が小さくなるため、コスト上得策ではないので上限は0.005%とした。
【0042】
さらに、CaおよびREMは、MnSの形態を制御し、母材の低温靭性を向上させるほか、湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を低減させる。これらの効果を発揮するためには、最低0.0005%必要である。しかし、多すぎる添加は、鋼の清浄度を逆に高め、母材靭性や湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を高めため、添加量の上限は0.004%に限定した。CaとREMは、ほぼ同等の効果を有するため、いずれか1種を上記範囲で添加すればよい。
【0043】
鋼の個々の成分を限定しても、成分系全体が適切でないと優れた特性は得られない。このため、PCMの値を0.25%以下に限定する。PCMは溶接性を表す指標で、低いほど溶接性は良好である。本発明鋼においては、PCMが0.25%以下であれば優れた溶接性の確保が可能である。なお、溶接割れ感受性組成PCMは以下の式により定義する。
【0044】
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
【0045】
次に、本発明の請求項4以下に規定する製造条件およびその限定理由について説明する。
【0046】
前記の通り限定した成分で、目的、用途に応じ種々の製造方法を採ることができる。
【0047】
まず、本発明の請求項4にかかる圧延ままで製造する方法について説明する。圧延に先立つ加熱温度を1000〜1250℃に限定した理由は、加熱時のオーステナイト粒を小さく保ち、圧延組織の微細化を図るためである。1250℃は加熱時のオーステナイトが極端に粗大化しない上限温度であり、加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、変態後の組織も粗大化するため鋼の靭性が著しく劣化する。
【0048】
一方、加熱温度が低すぎると、後述する圧延終了温度(750℃以上)の確保が困難となるばかりでなく、Nbを添加した場合、オーステナイトの再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮させたり、析出硬化を発現させるためのNbの溶体化の観点から下限を1000℃に限定した。
【0049】
なお、Nbを添加しない場合は、その溶体化を考慮する必要がないため、加熱オーステナイトを必要以上に粗大化させない観点から1150℃以下の温度で加熱することが好ましい。
【0050】
前記温度範囲に再加熱した鋳片または鋼片を、圧延では1000℃以下での累積圧下量を30%以上として750℃以上で熱間圧延を終了する必要がある。1000℃以下での累積圧下量が少ない場合、Moを比較的多く添加する本発明成分においても圧延オーステナイトの細粒化が不十分となり、靭性確保が困難なためである。
【0051】
また、圧延終了温度が750℃を下回ると、変態が一部開始する可能性が高まり、最終組織に加工(圧延)組織を残す恐れがあり、靭性上好ましくないばかりでなく、降伏比の上昇を招き、建築用途などとして低降伏比が求められた場合、圧延ままでは製造が困難となるため、圧延終了温度は750℃以上に限定する。
【0052】
圧延後は、放冷または700℃以上の温度から放冷相当以上の冷速で600℃以下の任意の温度まで加速冷却する。放冷あるいは加速冷却などの冷却条件は、目的とする強度、靭性レベルにより自ずと変えるべき性質のものであり、強度と靭性を同時に向上させ、より高強度、高靭性を得る目的では放冷よりも微細組織が得られる加速冷却の適用が好ましい。
【0053】
加速冷却停止温度は、600℃超の温度では変態進行の初期段階での加速冷却の効果が十分に得られないため、600℃以下とした。600℃以下であれば、加速冷却停止温度は任意の温度とすることが可能であるが、比較的高温(例えば400℃以上)で停止した場合、その後の放冷が実質上の焼き戻しとなり、強度調整や靭性改善、あるいは鋼板の残留応力除去などの目的での焼き戻しを省略することも可能である。
【0054】
なお、材質の要求レベルが高くない低グレードの鋼材では、放冷であっても十分な材質が得られ、製造容易性、コストの面からも好ましい。
【0055】
なお、加速冷却時の冷速は、鋼成分や意図する材質(強度、靭性)レベルによっても変わるため一概には言えないが、板厚1/4厚位置の加速冷却開始温度から停止温度までの平均冷速で、少なくとも3℃/秒以上とすることが望ましい。
【0056】
次に、本発明の請求項5〜6にかかる焼きならしまたは焼き入れにより製造する方法について説明する。
【0057】
本発明が限定する成分を有する鋼を熱間圧延後、用途や鋼材規格上の制約などにより、焼きならしまたは焼き入れを行っても、本発明鋼材の優れた特性を損なうものではない。むしろ、鋼材の組織や結果として材質が均質化するため、目的によっては好ましい方法である。
【0058】
ただし、この場合でも、組織の微細化が鋼材の強度、靭性を同時に向上させるポイントの一つであるため、前記焼きならしあるいは焼き入れ温度はAc3以上950℃以下の温度とする必要がある。下限は、その焼きならしあるいは焼き入れの定義上、オーステナイト単相域への加熱が必須であること、また上限は、再加熱時のオーステナイト粒径を必要以上に大きくしないためである。
【0059】
上述した種々の製造方法で製造された鋼板は、その後、Ac1未満の温度で焼き戻ししても、本発明の優れた特性はいささかも損なわれるものではない。むしろ、強度調整や脆化組織であるマルテンサイトなどの低温変態生成組織の分解による靭性改善、あるいは鋼板の残留応力除去などの目的で焼き戻しを行うことが好ましい場合もある。また、Nb、V、Cuなどの析出硬化効果を有する元素を添加した場合には、焼き戻し処理により、析出物の微細析出が促進され、析出硬化現象をより一層発現させることができる。
【0060】
最後に、本発明の請求項8にかかるオーステナイト+フェライト二相共存域での熱処理を適用する製造方法について説明する。
【0061】
オーステナイト+フェライト二相共存域での熱処理は、本発明鋼を例えば建築分野に適用する用途などにおいて、耐震性の観点から低降伏比が要求された場合に適用するものである。オーステナイト+フェライト二相共存域での熱処理の冶金的意味合いは、Cを排出した未変態フェライトとCが濃化された逆変態オーステナイトとに分離し、後者は冷却過程で再変態させて硬化組織を得、前者の実質的な高温焼き戻しによる軟化組織とにより低降伏比を達成するものである。
【0062】
本発明においては、C量はMo、Nb、V、Tiなど炭化物形成元素の添加量と化学量論的に等量以下としており、計算上は変態などに寄与する実質的なC量はほとんどないが、実際にはセメンタイトも析出しており、それらの固溶などにより逆変態オーステナイトへのC濃化現象が見られる。
【0063】
熱処理時の加熱温度は、オーステナイトとフェライトの構成比率に関わり、鋼成分や目的とする降伏比のレベルに応じて変わるべき性質のものである。
【0064】
冷却時の冷速は、同様に鋼成分や目的とする強度レベルなどに応じて放冷またはそれ以上の冷速とすることができる。放冷を超える冷速、いわゆる加速冷却は、600℃以下の温度まで行えばよく、その理由は、上述した圧延後の加速冷却の際と同様である。これらは、さらに必要に応じ、Ac1未満の温度で焼き戻しを行ってもよく、その理由も上述したものと同様である。
【0065】
なお、この二相共存域熱処理に先立つ前組織は、熱処理後の機械的性質に若干の影響を及ぼすが、本発明においては、強度、靭性レベルや用途などの目的に応じて任意に選択すればよく、特に規定するものではない。
【0066】
【実施例】
転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ20〜100mm)を製造し、その強度、降伏比(YR)、靭性、600℃における降伏強さおよび溶接性(斜めy形溶接割れ試験)を調査した。
【0067】
表1に比較鋼とともに本発明鋼の鋼成分を、表2に鋼板の製造条件および諸特性の調査結果を示す。
【0068】
【表1】
【0069】
【表2】
【0070】
本発明法に則った成分、組織および製造方法による鋼板(本発明鋼)は、すべて良好な特性を有する。これに対し、本発明の限定範囲を逸脱する比較鋼は、靭性や高温YSが劣り、PCMが高い鋼では室温でのy割れ試験によりルート割れが発生している。また、特に、比較例24では、Cu添加量に対してNi添加量が低いため、熱間圧延時にクラックが生じ、製造が困難となった。さらに、比較例26では、Mo添加量が高いために、PCMは本発明の限定範囲内であるが、室温でのy割れ試験によりルート割れが発生した。
【0071】
【発明の効果】
本発明により、溶接性や靭性、また製造方法によっては低降伏比をも同時に達成する高温強度に優れた鋼の提供が可能となった。その結果、溶接鋼構造物としての各種用途向けに高温強度はもとより、溶接性や靭性にも優れた高張力鋼、あるいはさらに耐震性能にも優れた建築用耐火鋼として、大量かつ安価に供給できるようになった。このような鋼材を用いることにより、火災時などの高温での強度を維持し、さらに溶接性や靭性にも優れ、建築用鋼としては低降伏比も達成されているため、各種の溶接鋼構造物の安全性を一段と向上させることが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to, for example, a high-strength steel that can withstand the demand as a steel for construction that can guarantee high temperature strength at the time of fire, as well as a low yield ratio and high toughness from the viewpoint of earthquake resistance, and a method for producing the same. In the steel industry, application to thick plate mills is most suitable. In addition to the construction field, it can be applied to a wide range of uses as general welded structural steel for civil engineering, offshore structures, shipbuilding, various storage tanks and the like.
[0002]
[Prior art]
With the transition from elastic design (allowable stress design) to ultimate strength design based on the new seismic design standard enforced in June 1981, steel for construction is required to have a low yield ratio. In order to achieve a low yield ratio, the steel structure is generally made into a dual phase, that is, a soft phase (usually ferrite) governing the yield and a hard phase (pearlite, bainite) to ensure tensile strength. , Martensite, etc.) is widely used. Specifically, the steel after hot rolling including control rolling or steel after quenching is reheated to a two-phase temperature range of ferrite and austenite to obtain austenite enriched with ferrite and C, and then air-cooled. A method of cooling (and further tempering thereafter) at the above cooling speed is disclosed in JP-A-2-266378. At this time, as a component, the higher the amount of C, the easier the two-phase organization becomes, and the hard phase hardens more and the low yield ratio becomes easier. However, high C has a problem that it is disadvantageous for weldability and low temperature toughness. On the other hand, low C and controlled rolling are effective for improving low temperature toughness, but in order to increase the yield ratio, both low temperature toughness improvement and low yield ratio are incompatible and extremely compatible. It was difficult. Conventionally, in construction applications, the demand level of toughness is low, and even high C steel, which is advantageous for low yield ratio, has not been a problem, but the recent trend of stricter seismic performance requirements triggered by the Great Hanshin Earthquake. However, there was a problem that it was not always sufficient.
[0003]
As for so-called refractory steel for architectural purposes aimed at guaranteeing high-temperature strength, a method for producing Mo-containing steel is disclosed in JP-A-2-77523 and many other published publications. However, Mo remarkably enhances the hardenability of steel and has an extremely strong interaction with C. Therefore, the material change is sensitive to fluctuations in manufacturing conditions, and the strength-toughness balance at normal temperature and its variation, normal temperature strength. In consideration of the balance between high temperature strength and high temperature strength, it is effective in terms of high temperature strength, but as a general welded structural steel, it has not been added much. Further, addition of a large amount of Mo not only significantly deteriorates the weldability but also significantly deteriorates the toughness of the base metal and the welded portion, so that it was not added so much even for the purpose of improving the high temperature strength.
[0004]
[Problems to be solved by the invention]
In order to clear the problems of the prior art described above, the present invention obtains high-tensile steel having excellent high-temperature strength as well as toughness and weldability, so that relatively many Mo and carbide forming elements Nb, V, Ti one or more in terms of the combined addition, even weld crack susceptibility composition P CM limitation, further by limiting the manufacturing process, the steel having the above-described composite properties, and steel industrially stably the A method that can be supplied is provided.
[0005]
[Means for Solving the Problems]
The main point of the present invention is to stably secure high-temperature strength by adding a relatively large amount of Mo and one or more of carbon (nitride) forming elements Nb, V, and Ti. above, in order to ensure the weldability occurs and toughness degradation due to Mo addition of a large amount, by limiting C, Si, individual amounts of alloying elements, including Mn and a P CM, further limiting the manufacturing conditions In other words, it is possible to achieve both excellent high temperature strength and composite properties such as weldability and toughness.
[0006]
Therefore, the manufacturing method including the steel components is limited as in the present invention, and the gist thereof is as follows.
[0007]
(1) The steel component is mass%,
C: 0.03-0.15%,
Si: 0.6% or less,
Mn: 1.6% or less,
P: 0.02% or less,
S: 0.01% or less,
Mo: 1.01 to 1.5%,
Al: 0.06% or less,
N: 0.006% or less,
And,
[C-0.13Nb-0.24V-0.25 (Ti-3.4N)]
/(0.063Mo)
So that the amount defined as satisfies the range of 0.5 to 1.0,
Nb: 0.005 to 0.1%,
V: 0.01-0.2%
Ti: 0.005 to 0.1%
Containing at least one or more within the range of
further,
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60
+ Cr / 20 + Mo / 15 + V / 10 + 5B
High tensile steel weld crack susceptibility composition P CM define the below 0.25%, the balance being excellent in high temperature strength, characterized in that it consists of iron and unavoidable impurities and.
[0008]
(2) In addition to the above steel components,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%, and 1/2 or more of Cu addition amount,
Cr: 0.05 to 1.0%,
B: 0.0002 to 0.003%,
Mg: 0.0002 to 0.005%
1 type or 2 types or more are contained in the range of said high tension steel excellent in the high temperature strength as described in said (1) characterized by the above-mentioned.
[0009]
(3) In mass%,
Ca: 0.0005 to 0.004%,
REM: 0.0005 to 0.004%
The high-tensile steel excellent in high-temperature strength as described in (1) or (2) above, further comprising any one of the above.
[0010]
(4) The amount of cumulative reduction at 1000 ° C. or lower after reheating the steel slab or slab comprising the steel component described in any one of the above (1) to (3) to a temperature range of 1000 to 1250 ° C. The rolling is finished at a temperature of 750 ° C. or higher with 30% or higher, and then cooled down or acceleratedly cooled from a temperature of 700 ° C. or higher to an arbitrary temperature of 600 ° C. or lower at a cooling speed equivalent to or higher than that of cooling. A method for producing high-strength steel with excellent high-temperature strength.
[0011]
(5) After hot rolling the steel slab or slab comprising the steel component described in any one of the above items (1) to (3), normalizing at a temperature of Ac 3 to 950 ° C. A method for producing high-strength steel with excellent high-temperature strength.
[0012]
(6) After hot-rolling a steel slab or slab comprising the steel component according to any one of (1) to (3) above, reheating to a temperature of Ac 3 to 950 ° C. and then quenching A method for producing a high-strength steel excellent in high-temperature strength.
[0013]
(7) In any one of the above items (4) to (6), the steel plate is tempered at a temperature lower than Ac 1 for the purpose of adjusting the strength, improving toughness, or removing the residual stress of the steel plate. The manufacturing method of the high strength steel excellent in the high temperature strength of description.
[0014]
(8) the purpose of the low yield ratio, the steel sheet was cooled after re-heating in a two-phase coexisting region of ferrite and austenite is less than Ac 1 super Ac 3, until cool or above a temperature at which the 600 ° C. or less at cooling rate The method for producing high-tensile steel excellent in high-temperature strength according to any one of (4) to (6) above, wherein tempering is further performed at a temperature lower than Ac 1 as necessary.
[0015]
According to the present invention, not only the large plastic deformability (seismic resistance in construction applications) as a result of the low yield ratio, but also sufficient strength in environments exposed to high temperatures such as fires, toughness and welding High-strength steel with excellent properties can be supplied in a large amount and at low cost, and it has become possible to contribute to improving the safety of a wide range of welded steel structures for various applications.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0017]
The reason why the present invention limited the steel composition and the manufacturing method as described in the claims will be described.
[0018]
C is most effective for the properties of the steel material, and 0.03% of the lower limit is in the present invention in which at least one of Mo, Nb, V, and Ti which are carbon (nitride) forming elements is added in combination. This is the minimum amount for producing precipitates. However, if the amount of C is too large, not only the weldability, but also the hardenability is unnecessarily increased, which adversely affects the balance of strength and toughness that the steel material should originally have, so the upper limit was made 0.15%.
[0019]
Si is an element contained in the deoxidized upper steel, but if added in a large amount, weldability and HAZ toughness deteriorate, so the upper limit was limited to 0.6%. Deoxidation of steel can be sufficiently performed only with Ti and Al, and is preferably as low as possible from the viewpoints of HAZ toughness, hardenability, and the like, and it is not always necessary to add them.
[0020]
Although Mn is an indispensable element for securing the strength and toughness of the base material, Mn, which is a substitutional solid solution strengthening element, does not have a significant improvement effect especially at high temperature strength exceeding 600 ° C. weldability improvement at relatively steel containing a large amount of Mo such as in the invention i.e. is limited in terms of P CM reduced to less than 1.6% in the present invention. By keeping the upper limit of Mn low, it is advantageous from the viewpoint of center segregation of the continuously cast slab. In addition, although it does not specifically limit about a minimum, It is desirable to add on the intensity | strength of a base material in normal temperature, and toughness adjustment.
[0021]
P is an impurity in the steel of the present invention, and a reduction in the amount of P tends to reduce the grain boundary fracture in the HAZ, so the smaller the better. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.02%.
[0022]
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.01%.
[0023]
Mo is an indispensable element for securing the high-temperature strength of steel, and is one of the most important elements in the present invention. If considering only high-temperature strength up to about 600 ° C, the lower limit can be relaxed, but ferrite + austenite for maintaining high-temperature strength above 600 ° C (eg, about 700 ° C) and lowering the yield ratio described later. In order to ensure high strength and high toughness at room temperature even after performing the two-phase heat treatment and subsequent tempering as required, the lower limit was made 1.01 %. Too much addition makes it difficult to control the base material (variation control and toughness deterioration) and also deteriorates the weldability, so it was limited to 1.5% or less.
[0024]
Al is an element generally contained in deoxidized steel, but Si or Ti is sufficient for deoxidation, and the lower limit is not limited (including 0%) in the steel of the present invention. However, when the amount of Al increases, not only the cleanliness of the steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.
[0025]
N is contained in the steel as an unavoidable impurity. However, in the steel of the present invention to which at least one of Ti, Nb, and V described later is added, TiN is formed to improve the properties of the steel, , Combined with V to form a carbonitride to increase the strength. For this reason, the N amount is required to be at least 0.001%. However, the increase in the amount of N is extremely harmful to the HAZ toughness and weldability, and the upper limit of the steel of the present invention is 0.006%.
[0026]
In the present invention, in addition to the elements described above, [C-0.13Nb-0.24V-0.25 (Ti-3.4N)] / (0.063Mo) in mass%.
It is essential to add at least one of Nb, V, and Ti within the range described later so that the amount defined as follows satisfies the range of 0.5 to 1.0.
[0027]
The meaning of the above formula is the stoichiometric calculation based on the atomic weight of the ratio of added Mo as carbide (Mo 2 C), and the molecules are NbC, VC, TiC (Ti as TiN The remaining amount of C after being consumed is also shown. A calculated value of the above formula of 0.5 to 1.0 means that Mo is calculated (stoichiometrically) and 50 to 100% is precipitated as Mo 2 C.
[0028]
That is, the intention of the present invention is to ensure that the amount of C is sufficient so that at least 50% or more of Mo is precipitated as Mo 2 C in calculation without Mo being present in a solid solution state more than necessary. This is because, at a high temperature exceeding 600 ° C., the contribution of solid solution strengthening is small, and the precipitation strengthening by precipitates contributes more.
[0029]
The stoichiometric excess of C with respect to the amount of Mo added also affects the toughness deterioration associated with the increase in hardenability and the amount of cementite produced. The upper limit was 1.0, which is equivalent to the above.
[0030]
Hereinafter, the limited range of the addition amount of Nb, V, and Ti will be described. These are all carbide-forming elements, and together with Mo, one or more of these elements must be added.
[0031]
First, as a general effect, Nb is an element useful for raising the recrystallization temperature of austenite and maximizing the effect of controlled rolling during hot rolling, and at least 0.005% is added. is necessary. It also contributes to re-heating prior to rolling, normalizing, and refinement of heated austenite during quenching. Furthermore, it has the effect of improving strength as precipitation hardening, and contributes to the improvement of high-temperature strength by the combined addition with Mo. However, excessive addition causes toughness deterioration of the weld zone, so the upper limit was made 0.1%. Note that Mo, which is an essential element in the present invention, also has an effect of increasing the recrystallization temperature of austenite, and Nb addition is not necessarily essential.
[0032]
V has substantially the same action as Nb, but its effect is smaller than that of Nb. V also affects the hardenability and contributes to the improvement of high temperature strength. The effect similar to Nb is less if it is less than 0.01%, and the upper limit is acceptable up to 0.2%.
[0033]
Ti is preferably added when the requirements for the base material and weld toughness are severe. This is because when Ti has a small amount of Al (for example, 0.003% or less), it combines with O to form precipitates mainly composed of Ti 2 O 3 , and becomes the nucleus of intragranular transformation ferrite formation, resulting in weld toughness. Improve. Ti is combined with N and finely precipitated in the slab as TiN, which suppresses the coarsening of γ grains during heating and is effective for refining the rolled structure. The fine TiN present in the steel sheet is welded. This is to sometimes refine the weld heat affected zone structure. In order to obtain these effects, Ti needs to be at least 0.005%. However, if it is too much, a large amount of TiC is formed and the low temperature toughness and weldability are deteriorated, so the upper limit is 0.1%.
[0034]
Next, the reason for adding Ni, Cu, Cr, B, and Mg that can be contained as necessary will be described.
[0035]
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is naturally limited.
[0036]
If Ni is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and HAZ toughness. In order to exert these effects, addition of at least 0.05% is essential. On the other hand, excessive addition is not only expensive but also unfavorable for weldability, so the upper limit was made 1.0%. In addition, when adding Cu, in order to prevent the Cu-crack at the time of hot rolling, it is necessary to satisfy the said addition range, and to make it more than 1/2 of Cu addition amount.
[0037]
Cu exhibits substantially the same effects and phenomena as Ni, and the upper limit of 1.0% is restricted because weldability deteriorates, and excessive addition causes Cu-cracks during hot rolling, which makes manufacturing difficult. The lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%. The same applies to Cr described later.
[0038]
Cr is added in an amount of 0.05% or more in order to improve both the strength and toughness of the base material. However, if the addition amount is too large, the base metal, the toughness of the welded portion and the weldability are deteriorated, so the upper limit was made 1.0%.
[0039]
Cu, Ni, and Cr are effective not only in terms of the strength and toughness of the base material but also in weather resistance. For such purposes, it is preferable to add Cu, Ni, and Cr in a range that does not impair the weldability.
[0040]
B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. In order to enjoy this effect, at least 0.0002% is necessary. However, too much addition not only saturates the effect of improving hardenability but also may form B precipitates that are harmful to toughness, so the upper limit was made 0.003%. In cases where stress corrosion cracking is a concern, such as for tank steel, reduction of the hardness of the base metal and the weld heat affected zone is often the point (for example, prevention of sulfide stress corrosion cracking (SCC)). Therefore, HRC ≦ 22 (HV ≦ 248) is essential), and in such a case, B addition for increasing the hardenability is not preferable.
[0041]
Mg suppresses the growth of austenite grains in the weld heat-affected zone and has the effect of making the grains finer, so that the weld zone can be strengthened. In order to enjoy such an effect, Mg needs to be 0.0002% or more. On the other hand, since the effect cost for the added amount decreases as the added amount increases, the upper limit is set to 0.005% because this is not a cost effective measure.
[0042]
In addition, Ca and REM control the morphology of MnS, improve the low temperature toughness of the base material, and reduce the susceptibility to hydrogen induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. In order to exert these effects, 0.0005% is necessary at least. However, too much addition increases the cleanliness of the steel and increases the base material toughness and the sensitivity to hydrogen induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment, so the upper limit of the addition amount is 0.004. %. Since Ca and REM have substantially the same effect, any one of them may be added in the above range.
[0043]
Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. Thus, limiting the value of P CM below 0.25%. P CM is a indicator of the weldability, the lower the weldability is good. In the present invention steels, it is possible to ensure excellent weldability if P CM is 0.25% or less. Incidentally, the welding crack sensitivity composition P CM is defined by the following equation.
[0044]
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
[0045]
Next, the manufacturing conditions defined in claim 4 and the following of the present invention and the reasons for limitation will be described.
[0046]
With the components limited as described above, various production methods can be adopted depending on the purpose and application.
[0047]
First, a method for producing an as-rolled product according to claim 4 of the present invention will be described. The reason for limiting the heating temperature prior to rolling to 1000 to 1250 ° C. is to keep the austenite grains during heating small and to refine the rolled structure. 1250 ° C. is an upper limit temperature at which the austenite during heating is not excessively coarsened. When the heating temperature is exceeded, the austenite grains are coarsely mixed and the structure after transformation is also coarsened, so that the toughness of the steel is remarkably deteriorated.
[0048]
On the other hand, if the heating temperature is too low, it becomes difficult to secure the rolling end temperature (750 ° C. or higher) described later, and when Nb is added, the recrystallization temperature of austenite is increased, and control during hot rolling is performed. The lower limit was limited to 1000 ° C. from the viewpoint of solution of Nb for maximizing the effect of rolling and for causing precipitation hardening.
[0049]
When Nb is not added, since it is not necessary to consider the solution, it is preferable to heat at a temperature of 1150 ° C. or less from the viewpoint of not coarsening the heated austenite more than necessary.
[0050]
When rolling a slab or steel slab reheated to the above temperature range, it is necessary to end the hot rolling at 750 ° C. or more by setting the cumulative reduction amount at 1000 ° C. or less to 30% or more. This is because when the cumulative amount of rolling at 1000 ° C. or less is small, even in the present invention component in which Mo is added in a relatively large amount, the austenite is not sufficiently refined and it is difficult to ensure toughness.
[0051]
Further, if the rolling end temperature is lower than 750 ° C., there is a possibility that the transformation starts partially, and there is a possibility that a processed (rolled) structure is left in the final structure, which is not preferable in terms of toughness, but also increases the yield ratio. When a low yield ratio is required for architectural use, etc., the rolling end temperature is limited to 750 ° C. or higher because production becomes difficult as it is rolled.
[0052]
After rolling, cooling is accelerated or accelerated cooling from a temperature of 700 ° C. or higher to an arbitrary temperature of 600 ° C. or lower at a cooling speed equivalent to or higher than that of cooling. Cooling conditions such as natural cooling or accelerated cooling are properties that should be changed naturally according to the intended strength and toughness level, and for the purpose of improving strength and toughness at the same time and obtaining higher strength and toughness than cooling. Application of accelerated cooling, which can obtain a fine structure, is preferable.
[0053]
The accelerated cooling stop temperature is set to 600 ° C. or less because the effect of accelerated cooling at the initial stage of the transformation cannot be sufficiently obtained at a temperature exceeding 600 ° C. If it is 600 ° C. or lower, the accelerated cooling stop temperature can be set to an arbitrary temperature, but if it is stopped at a relatively high temperature (eg, 400 ° C. or higher), the subsequent cooling is substantially tempered, Tempering for purposes such as strength adjustment, toughness improvement, or removal of residual stress in the steel sheet can be omitted.
[0054]
It should be noted that a low grade steel material whose required level of material is not high can provide a sufficient material even if it is allowed to cool, which is preferable from the standpoints of manufacturability and cost.
[0055]
Although the cooling speed during accelerated cooling varies depending on the steel composition and the intended material (strength, toughness) level, it cannot be generally stated, but from the accelerated cooling start temperature to the stop temperature at the 1/4 thickness position. The average cooling rate is preferably at least 3 ° C./second or more.
[0056]
Next, a method for manufacturing by normalization or quenching according to claims 5 to 6 of the present invention will be described.
[0057]
Even if the steel having the components limited by the present invention is hot-rolled and then subjected to normalization or quenching due to restrictions in use or steel material specifications, the excellent characteristics of the steel material of the present invention are not impaired. Rather, it is a preferable method depending on the purpose because the structure of the steel material and the resulting material are homogenized.
[0058]
However, even in this case, since the refinement of the structure is one of the points that simultaneously improve the strength and toughness of the steel material, the normalizing or quenching temperature needs to be a temperature of Ac 3 or higher and 950 ° C. or lower. . The lower limit is that heating to the austenite single-phase region is essential for the definition of normalizing or quenching, and the upper limit is that the austenite grain size at the time of reheating is not made larger than necessary.
[0059]
Even if the steel plates produced by the various production methods described above are subsequently tempered at a temperature lower than Ac 1 , the excellent characteristics of the present invention are not impaired at all. Rather, in some cases, it is preferable to perform tempering for the purpose of improving the toughness by adjusting the strength, decomposing the low-temperature transformation formation structure such as martensite, which is a brittle structure, or removing the residual stress of the steel sheet. In addition, when an element having a precipitation hardening effect such as Nb, V, or Cu is added, fine precipitation of the precipitate is promoted by the tempering treatment, and the precipitation hardening phenomenon can be further expressed.
[0060]
Finally, a manufacturing method applying heat treatment in the austenite + ferrite two-phase coexistence region according to claim 8 of the present invention will be described.
[0061]
The heat treatment in the austenite + ferrite two-phase coexistence region is applied when a low yield ratio is required from the viewpoint of earthquake resistance, for example, in applications where the steel of the present invention is applied to the construction field. The metallurgical implication of heat treatment in the austenite + ferrite two-phase coexistence region is that it is separated into untransformed ferrite from which C is discharged and reverse transformed austenite in which C is concentrated, and the latter is retransformed in the cooling process to form a hardened structure. Thus, a low yield ratio is achieved by the former softened structure by substantial high temperature tempering.
[0062]
In the present invention, the C amount is stoichiometrically equal to or less than the added amount of carbide forming elements such as Mo, Nb, V, and Ti, and there is almost no substantial C amount that contributes to transformation and the like in the calculation. However, cementite is also actually precipitated, and a C concentration phenomenon to reverse transformed austenite is observed due to their solid solution.
[0063]
The heating temperature at the time of heat treatment is related to the composition ratio of austenite and ferrite, and has a property that should be changed according to the steel component and the target yield ratio level.
[0064]
Similarly, the cooling speed during cooling can be set to cool or higher depending on the steel composition and the intended strength level. The cooling speed exceeding the standing cooling, so-called accelerated cooling, may be performed up to a temperature of 600 ° C. or lower, for the same reason as in the above-described accelerated cooling after rolling. If necessary, these may be tempered at a temperature lower than Ac 1 for the same reason as described above.
[0065]
Note that the pre-structure prior to the heat treatment in the two-phase coexistence region has some influence on the mechanical properties after the heat treatment, but in the present invention, it can be arbitrarily selected according to the purpose such as strength, toughness level and application. Well, not particularly specified.
[0066]
【Example】
Steel sheets of various steel components (thickness 20 to 100 mm) are manufactured in the converter-continuous casting-thick plate process, and the strength, yield ratio (YR), toughness, yield strength at 600 ° C. and weldability (diagonal y) Shape weld cracking test) was investigated.
[0067]
Table 1 shows the steel components of the steel of the present invention together with the comparative steel, and Table 2 shows the results of the investigation of the manufacturing conditions and various properties of the steel sheet.
[0068]
[Table 1]
[0069]
[Table 2]
[0070]
The steel sheets (invention steels) according to the components, structures and production methods according to the invention method all have good characteristics. In contrast, the comparative steels departing from the limiting scope of the present invention is inferior in toughness and high-temperature YS, root cracking is generated by y crack test at room temperature with P CM high steel. In particular, in Comparative Example 24, since the amount of Ni added was lower than the amount of Cu added, cracks occurred during hot rolling, making manufacturing difficult. In Comparative Example 26, since the added amount of Mo is high, P CM While it is within the limited range of the present invention, the root cracking occurs by y crack test at room temperature.
[0071]
【The invention's effect】
According to the present invention, it is possible to provide a steel excellent in high temperature strength that simultaneously achieves a low yield ratio depending on weldability, toughness, and a manufacturing method. As a result, it can be supplied in large quantities and at low cost as high-strength steel with excellent weldability and toughness as well as high-temperature strength for various applications as welded steel structures, or as fire-resistant steel for construction with excellent earthquake resistance. It became so. By using such a steel material, it maintains strength at high temperatures such as in a fire, and also has excellent weldability and toughness, and has achieved a low yield ratio as a construction steel. It has become possible to further improve the safety of things.
Claims (8)
C:0.03〜0.15%、
Si:0.6%以下、
Mn:1.6%以下、
P:0.02%以下、
S:0.01%以下、
Mo:1.01〜1.5%、
Al:0.06%以下、
N:0.006%以下、
かつ、
[C−0.13Nb−0.24V−0.25(Ti−3.4N)]
/(0.063Mo)
と定義する量が、0.5〜1.0の範囲を満足するように、
Nb:0.005〜0.1%、
V:0.01〜0.2%、
Ti:0.005〜0.1%
の範囲内で少なくとも1種以上を含有し、
さらに、
PCM=C+Si/30+Mn/20+Cu/20+Ni/60
+Cr/20+Mo/15+V/10+5B
と定義する溶接割れ感受性組成PCMが0.25%以下で、残部が鉄および不可避的不純物からなることを特徴とする高温強度に優れた高張力鋼。Steel component is mass%,
C: 0.03-0.15%,
Si: 0.6% or less,
Mn: 1.6% or less,
P: 0.02% or less,
S: 0.01% or less,
Mo: 1.01 to 1.5%,
Al: 0.06% or less,
N: 0.006% or less,
And,
[C-0.13Nb-0.24V-0.25 (Ti-3.4N)]
/(0.063Mo)
So that the amount defined as satisfies the range of 0.5 to 1.0,
Nb: 0.005 to 0.1%,
V: 0.01-0.2%
Ti: 0.005 to 0.1%
Containing at least one or more within the range of
further,
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60
+ Cr / 20 + Mo / 15 + V / 10 + 5B
High tensile steel weld crack susceptibility composition P CM define the below 0.25%, the balance being excellent in high temperature strength, characterized in that it consists of iron and unavoidable impurities and.
Cu:0.05〜1.0%、
Ni:0.05〜1.0%、かつ、Cu添加量の1/2以上、
Cr:0.05〜1.0%、
B:0.0002〜0.003%、
Mg:0.0002〜0.005%
の範囲で1種または2種以上を含有することを特徴とする請求項1に記載の高温強度に優れた高張力鋼。In addition to the above steel components,
Cu: 0.05 to 1.0%,
Ni: 0.05 to 1.0%, and 1/2 or more of Cu addition amount,
Cr: 0.05 to 1.0%,
B: 0.0002 to 0.003%,
Mg: 0.0002 to 0.005%
The high-strength steel excellent in high-temperature strength according to claim 1, wherein the high-strength steel contains 1 type or 2 types or more in a range of
Ca:0.0005〜0.004%、
REM:0.0005〜0.004%
のいずれか1種をさらに含有することを特徴とする請求項1または2に記載の高温強度に優れた高張力鋼。% By mass
Ca: 0.0005 to 0.004%,
REM: 0.0005 to 0.004%
The high-strength steel excellent in high-temperature strength according to claim 1 or 2, further comprising any one of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201951A JP4344073B2 (en) | 2000-07-04 | 2000-07-04 | High strength steel excellent in high temperature strength and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201951A JP4344073B2 (en) | 2000-07-04 | 2000-07-04 | High strength steel excellent in high temperature strength and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002020832A JP2002020832A (en) | 2002-01-23 |
JP4344073B2 true JP4344073B2 (en) | 2009-10-14 |
Family
ID=18699547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000201951A Expired - Fee Related JP4344073B2 (en) | 2000-07-04 | 2000-07-04 | High strength steel excellent in high temperature strength and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4344073B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103122435A (en) * | 2011-11-18 | 2013-05-29 | 江苏省沙钢钢铁研究院有限公司 | Hot-rolled titanium-containing high-strength steel plate with yield strength of more than 700MPa and manufacturing method thereof |
CN105506250A (en) * | 2015-12-10 | 2016-04-20 | 南京钢铁股份有限公司 | Heat treatment process capable of improving NDT performance of steel for F-grade ultrahigh-strength ocean platform |
CN109628836A (en) * | 2019-01-02 | 2019-04-16 | 北京科技大学 | A kind of high-strength building structure anti-seismic refractory steel and preparation method thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4743198B2 (en) * | 2001-11-26 | 2011-08-10 | Jfeスチール株式会社 | Refractory steel for construction and method for producing the same |
JP5130472B2 (en) * | 2005-12-21 | 2013-01-30 | 新日鐵住金株式会社 | Method for producing high-tensile steel material with excellent weld crack resistance |
CN103921075B (en) * | 2014-04-28 | 2016-01-20 | 武汉钢铁(集团)公司 | A kind of preparation method of wear-resistant slurry pipeline steel ERW |
CN106319365B (en) * | 2016-08-24 | 2017-12-22 | 宁波乾豪金属制品有限公司 | A kind of wear-resisting spring suspension |
CN106222574B (en) * | 2016-08-24 | 2017-09-19 | 宁波乾豪金属制品有限公司 | A kind of corrosion resistant spring suspension |
CN106222573B (en) * | 2016-08-24 | 2017-12-19 | 宁波乾豪金属制品有限公司 | A kind of high-performance spring suspension |
CN109321844B (en) * | 2018-12-19 | 2020-02-14 | 内蒙古科技大学 | Rare earth super-strong steel and preparation method thereof |
DE102019217369A1 (en) * | 2019-11-11 | 2021-05-12 | Robert Bosch Gmbh | Slow-transforming steel alloy, process for the production of the slow-transforming steel alloy and hydrogen storage with a component made from the slow-transforming steel alloy |
CN113235010B (en) * | 2021-05-19 | 2022-05-10 | 宝武集团鄂城钢铁有限公司 | Preparation method of nuclear power steel plate with thin specification and uniform whole plate performance |
CN114015943A (en) * | 2021-11-09 | 2022-02-08 | 河北工业大学 | Rare earth series low-alloy cast steel for high-speed train brake disc and preparation method thereof |
CN114032462B (en) * | 2021-11-09 | 2023-02-24 | 河北工业大学 | High-strength and high-toughness low-alloy cast steel and preparation method thereof |
CN115261724B (en) * | 2022-08-01 | 2023-05-09 | 马鞍山钢铁股份有限公司 | Steel for ultrahigh-strength and high-toughness fastener, production method thereof and heat treatment process |
-
2000
- 2000-07-04 JP JP2000201951A patent/JP4344073B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103122435A (en) * | 2011-11-18 | 2013-05-29 | 江苏省沙钢钢铁研究院有限公司 | Hot-rolled titanium-containing high-strength steel plate with yield strength of more than 700MPa and manufacturing method thereof |
CN105506250A (en) * | 2015-12-10 | 2016-04-20 | 南京钢铁股份有限公司 | Heat treatment process capable of improving NDT performance of steel for F-grade ultrahigh-strength ocean platform |
CN105506250B (en) * | 2015-12-10 | 2018-02-02 | 南京钢铁股份有限公司 | A kind of Technology for Heating Processing of the strong offshore platform steel NDT performances of raising F level superelevation |
CN109628836A (en) * | 2019-01-02 | 2019-04-16 | 北京科技大学 | A kind of high-strength building structure anti-seismic refractory steel and preparation method thereof |
CN109628836B (en) * | 2019-01-02 | 2020-10-09 | 北京科技大学 | High-strength anti-seismic fire-resistant steel for building structure and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2002020832A (en) | 2002-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0080809A1 (en) | A method of making wrought high tension steel having superior low temperature toughness | |
JP4344073B2 (en) | High strength steel excellent in high temperature strength and method for producing the same | |
KR102131538B1 (en) | Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same | |
KR101778406B1 (en) | Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same | |
KR100843844B1 (en) | Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same | |
JP2023506822A (en) | High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same | |
JP4268462B2 (en) | Manufacturing method of non-tempered low yield ratio high strength steel sheet with excellent high temperature strength | |
JP2009024228A (en) | Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness | |
JP2017197787A (en) | High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor | |
JP4767590B2 (en) | Production method of low yield ratio high strength steel and low yield ratio high strength steel | |
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
EP3395998B1 (en) | Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same | |
JP3981615B2 (en) | Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same | |
JP4362219B2 (en) | Steel excellent in high temperature strength and method for producing the same | |
JP4309561B2 (en) | High-tensile steel plate with excellent high-temperature strength and method for producing the same | |
KR101546154B1 (en) | Oil tubular country goods and method of manufacturing the same | |
JP7508469B2 (en) | Ultra-high strength steel plate with excellent shear workability and its manufacturing method | |
JP4133175B2 (en) | Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same | |
JP4709632B2 (en) | Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness | |
KR101560943B1 (en) | Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same | |
JP4261765B2 (en) | Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same | |
JPH0413406B2 (en) | ||
JP7265008B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method | |
JP4264296B2 (en) | Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same | |
JP7197699B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090710 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4344073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |