JP4343357B2 - Rolling bearing parts for high temperature - Google Patents
Rolling bearing parts for high temperature Download PDFInfo
- Publication number
- JP4343357B2 JP4343357B2 JP32177499A JP32177499A JP4343357B2 JP 4343357 B2 JP4343357 B2 JP 4343357B2 JP 32177499 A JP32177499 A JP 32177499A JP 32177499 A JP32177499 A JP 32177499A JP 4343357 B2 JP4343357 B2 JP 4343357B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- tempering
- high temperature
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/66—High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/40—Application independent of particular apparatuses related to environment, i.e. operating conditions
- F16C2300/54—Application independent of particular apparatuses related to environment, i.e. operating conditions high-temperature
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車、航空機、船舶、産業機械などの動力伝達装置やエンジン部などに用いられる転がり軸受部品に関し、より特定的には、粉塵、ゴミなどの異物が混入する環境下ならびに雰囲気の温度が常温〜300℃の環境下においても優れた転動疲労寿命を有する安価な高温用転がり軸受部品に関するものである。
【0002】
【従来の技術】
自動車、航空機、船舶、産業機械などの動力伝達部やエンジン部に使用される転がり軸受は、苛酷な環境下で使用されることになるが、このような環境下でも優れた転動疲労寿命と信頼性とを要求されている。特に、上記に用いられる転がり軸受では、粉塵、ゴミ、鉄粉などの異物が混入する場合があり、これらの環境下では清浄な環境での使用に比べて転動疲労寿命が大幅に低下することが知られている。この対策として、近年では、SUJ2などの高炭素クロム軸受鋼やSCM420、SNCM420、SNCM815などの肌焼き鋼に浸炭窒化処理を施し、転動面の直下に適量の残留オーステナイトを生成させる工法が適用されており、異物混入下での寿命改善が図られている。
【0003】
しかし、一般的な浸炭窒化処理は、SUJ2鋼などに適用されている焼入れ焼戻し処理に比べて長時間の処理である。このため、これらの浸炭窒化処理された転がり軸受では、通常の焼入れ焼戻し工程で製造される転がり軸受に比べて製造コストが大幅に増加するなどの問題がある。
【0004】
また、自動車や航空機などに用いられる転がり軸受は、高温環境下で使用されるため、異物混入環境でかつ高温環境という極めて苛酷な使用環境下で優れた転動疲労寿命特性を要求されている。一般に、高温下で使用される転がり軸受には、SUJ2などの高炭素クロム軸受に焼入れ処理を施した後、またはSCM420、SNCM815などの肌焼き鋼に浸炭焼入れ処理を施した後に、寸法安定性を得るために300℃以上の高温で焼戻し処理が実施されている。
【0005】
しかし、これらの材料を高温で焼戻し処理すると硬さが大幅に低下するため、転がり軸受に要求される所定の硬さを得ることができず、転動疲労寿命および耐摩耗性が低下する。このため、高温域で使用される軸受鋼にはM50のような析出硬化型の鋼材が使用されているが、このような鋼材では製造コストおよび材料コストが高く、使用範囲が限定されているために上記のようなニーズに対応することができなかった。
【0006】
また、浸炭窒化処理を施した転がり軸受では、熱処理後に転動部直下に残留オーステナイトが生成されるとともに鋼中に窒素が侵入する。この残留オーステナイトの作用で異物混入による応力集中が緩和されることによって、さらには鋼中に侵入した窒素の作用で焼戻し軟化抵抗が改善されて転動疲労の過程で発生する組織の変化が抑制されることによって、転動疲労寿命の向上が図られている。
【0007】
しかし、高温用の転がり軸受に適用するに際しては、先述したように寸法の安定性を確保するために高温焼戻しを行なう必要がある。この高温焼戻しを施した場合には、残留オーステナイトは分解し、その量が減少してしまうために、その効果を期待することができず、また窒素による焼戻し軟化防止にも限界があるため、異物が混入する高温環境下では十分な性能を得ることができない。
【0008】
近年では、自動車などの分野ではエンジンの高出力・小型化が急速に進行しているが、同時に、転がり軸受の使用環境はさらに苛酷な条件で使用されるケースが増加してきている。エンジン部に用いられる転がり軸受の使用温度域は、常用温度で130℃程度であるが、瞬間的には160℃まで温度上昇することが見込まれている。今日では、エンジンの高出力化に伴って、転がり軸受の使用温度域は常用温度で160℃程度まで上昇し、さらに瞬間的には200℃を超すことが予測されている。したがって、今後、エンジンの高出力化や軽量化が促進された場合に、異物混入環境下ならびに高温環境下での転動疲労寿命の向上が必要とされると予想される。
【0009】
しかし、現状の高炭素クロム軸受鋼や浸炭または浸炭窒化処理を施した転がり軸受は、十分な耐熱性を有しておらず、予想される異物混入環境下、高温環境下では十分な転動疲労寿命を維持することができない。また、M50のような析出硬化型軸受鋼ではコストが高いなどの問題があり、安価で、かつ転動疲労寿命特性に優れる転がり軸受を提供することができない状況である。
【0010】
【発明が解決しようとする課題】
本発明は、上記のような問題点を解決するためになされたもので、異物混入環境下ならびに高温環境下においても優れた転動疲労寿命を有し、かつ従来例に比べて安価な高温用転がり軸受部品を提供することを目的とする。
【0011】
【課題を解決するための手段】
本願発明者らは、鋭意検討した結果、異物混入環境下ならびに高温環境下において優れた転動疲労寿命を有する安価な高温用転がり軸受部品を得ることのできる組成元素の組合せ、その各含有量、焼戻し硬さおよび炭化物の最大寸法を見出した。
【0012】
それゆえ本発明の一の局面に従う高温用転がり軸受部品は、内輪、外輪および転動体を有する高温用転がり軸受の部品であって、内輪、外輪および転動体の少なくともいずれかが、合金元素の含有量が質量%で、C(炭素)を0.6%以上1.3%以下、Si(シリコン)を0.76%以上3.0%以下、Mn(マンガン)を0.2%以上1.5%以下、P(リン)を0.03%以下、S(硫黄)を0.03%以下、Cr(クロム)を0.5%以上3.0%以下、Mo(モリブデン)を0.05%以上0.25%未満、Al(アルミニウム)を0.050%以下、Ti(チタン)を0.003%以下、O(酸素)を0.0015%以下、N(窒素)を0.015%以下含み、残部がFe(鉄)および不可避不純物からなる鋼材よりなり、かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された構成を有し、かつ焼戻し処理後の硬さがHRC58以上であり、かつ最大の炭化物寸法が8μm以下である。
【0013】
また本発明の他の局面に従う高温用転がり軸受部品は、内輪、外輪および転動体を有する高温用転がり軸受の部品であって、内輪、外輪および転動体の少なくともいずれかが、合金元素の含有量が質量%で、C(炭素)を0.6%以上1.3%以下、Si(シリコン)を0.76%以上3.0%以下、Mn(マンガン)を0.2%以上1.5%以下、P(リン)を0.03%以下、S(硫黄)を0.03%以下、Cr(クロム)を0.5%以上3.0%以下、Mo(モリブデン)を0.05%以上0.25%未満、Al(アルミニウム)を0.050%以下、Ti(チタン)を0.003%以下、O(酸素)を0.0015%以下、N(窒素)を0.015%以下で各元素を少なくとも含み、残部がFe(鉄)からなる鋼材よりなり、かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された構成を有し、かつ焼戻し処理後の硬さがHRC58以上であり、かつ最大の炭化物寸法が8μm以下である。
【0014】
なお、本発明の他の局面においては、列挙した元素以外にB(ボロン)やW(タングステン)またはこれ以外の元素が含まれていてもよい。
【0015】
本発明の一および他の局面に従う高温用転がり軸受部品では、上記組成を有しているため、焼入れ焼戻し処理を施せば、浸炭窒化処理を施さずとも異物混入環境下において優れた転動疲労寿命が得られる。このため、浸炭窒化処理を省くことができるため、製造コストを低くすることができる。
【0016】
上記のように製造コスト削減の観点からは浸炭窒化処理を省くことが望ましいが、焼入れ処理に代えて浸炭窒化処理を施しても異物混入環境下において優れた転動疲労寿命を得ることができる。
【0017】
また、上記組成を有するため、高温(たとえば350℃)で焼戻し処理を施しても、HRC58以上と高い硬度を得ることができる。このように高温で焼戻し処理を施すことで残留オーステナイト量を少なくできるため高温環境下での寸法安定性を得ることができるとともにHRC58以上と高い硬度を得ることができる。このため、高温環境下での転動疲労寿命および耐摩耗性を従来例より向上させることができる。
【0018】
また、上記組成の鋼はM50のような析出硬化型軸受鋼より安価である。
以上より、異物混入環境下ならびに高温環境下において優れた転動疲労寿命を有し、かつ安価な高温用転がり軸受部品を得ることができる。
【0019】
なお、焼戻し処理温度は180℃以上350℃以下であることが好ましい。転がり軸受は通常100℃程度の温度で使用されるため、焼戻し処理温度は180℃以上である必要がある。
【0020】
以下、本発明の高温用転がり軸受部品の化学成分の限定理由について説明する。
【0021】
(1) Cの含有量(0.6%以上1.3%以下)について
Cは転がり軸受として強度を確保するために必須の元素であり、所定の熱処理後の硬さを維持するためには0.6%以上含有する必要があるため、C含有量の下限を0.6%に限定した。また本発明においては、後述するように炭化物が転動疲労寿命に重要な役割を与えるが、C含有量が1.3%を超えて含有された場合、大型の炭化物が生成し、転動疲労寿命の低下を生じることが判明したため、C含有量の上限を1.3%に限定した。
【0022】
(2) Siの含有量(0.3%以上3.0%以下)について
Siは高温域での軟化を抑制し、転がり軸受の耐熱性を改善する作用があるため添加することが望ましい。しかし、Si含有量が0.30%未満ではその効果が得られないため、Si含有量の下限を0.30%に限定した。また、Si含有量の増加に伴って耐熱性は向上するが、3.0%を超えて多量に含有させてもその効果が飽和するとともに、熱間加工性や被削性の低下が生じるため、Si含有量の上限を3.0%に限定した。
【0023】
(3) Mnの含有量(0.2%以上1.5%以下)について
Mnは鋼を製造する際の脱酸に用いられる元素であるとともに、焼入れ性を改善する元素であり、この効果を得るために0.2%以上添加する必要があるため、Mn含有量の下限を0.2%に限定した。しかし、1.5%を超えて多量にMnを含有すると被削性が大幅に低下するため、Mn含有量の上限を1.5%に限定した。
【0024】
(4) Pの含有量(0.03%以下)について
Pは鋼のオーステナイト粒界に偏析し、靱性や転動疲労寿命の低下を招くため、0.03%を含有量の上限とした。
【0025】
(5) Sの含有量(0.03%以下)について
Sは鋼の熱間加工性を害し、鋼中で非金属介在物を形成して靱性や転動疲労寿命を低下させるため、0.03%をS含有量の上限とした。また、Sは前記のような有害な面を持つ反面、切削加工性を向上させる効果も有しているため、可及的に少なくすることが望ましいが0.005%までの含有量であれば許容される。
【0026】
(6) Crの含有量(0.5%以上3.0%以下)について
Crは本発明において重要な作用を果たす元素であり、焼入れ性の改善と炭化物による硬さ確保と寿命改善とのために添加される。所定の炭化物を得るためには0.5%以上の添加が必要であるため、Cr含有量の下限を0.5%に限定した。しかし、3.0%を超えて多量にCrを含有すると、大型の炭化物が生成し転動疲労寿命の低下が生じるため、Cr含有量の上限を3.0%に限定した。
【0027】
(7) Alの含有量(0.050%以下)について
Alは鋼の製造時の脱酸剤として使用されるが、硬質の酸化物系介在物を生成し転動疲労寿命を低下させるため低減することが望ましい。また、0.050%を超えてAlが多量に含有されると顕著な転動疲労寿命の低下が認められたため、Al含有量の上限を0.050%に限定した。
【0028】
なお、Al含有量を0.005%未満とするためには鋼の製造コストの上昇が生じるため、Al含有量の下限を0.005%に限定することが好ましい。
【0029】
(8) Tiの含有量(0.003%以下)、Oの含有量(0.0015%以下)、Nの含有量(0.015%以下)について
Ti、OおよびNは鋼中に酸化物、窒化物を形成し非金属介在物として疲労破壊の起点となり転動疲労寿命を低下させるため、Ti:0.003%、O:0.0015%、N:0.015%を各元素の上限とした。
【0030】
(9) Moの含有量(0.05%以上0.25%未満)について
Moは鋼の焼入れ性を改善するとともに、炭化物中に固溶することによって焼戻し処理時の軟化を防止する効果がある。特に、Moは高温域における転動疲労寿命を改善する作用が見出されたため添加されている。しかし、0.25%以上と多量にMoを含有させると鋼材コストが上昇するとともに、切削加工を容易にするための軟化処理時に硬さが低下せず被削性が大幅に劣化してしまうため、Mo含有量を0.25%未満に限定した。またMoの含有量が0.05%未満では炭化物形成に効果がないため、Mo含有量の下限を0.05%に限定した。
【0031】
次に、本発明の高温用転がり軸受部品の焼戻し硬さおよび炭化物について言及する。
【0032】
(10) 焼戻し硬さ
高温域で使用される軸受は使用環境下での寸法を安定させるために、環境温度以上の温度で焼戻し処理を施されることが一般的である。本願発明者らは、焼戻し硬さと温度環境200℃における転動疲労寿命に関する詳細な調査を行なった結果、焼戻し硬さと転動疲労寿命とに相関が認められ、焼戻し硬さが高いほど転動疲労寿命が長寿命を示す傾向にあることを確認した。特に、焼戻し硬さが同一の場合には、焼戻し処理が高い温度で実施された軸受ほど長寿命であり、高温で焼戻しを施しても焼戻し硬さが高い軸受ほど長寿命であることが見出された。さらには、焼戻し処理後の硬さがHRC58未満になると、急激に寿命が低下する傾向にあり、また寿命ばらつきが大きくなることが判明した。高温での寿命を改善し、ばらつきを低減するためには、HCR58以上の硬さを維持することが必要であり、かつこの際の焼戻し温度は高いほど好ましい。
【0033】
(11) 炭化物
炭化物は焼戻し処理時の硬さを維持させるとともに、転動疲労中の組織変化を抑制し、転動疲労寿命の改善に効果を有することが判明した。この際、軸受の表層から0.1mm深さにおける炭化物の最大寸法と転動疲労寿命とを調査した結果、大型の炭化物が存在すると寿命が低下する傾向が認められ、最大寸法が8μmを超える大きな炭化物が残存すると急激に寿命低下が発生することが明らかになったため、炭化物の最大寸法を8μmに規定した。
【0034】
【実施例】
以下、本発明の実施例について説明する。
【0035】
表1に示した化学組成を有する鋼材を、真空誘導炉によって溶解し、重量150kgの鋼塊に鋳造した後、1200℃の温度で3時間加熱保持して熱間鍛造を実施し、直径50mmの丸棒を製造した。丸棒素材に焼ならし処理として850℃で1時間保持した後、空冷する処理を施し、さらに切削加工を容易にするための軟化処理として790℃で6時間保持した後650℃までを10℃/時間の冷却速度で冷却し、常温までを大気放冷する軟化処理を施し、各種調査の素材とした。
【0036】
【表1】
【0037】
<硬さ調査>
焼入れ後の焼戻し硬さおよび浸炭窒化処理後の焼戻し硬さを測定するために、直径50mmの素材から直径20mm、長さ100mmの円柱状の試験片を機械加工によって作製した。
【0038】
焼入れ処理は、ソルト炉による加熱を行ない、850℃に30分均熱した後、80℃の油中に焼入れることで行なった。この後に、焼戻し処理として同じくソルト炉で加熱を行ない、350℃で2時間保持した後に空冷する焼戻し処理を行なった。
【0039】
また浸炭窒化処理は通常の生産工程で使用されているガス雰囲気炉を用い、RXガス雰囲気中で炭素ポテンシャルを1.0〜1.2%、NH3 の添加量を5〜10%として850℃に60分保持した後、油中に焼入れた。その後、350℃で120分の焼戻しを行なった。
【0040】
この焼入れ焼戻し処理を施した試験片または浸炭窒化処理後に焼戻し処理を施した試験片の中央部から厚さ10mmの円盤型の試験片を切断し、両面を湿式の研磨加工によって研磨し、硬さ測定用の試験片を作製した。
【0041】
硬さはロックウェル硬さ計を使用し、試験片の断面において表面から2mm深さの位置の硬さ測定を行ない、7点の平均値を焼戻し硬さとして求めた。
【0042】
<転動疲労寿命試験>
軸受部品として性能を確認するために、スラスト型の転動疲労寿命試験機によって疲労試験を行ない、各材料の寿命評価を実施した。
【0043】
寿命評価に用いた試験片は、直径50mmの丸棒素材から機械加工によって外径47mm、内径29mmおよび厚さ7mmのリング状のスラスト型転動疲労寿命試験片を粗加工した。
【0044】
粗加工を完了した試験片の熱処理として、焼入れ焼戻し処理および浸炭窒化処理を施した。処理は、通常の生産工程で使用されている実炉を用いた。
【0045】
焼入れ焼戻し処理については、ガス雰囲気炉を用い、RXガス雰囲気中で各鋼の炭素量をベースに脱炭や浸炭が起こらないように炭素ポテンシャルを制御しながら850℃に30分保持した後、油中に焼入れた。その後、350℃で120分の焼戻しを行なった。
【0046】
浸炭窒化処理は上記の硬さ試験片と同条件で熱処理を行なった。
熱処理完了の後に、試験片の両面を研磨加工し鏡面状態に仕上げた。なお、浸炭窒化処理した試験片では、研磨加工時の加工代を両面とも0.1mmとした。
【0047】
転動疲労寿命試験は、スラスト型転動疲労寿命試験機によって実施した。なお、表2にその試験の諸条件を示す。試験は、常温環境下および200℃環境下で実施し、さらに異物の混入環境を再現した環境下でも試験を行なった。
【0048】
【表2】
【0049】
疲労試験は、同一条件で15回の繰返し試験を行ない、ワイブル確率における累積損傷確率が10%となる寿命を各材料の寿命として判定した。なお、表1における比較例No.14は汎用のSUJ2であり、この焼入れ焼戻し処理材の寿命を1.0とした場合の比率で各材料の寿命値を記述した。
【0050】
<炭化物>
鋼中に存在する炭化物の測定には、スラスト型転動疲労寿命試験片を使用した。各種の熱処理を実施してスラスト型転動疲労寿命試験片に加工された試験片において、リング横断面を切断し、組織観察用のミクロ試験片を製造した。この試験片を鏡面仕上げし、さらに炭化物の観察を行なうために、ピクラル腐食液によって腐食した。このミクロ試料において、転動面の表層から0.1mm深さにおける炭化物の観察を光学顕微鏡で実施し、視野面積50mm2 における最大の炭化物を測定した。
【0051】
上記の350℃焼戻し硬さ、常温および200℃での転動疲労寿命、異物混入条件下での転動疲労寿命および最大炭化物寸法の結果を表3および表4に示す。
【0052】
【表3】
【0053】
【表4】
【0054】
上記の表3および表4の結果より、本発明の組成範囲を有する本発明例では、350℃の焼戻し処理を施しても、硬さがHRC58以上となることが判明した。また、本発明例では、単なる焼入れ焼戻し処理(HT)を施した場合でも、比較例に比べて200℃での転動疲労寿命および異物条件下における転動疲労寿命が高くなることが判明した。また、焼入れ処理に代えて浸炭窒化処理を施した場合でも、優れた転動疲労寿命が得られることも判明した。また、本発明例では、転動面の表層から0.1mm深さにおける炭化物の最大寸法が8.0μm以下になることが判明した。
【0055】
今回開示された実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0056】
【発明の効果】
以上に説明したように本願発明者らが最適な組成元素およびその含有量を見出したことにより、焼入れ焼戻し処理をすることで、浸炭窒化処理を施さなくとも異物混入条件下で優れた転動疲労寿命が得られるとともに、高温(たとえば350℃)で焼戻し処理を施しても高い硬度を得られる安価な高温用転がり軸受部品を得ることができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to rolling bearing parts used in power transmission devices and engine parts of automobiles, airplanes, ships, industrial machines, and the like, and more specifically, in an environment in which foreign matters such as dust and dust are mixed and the temperature of the atmosphere. Relates to an inexpensive high-temperature rolling bearing part having an excellent rolling fatigue life even in an environment of room temperature to 300 ° C.
[0002]
[Prior art]
Rolling bearings used in power transmission parts and engine parts of automobiles, aircraft, ships, industrial machines, etc. are used in harsh environments, and even in such environments they have excellent rolling fatigue life. Reliability and reliability are required. In particular, the rolling bearings used above may contain foreign matter such as dust, debris and iron powder. Under these circumstances, the rolling fatigue life will be significantly reduced compared to the use in a clean environment. It has been known. As a countermeasure, in recent years, a high carbon chromium bearing steel such as SUJ2 and case hardening steel such as SCM420, SNCM420, and SNCM815 are subjected to carbonitriding to generate an appropriate amount of retained austenite directly under the rolling surface. The service life is improved when foreign matter is mixed.
[0003]
However, a general carbonitriding process is a longer process than a quenching and tempering process applied to SUJ2 steel and the like. For this reason, these carbonitrided rolling bearings have problems such as a significant increase in manufacturing costs compared to rolling bearings manufactured in a normal quenching and tempering process.
[0004]
In addition, since rolling bearings used in automobiles, aircrafts, and the like are used in a high temperature environment, excellent rolling fatigue life characteristics are required in an extremely harsh environment such as a foreign matter mixed environment and a high temperature environment. In general, rolling bearings used at high temperatures have dimensional stability after quenching high carbon chrome bearings such as SUJ2 or carburizing and quenching hardened steels such as SCM420 and SNCM815. In order to obtain, the tempering process is implemented at the high temperature of 300 degreeC or more.
[0005]
However, when these materials are tempered at a high temperature, the hardness is greatly reduced, so that the predetermined hardness required for the rolling bearing cannot be obtained, and the rolling fatigue life and wear resistance are lowered. For this reason, precipitation hardened steel materials such as M50 are used for bearing steels used in high temperature regions, but such steel materials have high manufacturing costs and material costs, and the range of use is limited. The above-mentioned needs could not be met.
[0006]
Further, in a rolling bearing subjected to carbonitriding, residual austenite is generated immediately after the heat treatment and nitrogen penetrates into the steel. This residual austenite relieves stress concentration due to foreign matter contamination, and further, the temper softening resistance is improved by the action of nitrogen that has penetrated into the steel, and the structural changes that occur during the rolling fatigue are suppressed. Thus, the rolling fatigue life is improved.
[0007]
However, when applied to a high temperature rolling bearing, it is necessary to perform high temperature tempering in order to ensure dimensional stability as described above. When this high temperature tempering is performed, the retained austenite is decomposed and the amount thereof is reduced. Therefore, the effect cannot be expected, and there is a limit in preventing temper softening by nitrogen. Sufficient performance cannot be obtained in a high-temperature environment in which is mixed.
[0008]
In recent years, in the field of automobiles and the like, high output and downsizing of engines are rapidly progressing, but at the same time, the usage environment of rolling bearings is increasing under more severe conditions. The operating temperature range of the rolling bearing used in the engine section is about 130 ° C. at the normal temperature, but it is expected that the temperature rises to 160 ° C. instantaneously. Today, with the increase in engine output, the operating temperature range of rolling bearings is expected to rise to about 160 ° C. at the normal temperature, and instantaneously exceed 200 ° C. Therefore, in the future, when higher output and lighter weight of the engine are promoted, it is expected that an improvement in rolling fatigue life in a foreign matter mixed environment and a high temperature environment is required.
[0009]
However, current high carbon chrome bearing steel and rolling bearings that have been carburized or carbonitrided do not have sufficient heat resistance. The life cannot be maintained. In addition, precipitation hardened bearing steel such as M50 has a problem such as high cost, and is in a situation where it is not possible to provide a rolling bearing that is inexpensive and excellent in rolling fatigue life characteristics.
[0010]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and has excellent rolling fatigue life even in a foreign matter mixed environment and a high temperature environment, and is inexpensive for high temperatures. An object is to provide rolling bearing parts.
[0011]
[Means for Solving the Problems]
As a result of diligent study, the inventors of the present application have found that a combination of composition elements capable of obtaining an inexpensive rolling bearing part for high temperature having an excellent rolling fatigue life in a foreign matter-mixed environment as well as in a high temperature environment, each content thereof, The tempering hardness and the maximum carbide size were found.
[0012]
Therefore, a high-temperature rolling bearing part according to one aspect of the present invention is a high-temperature rolling bearing part having an inner ring, an outer ring, and a rolling element, and at least one of the inner ring, the outer ring, and the rolling element contains an alloy element. The amount is mass%, C (carbon) is 0.6% to 1.3%, Si (silicon) is 0.76 % to 3.0%, and Mn (manganese) is 0.2% to 1. 5% or less, P (phosphorus) 0.03% or less, S (sulfur) 0.03% or less, Cr (chromium) 0.5% to 3.0%, Mo (molybdenum) 0.05 % To less than 0.25%, Al (aluminum) 0.050% or less, Ti (titanium) 0.003% or less, O (oxygen) 0.0015% or less, N (nitrogen) 0.015% Including the following, the balance being made of steel consisting of Fe (iron) and inevitable impurities, and It has a structure that has been tempered after quenching or carbonitriding, has a hardness after tempering of not less than HRC58, and has a maximum carbide size of not more than 8 μm.
[0013]
A high temperature rolling bearing component according to another aspect of the present invention is a high temperature rolling bearing component having an inner ring, an outer ring and a rolling element, wherein at least one of the inner ring, the outer ring and the rolling element has an alloy element content. Is mass%, C (carbon) is 0.6% to 1.3%, Si (silicon) is 0.76 % to 3.0%, and Mn (manganese) is 0.2% to 1.5%. %, P (phosphorus) 0.03% or less, S (sulfur) 0.03% or less, Cr (chromium) 0.5% to 3.0%, Mo (molybdenum) 0.05% More than less than 0.25%, Al (aluminum) 0.050% or less, Ti (titanium) 0.003% or less, O (oxygen) 0.0015% or less, N (nitrogen) 0.015% or less It is made of a steel material that contains at least each element and the balance is made of Fe (iron). It has a structure that has been tempered after pouring or carbonitriding, has a hardness after tempering of not less than HRC58, and has a maximum carbide size of not more than 8 μm.
[0014]
In another aspect of the present invention, B (boron), W (tungsten), or other elements may be included in addition to the listed elements.
[0015]
The rolling bearing part for high temperature according to one and other aspects of the present invention has the above composition, and therefore, when subjected to quenching and tempering treatment, it has excellent rolling fatigue life in an environment containing foreign matter without performing carbonitriding treatment. Is obtained. For this reason, since carbonitriding can be omitted, the manufacturing cost can be reduced.
[0016]
As described above, it is desirable to omit the carbonitriding process from the viewpoint of reducing the manufacturing cost. However, even if the carbonitriding process is performed in place of the quenching process, an excellent rolling fatigue life can be obtained in a foreign matter mixed environment.
[0017]
Moreover, since it has the said composition, even if it performs tempering process at high temperature (for example, 350 degreeC), high hardness with HRC58 or more can be obtained. Thus, the amount of retained austenite can be reduced by performing tempering treatment at a high temperature, so that dimensional stability under a high temperature environment can be obtained and high hardness of HRC58 or higher can be obtained. For this reason, the rolling fatigue life and wear resistance in a high temperature environment can be improved as compared with the conventional example.
[0018]
Further, steel having the above composition is less expensive than precipitation hardening type bearing steel such as M50.
As described above, it is possible to obtain an inexpensive rolling bearing component for high temperature that has an excellent rolling fatigue life in a foreign matter mixed environment and a high temperature environment.
[0019]
In addition, it is preferable that the tempering process temperature is 180 degreeC or more and 350 degrees C or less. Since the rolling bearing is usually used at a temperature of about 100 ° C., the tempering temperature needs to be 180 ° C. or higher.
[0020]
Hereinafter, the reasons for limiting the chemical components of the high-temperature rolling bearing part of the present invention will be described.
[0021]
(1) C content (0.6% or more and 1.3% or less) C is an essential element for securing strength as a rolling bearing, and for maintaining the hardness after a predetermined heat treatment. Since it is necessary to contain 0.6% or more, the lower limit of the C content is limited to 0.6%. In the present invention, as described later, carbides play an important role in the rolling fatigue life. However, when the C content exceeds 1.3%, large carbides are formed, and rolling fatigue occurs. Since it was found that the lifetime was reduced, the upper limit of the C content was limited to 1.3%.
[0022]
(2) About Si content (0.3% or more and 3.0% or less) It is desirable to add Si because it suppresses softening in a high temperature range and improves the heat resistance of the rolling bearing. However, since the effect cannot be obtained if the Si content is less than 0.30%, the lower limit of the Si content is limited to 0.30%. Moreover, although heat resistance improves with increase in Si content, since the effect will be saturated even if it contains a large amount exceeding 3.0%, hot workability and machinability will fall. The upper limit of Si content was limited to 3.0%.
[0023]
(3) About Mn content (0.2% or more and 1.5% or less) Mn is an element used for deoxidation when manufacturing steel, and is an element that improves hardenability. In order to obtain it, since it is necessary to add 0.2% or more, the minimum of Mn content was limited to 0.2%. However, if Mn is contained in a large amount exceeding 1.5%, the machinability is greatly lowered, so the upper limit of the Mn content is limited to 1.5%.
[0024]
(4) P content (0.03% or less) P segregates at the austenite grain boundaries of the steel and causes a decrease in toughness and rolling fatigue life, so 0.03% was made the upper limit of the content.
[0025]
(5) S content (0.03% or less) S impairs hot workability of steel and forms non-metallic inclusions in the steel to reduce toughness and rolling fatigue life. 03% was made the upper limit of the S content. Further, S has a harmful surface as described above, but also has an effect of improving machinability, so it is desirable to reduce it as much as possible, but if the content is up to 0.005% Permissible.
[0026]
(6) About Cr content (0.5% to 3.0%) Cr is an element that plays an important role in the present invention, for improving hardenability, ensuring hardness by carbide and improving life. To be added. Since addition of 0.5% or more is necessary to obtain a predetermined carbide, the lower limit of the Cr content is limited to 0.5%. However, if Cr is contained in a large amount exceeding 3.0%, large carbides are generated and the rolling fatigue life is reduced, so the upper limit of Cr content is limited to 3.0%.
[0027]
(7) Al content (less than 0.050%) Al is used as a deoxidizer during steel production, but it is reduced because it produces hard oxide inclusions and reduces rolling fatigue life. It is desirable to do. Further, when the Al content exceeds 0.050%, a significant decrease in rolling fatigue life was observed, so the upper limit of the Al content was limited to 0.050%.
[0028]
In order to make the Al content less than 0.005%, the manufacturing cost of the steel increases, so it is preferable to limit the lower limit of the Al content to 0.005%.
[0029]
(8) Regarding Ti content (0.003% or less), O content (0.0015% or less), and N content (0.015% or less), Ti, O and N are oxides in the steel. In order to reduce the fatigue life of rolling by forming nitride and forming non-metallic inclusions as a non-metallic inclusion, Ti: 0.003%, O: 0.0015%, N: 0.015% are the upper limit of each element. It was.
[0030]
(9) About Mo content (0.05% or more and less than 0.25%) Mo improves the hardenability of steel and has the effect of preventing softening during tempering treatment by dissolving in carbide. . In particular, Mo has been added because it has been found to improve the rolling fatigue life at high temperatures. However, if Mo is contained in a large amount of 0.25% or more, the steel material cost increases, and the hardness does not decrease during the softening treatment for facilitating the cutting process, and the machinability is greatly deteriorated. The Mo content was limited to less than 0.25%. Further, if the Mo content is less than 0.05%, there is no effect on carbide formation, so the lower limit of the Mo content is limited to 0.05%.
[0031]
Next, reference will be made to the tempering hardness and carbide of the high temperature rolling bearing part of the present invention.
[0032]
(10) Tempering hardness Bearings used in a high temperature range are generally subjected to tempering treatment at a temperature equal to or higher than the environmental temperature in order to stabilize the dimensions under the usage environment. As a result of conducting a detailed investigation on the tempering hardness and the rolling fatigue life at a temperature environment of 200 ° C., the inventors of the present application found a correlation between the tempering hardness and the rolling fatigue life. It was confirmed that the life tends to show a long life. In particular, when the tempering hardness is the same, a bearing that has been tempered at a higher temperature has a longer life, and a bearing that has a higher tempering hardness even when tempered at a higher temperature has a longer life. It was done. Furthermore, when the hardness after the tempering treatment is less than HRC58, it has been found that the life tends to decrease rapidly, and the life variation increases. In order to improve the life at high temperature and reduce variation, it is necessary to maintain a hardness of HCR 58 or higher, and the higher the tempering temperature at this time, the more preferable.
[0033]
(11) It has been found that the carbide carbide has the effect of improving the rolling fatigue life by maintaining the hardness during the tempering treatment and suppressing the structural change during the rolling fatigue. At this time, as a result of investigating the maximum carbide size and rolling fatigue life at a depth of 0.1 mm from the surface layer of the bearing, there is a tendency for the life to decrease when large carbides exist, and the maximum size is larger than 8 μm. Since it became clear that when the carbides remain, the service life suddenly decreases. Therefore, the maximum size of the carbides is defined as 8 μm.
[0034]
【Example】
Examples of the present invention will be described below.
[0035]
A steel material having the chemical composition shown in Table 1 was melted by a vacuum induction furnace, cast into a steel ingot with a weight of 150 kg, heated and held at 1200 ° C. for 3 hours, and hot forged, A round bar was produced. The round bar material is kept at 850 ° C. for 1 hour as a normalizing treatment, then air-cooled, and further maintained at 790 ° C. for 6 hours as a softening treatment for easy cutting, and then up to 650 ° C. up to 10 ° C. The sample was cooled at a cooling rate of / hour and softened by allowing it to cool to room temperature and used as materials for various investigations.
[0036]
[Table 1]
[0037]
<Hardness investigation>
In order to measure the tempering hardness after quenching and the tempering hardness after carbonitriding, a cylindrical test piece having a diameter of 20 mm and a length of 100 mm was produced by machining from a material having a diameter of 50 mm.
[0038]
The quenching treatment was performed by heating in a salt furnace, soaking at 850 ° C. for 30 minutes, and then quenching in 80 ° C. oil. After this, as a tempering process, heating was similarly performed in a salt furnace, and a tempering process was performed in which air-cooling was performed after holding at 350 ° C. for 2 hours.
[0039]
In addition, carbonitriding is performed at 850 ° C. using a gas atmosphere furnace used in a normal production process, with a carbon potential of 1.0 to 1.2% and an addition amount of NH 3 of 5 to 10% in an RX gas atmosphere. For 60 minutes and then quenched in oil. Thereafter, tempering was performed at 350 ° C. for 120 minutes.
[0040]
A 10 mm-thick disc-shaped test piece is cut from the center portion of the test piece that has been subjected to quenching and tempering treatment or the test piece that has been subjected to tempering treatment after carbonitriding, and both surfaces are polished by wet polishing to obtain hardness. A test specimen for measurement was prepared.
[0041]
The hardness was measured using a Rockwell hardness tester at a position 2 mm deep from the surface in the cross section of the test piece, and an average value of 7 points was obtained as the tempering hardness.
[0042]
<Rolling fatigue life test>
In order to confirm the performance as a bearing part, a fatigue test was performed by a thrust type rolling fatigue life tester, and the life evaluation of each material was performed.
[0043]
The test piece used for the life evaluation was roughly machined from a round bar material having a diameter of 50 mm by machining into a ring-shaped thrust type rolling fatigue life test piece having an outer diameter of 47 mm, an inner diameter of 29 mm and a thickness of 7 mm.
[0044]
Quenching and tempering treatment and carbonitriding treatment were performed as the heat treatment of the test piece after the rough machining. The actual furnace used in the normal production process was used for the treatment.
[0045]
For quenching and tempering treatment, a gas atmosphere furnace was used, and after holding at 850 ° C. for 30 minutes while controlling the carbon potential so that decarburization and carburization would not occur based on the carbon content of each steel in the RX gas atmosphere, Quenched inside. Thereafter, tempering was performed at 350 ° C. for 120 minutes.
[0046]
Carbonitriding was performed under the same conditions as the above hardness test pieces.
After the heat treatment was completed, both sides of the test piece were polished and finished in a mirror state. In the carbonitrided test piece, the machining allowance during polishing was 0.1 mm on both sides.
[0047]
The rolling fatigue life test was carried out using a thrust type rolling fatigue life tester. Table 2 shows the conditions of the test. The test was carried out in a normal temperature environment and a 200 ° C. environment, and the test was also performed in an environment in which a foreign matter mixed environment was reproduced.
[0048]
[Table 2]
[0049]
The fatigue test was repeated 15 times under the same conditions, and the lifetime at which the cumulative damage probability in the Weibull probability was 10% was determined as the lifetime of each material. In Table 1, Comparative Example No. 14 is a general-purpose SUJ2, and the life value of each material is described in a ratio when the life of the quenched and tempered material is 1.0.
[0050]
<Carbide>
Thrust-type rolling fatigue life test pieces were used to measure carbides present in the steel. In a test piece processed into a thrust type rolling fatigue life test piece by performing various heat treatments, a ring cross-section was cut to produce a micro test piece for structure observation. This specimen was mirror-finished and further corroded with a picral corrosion solution for observation of carbides. In this micro sample, the carbides at a depth of 0.1 mm from the surface layer of the rolling surface were observed with an optical microscope, and the maximum carbides in a visual field area of 50 mm 2 were measured.
[0051]
Tables 3 and 4 show the results of the 350 ° C. tempering hardness, the rolling fatigue life at room temperature and 200 ° C., the rolling fatigue life under the foreign matter mixing conditions, and the maximum carbide size.
[0052]
[Table 3]
[0053]
[Table 4]
[0054]
From the results of Tables 3 and 4 above, it was found that in the present invention examples having the composition range of the present invention, the hardness was HRC58 or higher even when tempering at 350 ° C. was performed. Moreover, in the example of this invention, it turned out that the rolling fatigue life in 200 degreeC and the rolling fatigue life in a foreign material condition become high compared with a comparative example, even when performing simple quenching and tempering treatment (HT). It has also been found that an excellent rolling fatigue life can be obtained even when carbonitriding is performed instead of quenching. Moreover, in the example of this invention, it turned out that the maximum dimension of the carbide | carbonized_material in 0.1 mm depth from the surface layer of a rolling surface will be 8.0 micrometers or less.
[0055]
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0056]
【The invention's effect】
As described above, the present inventors have found an optimal composition element and its content, and by performing quenching and tempering treatment, excellent rolling fatigue under the condition of foreign matter mixing without performing carbonitriding treatment An inexpensive high-temperature rolling bearing part that can obtain a long life and obtain a high hardness even when subjected to a tempering treatment at a high temperature (for example, 350 ° C.) could be obtained.
Claims (2)
前記内輪、前記外輪および前記転動体の少なくともいずれかが、合金元素の含有量が質量%で、Cを0.6%以上1.3%以下、Siを0.76%以上3.0%以下、Mnを0.2%以上1.5%以下、Pを0.03%以下、Sを0.03%以下、Crを0.5%以上3.0%以下、Moを0.05%以上0.25%未満、Alを0.050%以下、Tiを0.003%以下、Oを0.0015%以下、Nを0.015%以下含み、残部がFeおよび不可避不純物からなる鋼材よりなり、かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された構成を有し、かつ前記焼戻し処理後の硬さがHRC58以上であり、かつ最大の炭化物寸法が8μm以下であることを特徴とする、高温用転がり軸受部品。A high temperature rolling bearing part having an inner ring, an outer ring and rolling elements,
At least one of the inner ring, the outer ring, and the rolling element has an alloy element content of mass%, C is 0.6% or more and 1.3% or less, and Si is 0.76 % or more and 3.0% or less. Mn is 0.2% or more and 1.5% or less, P is 0.03% or less, S is 0.03% or less, Cr is 0.5% or more and 3.0% or less, and Mo is 0.05% or more. Less than 0.25%, Al is 0.050% or less, Ti is 0.003% or less, O is 0.0015% or less, N is 0.015% or less, and the balance is made of steel consisting of Fe and inevitable impurities. And having a structure tempered after quenching or carbonitriding, and having a hardness after the tempering of HRC58 or more and a maximum carbide size of 8 μm or less. Rolling bearing parts.
前記内輪、前記外輪および前記転動体の少なくともいずれかが、合金元素の含有量が質量%で、Cを0.6%以上1.3%以下、Siを0.76%以上3.0%以下、Mnを0.2%以上1.5%以下、Pを0.03%以下、Sを0.03%以下、Crを0.5%以上3.0%以下、Moを0.05%以上0.25%未満、Alを0.050%以下、Tiを0.003%以下、Oを0.0015%以下、Nを0.015%以下で各元素を少なくとも含み、残部がFeからなる鋼材よりなり、かつ焼入れ処理後または浸炭窒化処理後に焼戻し処理された構成を有し、かつ前記焼戻し処理後の硬さがHRC58以上であり、かつ最大の炭化物寸法が8μm以下であることを特徴とする、高温用転がり軸受部品。A high temperature rolling bearing part having an inner ring, an outer ring and rolling elements,
At least one of the inner ring, the outer ring, and the rolling element has an alloy element content of mass%, C is 0.6% or more and 1.3% or less, and Si is 0.76 % or more and 3.0% or less. Mn is 0.2% or more and 1.5% or less, P is 0.03% or less, S is 0.03% or less, Cr is 0.5% or more and 3.0% or less, and Mo is 0.05% or more. Steel material comprising less than 0.25%, Al of 0.050% or less, Ti of 0.003% or less, O of 0.0015% or less, N of 0.015% or less and at least each element, and the balance being Fe And having a structure tempered after quenching or carbonitriding, and having a hardness after the tempering of HRC58 or more and a maximum carbide size of 8 μm or less. Rolling bearing parts for high temperatures.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32177499A JP4343357B2 (en) | 1998-11-11 | 1999-11-11 | Rolling bearing parts for high temperature |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-320436 | 1998-11-11 | ||
JP32043698 | 1998-11-11 | ||
JP32177499A JP4343357B2 (en) | 1998-11-11 | 1999-11-11 | Rolling bearing parts for high temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000204445A JP2000204445A (en) | 2000-07-25 |
JP4343357B2 true JP4343357B2 (en) | 2009-10-14 |
Family
ID=26570085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32177499A Expired - Lifetime JP4343357B2 (en) | 1998-11-11 | 1999-11-11 | Rolling bearing parts for high temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4343357B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1925680A3 (en) | 2001-09-26 | 2008-06-11 | NTN Corporation | Multi-row thrust roller bearing |
JP2003156050A (en) * | 2001-11-22 | 2003-05-30 | Ntn Corp | Thrust needle bearing |
JP4252837B2 (en) | 2003-04-16 | 2009-04-08 | Jfeスチール株式会社 | Steel material with excellent rolling fatigue life and method for producing the same |
US7435308B2 (en) * | 2005-05-27 | 2008-10-14 | Nsk Ltd. | Rolling bearing |
JP4781847B2 (en) * | 2006-02-28 | 2011-09-28 | Jfeスチール株式会社 | Method for producing steel member with excellent rolling fatigue |
AT502397B1 (en) * | 2006-03-20 | 2007-03-15 | Boehler Edelstahl | Alloy used for preparing bearing component and bearing of roller for aircraft, contains carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten, niobium, tantalum, nickel, cobalt, aluminum, nitrogen and iron |
JP5425736B2 (en) * | 2010-09-15 | 2014-02-26 | 株式会社神戸製鋼所 | Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties |
WO2012073458A1 (en) * | 2010-11-29 | 2012-06-07 | Jfeスチール株式会社 | Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering |
US9034120B2 (en) * | 2010-11-29 | 2015-05-19 | Jfe Steel Corporation | Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering |
GB2513881B (en) * | 2013-05-08 | 2015-09-02 | Skf Ab | Steel alloy |
-
1999
- 1999-11-11 JP JP32177499A patent/JP4343357B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000204445A (en) | 2000-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10370747B2 (en) | Nitrided component | |
KR101396898B1 (en) | Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same | |
JP2002115030A (en) | Rolling bearing for spindle of machine tool | |
US6808571B2 (en) | Heat resistant carburized rolling bearing component and manufacturing method thereof | |
JP4941252B2 (en) | Case-hardened steel for power transmission parts | |
JP5886119B2 (en) | Case-hardened steel | |
JP4343357B2 (en) | Rolling bearing parts for high temperature | |
JP2008001943A (en) | Rolling and/or sliding parts and manufacturing method thereof | |
JP2015042766A (en) | Case hardened steel material | |
JP3232664B2 (en) | Rolling bearing | |
KR100497828B1 (en) | Steel for large bearing and parts for large bearing | |
JP3713975B2 (en) | Steel for bearing | |
JP4050512B2 (en) | Manufacturing method of carburizing and quenching member and carburizing and quenching member | |
JP2005042188A (en) | Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment | |
JP5336972B2 (en) | Nitriding steel and nitride parts | |
JP4458592B2 (en) | Rolling bearing parts for high temperature | |
JP4343356B2 (en) | Rolling bearing parts for high temperature | |
JP7464822B2 (en) | Steel for bearing raceways and bearing raceways | |
JP3241921B2 (en) | Wear-resistant and corrosion-resistant bearing steel with excellent rolling fatigue characteristics | |
WO2000028102A1 (en) | High-temperature rolling bearing part | |
JP7464821B2 (en) | Steel for bearing raceways and bearing raceways | |
JP2022170056A (en) | steel | |
JP5119717B2 (en) | Method for manufacturing rolling bearing component and rolling bearing | |
JP2008266683A (en) | Method for producing rolling bearing constituting member, and rolling bearing | |
JP2016188422A (en) | Carburized component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090430 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4343357 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |