JP4234836B2 - Honeycomb structure and composite thereof - Google Patents
Honeycomb structure and composite thereof Download PDFInfo
- Publication number
- JP4234836B2 JP4234836B2 JP04019299A JP4019299A JP4234836B2 JP 4234836 B2 JP4234836 B2 JP 4234836B2 JP 04019299 A JP04019299 A JP 04019299A JP 4019299 A JP4019299 A JP 4019299A JP 4234836 B2 JP4234836 B2 JP 4234836B2
- Authority
- JP
- Japan
- Prior art keywords
- honeycomb structure
- hydraulic diameter
- cell
- gas
- honeycomb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims description 15
- 238000005338 heat storage Methods 0.000 claims description 21
- 238000005192 partition Methods 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 13
- 239000007789 gas Substances 0.000 description 43
- 238000002485 combustion reaction Methods 0.000 description 23
- 230000035939 shock Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 6
- 238000004332 deodorization Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Filtering Of Dispersed Particles In Gases (AREA)
- Laminated Bodies (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、蓄熱体、フィルター、触媒担体等として用いられるハニカム構造体及びその複合体に関する。
【0002】
【従来の技術】
ハニカム構造体は、図2に示すように、多数のセル2を細孔を備えた隔壁3にて仕切った構造をいう。従って、一端側の複数のセル孔から入ったガスが、ハニカム構造体を通過する際のガスとの接触面積が大きく、ハニカム構造体とガスとの間の熱交換が効率よく行われることとなる。
【0003】
そのため、自動車排ガスや工場排煙からダストを除くための除塵用フィルター、工場排煙から揮発性有機物質や未燃焼ガスを除くための蓄熱式燃焼装置の蓄熱体、さらには隔壁表面に触媒を担持させることにより自動車排ガス浄化触媒等として、自動車産業、各種製造業等において広範に使用されている。ハニカム構造体には、その用途により、熱による膨張が少ないこと、熱交換特性に優れること等が要求されるため、セラミックス製のものが好適に用いられる。
【0004】
一方、ハニカム構造体は、自動車排ガス等のように少量のガスを処理する場合は単独で用いられることもあるが、工場排煙等のように大量のガスを処理する場合は、複数のハニカム構造体を、その側面又は端面において接触させた状態で2次元的、3次元的に配置した複合体として使用されることが多い。このような場合において、特に側面において接触させた状態で配置する際には、配置のしやすさという観点より、各セルの断面形状が矩形又は正方形であり、全体としても矩形又は正方形の断面を有するハニカム構造体を用いるのが一般的である。
【0005】
【発明が解決しようとする課題】
しかしながら、ハニカム構造体には、その成形過程に起因する形状上の歪みが存在する場合があるため、図3(a)に示すように、複数のハニカム構造体1を側面において接触させた状態で配置した場合に、各ハニカム構造体1の形状どうしが完全にはフィットしない場合も多い。このような状況では、図3(b)に示すように、ハニカム構造体1どうしがその側面の一部でのみ接触することとなり、その部分に偏荷重が生じてハニカム構造体1が割れることがあるという問題があった。
【0006】
このような状況を回避するために、ハニカム構造体の外壁の厚さを大きくして機械強度を大きくする手段も考えられるが、外壁の厚さを大きくすると、隔壁部分と外壁との間の熱衝撃による歪みが大きくなるため、ハニカム構造体の耐熱衝撃性が低下するという問題があった。又、ガスは外壁部分を通過できないため、圧力損失が上昇するという問題もあった。
【0007】
又、ハニカム構造体を単体で用いる場合においても、ハニカム構造体が収納容器からの物理的衝撃により破損しないよう、ハニカム構造体と収納容器との間に緩衝材を挿入していたが、緩衝材を用いるとコスト高になるとともに、緩衝材部分はガスが通過できないため、圧力損失が上昇するという問題があった。
【0008】
本発明はかかる状況に鑑みてなされたものであり、その目的とするところは、複数のハニカム構造体を側面において接触させた状態で配置しても割れることがないとともに、十分な耐熱衝撃性を有し、かつ圧力損失を上昇させることのないハニカム構造体及びその複合体を提供することにある。
【0009】
【課題を解決するための手段】
即ち、本発明によれば、各セルの断面形状が矩形又は正方形であり、全体としても矩形又は正方形の断面を有するハニカム構造体であって、上記矩形又は正方形の断面を構成する4辺のうち、少なくとも、全体として矩形又は正方形の断面を有する他のハニカム構造体の側面と接触する辺の辺縁部に位置するセルの水力直径が、他のセルの水力直径よりも小さいハニカム構造体が提供される。
【0010】
上記のハニカム構造体においては、矩形又は正方形の断面を構成する4辺のすべての辺の辺縁部に位置するセルの水力直径が、他のセルの水力直径よりも小さくてもよい。
【0011】
上記のハニカム構造体において、上記辺縁部に位置するセルの水力直径は、他のセルの水力直径の1/5以上、4/5以下であることが好ましい。又、外壁の厚さが隔壁の厚さの3倍以下であることが好ましい。又、上記のハニカム構造体は、隔壁表面の少なくとも一部に触媒を塗布したものであってもよい。
【0012】
又、本発明によれば、上記のハニカム構造体複数を、ハニカム構造体どうしがその側面において接触した状態で配置したハニカム構造体複合体が提供される。上記のハニカム構造体又はハニカム構造体複合体は蓄熱体、フィルター又は触媒担体であってもよい。
【0013】
【発明の実施の形態】
本発明のハニカム構造体は、図1(a)に示すように、各セル2の断面形状が矩形又は正方形であり、全体としても矩形又は正方形の断面を有し、上記矩形又は正方形の断面を構成する4辺のうち、少なくとも1辺の辺縁部に位置するセル2aの水力直径を、他のセル2bの水力直径よりも小さくしている。
【0014】
セルの機械強度は水力直径が小さい程大きくなるため、そのハニカム構造体の側面に他のハニカム構造体の側面を接触させた状態で配置する場合に、水力直径の小さいセルを設けた側面を上記他のハニカム構造体の側面と接触させれば、ハニカム構造体の形状の歪みにより側面の一部に偏荷重が生じた場合でも、ハニカム構造体が割れるのを防止することができる。又、ガスは上記辺縁部に位置するセルを通過することができるため、圧力損失を上昇させることもなく、又、耐熱衝撃性を低下させることもない。
【0015】
従って、図1(b)に示すように、ハニカム構造体1の矩形又は正方形の断面を構成する4辺のすべての辺の辺縁部に位置するセル2aの水力直径を、他のセル2bの水力直径よりも小さくすれば、図4に示すように、ハニカム構造体1複数を、それらの側面において接触した状態で配置してハニカム構造体複合体5を形成させる場合においても、圧力損失の上昇や耐熱衝撃性の低下を引き起こすことなく、偏荷重によるハニカム構造体の割れを防止することができる。
【0016】
又、ハニカム構造体を単体として容器に収納して用いる場合においても、緩衝材を用いる必要がないため、圧力損失の上昇やコストの増大をもたらすことなく、収納容器からの物理的衝撃によるハニカム構造体の破損を防止することができる。
【0017】
本発明のハニカム構造体において、上記辺縁部に位置するセルの水力直径は、他のセルの水力直径の1/5以上、4/5以下であることが好ましい。上記辺縁部に位置するセルの水力直径が、他のセルの水力直径の1/5未満の場合は、外周壁を厚くした場合と同様に圧力損失が上昇し、4/5を超える場合はハニカム構造体の機械強度を十分に強くすることができないからである。
【0018】
又、本発明のハニカム構造体において、外壁の厚さは隔壁の厚さの3倍以下であることが好ましい。外壁の厚さが隔壁の厚さの3倍を超える値の場合は、隔壁部分と外壁との間の熱衝撃による歪みが大きくなるため、ハニカム構造体の耐熱衝撃性が低下し、又、圧力損失が上昇するからである。尚、外壁の厚さは隔壁の厚さの2倍以下であることがより好ましい。
【0019】
本発明のハニカム構造体の材質に特に制限はなく、金属等を用いることもできるが、熱膨張が小さいこと、熱交換特性に優れることから、セラミックスを用いることが好ましい。又、本発明のハニカム構造体の隔壁の厚さ、セルの水力直径、セル数等の値に制限はなく、その用途等に応じて適宜な値を採用することができる。又、本発明のハニカム構造体は矩形又は正方形の断面形状を有するが、本明細書において、「矩形」及び「正方形」の語は、幾何学的な意味においての「矩形」及び「正方形」のみならず、角部を丸める処理を施したものも含まれる。
【0020】
本発明のハニカム構造体複数を組み合わせることにより、ハニカム構造体複合体とすることができるが、その場合、ハニカム構造体どうしをその側面において接触した状態で、図4(a)に示すように1次元的に配置してもよく、図4(b)に示すように2次元的に配置してもよい。又、ハニカム構造体どうしをその端面においても接触した状態で、図4(c)に示すように3次元的に配置してもよい。
【0021】
本発明のハニカム構造体又はハニカム構造体複合体は、自動車排ガスや工場排煙からダストを除くための除塵用フィルター、工場排煙から揮発性有機物質や未燃焼ガスを除くための蓄熱式燃焼装置の蓄熱体、自動車排ガス浄化触媒、蓄熱触媒脱臭装置等用の触媒担体等として好適に用いることができる。
【0022】
【実施例】
以下、本発明を図示の実施例を用いてさらに詳しく説明するが、本発明はこれらの実施例に限られるものではない。
【0023】
(実施例1)
矩形又は正方形の断面を構成する4辺のすべての辺の辺縁部に位置するセル2aの水力直径を、他のセル2bの水力直径よりも小さく設定した図1(b)に示すハニカム構造体1を製造し、その機械強度、耐熱衝撃性及び圧力損失を調べた。
【0024】
ハニカム構造体1はセラミックから構成し、端面は150mm×150mmの正方形とし、長さは50mmとした。セル2の断面形状は正方形とし、隔壁3の厚さは0.4mm、外壁4の厚さは1.0mmとした。又、上記辺縁部に位置するセル2aの水力直径は1.0mmとし、他のセル2bの水力直径は2.1mmとした。上記のハニカム構造体1について、下記の方法にて機械強度、耐熱衝撃性及び圧力損失を測定した。
【0025】
(機械強度の測定方法) ハニカム構造体2個を、側面どうしが当接する状態で配置し、一方のハニカム構造体の側面のうち、他方のハニカム構造体と接触していない側面より荷重を加え、割れが発生した荷重を、両ハニカム構造体が当接する見掛け側面積で割った値を機械強度とした。
【0026】
(耐熱衝撃性の測定方法) ハニカム構造体を一定温度に加熱した電気炉中に入れ、1時間加熱後、室温に取り出し、目視と打音によりクラックの判定を行い、クラックが無い場合はさらに25℃高い温度に設定した電気炉に入れ、同じ測定をクラックが発生するまで実施した。5個のハニカム構造体について同様の測定を実施し、クラックが発生した温度の平均値を耐熱衝撃温度とした。
【0027】
(圧力損失の測定方法) ハニカム構造体の両端面全面が通気する状態とした上で、一方の端面(入口側端面)から4Nm3/分の流量でガスを送り込み、入口側端面と他方の端面(出口側端面)における差圧を圧力損失とした。尚、上記の流量は、蓄熱燃焼装置におけるハニカム構造体の実際の使用状態を模擬した値であり、流速1m/秒、平均温度400℃(室温のガスをハニカム構造体に導入し、燃焼室の温度を800℃とした場合)の条件に相当する。
【0028】
又、上記のハニカム構造体を図5に示すような蓄熱式燃焼装置11に設置して脱臭を行い、割れの発生の有無を調べた。但し、ハニカム構造体の寸法は、端面を500mm×500mmの正方形とし、長さを500mmとした。尚、工場排煙からのVOC(揮発性有機物質)や未燃焼ガスを除去することを一般に脱臭と称しており、VOCや未燃焼ガスを含有する脱臭前のガスを未脱臭ガスと呼ぶ。
図5において3塔式蓄熱燃焼装置11は3塔の熱交換室12を有し、各熱交換室12は上部において共通の燃焼室13に連通している。又、各熱交換室12は、その下部に各々のガス導入パイプ14及びガス排出パイプ15を備える。各熱交換室12内には蓄熱体17として上記のハニカム構造体が配置され、燃焼室13の天井部分にはバーナー16が設置されている。
【0029】
このような構成を有する3塔式蓄熱燃焼装置11において、未脱臭ガスはガス導入パイプ14を通じて3塔の熱交換室12のいずれか1塔に導入され、蓄熱体17を通って燃焼室13に入る。この際に、未脱臭ガスと蓄熱体17との熱交換が起こり、未脱臭ガスは燃焼温度近くまで加熱される。燃焼室13に入った未脱臭ガス中のVOCや未燃焼ガスはバーナー16によって燃焼し、除去される。脱臭済ガスは他の2塔の熱交換室12を通り、ガス排出パイプ15を介して大気中に放出されるが、その際VOCや未燃焼ガスの燃焼によって生じた燃焼熱は、熱交換室12内の蓄熱体17に移行する。未脱臭ガスを導入する熱交換室12及び脱臭済ガスを排出する熱交換室12を、一定時間ごとに切り換えて、上記の工程を連続して行うことにより、未脱臭ガスの燃焼で生じた燃焼熱が次の未脱臭ガスの加熱に用いられることとなる。
【0030】
このような3塔式蓄熱燃焼装置11を用いて、2分毎に熱交換室12の切り替えを行いながら、1000時間の脱臭を行い、脱臭終了後のハニカム構造体の割れの有無を目視にて調べた。尚、熱交換室12の切り替えはガス導入パイプ14及びガス排出パイプ15に設けた弁10の開閉により行った。又、未脱臭ガスは10Nm3/分の流量で導入した。
表1に結果を示す。
【0031】
(比較例1) 辺縁部に水力直径の小さなセルを配置しなかった点を除いては実施例1と同様のハニカム構造体を製造し、その機械強度、耐熱衝撃性及び圧力損失を実施例1同様の方法にて調べた。又、ハニカム構造体を蓄熱燃焼装置に搭載して脱臭を行った場合の割れの発生を、実施例1と同様の方法にて調べた。結果を表1に示す。
【0032】
(比較例2)
辺縁部に水力直径の小さなセルを配置せずに、厚さ2.0mmの外壁を設けた点を除いては実施例1と同様のハニカム構造体を製造し、その機械強度、耐熱衝撃性及び圧力損失を実施例1同様の方法にて調べた。又、ハニカム構造体を蓄熱燃焼装置に搭載して脱臭を行った場合の割れの発生を、実施例1と同様の方法にて調べた。結果を表1に示す。
【0033】
【表1】
【0034】
表1より、実施例1のハニカム構造体においては、圧力損失の上昇は観察されず、又、十分な機械強度及び耐熱衝撃性を有しており、加熱による割れは観察されなかった。一方、比較例1のハニカム構造体には、圧力損失の上昇は観察されなかったが、機械強度が不十分であり、加熱による割れが観察された。又、比較例2のハニカム構造体は、十分な機械強度を有しているが、圧力損失の上昇が見られ、さらに、耐熱衝撃性が不十分なため、加熱による割れが観察された。
【0035】
【発明の効果】
本発明のハニカム構造体は、側面の一部に偏荷重がかかっても容易に割れることがない。又、十分な耐熱衝撃性を有し、かつ圧力損失を上昇させることもない。そのため、特に、複数のハニカム構造体を側面において接触させた状態で配置して複合体として使用する場合において、ハニカム構造体の破損を効果的に防止でき、従って、自動車排ガスや工場排煙からダストを除くための除塵用フィルター、工場排煙から揮発性有機物質や未燃焼ガスを除くための蓄熱式燃焼装置の蓄熱体、自動車排ガス浄化触媒、蓄熱触媒脱臭装置等用の触媒担体等として好適に用いることができる。
【図面の簡単な説明】
【図1】 本発明のハニカム構造体の(a)一例及び(b)他の例を示す模式図である。
【図2】 ハニカム構造体の一例を示す斜視図である。
【図3】 (a)及び(b)従来のハニカム構造体の複合体の一例を示す模式図である。
【図4】 本発明のハニカム構造体の複合体の(a)一例、(b)他の例及び(c)さらに他の例を示す模式図である。
【図5】 蓄熱燃焼装置の一例を示す模式図である。
【符号の説明】
1…ハニカム構造体、2…セル、3…隔壁、4…外壁、5…ハニカム構造体複合体、10…弁、11…3塔式蓄熱燃焼装置、12…熱交換室、13…燃焼室、14…ガス導入パイプ、15…ガス排出パイプ、16…燃焼手段(バーナー)、17…蓄熱体。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a honeycomb structure used as a heat storage body, a filter, a catalyst carrier and the like and a composite body thereof.
[0002]
[Prior art]
As shown in FIG. 2, the honeycomb structure means a structure in which a large number of
[0003]
Therefore, a dust removal filter for removing dust from automobile exhaust gas and factory flue gas, a heat storage body of a regenerative combustion device for removing volatile organic substances and unburned gas from factory flue gas, and a catalyst on the partition wall surface As a result, it is widely used as an automobile exhaust gas purification catalyst in the automobile industry, various manufacturing industries, and the like. The honeycomb structure is preferably made of ceramics because it is required to have little expansion due to heat and excellent heat exchange characteristics depending on the application.
[0004]
On the other hand, the honeycomb structure may be used alone when processing a small amount of gas such as automobile exhaust gas, but when processing a large amount of gas such as factory flue gas, a plurality of honeycomb structures are used. It is often used as a composite in which the body is arranged two-dimensionally or three-dimensionally in a state where the body is brought into contact with the side surface or the end surface. In such a case, particularly when placing in contact with the side surface, from the viewpoint of ease of placement, the cross-sectional shape of each cell is rectangular or square, and the cross-section of the rectangle or square as a whole In general, the honeycomb structure is used.
[0005]
[Problems to be solved by the invention]
However, since there may be a distortion in the shape due to the forming process in the honeycomb structure, as shown in FIG. 3A, a plurality of
[0006]
In order to avoid such a situation, a means for increasing the mechanical strength by increasing the thickness of the outer wall of the honeycomb structure may be considered. However, if the thickness of the outer wall is increased, the heat between the partition wall portion and the outer wall is increased. There is a problem that the thermal shock resistance of the honeycomb structure is lowered because distortion due to the impact becomes large. Further, since the gas cannot pass through the outer wall portion, there is a problem that the pressure loss increases.
[0007]
In addition, even when the honeycomb structure is used alone, a buffer material is inserted between the honeycomb structure and the storage container so that the honeycomb structure is not damaged by a physical impact from the storage container. When using, there is a problem in that the cost is increased and gas is not allowed to pass through the buffer material portion, resulting in an increase in pressure loss.
[0008]
The present invention has been made in view of such a situation, and the object of the present invention is not to crack even if a plurality of honeycomb structures are arranged in contact with each other on the side surface, and sufficient thermal shock resistance is provided. It is an object of the present invention to provide a honeycomb structure and a composite body thereof that do not increase pressure loss.
[0009]
[Means for Solving the Problems]
That is, according to the present invention, each cell has a rectangular or square cross-sectional shape, and has a rectangular or square cross-section as a whole, out of four sides constituting the rectangular or square cross-section. Provided is a honeycomb structure in which the hydraulic diameter of the cell located at the edge of the side that contacts at least the side surface of the other honeycomb structure having a rectangular or square cross section as a whole is smaller than the hydraulic diameter of the other cell. Is done.
[0010]
In the honeycomb structural body of the upper SL, hydraulic diameter of cells located in the marginal portion of all sides of the four sides constituting a cross-section of rectangular or square, it may be smaller than the hydraulic diameter of the other cells.
[0011]
In the above honeycomb structure, it is preferable that the hydraulic diameter of the cell located at the edge portion is 1/5 or more and 4/5 or less of the hydraulic diameter of the other cells. Moreover, it is preferable that the thickness of an outer wall is 3 times or less of the thickness of a partition. In addition, the honeycomb structure may have a catalyst applied to at least a part of the partition wall surface.
[0012]
In addition, according to the present invention, there is provided a honeycomb structure composite in which a plurality of the honeycomb structures described above are arranged in a state where the honeycomb structures are in contact with each other on the side surface. The honeycomb structure or the honeycomb structure composite may be a heat storage body, a filter, or a catalyst carrier.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the honeycomb structure of the present invention, as shown in FIG. 1 (a), each
[0014]
Since the mechanical strength of the cell increases as the hydraulic diameter decreases, when the side surface of the honeycomb structure is placed in contact with the side surface of another honeycomb structure, the side surface provided with the cell having a small hydraulic diameter is By bringing the honeycomb structure into contact with the side surface of another honeycomb structure, it is possible to prevent the honeycomb structure from cracking even when an uneven load is generated on a part of the side surface due to distortion of the shape of the honeycomb structure. Further, since the gas can pass through the cell located at the edge portion, the pressure loss is not increased and the thermal shock resistance is not lowered.
[0015]
Therefore, as shown in FIG. 1 (b), the hydraulic diameters of the cells 2a located at the edges of all the four sides constituting the rectangular or square cross section of the
[0016]
Further, even when the honeycomb structure is housed in a container as a single unit, it is not necessary to use a cushioning material, so that the honeycomb structure by physical impact from the storage container does not cause an increase in pressure loss or an increase in cost. Body damage can be prevented.
[0017]
In the honeycomb structure of the present invention, it is preferable that the hydraulic diameter of the cell located at the edge portion is 1/5 or more and 4/5 or less of the hydraulic diameter of other cells. When the hydraulic diameter of the cell located at the edge is less than 1/5 of the hydraulic diameter of other cells, the pressure loss increases in the same manner as when the outer peripheral wall is thickened, and when it exceeds 4/5. This is because the mechanical strength of the honeycomb structure cannot be sufficiently increased.
[0018]
In the honeycomb structure of the present invention, the thickness of the outer wall is preferably not more than three times the thickness of the partition wall. When the thickness of the outer wall is more than three times the thickness of the partition wall, the thermal shock between the partition wall portion and the outer wall increases, resulting in a decrease in the thermal shock resistance of the honeycomb structure. This is because loss increases. In addition, it is more preferable that the thickness of the outer wall is not more than twice the thickness of the partition wall.
[0019]
The material of the honeycomb structure of the present invention is not particularly limited, and a metal or the like can be used. However, ceramic is preferably used because of low thermal expansion and excellent heat exchange characteristics. Moreover, there is no restriction | limiting in values, such as the thickness of the partition of the honeycomb structure of this invention, the hydraulic diameter of a cell, and the number of cells, A suitable value can be employ | adopted according to the use etc. Further, although the honeycomb structure of the present invention has a rectangular or square cross-sectional shape, in this specification, the terms “rectangular” and “square” are only “rectangular” and “square” in a geometric sense. Of course, the thing which performed the process which rounds a corner | angular part is also contained.
[0020]
By combining a plurality of honeycomb structures of the present invention, a honeycomb structure composite can be obtained. In this case, as shown in FIG. 4 (a), the honeycomb structures are in contact with each other on their side surfaces. It may be arranged two-dimensionally or two-dimensionally as shown in FIG. Further, the honeycomb structures may be arranged in a three-dimensional manner as shown in FIG.
[0021]
A honeycomb structure or a honeycomb structure composite of the present invention includes a dust removal filter for removing dust from automobile exhaust gas and factory smoke, and a heat storage combustion apparatus for removing volatile organic substances and unburned gas from factory smoke. It can be suitably used as a catalyst carrier for a heat storage body, an automobile exhaust gas purification catalyst, a heat storage catalyst deodorization device, or the like.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the illustrated examples. However, the present invention is not limited to these examples.
[0023]
Example 1
The honeycomb structure shown in FIG. 1 (b) in which the hydraulic diameter of the cell 2a located at the edge of all four sides constituting the rectangular or square cross section is set smaller than the hydraulic diameter of the other cell 2b. 1 was manufactured, and its mechanical strength, thermal shock resistance and pressure loss were examined.
[0024]
The
[0025]
(Measuring method of mechanical strength) Two honeycomb structures are arranged in a state where the side surfaces are in contact with each other, and a load is applied from the side surface of one honeycomb structure which is not in contact with the other honeycomb structure, The value obtained by dividing the load at which cracking occurred by the apparent area where both honeycomb structures abut each other was taken as the mechanical strength.
[0026]
(Measuring method of thermal shock resistance) The honeycomb structure is put in an electric furnace heated to a constant temperature, heated for 1 hour, taken out to room temperature, and checked for cracks by visual observation and hammering sound. The same measurement was carried out until cracking occurred in an electric furnace set at a high temperature. The same measurement was performed on five honeycomb structures, and the average temperature at which cracks occurred was defined as the thermal shock temperature.
[0027]
(Measurement method of pressure loss) After making the whole surface of both ends of the honeycomb structure vent, gas is fed from one end surface (inlet side end surface) at a flow rate of 4 Nm 3 / min. The differential pressure at the (exit side end face) was defined as pressure loss. The above flow rate is a value simulating the actual use state of the honeycomb structure in the heat storage combustion apparatus. The flow rate is 1 m / second, the average temperature is 400 ° C. (room temperature gas is introduced into the honeycomb structure, This corresponds to the condition (when the temperature is 800 ° C.).
[0028]
Further, the above honeycomb structure was installed in a regenerative combustion apparatus 11 as shown in FIG. 5 and deodorized to examine whether cracks occurred. However, the dimensions of the honeycomb structure were a square of 500 mm × 500 mm and a length of 500 mm. Note that removal of VOC (volatile organic substances) and unburned gas from factory flue gas is generally referred to as deodorization, and gas before deodorization containing VOC and unburned gas is referred to as undeodorized gas.
In FIG. 5, a three-column heat storage combustion apparatus 11 has three tower
[0029]
In the three-column heat storage combustion apparatus 11 having such a configuration, the non-deodorized gas is introduced into any one of the three
[0030]
Using such a three-column heat storage combustion apparatus 11, deodorization is performed for 1000 hours while switching the
Table 1 shows the results.
[0031]
(Comparative Example 1) A honeycomb structure similar to that of Example 1 was manufactured except that a cell having a small hydraulic diameter was not disposed at the edge, and the mechanical strength, thermal shock resistance, and pressure loss were measured in Examples. 1 was examined in the same manner. In addition, the occurrence of cracks when the honeycomb structure was mounted on a heat storage combustion apparatus and deodorized was examined by the same method as in Example 1. The results are shown in Table 1.
[0032]
(Comparative Example 2)
A honeycomb structure similar to that of Example 1 was manufactured except that the outer wall having a thickness of 2.0 mm was provided without arranging a cell having a small hydraulic diameter at the edge, and its mechanical strength and thermal shock resistance were produced. The pressure loss was examined in the same manner as in Example 1. In addition, the occurrence of cracks when the honeycomb structure was mounted on a heat storage combustion apparatus and deodorized was examined by the same method as in Example 1. The results are shown in Table 1.
[0033]
[Table 1]
[0034]
From Table 1, in the honeycomb structure of Example 1, an increase in pressure loss was not observed, and sufficient mechanical strength and thermal shock resistance were observed, and cracking due to heating was not observed. On the other hand, in the honeycomb structure of Comparative Example 1, no increase in pressure loss was observed, but the mechanical strength was insufficient and cracks due to heating were observed. Further, although the honeycomb structure of Comparative Example 2 has sufficient mechanical strength, an increase in pressure loss was observed, and further, thermal shock resistance was insufficient, and cracking due to heating was observed.
[0035]
【The invention's effect】
The honeycomb structure of the present invention is not easily cracked even when a partial load is applied to a part of the side surface. Further, it has sufficient thermal shock resistance and does not increase pressure loss. Therefore, in particular, when a plurality of honeycomb structures are arranged in contact with each other and used as a composite, the honeycomb structure can be effectively prevented from being damaged. Suitable as a dust removal filter to remove volatile organic substances, a heat storage body of a regenerative combustion device for removing volatile organic substances and unburned gas from factory smoke, a catalyst carrier for an automobile exhaust gas purification catalyst, a heat storage catalyst deodorization device, etc. Can be used.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing (a) an example and (b) another example of a honeycomb structure of the present invention.
Fig. 2 is a perspective view showing an example of a honeycomb structure.
3A and 3B are schematic views showing an example of a composite body of a conventional honeycomb structure.
Fig. 4 is a schematic diagram showing (a) an example, (b) another example, and (c) yet another example of a composite body of a honeycomb structure of the present invention.
FIG. 5 is a schematic diagram showing an example of a heat storage combustion apparatus.
[Explanation of symbols]
DESCRIPTION OF
Claims (7)
該矩形又は正方形の断面を構成する4辺のうち、少なくとも、全体として矩形又は正方形の断面を有する他のハニカム構造体の側面と接触する辺の辺縁部に位置するセルの水力直径が、他のセルの水力直径よりも小さいことを特徴とするハニカム構造体。Each cell has a rectangular or square cross-sectional shape, and a honeycomb structure having a rectangular or square cross-section as a whole,
Of the four sides constituting the rectangular or square cross section , at least the hydraulic diameter of the cell located at the edge of the side contacting the side surface of another honeycomb structure having a rectangular or square cross section as a whole is other than A honeycomb structure characterized by being smaller than the hydraulic diameter of the cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04019299A JP4234836B2 (en) | 1999-02-18 | 1999-02-18 | Honeycomb structure and composite thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04019299A JP4234836B2 (en) | 1999-02-18 | 1999-02-18 | Honeycomb structure and composite thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000238153A JP2000238153A (en) | 2000-09-05 |
JP4234836B2 true JP4234836B2 (en) | 2009-03-04 |
Family
ID=12573925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04019299A Expired - Lifetime JP4234836B2 (en) | 1999-02-18 | 1999-02-18 | Honeycomb structure and composite thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4234836B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9663408B2 (en) | 2013-09-26 | 2017-05-30 | Ngk Insulators, Ltd. | Honeycomb structure |
JP6436824B2 (en) * | 2015-03-23 | 2018-12-12 | 日本碍子株式会社 | Honeycomb structure |
MX2021005818A (en) * | 2018-11-16 | 2021-09-23 | Corning Inc | Honeycomb bodies having an array of through channels with a range of hydraulic diameters. |
CN109489461B (en) * | 2018-12-06 | 2023-10-13 | 重庆大学 | Dust removal and heat exchange integrated device and method based on gradient honeycomb body and three-dimensional ribbed tube |
-
1999
- 1999-02-18 JP JP04019299A patent/JP4234836B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000238153A (en) | 2000-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100419230C (en) | Honeycomb structural body, manufacturing method of the honeycomb structural body, and exhaust gas purifying device | |
EP0241269B1 (en) | High strength ceramic honeycomb structure | |
JP3012167B2 (en) | Exhaust gas purification filter and exhaust gas purification device using the same | |
CN100360768C (en) | Honeycomb structural body | |
EP1486243B1 (en) | Honeycomb filter | |
KR100473914B1 (en) | Ceramic structure | |
US7244284B2 (en) | Honeycomb filter | |
CN100577995C (en) | Honeycomb structured body and exhaust gas purifying device | |
EP1647790B1 (en) | Method of manufacturing porous ceramic body | |
US20050120691A1 (en) | Exhaust gas purifying filter | |
EP1380830B1 (en) | Method and apparatus for detecting cracks in honeycomb structure | |
EP1153643B1 (en) | Honeycomb structural body | |
JP2000279823A (en) | Ceramic honeycomb structure body and its manufacture | |
EP1719881A3 (en) | Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination | |
US20040093858A1 (en) | Honeycomb structural body | |
JP3777895B2 (en) | Ceramic honeycomb structure | |
JPH10264274A (en) | Ceramic honeycomb structure | |
US10625195B2 (en) | Honeycomb filter | |
JP4234836B2 (en) | Honeycomb structure and composite thereof | |
JPWO2004026472A1 (en) | Honeycomb structure and die for forming honeycomb structure | |
KR20090125033A (en) | Plugged honeycomb structure | |
KR20100014262A (en) | Plugged honeycomb structure | |
JPH0261313A (en) | Structure for purifying exhaust gas | |
JP2011190740A (en) | Honeycomb structure | |
US20190300443A1 (en) | Honeycomb structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081212 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |