[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4238616B2 - 類似文書検索方法および類似文書検索装置 - Google Patents

類似文書検索方法および類似文書検索装置 Download PDF

Info

Publication number
JP4238616B2
JP4238616B2 JP2003089633A JP2003089633A JP4238616B2 JP 4238616 B2 JP4238616 B2 JP 4238616B2 JP 2003089633 A JP2003089633 A JP 2003089633A JP 2003089633 A JP2003089633 A JP 2003089633A JP 4238616 B2 JP4238616 B2 JP 4238616B2
Authority
JP
Japan
Prior art keywords
document
block
similarity
text
program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089633A
Other languages
English (en)
Other versions
JP2004295712A (ja
Inventor
祐一 小川
忠孝 松林
伸也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003089633A priority Critical patent/JP4238616B2/ja
Priority to US10/671,718 priority patent/US20040193584A1/en
Publication of JP2004295712A publication Critical patent/JP2004295712A/ja
Application granted granted Critical
Publication of JP4238616B2 publication Critical patent/JP4238616B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/3331Query processing
    • G06F16/334Query execution

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ユーザが指定した文書間の類似性の判定指標を算出する文書間関連度算出方法とこれを用いた類似文書検索方法に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータやインターネットの普及に伴い、電子化された文書が大量に存在するようになった。その大量の文書の中からユーザーが目的とする文書を効率よく検索する文書検索技術が盛んに開発されており、中でも検索条件として入力された文書(以下、種文書と呼ぶ)と類似した文書を検索する類似文書検索が注目されている。
【0003】
この類似文書検索に関して、特開平9−160928号公報には、種文書を構成する文と、種文書に対する類似度を算出する文書(以下、対象文書と呼ぶ)を構成する文の全組み合わせに対して文間の類似度を算出し、それらの類似度を加算することで文書全体の類似度を算出する技術が開示されている。例えば、種文書がA、Bの2文で構成され、対象文書がC、D、Eの3文で構成されている場合、種文書に関する対象文書の類似度は、(AとCの類似度)、(AとDの類似度)、(AとEの類似度)、(BとCの類似度)、(BとDの類似度)、(BとEの類似度)の和として算出される。これにより、種文書に関する内容が対象文書の全体で類似している場合に高い類似度の値が算出される。
【0004】
【特許文献1】
特開平9−160928号公報
【発明が解決しようとする課題】
しかし、上記従来技術では、ある文間の類似度が極端に高い場合、他の文間の類似度が低くても文書全体の類似度としては高くなってしまう場合がある。すなわち、ある対象文書に対して高い類似度が算出された場合、対象文書の全体が類似している場合と対象文書の一部が類似している場合が考えられる。検索者はこれらの違いを区別できないため、ユーザは目的に応じた種文書に関する効率的な検索が行なえない。例えば、種文書に記載された内容に関して幅広く情報を得るために文書全体で類似している対象文書を参照したい場合、上記従来技術を用いて算出された類似度では判断できない。
【0005】
本発明の目的は、文書の類似性を判断するための指標を提示する類似文書検索方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、予め記憶された検索対象文書の中から文書を検索する検索条件として入力された種文書に含まれる文字列を抽出し、対象文書を複数の部分に分割して、分割した対象文書の各部分に含まれる文字列を抽出し、これら文字列を比較して、前記分割された部分ごとに前記種文書に対する類似度を算出するとともに、その類似度と予め定められた閾値とを比較して、分割された各部分が種文書に適合している部分であるか否かの判定結果をもとに、対象文書の前記種文書に対する詳細度を算出する構成を採用した。
【0007】
【発明の実施の形態】
以下に、本発明の第一の実施例について説明する。
【0008】
図1は、本実施例で示す文書検索システムの全体構成図を示す。本システムは、ディスプレイ100、キーボード101、中央演算処理装置(CPU)102、磁気ディスク装置103、フレキシブルディスクドライブ(FDD)104、主メモリ105、これらを結ぶバス106および他の機器と本システムを接続するネットワーク107から構成される。
【0009】
磁気ディスク装置103は二次記憶装置の一つであり、テキスト170が格納される。FDD104を介してフレキシブルディスク108に格納されている情報が、主メモリ105あるいは磁気ディスク装置103へ読み込まれる。
【0010】
主メモリ105には、システム制御プログラム110、登録制御プログラム111、検索制御プログラム112、文書ファイル取得プログラム120、テキスト登録プログラム121、種文書解析プログラム130、テキスト読込プログラム131、類似度算出プログラム132、詳細度算出制御プログラム133、ブロック分割プログラム140、ブロック別類似度算出プログラム141、詳細度算出プログラム142、結果出力プログラム134及び共有ライブラリ150が記憶され、またワークエリア160が確保される。なお、共有ライブラリ150は、特徴語抽出プログラム151で構成される。
【0011】
システム制御プログラム110は、登録制御プログラム111および検索制御プログラム112で構成される。登録制御プログラム111は、文書ファイル取得プログラム120およびテキスト登録プログラム121で構成される。検索制御プログラム112は、種文書解析プログラム130、テキスト読込プログラム131、類似度算出プログラム132、詳細度算出制御プログラム133および結果出力プログラム134で構成されるとともに、特徴語抽出プログラム151を呼び出す構成をとる。詳細度算出制御プログラム133は、ブロック分割プログラム140、ブロック別類似度算出プログラム141および詳細度算出プログラム142で構成されるとともに、特徴語抽出プログラム151を呼び出す構成をとる。
【0012】
登録制御プログラム111および検索制御プログラム112は、ユーザによるキーボード101からの入力に応じてシステム制御プログラム110によって起動される。登録制御プログラム111は、文書ファイル取得プログラム120とテキスト登録プログラム121を制御する。検索制御プログラム112は、種文書解析プログラム130、特徴語抽出プログラム151、テキスト読込プログラム131、類似度算出プログラム132、詳細度算出制御プログラム133および結果出力プログラム134を制御する。
【0013】
本実施例では、キーボード101から入力されたコマンドにより登録制御プログラム111および検索制御プログラム112が起動されるものとしたが、他の入力装置を介して入力されたコマンドあるいはイベントにより起動されるものであってもかまわない。
【0014】
また、これらのプログラムを磁気ディスク103、フレキシブルディスク108、MO、CD-ROM、DVD等の記憶媒体(図1には示していない)に格納し、駆動装置を介して主メモリ105に読み込み、CPU102によって実行することが可能である。また、これらのプログラムをネットワーク107を介して主メモリ105に読み込み、CPU102によって実行することも可能である。
【0015】
また、本実施例ではテキスト170は磁気ディスク装置103に格納されるものとしたが、フレキシブルディスク108、MO、CD-ROM、DVD等の記憶媒体(図1には示していない)に格納し、駆動装置を介して主メモリ105に読み込み利用することも可能であるし、あるいはネットワーク107を介して、他のシステムに接続された記憶媒体(図1には示していない)に格納されるものとしてもよい。また、さらにはネットワーク107に直接接続された記憶媒体に格納されるものとしても構わない。
【0016】
次に、システム制御プログラム110の処理手順について説明する。システム制御プログラム110は、まずキーボード101から入力されたコマンドを解析する。この結果が登録実行のコマンドであると解析された場合には、登録制御プログラム111を起動して、文書の登録を行う。また、検索実行のコマンドであると解析された場合には、検索制御プログラム112を起動して、検索条件として入力された複数の単語や文、文章あるいは文書(以下、まとめて種文書と呼ぶ)に関連した内容を含む文書の検索を行う。
【0017】
次に、システム制御プログラム110により起動される登録制御プログラム111の処理手順について説明する。登録制御プログラム111は、まず文書ファイル取得プログラム120を起動し、FDD104を介してフレキシブルディスク108に格納されている文書ファイルを読み込む。次に、テキスト登録プログラム121を起動して、前記文書ファイル取得プログラム120で読み込まれた文書ファイルからテキストを抽出し、磁気ディスク装置103にテキスト170として格納する。
【0018】
なお、文書ファイルはフレキシブルディスク108に格納されているものとしたが、MO、CD-ROM、DVD等の記憶媒体(図1には示していない)に格納されるものとしてもよいし、ネットワーク107を介して、他のシステムに接続された記憶媒体(図1には示していない)に格納されるものとしてもよい。また、文書ファイル取得プログラム120で読み込まれた文書ファイルはテキストが抽出できるものならばよく、テキストファイルとして保存されているものであってもよいし、アプリケーションソフトの保存形式であってもよい。
【0019】
システム制御プログラム110により起動される検索制御プログラム112の処理手順について図2を用いて説明する。検索制御プログラム112は、まず種文書解析プログラム130を起動し、検索条件で指定された種文書を読み込み、ワークエリア160に格納する(ステップ200)。次に、特徴語抽出プログラム151を起動し、前記種文書解析プログラム130によりワークエリア160に格納された種文書から自立した意味を持つ文字列(以下、特徴語と呼ぶ)を抽出し、ワークエリア160に格納する(ステップ210)。
【0020】
テキスト170に含まれるすべてのテキストに対して、ステップ221〜ステップ223を繰り返し実行する(ステップ220)。まず、テキスト読込プログラム131を起動し、磁気ディスク装置103に格納されているテキスト170からテキストを1つ読み込む(ステップ221)。次に、類似度算出プログラム132を起動し、前記テキスト読込プログラム131により読み込まれたテキストに対し、一般的な類似文書検索技術を用いて種文書に対するテキストの類似度を算出し、ワークエリア160に格納する(ステップ222)。次に、詳細度算出制御プログラム133を起動し、前記テキスト読込プログラム131により読み込まれたテキスト全体に対し、種文書に関する内容が占める割合(以下、詳細度と呼ぶ)を算出し、ワークエリア160に格納する(ステップ223)。
【0021】
そして、結果出力プログラム134を起動し、前記類似度算出プログラム132により算出された類似度と前記詳細度算出制御プログラム133により算出された詳細度を各テキストに対して出力する(ステップ230)。
【0022】
なお、特徴語抽出プログラム151により抽出される特徴語は、漢字やカタカナといった文字種間や文章中に存在するスペースなどの区切り文字により分割された文字列であってもよいし、形態素解析により抽出される単語やn-gramとして抽出される文字列であってもよいし、その他の方法により抽出された文字列であってもかまわない。
【0023】
ステップ222における類似度算出処理は、上記従来技術に記載した類似度算出方法や、ベクトル空間法における余弦尺度を用いた類似度算出方法などを適用することができる。
【0024】
また、類似度および詳細度が算出されるテキスト170は、磁気ディスク装置103に格納されるものとしたが、フレキシブルディスク108、MO、CD−ROM、DVD等の記憶媒体(図1には示していない)に格納されるものとして、あるいはネットワーク107を介して、他のシステムに接続された記憶媒体(図1には示していない)に格納されるものとしてもよい。
【0025】
前記ステップ220ではテキスト170に含まれるすべてのテキストに対して、ステップ221〜ステップ225を繰り返すものとしたが、テキスト170に含まれる一部のテキストに対して繰り返されるものであってもよい。
【0026】
本実施例ではテキスト読込プログラム131によって読み込まれたテキスト全体に対して類似度および詳細度を算出するものとしたが、テキスト全体でなくてもよく、テキストの一部を対象に本発明を適用することが可能である。
【0027】
次に、検索制御プログラム112により起動される詳細度算出制御プログラム133の処理手順(図2のステップ223の詳細)について、図3に示すPAD図を用いて説明する。
【0028】
まず、種文書に適合しているブロックの数(以下、適合ブロック数と呼ぶ)とテキストに含まれるブロックの数(以下、総ブロック数と呼ぶ)の初期値をともに0と設定する(ステップ300)。次に、ブロック分割プログラム140を起動し、前記テキスト読込プログラム131で読み込まれたテキストを文、段落、章などの部分(以下、これらをまとめてブロックと呼ぶ)に分割する(ステップ310)。
【0029】
前記ステップ310で分割された各ブロックに対して、それぞれステップ321〜ステップ325を繰り返し実行する(ステップ320)。まず、特徴語抽出プログラム151を起動し、ステップ310で分割された各ブロックから特徴語を抽出する(ステップ321)。次に、ブロック別類似度算出プログラム141を起動し、図2のステップ210で抽出された種文書の特徴語と、ステップ321で抽出された各ブロックの特徴語から、種文書に対する各ブロックの類似度を式1を用いて算出する(ステップ322)。
【0030】
【式1】
次に、ステップ322で算出されたブロックの類似度を、種文書に対する適合性を判定する際の基準値(以下、種文書適合性判定閾値と呼ぶ)と比較する(ステップ323)。この結果、ブロックの類似度が種文書適合性判定閾値以上であった場合、そのブロックを種文書に適合しているブロック(以下、適合ブロック)と判定し、適合ブロック数を1加算するとともに(ステップ324)、総ブロック数を1加算する(ステップ325)。ステップ323において、ブロックの類似度が閾値以下であった場合は、適合ブロック数は1加算されず、総ブロック数のみが1加算される(ステップ325)。
【0031】
ステップ310で分割されたすべてのブロックに対して、ステップ321〜325の処理を終了したら、詳細度算出プログラム142を起動し、ステップ324およびステップ325で計数された適合ブロック数と総ブロック数から、式2を用いて種文書に対する該テキストの詳細度を算出する(ステップ330)。
【0032】
【式2】
最後に、ステップ330で算出された種文書に対する該テキストの詳細度をワークエリア160に格納する(ステップ340)。
【0033】
なお、上記ステップ322におけるブロックの類似度の算出には、式1に示した類似度算出式を適用したが、ベクトル空間法における余弦尺度など他の類似度算出式を適用してもよい。
【0034】
次に、本実施例における文書検索システムの検索処理の流れについて、図4および図5を用いて説明する。
【0035】
図4に示した例は、文書1「In The Sports Championship Cup, Country-A broke through the primary league for the first time. Country-A played a match against Country-B of the Championship ranking highest in H group at the first game, and though troubled, and was a draw. Then, both the Country-C game and the Country-D game gained a victory with offensive strategy, and passed the brilliant H group by the 1st place. A final tournament is due to play a match against Country-E.」および文書2「Country-A is still in the state of economic depression. If there is bright news that induces an economic big effect, can Country-A escape from economic depression? The Sports Championship Cup was held for the first time in Country-A, and Country-A passed H group including Country-B, Country-C, and Country-D by the 1st place on the other day. However, it was not able to become an explosive to economic recovery and an economic big effect could not be acquired.」(文書2は図4に示していない)が磁気ディスク装置103に格納された類似文書検索システムにおいて、種文書として「The Sports Championship Cup held for the first time in Country-A , and Country-A passed H group including Country-B, Country-C, and Country-D by the 1st place.」が入力された場合の例を示している。なお、本図は、種文書解析プログラム130により、検索条件として入力された種文書が文書400として読み込まれ、テキスト読込プログラム131により、文書1がテキスト410として読み込まれた状態である。
【0036】
まず、類似度算出プログラム132が実行され、前記テキスト読込プログラム131により読み込まれたテキスト410と前記種文書解析プログラム130により読み込まれた種文書400から、種文書に対するテキスト410の類似度を算出する(図2のステップ222)。本実施例では、類似度を上記従来技術に記載された技術を適用して算出し、類似度算出結果420として類似度が“1.06”と算出され、ワークエリア160に格納される。ここで、種文書に含まれる文の重みはすべて“1”とする。
【0037】
次に、ブロック分割プログラム140が実行され、テキスト410をブロック単位へ分割する(図3のステップ310)。本図に示した例では、テキスト410に対し“.”(ピリオド)を区切り文字としてブロック単位に分割しており、この結果としてブロック分割結果430が出力されている。本図に示したブロック分割結果430は、ブロック1「In The Sports Championship Cup, Country-A broke through the primary league for the first time.」、ブロック2「Country-A played a match against Country-B of the Championship ranking highest in H group at the first game, and though troubled, and was a draw.」、ブロック3「Then, both the Country-C game and the Country-D game gained a victory with offensive strategy, and passed the brilliant H group by the 1st place.」およびブロック4「A final tournament is due to play a match against Country-E.」であり、これらのブロックがワークエリア160に格納されている。
【0038】
一方、特徴語抽出プログラム151が実行され、前記種文書解析プログラム130により読み込まれた種文書400から “Sports”、“Championship”、“Cup”、“held”、“first”、“time”、“Country-A”、“passed”、“group”、“including”、“Country-B”、“Country-C”、“Country-D”、“1st”、“place”を特徴語401として抽出する(図2のステップ210)。また、ブロック分割結果430のブロック1から、“Sports”、“Championship”、“Cup”、“Country-A”、“broke”、“through”、“primary”、“league”、“first”、“time”が特徴語440として抽出される(図3のステップ321)。同様に、ブロック2から“Country-A”、“played”、“match”、“against”、“first”、“game”、“Country-B”、“Championship”、“ranking”、“highest”、“group”、“though”、“troubled”、“draw”が特徴語441として抽出され、ブロック3からは“Country-C”、“game”、“Country-D”、“gained”、“victory”、“offensive”、“strategy”、“passed”、“brilliant”、“group”、“1st”、“place”が特徴語442として抽出され、ブロック4からは“final”、“tournament”、“play”、“match”、“against”、“Country-E”が特徴語443として抽出される。
【0039】
次に、ブロック別類似度算出プログラム141が実行され、ブロック1の特徴語440と種文書の特徴語401から、種文書に対するブロック1の類似度を算出する(図3のステップ322)。本図で示した例では、前記特徴語抽出プログラム151で抽出された種文書の特徴語401とブロック1の特徴語440に関して、“Sports”、“Championship”、“Cup”、“Country-A”、“first”、“time”の6つの共通の特徴語が存在し、種文書に含まれる特徴語の個数が15個であることから、前述の式1により、“0.40”がブロック1の類似度算出結果450として算出される。
【0040】
同様に、ブロック2〜ブロック4についても、それぞれ特徴語抽出プログラム151で抽出された各ブロックの特徴語441〜443と種文書の特徴語401から、ブロック別類似度算出プログラム141により種文書に対する各ブロックの類似度“0.33”、“0.33”、“0.00”が類似度算出結果451〜453として算出される。
【0041】
次に、上記のブロック1の類似度算出結果450が、あらかじめ設定された種文書適合性判定閾値以上であるか否かを判断し(図3のステップ323)、閾値以上であった場合、ブロック1は種文書に対する適合ブロックと判定し、適合ブロック数を1加算する(図3のステップ324)。本図に示した例では、種文書適合性判定閾値を“0.30”と設定しているためブロック1は適合ブロックと判定され、適合ブロック数と総ブロック数をそれぞれ1加算する(図3のステップ324、325)。
【0042】
同様に、ブロック2〜ブロック4についても、図3のステップ323を実行し、ブロック2とブロック3については適合ブロックと判定され、適合ブロック数と総ブロック数が1加算される。またブロック4については非適合ブロックと判定されるため、適合ブロック数は1加算せず総ブロック数のみ1加算される。
【0043】
このように、ブロック1から順に図3のステップ323に示す適合ブロック判定処理を実行した後、適合ブロック数および総ブロック数の算出結果460〜463が順に算出され、適合ブロック数および総ブロック数の算出結果463から文書1の適合ブロック数“3”および総ブロック数“4”が算出される。
【0044】
次に、詳細度算出プログラム142が実行され、適合ブロック数および総ブロック数の算出結果463から、前述の式2を用いることにより、文書1の種文書に対する詳細度が“0.75”と算出され(図3のステップ330)、詳細度算出結果470としてワークエリア160に格納される(図3のステップ340)。
【0045】
同様に文書2に対しても、類似度および詳細度がそれぞれ“1.14”、“0.25”と算出される。
【0046】
磁気ディスク装置103に格納されている文書1および文書2の類似度と詳細度が算出された後、結果出力プログラム134(図4には示していない)が実行され、ワークエリア160に格納されている類似度算出結果と詳細度算出結果が、検索結果一覧表示500(図5)として出力される。図5では、結果出力として、文書1および文書2に対して文書ID、類似度、詳細度および見出しが出力されており、文書1の類似度および詳細度はそれぞれ“1.06”、“0.75”であり、文書2の類似度および詳細度はそれぞれ“1.14”、“0.25”である。
【0047】
ここで、類似度のみでは、文書1の類似度“1.06”と文書2の類似度“1.14”であるから文書2の方を有効であると判断してしまうが、文書1の詳細度“0.75”と文書2の詳細度“0.25”から文書1の方が文書2より種文書に関する内容について全体で適合しているものと判断できる。したがって、出力された詳細度から文書1を優先して参照することで効率のいい検索が実現できる。
【0048】
なお、図5に示した例では、検索結果一覧表示として文書ID、類似度、詳細度および見出しを出力するものとしたが、登録処理時に日付など各文書の属性情報も登録しておき、結果出力プログラム134でそれらの情報を出力してもよい。また、類似度および詳細度をともに出力するものとしたが、詳細度だけを出力するものとしてもよい。
【0049】
また、図5に示した例では、各文書の出力順は類似度の降順で出力するものとしたが、詳細度の降順で出力するものとしてもよいし、これらを図6に示すように表示オプションで選択できるようにしてもよい。図6に示した例では、表示オプションとして類似度の降順で表示するかあるいは詳細度の降順で表示するかを選択可能としたインターフェースを備えており、図6では詳細度順が選択されていることにより詳細度の高い順に文書1と文書2が表示されている。
【0050】
また、図5および図6に示した例では、テキスト170として磁気ディスク103に格納されているすべてのテキストに対して結果を表示するものとしたが、図7に示すように検索者およびシステム管理者によって予め設定された類似度および詳細度に関する閾値により、検索結果として表示する対象文書を決定してもよい。図7に示した例では、類似度および詳細度に関する閾値を設定するインターフェースを備えており、類似度の閾値が“0.00”以上および詳細度の閾値が“0.50”以上と設定されているため、その条件を満たしている文書1のみの結果が表示されている。
【0051】
また、図5、図6および図7に示した例では、類似度および詳細度が検索結果の一覧表示で出力されるものとしたが、図8のように指定された文書の全文が表示されるととともに、類似度あるいは詳細度の少なくとも一方が出力されるようにしてもよい。図8では、文書1の全文を表示するとともに、類似度および詳細度を表示して出力している。また、類似度および詳細度に関してあらかじめ設定された閾値以上の文書に対しては図8に示すように類似度、詳細度および全文が出力され、閾値以下の文書に対しては図5および図6に示すように一覧表示として文書ID、類似度、詳細度、見出しが出力されるものとしてもよい。
【0052】
また、種文書に対する対象文書の類似度算出方法において、類似度算出プログラム132を実行せずに(つまり図2のステップ222を実行せずに)、ブロック別類似度算出プログラム141で算出された類似度結果450〜453を加算することにより(図3のステップ322)、対象文書の類似度を算出してもよい。
【0053】
また、本実施例ではテキスト170のすべてのテキストに対して、類似度算出プログラム132(図2のステップ222)および詳細度算出プログラム133(同ステップ223)を実行したが、類似度算出プログラム132で算出された類似度があらかじめ設定された閾値以上のテキストに対して詳細度算出プログラム133を実行してもよい。逆に、詳細度算出プログラム133で算出された詳細度があらかじめ設定された閾値以上のテキストに対して類似度算出プログラム132を実行してもよい。これにより、類似度あるいは詳細度の算出対象となるテキスト数を削減することができ、高速に検索を行うことができる。
【0054】
また、本実施例では、予め蓄積された文書に対して検索条件との関連性を判定する文書検索システムとして説明したが、特開平2000−339346号公報に記載されている類似文書検索配送システムにおける適合度算出プログラムを、本発明における詳細度算出制御プログラムに置き換えてもよい。
【0055】
このように本発明による詳細度は、予め蓄積された文書に対して検索条件との関連性を判定する文書検索システムだけでなく、1件の対象文書に対して配信条件との関連性を判定する文書配信システムにも適用できる。
【0056】
以上説明したように、本発明の第一の実施例によれば、種文書に関する内容について、対象文書の全体で類似しているのか、あるいは対象文書の一部で類似しているのかを判断できるため、有効な文書を効率よく検索できるようになる。
【0057】
次に、本発明の第二の実施例について説明する。第二の実施例では、検索条件として種文書と全文検索条件の両方が指定された場合における詳細度を算出する。
【0058】
本実施例の文書検索システムは、図1に示した第一の実施例のシステムとほぼ同様の構成であるが、検索制御プログラム112と詳細度算出プログラム133が異なり、図9に示すように、検索制御プログラム112cには全文検索条件解析プログラム130aが加わるとともに、詳細度算出プログラム1330にはブロック別全文検索条件適合度算出プログラム141aが加わる。
【0059】
以下、第一の実施例と異なる検索制御プログラム112cの処理手順について図10を用いて説明する。ここで第一の実施例(図2)と異なるのは、種文書解析プログラム130が実行された後に全文検索条件解析プログラム130aが実行されること、及び類似度算出プログラム132が実行された後に詳細度算出制御プログラム1330が実行されることである。
【0060】
検索制御プログラム112cは、まず種文書解析プログラム130を起動し、検索条件で指定された種文書を読み込み、ワークエリア160に格納する(ステップ200)。次に、全文検索条件解析プログラム130aを起動し、検索条件で指定された全文検索条件を読み込む。この全文検索条件に含まれるAND、OR、NOTの論理演算子を識別することによりその構造を解析し、和積標準形で表された論理演算式(以下、解析済論理演算式と呼ぶ)をワークエリア160に格納する(ステップ200a)。次に、特徴語抽出プログラム151を起動し、前記種文書解析プログラム130によりワークエリア160に格納された種文書から特徴語を抽出し、ワークエリア160に格納する(ステップ210)。
【0061】
次に、テキスト170に含まれるすべてのテキストに対して、ステップ221〜ステップ223を繰り返し実行する(ステップ220)。まず、テキスト読込プログラム131を起動し、磁気ディスク装置103に格納されているテキスト170からテキストを1つ読み込む(ステップ221)。次に、類似度算出プログラム132を起動し、前記テキスト読込プログラム131により読み込まれたテキストに対し、種文書に対するテキストの類似度を算出し、ワークエリア160に格納する(ステップ222)。詳細度算出制御プログラム1330を起動し、検索条件に対する前記テキスト読込プログラム131により読み込まれたテキストの詳細度を算出し、ワークエリア160に格納する(ステップ223c)。
【0062】
そして、結果出力プログラム134を起動し、前記類似度算出プログラム132により算出された類似度と前記詳細度算出制御プログラム1330により算出された詳細度を各テキストに対して出力する(ステップ230)。
【0063】
次に、詳細度算出制御プログラム1330の処理手順について図11を用いて説明する。ここで第一の実施例(図3)と異なるのは、ブロック別類似度算出プログラム141が実行された後にブロック別全文検索条件適合度算出プログラム141aが実行されることと、図3に示す適合性判定ステップ323において、種文書適合性判定閾値のみを適合ブロック判定基準に用いるのではなく、ブロック別全文検索条件適合度算出プログラム141aによって算出された全文検索条件適合度に関する閾値(以下、全文検索条件適合性判定閾値と呼ぶ)も適合ブロック判定基準に用いることである。
【0064】
まず、テキストの適合ブロック数とテキストに含まれる総ブロック数の初期値をともに0に設定する(ステップ300)。ブロック分割プログラム140を起動し、ステップ221(図10)において読み込まれたテキストをブロックに分割する(ステップ310)。
【0065】
次に、ステップ310で分割された各ブロックに対して、それぞれステップ321〜325を繰り返し実行する(ステップ320)。まず、特徴語抽出プログラム151を起動し、各ブロックから特徴語を抽出する(ステップ321)。次に、ブロック別類似度算出プログラム141を起動し、特徴語抽出プログラム151により抽出された種文書の特徴語と前記ステップ321で抽出された各ブロックの特徴語から、種文書に対するブロックの類似度を式1を用いて算出する(ステップ322)。
【0066】
【式1】
Figure 0004238616
次に、ブロック別全文検索条件適合度算出プログラム141aを起動し、全文検索条件解析プログラム130aにより読み込まれた解析済論理演算式から、全文検索条件に対するブロックの適合度(以下、全文検索条件適合度と呼ぶ)を算出する(ステップ322a)。
【0067】
次に、前記ブロック別類似度算出プログラム141により算出された各ブロックの類似度を、種文書適合性判定閾値と比較するとともに、ステップ322aで算出されたブロックの全文検索条件適合度を、全文検索条件適合性判定閾値と比較する(ステップ323c)。この比較の結果、あるブロックの類似度が種文書適合性判定閾値以上であり、かつそのブロックの全文検索条件適合度が全文検索条件適合性判定閾値以上の場合、そのブロックを検索条件に対する適合ブロックと判定し、適合ブロック数を1加算するとともに(ステップ324)、総ブロック数を1加算する(ステップ325)。ステップ323cにおいて適合度または類似度のどちらかが閾値以下であった場合は、適合ブロック数は1加算されず、総ブロック数のみが1加算される(ステップ325)。
【0068】
次に、詳細度算出プログラム142を起動し、前記ステップ324およびステップ325で計数された適合ブロック数と総ブロック数から、式2を用いて種文書に対する該テキストの詳細度を算出する(ステップ330)。
【0069】
【式2】
Figure 0004238616
最後に、前記ステップ330で算出された種文書に対する該テキストの詳細度をワークエリア160に格納する(ステップ340)。
【0070】
次に、詳細度算出制御プログラム1330により起動されるブロック別全文検索条件適合度算出プログラム141aの処理手順について説明する。まず、全文検索条件解析プログラム130aにより和積標準形でワークエリア160に読み込まれた解析済論理演算式に対し、AND演算子を境界として分割される単語や論理演算式(以下、部分論理演算式)を抽出する。次に、特徴語抽出プログラム151により抽出された処理対象となるブロックの特徴語が、抽出された各部分論理式の条件と適合するかどうかを判定する。
【0071】
この結果、処理対象のブロックが満たす部分論理演算式の数(以下、適合部分論理式数と呼ぶ)と、解析済論理演算式に含まれる部分論理演算式(以下、総部分論理演算式数と呼ぶ)を計数し、式3より全文検索条件に対するブロックの全文検索条件適合度を算出する。
【0072】
【式3】
Figure 0004238616
なお、ステップ322aにおける、ブロック別全文検索条件適合度算出プログラム141aによるブロックの全文検索条件適合度の算出には、指定された全文検索条件に含まれる部分論理演算式の総数に対し、該ブロックの特徴語により満たされている部分論理式の数の割合を算出したが、特開平11−154164号公報や特開2001−84255号公報に開示されている方法を用いてもよい。
【0073】
以下、本実施例の検索処理におけるブロックの適合性判定について、具体的な処理の流れを図12を用いて説明する。
【0074】
本図に示した例は、文書1「In The Sports Championship Cup, Country-A broke through the primary league for the first time. Country-A played a match against Country-B of the Championship ranking highest in H group at the first game, and though troubled, and was a draw. Then, both the Country-C game and the Country-D game gained a victory with offensive strategy, and passed the brilliant H group by the 1st place. A final tournament is due to play a match against Country-E.」が磁気ディスク装置103に格納された文書検索システムにおいて、種文書として「The Sports Championship Cup held for the first time in Country-A , and Country-A passed H group including Country-B, Country-C, and Country-D by the 1st place.」、全文検索条件として「“Country-A” and “Country-B” and (“Championship” or “tournament”)」が入力された場合の例を示している。なお、本図は、種文書解析プログラム130により検索条件として入力された種文書が文書400として読み込まれ、全文検索条件解析プログラム130aにより検索条件として入力された全文検索条件が解析済論理演算式4000として読み込まれ、テキスト読込プログラム131により文書1がテキスト410として読み込まれた状態である。
【0075】
まず、特徴語抽出プログラム151が実行され、前記種文書解析プログラム130により読み込まれた種文書400から、“Sports”、“Championship”、“Cup”、“held”、“first”、“time”、“Country-A”、“passed”、“group”、“including”、“Country-B”、“Country-C”、“Country-D”、“1st”、“place”を特徴語401として抽出する(図10のステップ210)。次に、ブロック分割プログラム140が実行され、テキスト410をブロック単位へ分割する(図11のステップ310)。本図に示した例では、テキスト410を“.”(ピリオド)を区切り文字としてブロック単位に分割しており、この分割結果から「In The Sports Championship Cup, Country-A broke through the primary league for the first time.」がブロック1の抽出結果4300として出力されている。
【0076】
次に、特徴語抽出プログラム151が実行され、ブロック分割プログラム140で文書1より分割されたブロック1から、“Sports”、“Championship”、“Cup”、“Country-A”、“broke”、“through”、“primary”、“league”、“first”、“time”を特徴語440として抽出する(図11のステップ321)。次に、ブロック別類似度算出プログラム141が実行され、ブロック1の特徴語440と種文書の特徴語401から、種文書に対するブロック1の類似度を算出する(図11のステップ322)。本図で示した例では、特徴語抽出プログラム151で抽出された種文書の特徴語401とブロック1の特徴語440の間で、“Sports”、“Championship”、“Cup”、“Country-A”、“first”、“time”の6つの共通の特徴語が存在し、種文書に含まれる特徴語の個数が15個であることから、前述した式1より、“0.40”がブロック1の類似度算出結果450として算出される。
【0077】
次に、ブロック別全文検索条件適合度算出プログラム141aが実行され、全文検索条件に対するブロック1の全文検索条件適合度を算出する(図11の322a)。本図で示した例では、ブロック1の特徴語440には“Country-A”および“Championship”が含まれており、解析済論理演算式4000「“Country-A” and “Country-B” and (“Championship” or “tournament”)」の部分論理演算式「“Country-A”」、「“Championship” or “tournament”」を満たしている。すなわち、解析済論理演算式4000に含まれる3つの部分論理演算式のうち、2つが満たされていることから、“0.67”がブロック1の全文検索条件適合度算出結果4500として算出される。
【0078】
そして、ブロック1の類似度が種文書適合性判定閾値以上であり、かつブロック1の全文検索条件適合度が全文検索条件適合性閾値以上であるかどうかを判定する(図11のステップ323c)。判定の結果、両方の値が閾値以上である場合は、ブロック1は検索条件に対して適合ブロックと判定される。本図に示した例では、種文書適合性閾値および全文検索条件適合性閾値をそれぞれ“0.30”としており、ブロック1の類似度“0.40”、および詳細度 “0.67”はそれぞれこの条件を満たしているため適合ブロックと判定される。
【0079】
次に、図12に示した、ブロック別全文検索条件適合度算出プログラム141aが行うブロック別全文検索条件適合度算出処理(図11のステップ322a)の詳細について、図13を用いて説明する。
【0080】
本図に示した例では、全文検索条件解析プログラム130aによって読み込まれた解析済論理式4000「“Country-A”and “Country-B”and (“Championship”or“tournament”)」に対し、図12に示したブロック1の特徴語440からブロック1の全文検索適合度を算出する場合の処理の流れを示している。
【0081】
まず、解析済論理演算式4000から部分論理演算式4501を抽出する(ステップ3221)。ここでは、和積標準形で読み込まれた解析済論理演算式がAND演算子を境界として分割され、その分割された単語や論理演算式を、部分論理式として抽出する。本図に示した例では、AND演算子を境界として、解析済論理演算式4000から「“Country-A”」、「“Country-B”」、「“Championship”or“tournament”」が抽出される。
【0082】
次に、ブロック1の特徴語440と前記部分論理演算式抽出ステップ3221によって抽出された部分論理演算式4501から、各部分論理演算式に対するブロックの適合判定を行う(ステップ3221)。そして、判定結果4502を出力する。本図に示した例では、ブロック1の特徴語が“Country-A”、“Championship”を含むことから、ブロック1を満たす部分論理演算式4501は「“Country-A”」、「“Championship”or“tournament”」と判定される。
【0083】
次に、解析済論理演算式4000に対するブロック1の全文検索条件適合度4500を算出する(ステップ3223)。本図に示した例では、前記部分論理演算式適合判定ステップ3222によるブロックの適合判定結果4502から、部分論理式数“3”が計数されると共に、ブロック1が満たす部分論理式数“2”と計数される。この結果、式3より“0.67”が全文検索条件適合度4500として算出される。
【0084】
以上説明したように本発明の第二の実施形態によれば、種文書の内容に対する類似性と全文検索条件に対する適合性の両方を用いて詳細度の算出を行うことにより、検索者の検索目的に応じた、より精度の高い検索条件に関する文書の詳細度を算出することができる。
【0085】
なお本実施例では、検索条件として種文書と全文検索条件の両方を指定する構成を採用したが、全文検索条件のみが指定される場合でもよい。その場合、図9に示した種文書解析プログラム130とブロック別類似度算出プログラム141がなくなるとともに、図11に示したステップ323cの適合ブロックの判定処理に関する判定基準が全文検索条件適合度のみとなる。また、図10に示したステップ222における類似度算出処理は、全文検索条件に関するテキストの類似度として、拡張ブーリアンに基づいた方法や、特開平11−154164号公報に基づいた方法で算出される。
【0086】
次に、第三の実施例について説明する。第三の実施例では、文書ファイルの登録時にブロックごとに抽出された特徴語を、あらかじめブロック別特徴語ファイルとして格納しておき、詳細度の算出時には、そのブロック別特徴語ファイルを読み込むことで詳細度を算出する。
【0087】
本実施例の文書検索システムは、図1に示した第一の実施例のシステムとほぼ同様の構成を取るが、図14に示すように磁気ディスク装置103にブロック別特徴語ファイル171が追加されるとともに、登録制御プログラム111と詳細度算出制御プログラム133の構成が異なり、登録制御プログラム111cにはブロック分割プログラム140とブロック別特徴語登録プログラム1200が加わるとともに、詳細度算出制御プログラム1331にはブロック分割プログラム140の代りに特徴語読込プログラム1400が加わる。
【0088】
以下、第一の実施例とは異なる登録制御プログラム111cの処理手順を図15を用いて説明する。ここで、第一の実施例と異なるのは、テキスト登録プログラム121が実行された後に、ブロック別特徴語ファイル171を作成するために、ブロック分割プログラム140、特徴語抽出プログラム151およびブロック別特徴語登録プログラム1200が実行されることである。
【0089】
登録制御プログラム111cでは、まず文書ファイル取得プログラム120を起動し、FDD104を介してフレキシブルディスク108に格納されている文書ファイルをワークエリア160に読み込む(ステップ700)。次に、テキスト登録プログラム121を起動して、ステップ700で読み込まれた文書ファイルからテキストを抽出し、ワークエリア160に格納するとともにテキスト170として磁気ディスク装置103に格納する(ステップ710)。次に、ブロック分割プログラム140を起動し、ステップ710でワークエリア160に格納されたテキストをブロック単位に分割する(ステップ720)。
【0090】
次に、ステップ720で分割された各ブロックに対して、それぞれステップ731〜ステップ732を繰り返し行う(ステップ730)。まず、特徴語抽出プログラム151を起動し、各ブロックの特徴語を抽出する(ステップ731)。次に、ブロック別特徴語ファイル作成プログラム1200を起動し、ステップ731により各ブロックから抽出された特徴語を、ブロック別特徴語ファイル171に登録する(ステップ732)。
【0091】
以下、第一の実施例と異なる詳細度算出制御プログラム1331の処理手順を図16を用いて説明する。第一の実施例における詳細度算出制御プログラム133の処理手順(図3)と異なるのは、ステップ310がなくなるとともに、ステップ321の代りにステップ321aが加わることである。
【0092】
まず、詳細度算出制御プログラム1331は、まず適合ブロック数と総ブロック数の初期値をともに0と設定する(ステップ300)。次に、1つのテキストに含まれるすべてブロックに対して、それぞれステップ321a〜ステップ325を繰り返し実行する(ステップ320)。
【0093】
まず、特徴語読込プログラム1400を起動し、ブロック別特徴語ファイル171から1ブロック分の特徴語を読み込む(ステップ321a)。次に、ブロック別類似度算出プログラム141を起動し、上述した式1より種文書に対するブロックの類似度を算出する(ステップ322)。次に、ステップ322で算出されたブロックの類似度を種文書適合性判定閾値と比較する(ステップ323)。この結果、ブロックの類似度が種文書適合性判定閾値以上であった場合、そのブロックは適合ブロックと判定され、適合ブロック数を1加算するとともに(ステップ324)、総ブロック数を1加算する(ステップ325)。ステップ323において閾値以下であった場合は、適合ブロック数は1加算されず、総ブロック数のみが1加算される(ステップ325)。
【0094】
次に、詳細度算出プログラム142を起動し、ステップ324およびステップ325で計数された適合ブロック数と総ブロック数から、式2を用いて種文書に対するそのテキストの詳細度を算出する(ステップ330)。次に、ステップ330で算出された種文書に対するそのテキストの詳細度をワークエリア160に格納する(ステップ340)。
【0095】
次に、文書の登録処理におけるブロック別の特徴語をディスク装置103のブロック別特徴語ファイル171に登録する処理の流れについて、図17を用いて説明する。本図に示した例では、文書1「In The Sports Championship Cup, Country-A broke through the primary league for the first time. Country-A played a match against Country-B of the Championship ranking highest in H group at the first game, and though troubled, and was a draw. Then, both the Country-C game and the Country-D game gained a victory with offensive strategy, and passed the brilliant H group by the 1st place. A final tournament is due to play a match against Country-E.」および文書2「Country-A is still in the state of economic depression. If there are bright news that induce an economic big effect, can Country-A escape from economic depression? The Sports Championship Cup was held for the first time in Country-A, and Country-A passed H group including Country-B, Country-C, and Country-D by the 1st place on the other day. However, it was not able to become an explosive to economic recovery and an economic big effect could not be acquired.」が、テキスト読込プログラム131により、それぞれテキスト410およびテキスト900として読み込まれた状態から、文書1および文書2の各ブロックの特徴語をブロック別特徴語ファイル171に登録する処理の流れを説明している。
【0096】
まず、ブロック分割プログラム140が実行され、テキスト読込プログラム131により読み込まれたテキスト410をブロック単位に分割する。本図に示した例では、“.”(ピリオド)を区切り文字としてテキスト410をブロック単位に分割しており、この結果としてブロック分割結果430が出力される。図17に示したブロック分割結果430は、ブロック1「In The Sports Championship Cup, Country-A broke through the primary league for the first time.」、ブロック2「Country-A played a match against the first game and Country-B of the Championship ranking highest in H group, and though troubled, and was a draw.」、ブロック3「Then, both the Country-C game and the Country-D game gained a victory with offensive strategy, and passed the brilliant H group by the 1st place.」およびブロック4「A final tournament is due to play a match against Country-E.」が格納されていることを表している。
【0097】
次に、特徴語抽出プログラム151が実行され、ブロック分割結果430のブロック1から、特徴語440として “Sports”、“Championship”、“Cup”、“Country-A”、“broke”、“through”、“primary”、“league”、“first”、“time”を抽出する。そして、ブロック別特徴語登録プログラム1200が実行され、前記特徴語抽出プログラム151により抽出されたブロック1の特徴語440は、文書1のブロック1の特徴語として、ブロック別特徴語ファイル171に登録される。また、合わせて文書ID“1”およびブロックID“1” もブロック別特徴語ファイル171に登録される。
【0098】
同様にブロック2〜ブロック4についても特徴語抽出プログラム151により特徴語441〜443が抽出され、各ブロックにおいて抽出された特徴語がそれぞれ文書1の各ブロックの特徴語としてブロック別特徴語ファイル171に登録される。
【0099】
同様に文書2についても、テキスト読込プログラム131で読み込まれたテキスト900に対し、ブロック分割プログラム140によりブロック分割結果901が出力され、特徴語抽出プログラム151により各ブロックから特徴語940〜943が抽出され、抽出された特徴語が、ブロック別特徴語登録プログラム1200によりそれぞれ文書2の各ブロックの特徴語としてブロック別特徴語ファイル171に登録される。
【0100】
なお、本図のブロック別特徴語ファイル171に格納されている文書ID“1”および“2”は、それぞれ文書1および文書2に対応している。
【0101】
以上説明したように、本発明の第三の実施例によれば、ブロック別特徴語ファイル171を文書登録時にあらかじめ作成しておくことにより、検索の度にテキストのブロック分割処理およびブロックの特徴語抽出処理を実行する必要がないため、検索時には大量のテキストに対しても高速に詳細度の算出を行うことができる。
【0102】
なお、本実施例においては、テキスト読込プログラム131を起動してテキスト170を読み込み、類似度を算出する構成としたが、テキスト読込プログラム131を呼び出さず、検索制御プログラム112が特徴語読込プログラム1400を呼び出し、ブロック別特徴語ファイル171を読み込んだ値を用いて類似度を算出してもよい。これにより、テキストを読み込まなくてもよくなるため、メモリの使用量を軽減することができる。
【0103】
【発明の効果】
以上説明したように本発明によれば、種文書に関する対象文書の類似度だけでなく、対象文書全体に対して種文書の内容が占める割合を表す詳細度が出力されるようになる。これにより、種文書に関する内容について、対象文書の全体で類似しているのか、あるいは対象文書の一部で類似しているのかを容易に判断できるため、文書を効率よく検索できる。
【図面の簡単な説明】
【図1】本発明の第一の実施例における類似文書検索システムの全体構成を示す図である。
【図2】本発明の第一の実施例における検索制御プログラム112の処理を示すPAD図である。
【図3】本発明の第一の実施例における詳細度算出制御プログラム133の処理を説明するPAD図である。
【図4】本発明の第一の実施例における検索制御プログラム112の具体的な処理の流れを説明する図である。
【図5】本発明の第一の実施例における検索結果一覧画面を示す図である。
【図6】本発明の第一の実施例における検索結果一覧画面を示す図である。
【図7】本発明の第一の実施例における結果出力プログラム134の出力対象文書として、類似度および詳細度の閾値を設定する検索結果一覧画面を示す図である。
【図8】本発明の第一の実施例における、対象文書の全文を表示する画面を示す図である。
【図9】本発明の第二の実施例における類似文書検索システムの全体構成を示す図である。
【図10】本発明の第二の実施例における検索制御プログラム112cの処理を説明するPAD図である。
【図11】本発明の第二の実施例における詳細度算出制御プログラム1330の処理を説明するPAD図である。
【図12】本発明の第二の実施例の検索制御プログラム112cにおける適合ブロック判定処理の具体的な流れを説明する図である。
【図13】本発明の第二の実施例の全文検索条件適合度算出プログラム141aの具体的な処理の流れを説明する図である。
【図14】本発明の第三の実施例における類似文書検索システムの全体構成を示す図である。
【図15】本発明の第三の実施例における登録制御プログラム111の処理を説明するPAD図である。
【図16】本発明の第三の実施例における詳細度算出制御プログラム1331の処理を説明するPAD図である。
【図17】本発明の第三の実施例における登録制御プログラム111の具体的な処理の流れを説明する図である。
【符号の説明】
100…ディスプレイ、101…キーボード、102…中央演算処理装置(CPU)、103…磁気ディスク装置、104…フレキシブルディスクドライブ(FDD)、105…主メモリ、110…システム制御プログラム、111…登録制御プログラム、112…検索制御プログラム、120…文書ファイル取得ファイル、121…テキスト登録プログラム、130…種文書解析プログラム、131…テキスト読込プログラム、132…類似度算出プログラム、133…詳細度算出制御プログラム、134…結果出力プログラム、140…ブロック分割プログラム、141…ブロック別類似度算出プログラム、142…詳細度算出プログラム、150…共有ライブラリ、151…特徴語抽出プログラム、

Claims (4)

  1. 検索対象の文書(以下、対象文書という)の中から文書を検索する類似文書検
    装置であって、
    前記類似文書検索装置は、
    検索条件として入力された種文書を取得する手段と、
    前記対象文書を複数の部分に分割する手段と、
    該分割した前記対象文書の各部分に対して前記種文書に対する類似度を算出する手段と、
    該算出した類似度と予め定められた閾値とを比較して、前記分割された各部分が前記種文書に適合している部分であるか否かを判定する手段と、
    該比較の結果を用いて、前記分割された各部分が前記種文書に適合しているか否かを判定して、前記種文書に適合している部分の数を集計する手段と、
    該集計した数と分割された部分の総数とをもとに、前記対象文書の前記種文書に対して全体的に類似している程度を示す詳細度を算出する手段と、
    前記対象文書の前記種文書との類似度を算出する手段と、
    該算出した前記種文書に対する類似度と、前記算出した前記対象文書の前記種文書に対する詳細度とを表示する手段と
    を有することを特徴とする類似文書検索装置
  2. 前記類似文書検索装置はさらに、
    前記対象文書に対する全文検索における全文検索条件の論理式を解析する全文検索条件解析手段と、
    該解析された全文検索条件をもとに、前記分割された各部分に対して全文検索を行い、前記各部分の前記全文検索条件に対する対象文書の適合の度合いを示す適合度を算出する全文検索条件適合度算出手段とを備え、
    前記詳細度算出手段は、該全文検索条件適合度と、前記類似度算出手段が算出した前記分割された各部分について前記種文書に対する類似度の少なくともどちらか一方を用いて、それぞれ所定の閾値を超えているかを判断して、前記種文書および全文検索条件に対して対象文書が全体的に類似している程度を示す詳細度を算出することを特徴とする請求項1記載の類似文書検索装置
  3. 前記類似文書検索装置はさらに、
    前記種文書に対する詳細度または前記種文書に対する類似度をキーとして、検索対象である複数の対象文書に対して順位をつけて表示する表示手段を備えることを特徴とする請求項2記載の類似文書検索装置
  4. 前記全文検索条件適合度は、全文検索条件に含まれる部分論理式の総数に対して、分割された各部分の特徴語により満たされた部分論理式の数の割合から算出することを特徴とする請求項2または3記載の類似文書検索装置
JP2003089633A 2003-03-28 2003-03-28 類似文書検索方法および類似文書検索装置 Expired - Fee Related JP4238616B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003089633A JP4238616B2 (ja) 2003-03-28 2003-03-28 類似文書検索方法および類似文書検索装置
US10/671,718 US20040193584A1 (en) 2003-03-28 2003-09-29 Method and device for relevant document search

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089633A JP4238616B2 (ja) 2003-03-28 2003-03-28 類似文書検索方法および類似文書検索装置

Publications (2)

Publication Number Publication Date
JP2004295712A JP2004295712A (ja) 2004-10-21
JP4238616B2 true JP4238616B2 (ja) 2009-03-18

Family

ID=32985247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089633A Expired - Fee Related JP4238616B2 (ja) 2003-03-28 2003-03-28 類似文書検索方法および類似文書検索装置

Country Status (2)

Country Link
US (1) US20040193584A1 (ja)
JP (1) JP4238616B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575937B2 (en) 2010-08-24 2017-02-21 Nec Corporation Document analysis system, document analysis method, document analysis program and recording medium

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7962462B1 (en) * 2005-05-31 2011-06-14 Google Inc. Deriving and using document and site quality signals from search query streams
KR100809416B1 (ko) * 2006-07-28 2008-03-05 한국전자통신연구원 보안 시스템을 위한 최적 시그니처 자동 생성 장치 및 방법
JP5103051B2 (ja) * 2007-04-17 2012-12-19 株式会社日立製作所 情報処理システム及び情報処理方法
JP5802924B2 (ja) * 2011-07-29 2015-11-04 アーカイブ技術研究所株式会社 文書検索システムおよび文書検索プログラム
JP5758262B2 (ja) * 2011-10-06 2015-08-05 株式会社エヌ・ティ・ティ・データ 類似文書可視化装置、類似文書可視化方法およびプログラム
JP2013149061A (ja) * 2012-01-19 2013-08-01 Nec Corp 文書類似性評価システム、文書類似性評価方法およびコンピュータ・プログラム
US9448979B2 (en) 2013-04-10 2016-09-20 International Business Machines Corporation Managing a display of results of a keyword search on a web page by modifying attributes of DOM tree structure
GB2536826A (en) * 2013-12-06 2016-09-28 Hewlett Packard Development Co Lp Matching of an input document to documents in a document collection
JP2015203960A (ja) * 2014-04-14 2015-11-16 株式会社toor 部分情報抽出システム
US10095747B1 (en) * 2016-06-06 2018-10-09 @Legal Discovery LLC Similar document identification using artificial intelligence
JP7141923B2 (ja) * 2018-11-21 2022-09-26 株式会社野村総合研究所 規格基準適合支援装置及びその方法
WO2020109921A1 (ja) 2018-11-30 2020-06-04 株式会社半導体エネルギー研究所 文書検索方法、文書検索システム、プログラム、及び非一時的コンピュータ可読記憶媒体
US20230385311A1 (en) * 2020-10-07 2023-11-30 Basf Se Semantic-Temporal Visualization of Information
US20230245146A1 (en) * 2022-01-28 2023-08-03 Walmart Apollo, Llc Methods and apparatus for automatic item demand and substitution prediction using machine learning processes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598742B2 (ja) * 1996-11-25 2004-12-08 富士ゼロックス株式会社 文書検索装置及び文書検索方法
US6842876B2 (en) * 1998-04-14 2005-01-11 Fuji Xerox Co., Ltd. Document cache replacement policy for automatically generating groups of documents based on similarity of content
DE60044423D1 (de) * 2000-02-03 2010-07-01 Hitachi Ltd Verfahren und Gerät zum Wiederauffinden und Ausgeben von Dokumenten und Speichermedium mit entspechendem Program
US6766316B2 (en) * 2001-01-18 2004-07-20 Science Applications International Corporation Method and system of ranking and clustering for document indexing and retrieval
US6970881B1 (en) * 2001-05-07 2005-11-29 Intelligenxia, Inc. Concept-based method and system for dynamically analyzing unstructured information
US20040186828A1 (en) * 2002-12-24 2004-09-23 Prem Yadav Systems and methods for enabling a user to find information of interest to the user

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575937B2 (en) 2010-08-24 2017-02-21 Nec Corporation Document analysis system, document analysis method, document analysis program and recording medium

Also Published As

Publication number Publication date
JP2004295712A (ja) 2004-10-21
US20040193584A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3918531B2 (ja) 類似文書検索方法およびシステム
JP3040945B2 (ja) 文書検索装置
JP4238616B2 (ja) 類似文書検索方法および類似文書検索装置
JP3759242B2 (ja) 特徴確率自動生成方法及びシステム
JP2810650B2 (ja) 自然言語ドキュメントのセンテンスからセンテンスの部分集合を自動的に抽出する方法及び装置
US7194471B1 (en) Document classification system and method for classifying a document according to contents of the document
US20050081146A1 (en) Relation chart-creating program, relation chart-creating method, and relation chart-creating apparatus
JP2004280661A (ja) 検索方法及びプログラム
JP4049317B2 (ja) 検索支援装置およびプログラム
JP2014106665A (ja) 文書検索装置、文書検索方法
JP3820878B2 (ja) 情報検索装置,スコア決定装置,情報検索方法,スコア決定方法及びプログラム記録媒体
JP4959603B2 (ja) ドキュメントを解析するためのプログラム,装置および方法
JP5869948B2 (ja) パッセージ分割方法、装置、及びプログラム
JP5269399B2 (ja) 構造化文書検索装置、方法およびプログラム
JP3249743B2 (ja) 文書検索システム
JPH11143902A (ja) n−gramを用いた類似文書検索方法
JP2000285122A (ja) シソーラス生成装置および方法,ならびにシソーラス生成プログラムを記録した記録媒体
JP2001014326A (ja) 構造指定による類似文書の検索装置及び検索方法
Al Oudah et al. Wajeez: An extractive automatic arabic text summarisation system
JP3558854B2 (ja) データ検索装置及びコンピュータ読み取り可能な記録媒体
JP6181890B2 (ja) 文献解析装置、文献解析方法およびプログラム
JP3486406B2 (ja) 特許情報検索装置
JP4074687B2 (ja) 要約文作成支援システムおよびそのシステムとしてコンピュータを機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2004220513A (ja) 情報検索装置
JP2004318328A (ja) 情報検索方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees