[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4238598B2 - NOx purification device for internal combustion engine - Google Patents

NOx purification device for internal combustion engine Download PDF

Info

Publication number
JP4238598B2
JP4238598B2 JP2003049596A JP2003049596A JP4238598B2 JP 4238598 B2 JP4238598 B2 JP 4238598B2 JP 2003049596 A JP2003049596 A JP 2003049596A JP 2003049596 A JP2003049596 A JP 2003049596A JP 4238598 B2 JP4238598 B2 JP 4238598B2
Authority
JP
Japan
Prior art keywords
reducing agent
urea water
purification device
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049596A
Other languages
Japanese (ja)
Other versions
JP2004257325A (en
Inventor
礼子 百目木
好央 武田
聖 川谷
智 平沼
健二 河合
剛 橋詰
嘉則 ▲高▼橋
律子 篠▲崎▼
真一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003049596A priority Critical patent/JP4238598B2/en
Publication of JP2004257325A publication Critical patent/JP2004257325A/en
Application granted granted Critical
Publication of JP4238598B2 publication Critical patent/JP4238598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内撚機関の排気ガス中のNOxを浄化するNOx浄化装置、特に、排気系に設けた還元触媒の上流側に排気ガス還元剤を噴霧する装置を配した内燃機関のNOx浄化装置に関する。
【0002】
【従来の技術】
内撚機関が排出する排気ガス中のNOxはNOx浄化装置により浄化されているが、特に、ディーゼルエンジンで用いられるNOx浄化装置はその排気系にユリアSCR触媒(NOx触媒)を置き、その上流側に還元剤供給手段を配備したものが知られている。この還元剤供給手段は排気系に尿素水(ユリア水)を供給し、そこに含まれた尿素が下記の式(1)のように加水分解及び熱分解して、NH3を放出する。
【0003】
(NH)2CO+HO→2NH+CO・・・・(1)
加水分解して発生したアンモニア(NH)はSCR触媒(NOx触媒)に還元剤として供給される。これによりSCR触媒が酸素過剰雰囲気下においてNOxを浄化できるようにしている。
【0004】
【発明が解決しようとする課題】
ところで、上述の尿素水添加式のNOx浄化装置では、排気ガス温度が一定値以上であれば、蒸気となったユリア水が触媒上で、加水分解され、NOxの有効な還元剤であるアンモニア(NH)が生成される。しかし、排気ガス温度が低温時にあると、式(1)のようなユリア水の加水分解によるアンモニア生成が十分に進行しない。
【0005】
そればかりか、アンモニアが反応管や、ノズル部に析出し、反応副生成物であるシアヌル酸などが生成されるため、ユリアの噴霧が困難となる場合がある。還元剤が十分に供給されない状況下となると、SCR触媒上でのNOx浄化は進まず、すべて環境に排出されてしまう。
このように、尿素水添加式のNOx浄化装置では排気温度が低い場合にもNOx浄化が可能なシステムは確立されていないのが現状である。
【0006】
本発明は、以上のような課題に基づき、尿素水添加を行うNOx浄化装置における尿素水の加水分解域を拡大し、NOx浄化装置によるNOx浄化をより広い温度範囲で可能とする内燃機関のNOx浄化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、内燃機関の排気系に設けられ排気ガス中のNOxを選択還元するNOx触媒と、上記NOx触媒上流の上記排気系に尿素水供給管を介し尿素水を供給する第1還元剤供給手段と、上記NOx触媒上流の上記排気系に還元剤供給管を介し還元剤ガスを供給する第2還元剤供給手段と、上記還元剤が所定比率で混入し、尿素水加熱用のヒータを備えた尿素水タンクと、上記尿素水タンクの尿素水液面上域の還元剤ガスを循環ポンプで循環させる還元剤ガス循環路と、上記還元剤ガス循環路の途中に配備され、上記還元剤供給管に適時に還元剤ガスを供給するよう切換え可能な還元剤ガスバルブと、を具備することを特徴とする。
【0008】
このように、NOx触媒上流の排気系に第1還元剤供給手段により尿素水を供給でき、第2還元剤供給手段により還元剤ガスを供給できるので、尿素水を加水分解できない運転域では尿素水に代えて、還元剤ガスを排気ガス中に供給し、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
好ましくは、上記尿素水供給管は適時に上記尿素水タンクの尿素水を排気ガス中に供給するよう作動する開閉手段を設けてもよい。この場合、尿素水供給管からの尿素水を的確に給排できる。
【0009】
請求項2の発明は、請求項1記載の内燃機関のNOx浄化装置において、上記還元剤ガス循環路は尿素水タンクの尿素水液面上域と連通可能な還元剤貯蔵タンクを備えることを特徴とする。
尿素水タンクで生成される還元剤ガスを還元剤貯蔵タンクに予め貯蔵することができ、第2還元剤供給手段の還元剤供給管を介し還元剤ガスを適時に排気ガス中に供給でき、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
【0010】
請求項3の発明は、請求項1記載の内燃機関のNOx浄化装置において、上記還元剤ガス循環路は上記循環ポンプの吐出側循環の下流端開口が上記尿素水タンクの尿素水液面下に位置することを特徴とする。
このように、循環ポンプの吐出側循環の下流端開口からの循環気体が尿素水タンクの尿素水液面下に吹出すので、尿素水より還元剤ガスを生成する機能が向上する。
【0011】
請求項4の発明は、請求項1記載の内燃機関のNOx浄化装置において、上記尿素水タンクは尿素水の濃度を検出する濃度センサと、高濃度尿素水タンクと、同高濃度尿素水タンクの高濃度尿素水を供給、停止可能な制御弁と、上記尿素水濃度情報に基き尿素水の濃度を所定値に保持するよう制御弁を制御する制御手段と、を備えることを特徴とする。
このように、高濃度尿素水タンクの高濃度尿素水を適時に尿素水タンクに供給でき、尿素水タンクの尿素水濃度を常時一定に保持できる。
【0012】
請求項5の発明は、請求項2記載の内燃機関のNOx浄化装置において、上記尿素水加熱用のヒータは上記還元剤貯蔵タンクの貯蔵容量に応じて駆動停止することを特徴とする。
このように、尿素水加熱用のヒータは還元剤貯蔵タンクの貯蔵容量を上回る状態では運転停止されるので、無駄な電力消費を防止できる。
【0013】
請求項6の発明は、請求項1記載の内燃機関のNOx浄化装置において、上記排気ガス温度を検出する排気ガス温度センサと、上記還元剤ガスバルブの開閉制御手段を備え、同開閉制御手段は上記排気ガス温度が尿素水加水分解可能温度を下回ると上記還元剤供給管に還元剤ガスを流入するよう上記還元剤ガスバルブを切換えることを特徴とする。
このように、排気ガス温度が尿素水加水分解可能温度を下回ると還元剤供給管を介しNOx触媒上流の排気系に還元剤ガスを供給するので、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態としての内燃機関のNOx浄化装置を図1を参照して説明する。ここでの内燃機関のNOx浄化装置(以後単にNOx浄化装置と記す)は、図示しない車両に搭載された多気筒ディーゼルエンジン(以後単にエンジンと記す)1の排気系2に装着される。
エンジン1はエンジン制御手段としてのエンジンECU3を備え、エンジン1の排気系にNOx浄化装置4が配備される。なお、エンジンECU3と、NOx浄化装置4の制御部を成す排気系ECU5とは相互通信可能に連結される。
【0015】
エンジン1より排気路Eに流出した排気は下流側のNOx触媒コンバータ6を装備する排気管7を通過し、図示しないマフラーを介して大気放出される。
NOx触媒コンバータ6はケーシング8内に図示しないハニカム構造のセラミック製触媒担体9を備え、同担体にNOx触媒であるSCR触媒10として機能するための触媒金属(例えばバナジウム)が担持される。なお、SCR触媒10を担持したセラミック製触媒担体9に代えて、触媒をそのまま固めてハニカム状に成形したものでもよい。
SCR触媒10は後述する第1、第2還元剤供給手段11、12からの還元剤であるアンモニア(NH3)を吸着して排気ガス中のNOxを選択還元可能である。ここでSCR触媒10はアンモニア吸着状態において、下記の式(2)、(3)の反応を主に行い、NH3と窒素酸化物との間の脱硝反応を促進することができる。
【0016】
4NH+4NO+O→4N+6HO・・・・(2)
2NH+NO+NO→2N+3HO・・・・・(3)
排気管7の排気路E中で、NOx触媒であるSCR触媒10上流のa位置に尿素水供給管13のノズル131を介し尿素水を供給する第1還元剤供給手段11と、そのa位置のさらに上流側のb位置に還元剤供給管14を介し還元剤ガスを供給する第2還元剤供給手段12が接続される。なお、第2還元剤供給手段12を第1還元剤11の下流側に配置しても良い。
【0017】
第1還元剤供給手段11の尿素水供給管13は尿素水ポンプ15を介し尿素水タンク16に連結される。ここで尿素水ポンプ15はその非作動時に尿素水供給を停止し、作動時に排気ガス中に尿素水供給を行うよう作動する開閉手段を構成する。なお、尿素水ポンプ15はそのモータ151が排気系ECU5に接続されている。
【0018】
尿素水タンク16は密封容器であり、内部に所定濃度の尿素水を貯蔵する。尿素水タンク16はその容器本体161の回りをヒータ17と図示しない断熱シートで覆われ、ヒータ17により尿素水を加熱可能に形成される。ヒータ17は排気系ECU5により適時に駆動可能に構成される。尿素水タンク16はその容器本体161の下側側部に尿素水供給管13を連結し、上方側部に吸入パイプ18の端部を接続し、しかも、上側壁に排出管20と高濃度尿素水タンク19からの供給パイプ21を接続する。
【0019】
高濃度尿素水タンク19は尿素水タンク16より上方位置に配設され、供給パイプ21に設けられ高濃度尿素水を供給、停止可能な制御弁である開閉電磁弁22のオン時に高濃度の尿素水を自重によって尿素水タンク16に供給できる。開閉電磁弁22は制御手段としての排気系ECU5に駆動される。
尿素水タンク16は尿素水液面fの上域eに充満する還元剤ガスを吸入パイプ18の先端側の循環ポンプ23で吸入し、循環ポンプ23が吐き出す還元剤ガスを排出管20上の還元剤貯蔵タンク24、還元剤ガスバルブ25を経て尿素水タンク16の尿素水液面fの下部に吐き出すように形成される。
【0020】
即ち、循環ポンプ23の吐出側の排出管20の下流端開口mが尿素水タンクの尿素水液面fの下部に位置するので、排出管20に沿って流動してくる還元剤ガスが、尿素水液面f下に吹出されることで、尿素水より還元剤ガスを生成する機能が向上する。
【0021】
還元剤貯蔵タンク24は所定容量の密封容器であり、排出管20に沿って流動してきた還元剤ガスを吸着する周知の吸着剤が収容され、吸着剤により還元剤ガスであるアンモニアガスを貯蔵できる。なお、吸着剤はアンモニアの貯蔵量に限界があり、限界以上のアンモニアは、排出管20に沿って尿素水タンク16に戻される。このことより、この還元剤貯蔵タンク24のアンモニアガスが最大貯蔵量に達するに要する循環ポンプ23の連続駆動時間が予め設定される。この連続駆動時間を上回る循環ポンプ23の駆動は電力消費の無駄であり、循環ポンプ23の駆動は連続駆動時間を限界として停止されることとなる。
なお、還元剤貯蔵タンク24の本体241の外周部分はヒータ26及び図示しない断熱材で覆われている。
【0022】
還元剤ガスバルブ25は図2に示すように4方切換え弁であり、排気系ECU5に切換え駆動される。この弁はオフ時において、図2(a)に示すように排出管20の流入、流出ポートg1,g2を連通させると共に、大気側ポートg3及び還元剤供給管14側の添加ポートg4を遮断する。オン時には、図2(b)に示すように大気側ポートg3と流出ポートg2を連通すると共に流入ポートg1と還元剤供給管14側の添加ポートg4を連通させる。
大気側ポートg3は逆支弁付きのクリーナ27を介し大気解放され、これにより排出管20、尿素水タンク16側の負圧化を防止している。
【0023】
ここで、尿素水タンク16、吸入パイプ18、循環ポンプ23、還元剤貯蔵タンク24、排出管20により尿素水タンク16の尿素水液面fの上域eの還元剤ガスを循環させる還元剤ガス循環路Rが構成される。
尿素水タンク16の低部には尿素水の濃度を検出する濃度センサ28が装着され、これにより、尿素水の濃度情報を排気系ECU5に出力している。
【0024】
排気系ECU5はその入出力回路に多数のポートを有し、尿素水の濃度Dを検出する濃度センサ28と排気管7に装着され、排気路Eの排気ガス温度Tgを出力する排気ガス温度センサ29の検出信号を入力でき、その上で、ヒータ17、24、尿素水ポンプ15、循環ポンプ23、還元剤ガスバルブ25、及び、開閉電磁弁22を駆動制御する制御手段として機能する。
次に、図1のNOx浄化装置のNOx浄化制御処理を、図3のNOx浄化処理ルーチンに沿って説明する。
【0025】
NOx浄化装置を搭載した図示しない車両のエンジン1の駆動時において、排気系ECU5は、エンジンキーのオンと同時に図3のNOx浄化処理ルーチンを所定制御サイクル毎に繰り返す。ここではステップs1でキーオンを確認し、ステップs2に達すると、排気ガス温度(触媒温度)Tg、尿素水濃度D、その他のデータを取込み、適正値か否かの判断をし、正常でないと図示しない故障表示灯を駆動し、正常ではステップs3に進む。
ステップs3では排気ガス温度Tgが尿素水加水分解可能温度Tαを下回るか否か判断し、下回るとステップs7に、尿素水加水分解可能温度Tα以上ではステップs4に進む。
【0026】
尿素水加水分解可能温度Tα以上でステップs4に達すると、ここでは尿素水ポンプ15を駆動して第1還元剤供給手段11の尿素水供給管13より排気路Eに尿素水を供給する。この場合、排気ガス温度Tgが比較的高く、上述の式(1)の加水分解反応が速やかに達成され、還元剤ガスであるアンモニア(NH)が容易に生成され、これによりSCR触媒10はアンモニア(NH3)を吸着して上述の式(2)又は(3)での反応を行い、排気ガス中のNOxを容易に選択還元できる。
【0027】
この後、ステップs5に達すると、ここでは還元剤ガスバルブ25をオフ、循環ポンプ23をオンする。この状態はタイマーで連続駆動時間TIMEαのカウントが成され、その上で停止処理される。この処理で、還元剤貯蔵タンク24には確実にアンモニアが最大容量の状態で貯蔵され、循環ポンプ23が無駄に駆動されることを排除でき、還元剤貯蔵タンク24のアンモニアガスは使用待機状態に保持される。
【0028】
次いで、ステップs9、s10に達すると、ここでは尿素水の濃度Dを取り込み、これが所定の濃度値Dβ未満である過否か判断し、未満では開閉電磁弁22を一定時間駆動して一定量の高濃度尿素水を尿素水タンク16に補充し、以上ではそのままステップs2に戻る。
【0029】
このように、ステップs9、s10の処理によって、図1のNOx浄化装置は、高濃度尿素水タンク19の高濃度尿素水を適時に尿素水タンクに供給でき、尿素水タンクの尿素水濃度を常時一定に保持できる。なお、図示しない水タンクから水の量を調整して尿素水タンク16に供給し,尿素水濃度を一定に保持するようにしてもよく、図示しない水タンクと高濃度尿素水タンク19との両方の量を調整してもよい。
【0030】
ステップs3で排気ガス温度Tgが尿素水加水分解可能温度Tαを下回るとしてステップs7に達する。ここではヒータ17、24を共に駆動し、尿素水タンク16と還元剤貯蔵タンク24の加熱を促進させ、還元剤ガスであるアンモニアの発生を促進させる。次いで、ステップs8では、還元剤ガスバルブ25をオンして還元剤貯蔵タンク24のアンモニアガスを還元剤供給管14より排気路Eに供給する。この場合、排気ガス温度が低いが、還元剤ガスであるアンモニア(NH)が直接SCR触媒10に供給され、SCR触媒10がアンモニア(NH3)を吸着して上述の式(3)での反応を行い、低温でも、排気ガス中のNOxを選択還元できる。
【0031】
この時、同時に、循環ポンプ23をオンし、還元剤ガス循環路Rに還元剤ガスを循環させ、尿素水タンク16の液面f下に還元剤ガスを供給して、還元剤ガスの発生を促進させることができ、アンモニアガスを還元剤供給管14より排気路Eに安定して供給することができる。
この後、ステップs8よりステップs9に達し、上述と同様に尿素水の濃度Dを取り込み、これが所定の濃度値Dβ未満では開閉電磁弁22を一定時間駆動して一定量の高濃度尿素水を尿素水タンク16に補充し、濃度低下を抑制し、ステップs2に戻る。
【0032】
このように、図1のNOx浄化装置はSCR触媒10上流の排気系に第1還元剤供給手段11により尿素水を供給でき、第2還元剤供給手段12により還元剤ガスを供給できるので、尿素水を加水分解できない運転域では尿素水に代えて、還元剤ガスを排気ガス中に供給し、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
【0033】
【発明の効果】
以上のように、本発明は、NOx触媒上流の排気系に第1還元剤供給手段により尿素水を供給でき、第2還元剤供給手段により還元剤ガスを供給できるので、尿素水を加水分解できない排気ガスが低温度の運転域では尿素水に代えて、還元剤ガスを排気ガス中に供給し、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
【0034】
請求項2の発明は、尿素水タンクで生成される還元剤ガスを還元剤貯蔵タンクに予め貯蔵することができ、第2還元剤供給手段の還元剤供給管を介し還元剤ガスを適時に排気ガス中に供給でき、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
【0035】
請求項3の発明は、循環ポンプの吐出側循環の下流端開口からの循環気体が尿素水タンクの尿素水液面下に吹出すので、尿素水より還元剤ガスを生成する機能が向上する。
【0036】
請求項4の発明は、高濃度尿素水タンクの高濃度尿素水を適時に尿素水タンクに供給でき、尿素水タンクの尿素水濃度を常時一定に保持できる。
【0037】
請求項5の発明は、尿素水加熱用のヒータは還元剤貯蔵タンクの貯蔵容量を上回る状態では運転停止されるので、無駄な電力消費を防止できる。
【0038】
請求項6の発明は、排気ガス温度が尿素水加水分解可能温度を下回ると還元剤供給管を介しNOx触媒上流の排気系に還元剤ガスを供給するので、たとえ低温時にあっても、還元剤ガスを受けたNOx触媒によりNOxを選択還元でき、より広い運転域において、NOx浄化が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのNOx浄化装置と同装置を装着するエンジンの概略構成図である。
【図2】図1のNOx浄化装置で用いる還元剤ガスバルブの作動説明図で(a)はオフ時、(b)はオン時である。
【図3】図1の排気系ECUが用いるNOx浄化処理ルーチンのフローチャートである。
【符号の説明】
1 エンジン
2 排気系
5 排気系ECU
10 SCR触媒(NOx触媒)
11 第1還元剤供給手段
12 第2還元剤供給手段
13 尿素水供給管
14 還元剤供給管
16 尿素水タンク
17 ヒータ
23 循環ポンプ
25 還元剤ガスバルブ
e 尿素水液面上域
R 還元剤ガス循環
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a NOx purification device that purifies NOx in exhaust gas of an internal twist engine, and in particular, a NOx purification device for an internal combustion engine in which a device for spraying an exhaust gas reducing agent is disposed upstream of a reduction catalyst provided in an exhaust system. About.
[0002]
[Prior art]
The NOx in the exhaust gas discharged from the internal twisting engine is purified by the NOx purification device. In particular, the NOx purification device used in the diesel engine places a urea SCR catalyst (NOx catalyst) in its exhaust system, and its upstream side. There is known a device provided with a reducing agent supply means. This reducing agent supply means supplies urea water (urea water) to the exhaust system, and urea contained therein is hydrolyzed and thermally decomposed as shown in the following formula (1) to release NH3.
[0003]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 ... (1)
Ammonia (NH 3 ) generated by hydrolysis is supplied as a reducing agent to the SCR catalyst (NOx catalyst). As a result, the SCR catalyst can purify NOx in an oxygen-excess atmosphere.
[0004]
[Problems to be solved by the invention]
By the way, in the above-described urea water addition type NOx purification device, if the exhaust gas temperature is equal to or higher than a certain value, urea water that has become steam is hydrolyzed on the catalyst, and ammonia (which is an effective reducing agent for NOx) NH 3) is generated. However, when the exhaust gas temperature is low, ammonia generation due to the hydrolysis of urea water as in the formula (1) does not proceed sufficiently.
[0005]
In addition, ammonia is deposited on the reaction tube and the nozzle, and cyanuric acid, which is a reaction by-product, is generated, which may make it difficult to spray urea. When the reducing agent is not sufficiently supplied, the NOx purification on the SCR catalyst does not proceed and is completely discharged to the environment.
As described above, in the urea water addition type NOx purification device, a system capable of NOx purification even when the exhaust gas temperature is low has not been established.
[0006]
Based on the above problems, the present invention expands the hydrolysis region of urea water in a NOx purification device that performs urea water addition, and enables NOx purification by the NOx purification device in a wider temperature range. An object is to provide a purification device.
[0007]
[Means for Solving the Problems]
The first aspect of the present invention is a NOx catalyst that is provided in an exhaust system of an internal combustion engine and selectively reduces NOx in exhaust gas, and a first method of supplying urea water to the exhaust system upstream of the NOx catalyst via a urea water supply pipe. A reducing agent supply means; a second reducing agent supply means for supplying a reducing agent gas to the exhaust system upstream of the NOx catalyst via a reducing agent supply pipe; and the reducing agent is mixed in a predetermined ratio to heat urea water. A urea water tank equipped with a heater, a reducing agent gas circulation path for circulating the reducing agent gas in the urea water liquid surface area of the urea water tank with a circulation pump, and a reductant gas circulation path disposed in the middle of the reducing agent gas circulation path, And a reducing agent gas valve that can be switched to supply the reducing agent gas to the reducing agent supply pipe in a timely manner.
[0008]
In this way, urea water can be supplied to the exhaust system upstream of the NOx catalyst by the first reducing agent supply means and reducing agent gas can be supplied by the second reducing agent supply means. Instead, the reducing agent gas is supplied into the exhaust gas, and even when the temperature is low, NOx can be selectively reduced by the NOx catalyst that has received the reducing agent gas, and NOx purification can be performed in a wider operating range.
Preferably, the urea water supply pipe may be provided with opening / closing means that operates to supply the urea water of the urea water tank into the exhaust gas at an appropriate time. In this case, the urea water from the urea water supply pipe can be accurately supplied and discharged.
[0009]
According to a second aspect of the present invention, in the NOx purifying device for an internal combustion engine according to the first aspect, the reducing agent gas circulation path includes a reducing agent storage tank capable of communicating with the urea water surface area of the urea water tank. And
The reducing agent gas generated in the urea water tank can be stored in the reducing agent storage tank in advance, and the reducing agent gas can be supplied into the exhaust gas in a timely manner through the reducing agent supply pipe of the second reducing agent supply means. Even at low temperatures, NOx can be selectively reduced by the NOx catalyst that has received the reducing agent gas, and NOx purification can be performed in a wider operating range.
[0010]
According to a third aspect of the present invention, in the NOx purification device for an internal combustion engine according to the first aspect, the reducing agent gas circulation path has a downstream end opening of a discharge-side circulation of the circulation pump below the urea water level of the urea water tank. It is characterized by being located.
Thus, since the circulating gas from the downstream end opening of the discharge side circulation of the circulation pump blows out below the urea water level of the urea water tank, the function of generating the reducing agent gas from the urea water is improved.
[0011]
According to a fourth aspect of the present invention, in the NOx purification device for an internal combustion engine according to the first aspect, the urea water tank is a concentration sensor that detects the concentration of urea water, a high concentration urea water tank, and a high concentration urea water tank. And a control valve capable of supplying and stopping the high-concentration urea water, and a control means for controlling the control valve so as to maintain the urea water concentration at a predetermined value based on the urea water concentration information.
Thus, the high-concentration urea water in the high-concentration urea water tank can be supplied to the urea water tank in a timely manner, and the urea water concentration in the urea water tank can be kept constant at all times.
[0012]
According to a fifth aspect of the present invention, in the NOx purification device for an internal combustion engine according to the second aspect, the heater for heating the urea water is stopped according to the storage capacity of the reducing agent storage tank.
As described above, since the heater for heating the urea water is stopped in a state exceeding the storage capacity of the reducing agent storage tank, wasteful power consumption can be prevented.
[0013]
A sixth aspect of the present invention is the internal combustion engine NOx purification device according to the first aspect, further comprising an exhaust gas temperature sensor for detecting the exhaust gas temperature, and an open / close control means for the reducing agent gas valve. When the exhaust gas temperature falls below the temperature capable of hydrolyzing urea water, the reducing agent gas valve is switched so that the reducing agent gas flows into the reducing agent supply pipe.
In this way, when the exhaust gas temperature falls below the urea water hydrolyzable temperature, the reducing agent gas is supplied to the exhaust system upstream of the NOx catalyst via the reducing agent supply pipe. Further, NOx can be selectively reduced by the NOx catalyst, and NOx purification can be performed in a wider operating range.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An internal combustion engine NOx purification device as an embodiment of the present invention will be described below with reference to FIG. The internal combustion engine NOx purification device (hereinafter simply referred to as NOx purification device) is mounted on an exhaust system 2 of a multi-cylinder diesel engine (hereinafter simply referred to as engine) 1 mounted on a vehicle (not shown).
The engine 1 includes an engine ECU 3 as engine control means, and a NOx purification device 4 is provided in the exhaust system of the engine 1. The engine ECU 3 and the exhaust system ECU 5 that forms the control unit of the NOx purification device 4 are connected to each other so that they can communicate with each other.
[0015]
Exhaust gas flowing out from the engine 1 to the exhaust passage E passes through an exhaust pipe 7 equipped with a downstream NOx catalytic converter 6 and is released into the atmosphere through a muffler (not shown).
The NOx catalytic converter 6 includes a ceramic catalyst carrier 9 having a honeycomb structure (not shown) in a casing 8, and a catalytic metal (for example, vanadium) for functioning as an SCR catalyst 10 that is a NOx catalyst is supported on the carrier. In place of the ceramic catalyst carrier 9 carrying the SCR catalyst 10, the catalyst may be solidified and formed into a honeycomb shape.
The SCR catalyst 10 can selectively reduce NOx in the exhaust gas by adsorbing ammonia (NH 3), which is a reducing agent, from first and second reducing agent supply means 11 and 12 described later. Here, in the ammonia adsorption state, the SCR catalyst 10 mainly performs the reactions of the following formulas (2) and (3), and can promote the denitration reaction between NH3 and nitrogen oxides.
[0016]
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (3)
In the exhaust passage E of the exhaust pipe 7, a first reducing agent supply means 11 that supplies urea water to the position a upstream of the SCR catalyst 10 that is a NOx catalyst via the nozzle 131 of the urea water supply pipe 13; Further, a second reducing agent supply means 12 for supplying a reducing agent gas is connected to the upstream position b via a reducing agent supply pipe 14. Note that the second reducing agent supply means 12 may be disposed on the downstream side of the first reducing agent 11.
[0017]
The urea water supply pipe 13 of the first reducing agent supply means 11 is connected to the urea water tank 16 via the urea water pump 15. Here, the urea water pump 15 constitutes an opening / closing means that stops the supply of the urea water when it is not operated and operates to supply the urea water into the exhaust gas when it is operated. The urea water pump 15 has a motor 151 connected to the exhaust system ECU 5.
[0018]
The urea water tank 16 is a sealed container and stores urea water having a predetermined concentration therein. The urea water tank 16 is covered with a heater 17 and a heat insulating sheet (not shown) around the container main body 161 so that the urea water can be heated by the heater 17. The heater 17 is configured to be driven by the exhaust system ECU 5 in a timely manner. The urea water tank 16 has a urea water supply pipe 13 connected to the lower side portion of the container body 161, an end portion of the suction pipe 18 connected to the upper side portion, and a discharge pipe 20 and high-concentration urea on the upper side wall. A supply pipe 21 from the water tank 19 is connected.
[0019]
The high-concentration urea water tank 19 is disposed at a position above the urea water tank 16 and is provided in the supply pipe 21 to supply high-concentration urea water. Water can be supplied to the urea water tank 16 by its own weight. The open / close solenoid valve 22 is driven by an exhaust system ECU 5 as a control means.
The urea water tank 16 sucks the reducing agent gas filling the upper region e of the urea water level f with the circulation pump 23 on the tip side of the suction pipe 18, and reduces the reducing agent gas discharged by the circulation pump 23 on the discharge pipe 20. It is formed so as to be discharged to the lower part of the urea water level f of the urea water tank 16 through the agent storage tank 24 and the reducing agent gas valve 25.
[0020]
That is, since the downstream end opening m of the discharge pipe 20 on the discharge side of the circulation pump 23 is located below the urea water surface f of the urea water tank, the reducing agent gas flowing along the discharge pipe 20 is urea. By blowing out below the water level f, the function of generating the reducing agent gas from the urea water is improved.
[0021]
The reducing agent storage tank 24 is a sealed container having a predetermined capacity, and stores a known adsorbent that adsorbs the reducing agent gas flowing along the discharge pipe 20, and can store ammonia gas as the reducing agent gas by the adsorbent. . The adsorbent has a limit in the amount of ammonia stored, and ammonia exceeding the limit is returned to the urea water tank 16 along the discharge pipe 20. Thus, the continuous drive time of the circulation pump 23 required for the ammonia gas in the reducing agent storage tank 24 to reach the maximum storage amount is preset. The driving of the circulation pump 23 exceeding the continuous drive time is a waste of power consumption, and the drive of the circulation pump 23 is stopped with the continuous drive time as a limit.
The outer peripheral portion of the main body 241 of the reducing agent storage tank 24 is covered with a heater 26 and a heat insulating material (not shown).
[0022]
The reducing agent gas valve 25 is a four-way switching valve as shown in FIG. 2 and is driven to be switched to the exhaust system ECU 5. When this valve is OFF, the inflow and outflow ports g1 and g2 of the discharge pipe 20 are communicated as shown in FIG. 2A, and the addition port g4 on the atmosphere side port g3 and the reducing agent supply pipe 14 side is shut off. . At the time of ON, as shown in FIG. 2B, the atmosphere side port g3 and the outflow port g2 are communicated, and the inflow port g1 and the addition port g4 on the reducing agent supply pipe 14 side are communicated.
The atmosphere side port g3 is released to the atmosphere through a cleaner 27 with a reversely supported valve, thereby preventing negative pressure on the discharge pipe 20 and urea water tank 16 side.
[0023]
Here, the reducing agent gas for circulating the reducing agent gas in the upper region e of the urea water level f of the urea water tank 16 through the urea water tank 16, the suction pipe 18, the circulation pump 23, the reducing agent storage tank 24, and the discharge pipe 20. A circulation path R is formed.
A concentration sensor 28 for detecting the concentration of urea water is attached to the lower portion of the urea water tank 16, thereby outputting urea water concentration information to the exhaust system ECU 5.
[0024]
The exhaust system ECU 5 has a number of ports in its input / output circuit, is mounted on the exhaust pipe 7 and a concentration sensor 28 that detects the concentration D of urea water, and an exhaust gas temperature sensor that outputs the exhaust gas temperature Tg of the exhaust passage E. 29 detection signals can be input, and on that basis, the heaters 17 and 24, the urea water pump 15, the circulation pump 23, the reducing agent gas valve 25, and the open / close solenoid valve 22 function as control means.
Next, the NOx purification control processing of the NOx purification device of FIG. 1 will be described along the NOx purification processing routine of FIG.
[0025]
When the engine 1 of a vehicle (not shown) equipped with the NOx purification device is driven, the exhaust system ECU 5 repeats the NOx purification processing routine of FIG. 3 for each predetermined control cycle simultaneously with the turning on of the engine key. Here, key-on is confirmed in step s1, and when step s2 is reached, the exhaust gas temperature (catalyst temperature) Tg, urea water concentration D, and other data are taken to determine whether or not the values are appropriate. The failure indicator lamp that is not to be driven is driven, and normally proceeds to step s3.
In step s3, it is determined whether or not the exhaust gas temperature Tg is lower than the urea water hydrolyzable temperature Tα. If it is lower, the process proceeds to step s7, and if it is equal to or higher than the urea water hydrolyzable temperature Tα, the process proceeds to step s4.
[0026]
When step s4 is reached at the urea water hydrolyzable temperature Tα or higher, the urea water pump 15 is driven here to supply urea water to the exhaust passage E from the urea water supply pipe 13 of the first reducing agent supply means 11. In this case, the exhaust gas temperature Tg is relatively high, the hydrolysis reaction of the above-described formula (1) is quickly achieved, and ammonia (NH 3 ) as a reducing agent gas is easily generated, whereby the SCR catalyst 10 Ammonia (NH 3) is adsorbed and the reaction according to the above formula (2) or (3) is performed, and NOx in the exhaust gas can be easily selectively reduced.
[0027]
Thereafter, when step s5 is reached, the reducing agent gas valve 25 is turned off and the circulation pump 23 is turned on here. In this state, the continuous drive time TIMEα is counted by a timer, and then stopped. By this processing, ammonia can be reliably stored in the reducing agent storage tank 24 in the maximum capacity state, and the circulation pump 23 can be prevented from being driven wastefully, and the ammonia gas in the reducing agent storage tank 24 is in a standby state. Retained.
[0028]
Next, when reaching steps s9 and s10, the concentration D of urea water is taken here, and it is determined whether or not this is less than a predetermined concentration value Dβ. The urea water tank 16 is replenished with high-concentration urea water, and the process returns to step s2 as it is.
[0029]
As described above, the NOx purification device of FIG. 1 can supply the high-concentration urea water in the high-concentration urea water tank 19 to the urea water tank in a timely manner by the processing in steps s9 and s10. Can be held constant. Note that the amount of water from a water tank (not shown) may be adjusted and supplied to the urea water tank 16 to keep the urea water concentration constant. Both the water tank (not shown) and the high concentration urea water tank 19 may be used. You may adjust the amount.
[0030]
Step s7 is reached assuming that the exhaust gas temperature Tg is lower than the urea water hydrolyzable temperature Tα in step s3. Here, the heaters 17 and 24 are both driven to promote the heating of the urea water tank 16 and the reducing agent storage tank 24, thereby promoting the generation of ammonia as a reducing agent gas. Next, in step s8, the reducing agent gas valve 25 is turned on to supply the ammonia gas in the reducing agent storage tank 24 to the exhaust path E from the reducing agent supply pipe 14. In this case, although the exhaust gas temperature is low, ammonia (NH 3 ), which is a reducing agent gas, is directly supplied to the SCR catalyst 10, and the SCR catalyst 10 adsorbs ammonia (NH 3) to react in the above formula (3). Thus, NOx in the exhaust gas can be selectively reduced even at a low temperature.
[0031]
At the same time, the circulation pump 23 is turned on, the reducing agent gas is circulated through the reducing agent gas circulation path R, the reducing agent gas is supplied below the liquid level f of the urea water tank 16, and the reducing agent gas is generated. The ammonia gas can be stably supplied from the reducing agent supply pipe 14 to the exhaust passage E.
Thereafter, step s8 is reached to step s9, and the concentration D of urea water is taken in the same manner as described above. If this is less than the predetermined concentration value Dβ, the open / close solenoid valve 22 is driven for a certain period of time to convert a certain amount of high concentration urea water into urea. The water tank 16 is replenished to suppress the decrease in concentration, and the process returns to step s2.
[0032]
1 can supply urea water to the exhaust system upstream of the SCR catalyst 10 by the first reducing agent supply means 11 and can supply reducing agent gas by the second reducing agent supply means 12. In an operating area where water cannot be hydrolyzed, instead of urea water, a reducing agent gas is supplied into the exhaust gas, and even at low temperatures, NOx can be selectively reduced by the NOx catalyst that receives the reducing agent gas. NOx purification becomes possible in the region.
[0033]
【The invention's effect】
As described above, according to the present invention, urea water cannot be hydrolyzed because urea water can be supplied to the exhaust system upstream of the NOx catalyst by the first reducing agent supply means and reducing agent gas can be supplied by the second reducing agent supply means. In the operating region where the exhaust gas is at a low temperature, instead of urea water, a reducing agent gas is supplied into the exhaust gas, and even at low temperatures, NOx can be selectively reduced by the NOx catalyst that has received the reducing agent gas. NOx purification can be performed in the operating range.
[0034]
In the invention of claim 2, the reducing agent gas generated in the urea water tank can be stored in advance in the reducing agent storage tank, and the reducing agent gas is exhausted in a timely manner through the reducing agent supply pipe of the second reducing agent supply means. Even when the temperature is low, NOx can be selectively reduced by the NOx catalyst that has received the reducing agent gas, and NOx purification can be performed in a wider operating range.
[0035]
In the invention of claim 3, since the circulating gas from the downstream end opening of the discharge-side circulation of the circulation pump blows out below the urea water surface of the urea water tank, the function of generating the reducing agent gas from the urea water is improved.
[0036]
According to the invention of claim 4, the high concentration urea water in the high concentration urea water tank can be supplied to the urea water tank at an appropriate time, and the urea water concentration in the urea water tank can be kept constant at all times.
[0037]
According to the invention of claim 5, since the heater for heating the urea water is stopped in a state exceeding the storage capacity of the reducing agent storage tank, wasteful power consumption can be prevented.
[0038]
In the sixth aspect of the present invention, when the exhaust gas temperature falls below the urea water hydrolyzable temperature, the reducing agent gas is supplied to the exhaust system upstream of the NOx catalyst via the reducing agent supply pipe. NOx can be selectively reduced by the NOx catalyst that has received the gas, and NOx purification can be performed in a wider operating range.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a NOx purification device and an engine equipped with the same as an embodiment of the present invention.
FIGS. 2A and 2B are operation explanatory views of a reducing agent gas valve used in the NOx purification device of FIG. 1, wherein FIG. 2A is an off time and FIG. 2B is an on time;
FIG. 3 is a flowchart of a NOx purification processing routine used by the exhaust system ECU of FIG.
[Explanation of symbols]
1 Engine 2 Exhaust system 5 Exhaust system ECU
10 SCR catalyst (NOx catalyst)
11 First reducing agent supply means 12 Second reducing agent supply means 13 Urea water supply pipe 14 Reducing agent supply pipe 16 Urea water tank 17 Heater 23 Circulation pump 25 Reducing agent gas valve e Upper surface of urea water surface R Reducing agent gas circulation

Claims (6)

内燃機関の排気系に設けられ排気ガス中のNOxを選択還元するNOx触媒と、
上記NOx触媒上流の上記排気系に尿素水供給管を介し尿素水を供給する第1還元剤供給手段と、
上記NOx触媒上流の上記排気系に還元剤供給管を介し還元剤ガスを供給する第2還元剤供給手段と、
上記還元剤が所定比率で混入し、尿素水加熱用のヒータを備えた尿素水タンクと、
上記尿素水タンクの尿素水液面上域の還元剤ガスを循環ポンプで循環させる還元剤ガス循環路と、
上記還元剤ガス循環路の途中に配備され、上記還元剤供給管に適時に還元剤ガスを供給するよう切換え可能な還元剤ガスバルブと、を具備する内燃機関のNOx浄化装置。
A NOx catalyst provided in an exhaust system of the internal combustion engine for selectively reducing NOx in the exhaust gas;
First reducing agent supply means for supplying urea water to the exhaust system upstream of the NOx catalyst via a urea water supply pipe;
A second reducing agent supply means for supplying a reducing agent gas to the exhaust system upstream of the NOx catalyst via a reducing agent supply pipe;
A urea water tank in which the reducing agent is mixed at a predetermined ratio and equipped with a heater for heating urea water;
A reducing agent gas circulation path for circulating the reducing agent gas above the urea water level of the urea water tank with a circulation pump;
A NOx purification device for an internal combustion engine, comprising: a reducing agent gas valve disposed in the middle of the reducing agent gas circulation path and switchable so as to supply the reducing agent gas to the reducing agent supply pipe in a timely manner.
請求項1記載の内燃機関のNOx浄化装置において、
上記還元剤ガス循環路は尿素水タンクの尿素水液面上域と連通可能な還元剤貯蔵タンクを備えることを特徴とする内燃機関のNOx浄化装置。
In the internal combustion engine NOx purification device according to claim 1,
The NOx purification device for an internal combustion engine, characterized in that the reducing agent gas circulation path includes a reducing agent storage tank capable of communicating with the upper surface of the urea water level of the urea water tank.
請求項1記載の内燃機関のNOx浄化装置において、
上記還元剤ガス循環路は上記循環ポンプの吐出側循環の下流端開口が上記尿素水タンクの尿素水液面下に位置することを特徴とする内燃機関のNOx浄化装置。
In the internal combustion engine NOx purification device according to claim 1,
A NOx purification device for an internal combustion engine, wherein the reducing agent gas circulation path has a downstream end opening of a discharge side circulation of the circulation pump located below a urea water level of the urea water tank.
請求項1記載の内燃機関のNOx浄化装置において、
上記尿素水タンクは尿素水の濃度を検出する濃度センサと、高濃度尿素水タンクと、同高濃度尿素水タンクの高濃度尿素水を供給、停止可能な制御弁と、上記尿素水濃度情報に基き尿素水の濃度を所定値に保持するよう制御弁を制御する制御手段と、を備えることを特徴とする内燃機関のNOx浄化装置。
In the internal combustion engine NOx purification device according to claim 1,
The urea water tank includes a concentration sensor for detecting the concentration of urea water, a high concentration urea water tank, a control valve capable of supplying and stopping the high concentration urea water of the high concentration urea water tank, and the urea water concentration information. And a control means for controlling the control valve so as to maintain the concentration of the urea water at a predetermined value.
請求項2記載の内燃機関のNOx浄化装置において、
上記尿素水加熱用のヒータは上記還元剤貯蔵タンクの貯蔵容量に応じて駆動停止することを特徴とする内燃機関のNOx浄化装置。
The NOx purification device for an internal combustion engine according to claim 2,
The NOx purification device for an internal combustion engine, wherein the heater for heating the urea water is stopped according to the storage capacity of the reducing agent storage tank.
請求項1記載の内燃機関のNOx浄化装置において、
上記排気ガス温度を検出する排気ガス温度センサと、上記還元剤ガスバルブの開閉制御手段を備え、
同開閉制御手段は上記排気ガス温度が尿素水加水分解可能温度を下回ると上記還元剤供給管に還元剤ガスを流入するよう上記還元剤ガスバルブを切換えることを特徴とする内燃機関のNOx浄化装置。
In the internal combustion engine NOx purification device according to claim 1,
An exhaust gas temperature sensor for detecting the exhaust gas temperature, and an open / close control means for the reducing agent gas valve,
The open / close control means switches the reducing agent gas valve so that the reducing agent gas flows into the reducing agent supply pipe when the exhaust gas temperature falls below the urea water hydrolyzable temperature.
JP2003049596A 2003-02-26 2003-02-26 NOx purification device for internal combustion engine Expired - Fee Related JP4238598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049596A JP4238598B2 (en) 2003-02-26 2003-02-26 NOx purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049596A JP4238598B2 (en) 2003-02-26 2003-02-26 NOx purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004257325A JP2004257325A (en) 2004-09-16
JP4238598B2 true JP4238598B2 (en) 2009-03-18

Family

ID=33115271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049596A Expired - Fee Related JP4238598B2 (en) 2003-02-26 2003-02-26 NOx purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4238598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150128570A1 (en) * 2012-07-24 2015-05-14 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
CN107956557A (en) * 2014-01-16 2018-04-24 康明斯排放处理公司 Selective dispensing module control system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687915B2 (en) 2003-10-27 2005-08-24 日産ディーゼル工業株式会社 Liquid discrimination device
JP3687917B2 (en) 2003-10-31 2005-08-24 日産ディーゼル工業株式会社 Liquid reducing agent concentration and remaining amount detection device
EP1731882B1 (en) 2004-03-29 2014-07-30 Nissan Diesel Motor Co., Ltd. Structure for reducing agent container
JP4519497B2 (en) * 2004-03-29 2010-08-04 Udトラックス株式会社 Water level gauge mounting structure
JP3687918B1 (en) 2004-05-13 2005-08-24 日産ディーゼル工業株式会社 Reducing agent container structure
JP3686669B1 (en) * 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 Liquid reducing agent discrimination device
JP3686668B1 (en) 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 Reducing agent container structure
JP4500698B2 (en) * 2005-02-08 2010-07-14 三井造船株式会社 Exhaust gas treatment equipment
FR2905161B1 (en) * 2006-08-25 2012-04-20 Inergy Automotive Systems Res CONNECTION WITH INTEGRATED HEATING ELEMENT.
JP4775200B2 (en) * 2006-09-15 2011-09-21 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
EP1911508A3 (en) * 2006-10-13 2010-10-13 Peugeot Citroën Automobiles SA System for treating nitrogen oxides with ammonia trapping system
US7954311B2 (en) * 2007-03-15 2011-06-07 Ford Global Technologies, Llc Ammonia vapor management system and method
JP4888216B2 (en) * 2007-05-08 2012-02-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
KR100867799B1 (en) 2007-06-07 2008-11-10 현대자동차주식회사 Method for controlling engine of urea-scr vehicle
JP5001793B2 (en) * 2007-11-13 2012-08-15 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP5222616B2 (en) * 2008-04-23 2013-06-26 日野自動車株式会社 Exhaust purification device
JP5340629B2 (en) * 2008-04-23 2013-11-13 日野自動車株式会社 Exhaust purification device
JP5000602B2 (en) * 2008-08-07 2012-08-15 日野自動車株式会社 Exhaust purification device and control method thereof
JP2010138823A (en) * 2008-12-12 2010-06-24 Ud Trucks Corp Exhaust emission control device
DE102009015419A1 (en) * 2009-03-27 2010-09-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for supplying reducing agent into an exhaust system and corresponding exhaust system
DE102010013696A1 (en) 2010-04-01 2011-10-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating an exhaust gas treatment device
US9823293B2 (en) 2010-08-26 2017-11-21 Inergy Automotive Systems Research (Societe Anonyme) Method for diagnosing an electrical circuit
US9028783B2 (en) 2011-09-06 2015-05-12 International Engine Intellectual Property Company, Llc. Cold start startup unit for urea-based systems
EP2784279B1 (en) * 2011-11-22 2016-09-28 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
SE539382C2 (en) * 2012-07-05 2017-09-05 Scania Cv Ab SCR system and procedure for cleaning exhaust gases in an SCR system
WO2014170711A1 (en) * 2013-04-17 2014-10-23 Renault Trucks System for injecting reactants in an exhaust line
CN103452624B (en) * 2013-09-25 2016-01-06 简阳宝兴动力机械有限公司 For the exhaust gas purification system of high-power diesel engine
KR101556330B1 (en) 2014-04-11 2015-10-02 공주대학교 산학협력단 Urea feeding system for scr system
US20160032801A1 (en) * 2014-07-31 2016-02-04 Caterpillar Inc. Aftertreatment system having multiple dosing circuits
FR3083822B1 (en) * 2018-07-16 2020-06-12 Renault S.A.S. ASSEMBLY FOR REDUCING NITROGEN OXIDES FLOWING IN AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
KR102287319B1 (en) * 2019-11-20 2021-08-09 현대자동차주식회사 Exhaust gas aftertreatement apparatus and method for controlling the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150128570A1 (en) * 2012-07-24 2015-05-14 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
US9732650B2 (en) * 2012-07-24 2017-08-15 Ud Trucks Corporation Exhaust gas purification apparatus, and method for thawing liquid reducing agent or precursor thereof
CN107956557A (en) * 2014-01-16 2018-04-24 康明斯排放处理公司 Selective dispensing module control system

Also Published As

Publication number Publication date
JP2004257325A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4238598B2 (en) NOx purification device for internal combustion engine
ES2428163T3 (en) Control procedure, to control an exhaust gas post-treatment system and exhaust gas post-treatment system
JP3951774B2 (en) NOx purification device for internal combustion engine
CN101680332B (en) NOX purification system, and method for control of nox purification system
JP4789242B2 (en) Exhaust purification device
JP4715581B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP2006527815A (en) Control method of reductant addition
WO2005028826A1 (en) Exhaust gas purification device of engine
WO2006046369A1 (en) Exhaust gas purifier for engine
US20090133383A1 (en) Selective NOx catalytic reduction system including an ammonia sensor
CN101965440A (en) Method of controlling nox purification system, and nox purification system
JPH102213A (en) Method and device for exhaust emission control
WO2005073527A1 (en) Device for purifying exhaust gas of internal combustion engine
WO2006025110A1 (en) Exhaust gas purifier
JPH11511227A (en) Method and apparatus for purifying exhaust of an internal combustion engine
EP2570626B1 (en) Exhaust gas purification apparatus of an internal combustion engine
JP3718208B2 (en) Engine exhaust purification system
JP2004270609A (en) Emission control device
JP2004239109A (en) Exhaust gas emission control device for engine
JP2004270565A (en) Exhaust emission control system for diesel engine
JP4728124B2 (en) Exhaust purification device
US20110154808A1 (en) Exhaust gas purification apparatus for diesel engine
JP2009293605A (en) Control device for exhaust treatment device
JP4131784B2 (en) Exhaust gas purification device for internal combustion engine
JP3839764B2 (en) Diesel engine exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees