[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4230494B2 - 電気駆動ダンプトラックの駆動システム - Google Patents

電気駆動ダンプトラックの駆動システム Download PDF

Info

Publication number
JP4230494B2
JP4230494B2 JP2006157661A JP2006157661A JP4230494B2 JP 4230494 B2 JP4230494 B2 JP 4230494B2 JP 2006157661 A JP2006157661 A JP 2006157661A JP 2006157661 A JP2006157661 A JP 2006157661A JP 4230494 B2 JP4230494 B2 JP 4230494B2
Authority
JP
Japan
Prior art keywords
target
motor
rotational speed
speed
operation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006157661A
Other languages
English (en)
Other versions
JP2007326408A (ja
JP2007326408A5 (ja
Inventor
康雄 田中
豊 渡辺
吉男 中島
知彦 安田
隆 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2006157661A priority Critical patent/JP4230494B2/ja
Priority to PCT/JP2007/059455 priority patent/WO2007141979A1/ja
Priority to AU2007256115A priority patent/AU2007256115B2/en
Priority to DE112007000597.1T priority patent/DE112007000597B4/de
Priority to US12/161,692 priority patent/US8249765B2/en
Publication of JP2007326408A publication Critical patent/JP2007326408A/ja
Publication of JP2007326408A5 publication Critical patent/JP2007326408A5/ja
Application granted granted Critical
Publication of JP4230494B2 publication Critical patent/JP4230494B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/125Heavy duty trucks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は電気駆動ダンプトラックの駆動システムに係わり、特に、原動機で発電機を駆動し、発電機で発生した電力で走行用電動モータを駆動し、走行を行う大型ダンプトラックの駆動システムに関する。
電気駆動ダンプトラックの駆動システムは、例えば特許文献1に記載のように、原動機と、この原動機の回転数とトルクを制御する電子ガバナと、原動機により駆動される交流発電機と、この交流発電機により電力が供給されて駆動し、例えば左右の後輪を駆動する2つの電動モータと、交流発電機に接続され、それぞれ、2つの電動モータ(例えば誘導モータ)を制御する2つのインバータと、アクセルペダルの操作量に応じた目標回転数を計算し、電子ガバナを制御するとともに、アクセルペダルの操作量に応じて2つのインバータを制御し、それぞれの電動モータを制御する制御装置とを備えている。
特開2001−107762号公報
特許文献1に記載のような電気駆動のダンプトラックにおいては、原動機は電動モータ駆動用の発電機を駆動するだけでなく、発電機以外の負荷を駆動している。発電機以外の負荷としては、例えば、ダンプトラックのベッセルを上下させたり、ステアリング操作するための油圧機器を駆動するための油圧ポンプや、ラジエータに送風するための冷却ファンや、上記走行用の電動モータや制御装置を冷却するための電動ファンを駆動するための第2の発電機などがある。
ダンプトラックを走行させるかどうかはシフトレバーにより選択される。シフトレバーがN位置(中立位置)にあるときは、ダンプトラックを走行させないときであり、原動機は発電機(電動モータ)の駆動は行わず、発電機以外の負荷の駆動を行う。ベッセルの上げ下げはシフトレバーがN位置(中立位置)にあるとき(ダンプトラック停止時)に行われ、このとき原動機は主として油圧ポンプを駆動する。シフトレバーがF位置(前進位置)或いはR位置(後進位置)にあるときは、ダンプトラックを走行させるときであり、原動機は主として発電機(電動モータ)の駆動を行う。
原動機は、制御装置においてアクセルペダルの操作量に応じた目標回転数が計算され、電子ガバナを制御することで、回転数とトルクが制御される。従来は、アクセルペダルの操作量に対して1種類の目標回転数特性しか設定されておらず、その1種類の目標回転数特性で非走行時の油圧系(油圧ポンプ)の駆動と走行時の発電機(電動モータ)駆動の両方に対応していた。
しかし、油圧ポンプ駆動では、最小から最大まで広い回転数範囲で原動機を駆動する必要があり、電動モータ駆動では、最小回転数より高い回転数(例えば中速から最大回転数の手前の回転数)から原動機を駆動したいという要望がある。油圧ポンプ駆動において最小から最大まで広い回転数範囲で原動機を駆動することにより、原動機を安定に作動させかつ油圧ポンプの最大流量を確保し、広い範囲で作業速度を調整することができる。電動モータ駆動において最小回転数より高い回転数(例えば中速から最大回転数の手前の回転数)から原動機を駆動することにより、アクセルペダルを踏み込んだときに良好な加速性を得ることができる。従来の駆動システムでは、1種類の目標回転数特性しか設定されていなかったため、油圧系の駆動時と電動モータ駆動時(走行時)の双方に最適なエンジン駆動特性を得ることはできなかった。
本発明の目的は、非走行時の油圧系の駆動時と電動モータ駆動時(走行時)の双方に最適なエンジン駆動特性を得ることができる電気駆動ダンプトラックの駆動システムを提供することである。
(1)上記目的を達成するために、本発明は、原動機と、この原動機の回転数とトルクを制御する電子ガバナと、前記原動機により駆動される交流発電機と、前記原動機により駆動される作業用の油圧ポンプと、前記交流発電機により電力が供給されて駆動する走行用の少なくとも2つの電動モータと、前記交流発電機に接続され、それぞれ、前記電動モータを制御する少なくとも2つのインバータとを有する電気駆動ダンプトラックの駆動システムにおいて、アクセルペダルと、中立位置及び前進位置を含む複数の位置のいずれかに操作されるシフトレバーと、前記アクセルペダルの操作量に応じて前記インバータを制御し、前記電動モータを制御するモータ制御手段と、前記シフトレバーが中立位置にあるときは、前記作業用の油圧ポンプの駆動に適した第1目標回転数特性に基づいて前記アクセルペダルの操作量に応じた目標回転数を演算し、この目標回転数に基づいて前記電子ガバナを制御し、前記シフトレバーが前進位置にあるときは、前記電動モータの駆動に適した第2目標回転数特性に基づいて前記アクセルペダルの操作量に応じた目標回転数を演算し、この目標回転数に基づいて前記電子ガバナを制御する原動機制御手段とを備えるものとする。
このように原動機制御手段に作業用の油圧ポンプの駆動に適した第1目標回転数特性と電動モータの駆動に適した第2目標回転数特性の2種類の目標回転数特性を設定することにより、シフトレバーが中立位置にあるときと前進位置にあるときとで別々に目標回転数を演算して原動機を制御することができ、これにより非走行時の油圧系の駆動時と電動モータ駆動時(走行時)の双方に最適なエンジン駆動特性を得ることができる。
(2)上記(1)において、好ましくは、前記原動機制御手段は、前記第1目標回転数特性を、前記アクセルペダルの操作量が0であるときは目標回転数が所定の第1低速回転数であり、前記アクセルペダルの操作量が増加するにしたがって目標回転数が前記所定の第1低速回転数から所定の第1高速回転数まで増加するように設定し、前記第2目標回転数特性を、前記アクセルペダルの操作量が0又は所定の微少量であるときは目標回転数が前記所定の第1低速回転数よりも高い所定の中速回転数であり、前記アクセルペダルの操作量が増加するにしたがって目標回転数が前記所定の中速回転数から所定の第2高速回転数まで増加するように設定する。
このように第1及び第2目標回転数特性を設定することにより、シフトレバーが中立位置にある油圧ポンプ駆動では、第1低速回転数から第1高速回転数までの広い回転数範囲の目標回転数が得られ、原動機を安定に作動させかつ油圧ポンプの最大流量を確保し、広い範囲で作業速度を調整することができ、シフトレバーが前進位置にある電動モータ駆動では、第1低速回転数より高い中速回転数からの目標回転数が得られ、アクセルペダルを踏み込んだときの応答性が良くなり、良好な加速性を得ることができる。
(3)上記(2)において、好ましくは、前記原動機制御手段は、前記第2目標回転数特性を、前記アクセルペダルの操作量が0であるときは目標回転数が所定の第2低速回転数であり、前記アクセルペダルの操作量が前記所定の微少量になると目標回転数がステップ的に前記所定の中速回転数まで増加するよう設定する。
これによりシフトレバーが前進位置にある電動モータ駆動時(走行時)では、アクセルペダルの操作量が0のときは目標回転数は第2低速回転数となるとともに、アクセルペダルを微少量操作すると目標回転数は中速回転数までステップ的に増加するため、アクセルペダルを踏み込んだときの応答性(加速性)が良好となり、かつ燃費を向上させることができる。
(4)また、上記(2)において、好ましくは、前記所定の第1低速回転数は700rpm〜800rpmの範囲内の回転数であり、前記所定の中速回転数は900rpm〜1600rpmの範囲内の回転数であり、前記所定の第1及び第2高速回転数は1800rpm〜2100rpmの範囲内の回転数である。
これによりシフトレバーが中立位置にある油圧ポンプ駆動では、700rpm〜800rpmから1800rpm〜2100rpmの広い回転数範囲の目標回転数が得られ、シフトレバーが前進位置にある電動モータ駆動では、900rpm〜1600rpmの範囲の比較的高い目標回転数が得られる。
(5)また、上記(2)又は(3)において、好ましくは、前記アクセルペダルの所定の微少量の操作量は前記アクセルペダルの最大操作量の2〜8%の範囲内の操作量である。
これによりシフトレバーが前進位置にある電動モータ駆動時(走行時)では、アクセルペダルの操作量が0のときは目標回転数は第2低速回転数となるとともに、アクセルペダルを微少量操作すると目標回転数は中速回転数までステップ的に増加するため、アクセルペダルを踏み込んだときの応答性(加速性)が良好となり、かつ燃費を向上させることができる。
(6)更に、上記(1)において、好ましくは、前記原動機制御手段は、前記第1目標回転数特性に基づいて前記アクセルペダルの操作量に応じた第1目標回転数を計算する第1目標回転数計算手段と、前記第2目標回転数特性に基づいて前記アクセルペダルの操作量に応じた第2目標回転数を計算する第2目標回転数計算手段と、前記シフトレバーが中立位置にあるときは、前記第1目標回転数計算手段により計算した第1目標回転数を選択し、前記シフトレバーが前進位置にあるときは前記第2目標回転数計算手段により計算した第2目標回転数を選択する目標回転数決定手段とを有する。
これによりシフトレバーが中立位置にあるときは第1目標回転数特性に基づいてアクセルペダルの操作量に応じた目標回転数が演算され、シフトレバーが前進位置にあるときは、第2目標回転数特性に基づいてアクセルペダルの操作量に応じた目標回転数が演算される。
(7)また、好ましくは、前記モータ制御手段は、前記アクセルペダルの操作量に応じた第1モータ目標出力馬力を計算するモータ目標出力馬力計算手段と、前記第1モータ目標出力馬力と前記2つの電動モータの回転数とに基づいてモータ目標トルクを計算するモータ目標トルク計算手段と、前記アクセルペダルの操作量に応じた前記2つの電動モータの加速トルク制限値を計算する加速トルク制限値計算手段と、前記モータ目標トルクが前記加速トルク制限値を超えないよう制限するモータトルク制限手段と、前記加速トルク制限値により制限されたモータ目標トルクに基づいて前記インバータを制御するインバータ制御手段とを備える。
これにより通常走行時は、モータ目標出力馬力計算手段により計算されたモータ目標出力馬力に基づく走行制御により、アクセルペダルの操作量と電動モータの出力馬力との関係が一致した良好な操作感覚が得られ、微速走行時は、加速トルク制限値計算手段により計算された加速トルク制限値に基づく走行制御により良好な制御性が得られ、微妙な位置決めを容易に行うことができる。
本発明によれば、原動機制御手段に作業用の油圧ポンプの駆動に適した第1目標回転数特性と電動モータの駆動に適した第2目標回転数特性の2種類の目標回転数特性を設定したので、シフトレバーが中立位置にあるときと前進位置にあるときとで別々に目標回転数を演算して原動機を制御するができ、これにより非走行時の油圧系の駆動時と電動モータ駆動時(走行時)の双方に最適なエンジン駆動特性を得ることができる。
また、シフトレバーが中立位置にある油圧ポンプ駆動では、第1低速回転数から第1高速回転数までの広い回転数範囲で原動機を駆動するよう制御し、原動機を安定に作動させかつ油圧ポンプの最大流量を確保し、広い範囲で作業速度を調整することができ、シフトレバーが前進位置にある電動モータ駆動では、第1低速回転数より高い中速回転数から原動機を駆動するよう制御し、アクセルペダルを踏み込んだときの応答性が良くなり、良好な加速性を得ることができる。
以下、本発明の一実施の形態を図面を用いて説明する。
図1は、本発明の第1の実施の形態による電気駆動ダンプトラックの駆動システムの全体構成を示す図である。
図1において、電気駆動ダンプトラックの駆動システムは、アクセルペダル1、リタードペダル2、シフトレバー16、全体制御装置3、原動機4、交流発電機5、その他の原動機負荷18、整流回路6、インバータ制御装置7、チョッパ回路8、グリッド抵抗9、コンデンサ10、抵抗11、左右の電動モータ(例えば誘導モータ)12R,12L、減速機13R,13L、タイヤ14R,14L、電磁ピックアップセンサ15R,15Lを備えている。インバータ制御装置7は、左右の電動モータ12R,12Lのそれぞれに対するトルク指令演算部71R,71L、モータ制御演算部72R,72L、インバータ(スイッチング素子)73R,73Lを有している。
アクセルペダル1の操作信号pとリタードペダル2の操作信号qは全体制御装置3の入力となり、それぞれ駆動力、リタード力の大きさを制御する信号となる。
ダンプトラックを前進又は後進させるときは、シフトレバー16を前進位置又は後進位置にしてアクセルペダル1を踏み込むと、全体制御装置3は原動機4に対して目標回転数Nrの指令を出力し、実際の回転数Neの信号が原動機4から制御装置3に戻される。原動機4は電子ガバナ4aを装着したディーゼルエンジンであり、電子ガバナ4aは目標回転数Nrの指令を受け取ると、原動機4が目標回転数Nrで回転するように燃料噴射量を制御する。
原動機4には交流発電機5が接続されており、交流発電を行う。交流発電により発生した電力は整流回路6によって整流され、コンデンサ10に蓄電され、直流電圧値はVとなる。交流発電機5は直流電圧Vを検出抵抗11で分圧された電圧値をフィードバックして当該電圧値が所定の一定電圧V0となるように全体制御装置3によって制御される。
交流発電機5により発生した電力はインバータ制御装置7を介して左右の電動モータ12R,12Lに供給される。全体制御装置3は、整流回路6によって整流された直流電圧Vが所定の一定電圧V0となるように交流発電機5を制御することで、電動モータ12R,12Lに必要な電力が供給されるよう制御している。
全体制御装置3からの左右の電動モータ12R,12Lの指令馬力MR,MLと電磁ピックアップ15R,15Lにより検出される各電動モータ12R,12Lの回転速度ωR、ωLとがインバータ制御装置7に入力され、インバータ制御装置7は、トルク指令演算部71R,71L、モータ制御演算部72R,72L、インバータ(スイッチング素子)73R,73Lを介してすべり率>0で各電動モータ12R,12Lを駆動する。
各電動モータ12R,12Lにはそれぞれ減速機13R,13Lを介して左右の後輪(タイヤ)14R,14Lが接続されている。電磁ピックアップ15R,15Lは通常は減速機13R,13L内のギアの1枚の歯の周速を検出するセンサである。また、例えば、右側駆動系を例に取ると、電動モータ12R内部の駆動軸や減速機13Rとタイヤ14Rを接続する駆動軸に検出用の歯車をつけ、その位置に設置しても構わない。
走行中にアクセルペダル1を戻し、リタードペダル2を踏み込んだときは、交流発電機5が発電しないよう全体制御装置3は制御する。また、全体制御装置3からの馬力指令MR,MLは負の値となり、インバータ制御装置7はすべり率<0で各電動モータ12R,12Lを駆動して走行する車体にブレーキ力を与える。この時、各電動モータ12R,12Lは発電機として作用し、インバータ制御装置7に内蔵された整流機能によってコンデンサ10を充電するように働く。直流電圧値Vは予め設定された直流電圧値V1以下になるようにチョッパ回路8が作動し、電流をグリッド抵抗9に流して電気エネルギーを熱エネルギーに変換する。
原動機4は交流発電機5の他にも、ダンプトラックのベッセルを上下させたり、ステアリング操作するための油圧系を駆動するための油圧ポンプ(以下、作業用の油圧ポンプという)18aや、ラジエータに送風するための図示しない冷却ファンや、交流発電機5、グリッド抵抗9、電動モータ12R,12L、制御装置3,7などを冷却するための図示しない電動ファンを駆動するための図示しない第2の発電機などを駆動している。図1ではこれらをその他の原動機負荷18として示している。
以上は、通常の電気駆動ダンプトラックの基本構成と動作である。
次に、本発明の特徴となる部分について説明する。
本発明において、各構成機器の動作は全体制御装置3及びインバータ制御装置7内にそれぞれ組み込まれた、図示しないメモリ内の処理手順に従って演算処理される。図2はその処理手順を示す機能ブロック図であり、図3及び図4はその処理手順を示すフローチャートである。以下に、その処理手順を、主として図3及び図3に示すフローチャートに従い、補助的に図2の機能ブロック図を用いて説明する。
図3及び図4において、STARTから処理が始まり、ENDまで処理すると再びSTARTに戻るという処理フローになる。
手順101では、シフトレバー16の切り替え位置を示す状態量S、アクセルペダル1の操作量(以下アクセル操作量という)p、原動機4の実回転数Ne、走行用の電動モータ12R,12Lの回転数(以下モータ回転数という)ωR,ωLを読み込む。シフトレバー16の切り替え位置にはN(中立)、F(前進)、R(後進)の3位置がある。
手順102では、手順101で読み込んだアクセル操作量pを、図5に示す非走行時の第1目標回転数の関数Nr1(p)で表されるアクセル操作量対原動機目標回転数のデータマップに参照して、対応する第1目標回転数Nr1を算出する(図2のブロック201)。
関数Nr1(p)は作業用の油圧ポンプ18aの駆動に適した第1目標回転数特性であり、図5において、関数Nr1(p)は、アクセルペダル1の操作量が無操作の0であるときは第1目標回転数Nr1が原動機4の最小回転数Nr1min(アイドル回転数に相当)であり、アクセル操作量pが0から最大操作量pmaxの手前の操作量paまでの範囲にあるときは、アクセルペダル1の操作量pが増加するにしたがって第1目標回転数Nr1が最小回転数Nr1minから最大回転数Nr1maxまで増加し、アクセル操作量pが操作量paを超えると第1目標回転数Nr1が最大回転数Nrm1axで一定となるように設定されている。最小回転数Nr1minは例えば700rpm〜800rpmの範囲内の回転数であり、図示の例では750rpmである。最大回転数Nr1maxは好ましくは原動機4の最大の定格回転数であって、例えば1800rpm〜2100rpmの範囲内の回転数であり、図示の例では1900rpmである。
また、最大操作量pmaxの手前の操作量paは好ましくは最大操作量pmaxの80%〜95%の操作量であり、図示の例では最大操作量pmaxの90%である。
手順103では、手順101で読み込んだアクセル操作量pを、図6に示す走行時の第2目標回転数の関数Nr2(p)で表されるアクセル操作量対原動機目標回転数のデータマップに参照して、対応する第2目標回転数Nr2を算出する(図2のブロック202)。
関数Nr2(p)は電動モータ12R,12Lの駆動に適した第2目標回転数特性であり、図6において、関数Nr2(p)は、アクセルペダル1の操作量が無操作の0から微少操作量Pb1までの範囲にあるときは、第2目標回転数Nr2が最小回転数Nr2min(アイドル回転数に相当)であり、アクセルペダル1の操作量が微少操作量Pb1になると第2目標回転数は中速回転数Nr2midまでステップ的に増加し、アクセル操作量pが微少操作量Pb1から中間操作量Pb2までの範囲内にあるときは、アクセル操作量pが増加するにしたがって第2目標回転数Nr2は中速回転数Nr2midから最大回転数Nr2maxまで増加し、アクセル操作量pが中間操作量Pb2を超えると第2目標回転数Nr2は最大回転数Nr2maxで一定となるように設定されている。最小回転数Nr2minは、関数Nr1(p)の場合と同様、例えば700rpm〜800rpmの範囲内の回転数であり、図示の例では750rpmである。最大回転数Nr2maxは好ましくは1800rpm〜2100rpmの範囲内の回転数であり、図示の例では関数Nr1(p)の最大回転数Nr1maxと同じ、最大の定格回転数である1900rpmである。最小回転数Nr2minが750rpmで、最大回転数Nr2maxが1900rpmである場合、中速回転数Nr2midは好ましくは900rpm〜1600rpmの範囲内の回転数であり、図示の例では1300rpmである。最小回転数Nr2min及び最大回転数Nr2maxがそれぞれ750rpm,1900rpm以外の値である場合でも、中速回転数Nr2midは900rpm〜1600rpmの範囲内の回転数とすることができる。
また、微少操作量Pb1は好ましくはアクセルペダルの最大操作量Pmaxの2〜8%の範囲内の操作量であり、図示の例では最大操作量pmaxの5%である。中間操作量Pb2は好ましくは最大操作量Pmaxの30〜70%の範囲内の操作量であり、図示の例では最大操作量Pmaxの40%である。
図7および図8は走行時の関数Nr2(p)の変形例を示す図である。図6の例では、走行時関数Nr2(p)の最大回転数Nr1maxは非走行時の関数Nr1(p)の最大回転数Nr1maxと同じ値に設定したが、図7に示すように、関数Nr1(p)の最大回転数Nrmax(最大の定格回転数)より低めの値の例えば1800rpmであってもよい。また、図6の例では、アクセルペダル1の操作量が0から微少操作量Pb1までの範囲にあるときは第2目標回転数Nr2が最小回転数Nr2minとなるように設定したが、図8に示すように、第2目標回転数Nr2が最小回転数Nrminとなる操作量範囲を無くしてもよい。図10の例は、アクセルペダル1の操作量が0のときは第2目標回転数Nrは直ちにアイドル回転数より高い中速回転数Nr2midとなり、その後、アクセル操作量pが0から中間操作量Pb2まで増加するにしたがって第2目標回転数Nr2は中速回転数Nr2midから最大回転数Nr2maxまで増加するように設定されている。
手順104〜106では、手順101で読み込んだシフトレバー16の状態量SがN(中立)であれば、原動機4の目標回転数NrをNr=Nr1と置き、シフトレバー16の状態量SがF(前進)又はR(後進)であれば、原動機4の目標回転数NrをNr=Nr2と置く(図2のブロック203)。
手順111では、手順101で読み込んだ原動機4の実回転数Neを、図9に示すモータ最大出力馬力の関数Mr(Ne)で表されるエンジン回転数対モータ最大出力馬力のデータマップに参照して、電動モータ12R,12Lで使用可能な対応する最大馬力Mrを算出し、これに1/2を乗じて電動モータ12R,12Lの1台当たりの出力馬力上限値Pmaxを計算する(図2のブロック211,212)。
図9において、関数Mr(Ne)は、原動機4の実回転数(以下エンジン回転数という)Neが増大するにしたがって電動モータ12R,12Lので使用可能な最大馬力(以下モータ最大出力馬力という)Mrが増大するように設定されている。
モータ最大出力馬力の関数Mr(Ne)の設定方法を説明する。
図10は、関数f(Ne)で表される回転数対原動機最大出力馬力のデータマップと、関数g(Ne)で表される回転数対その他原動機負荷損失馬力のデータマップを示す図である。
関数f(Ne)は原動機4の出し得る最大出力馬力であり、関数f1(Ne)と関数f2(Ne)と関数f3(Ne)の合成である。関数f1(Ne)は原動機4の目標回転数Nrと出力馬力との関数fr=f(Nr)に相当するものであり、エンジン回転数NeがNrmin(例えば750rpm)からNrmax(例えば2000rpm)まで変化すると、原動機4の出し得る最大出力馬力f(Ne)は最小値Fminから最大値Fmaxまで変化する。これは、原動機4に固有な特性線図である。関数f2(Ne)は、0≦Ne<Nrminの範囲において、原動機4の最大出力馬力f(Ne)をf2=Fminの一定値としたものであり、関数f3(Ne)は、Nrmax<Ne≦Nemaxの範囲において、原動機4の最大出力馬力f(Ne)をf3=Fmaxの一定値としたものである。
原動機4は、交流発電機5の他にもその他の原動機負荷18を駆動している。その他の原動機負荷18は、ダンプトラックのベッセルを上下させたり、ステアリング操作するための油圧系を駆動するための油圧ポンプ18aや、ラジエータに送風するための図示しない冷却ファンや、交流発電機5、グリッド抵抗9、電動モータ12R,12L、制御装置3,7などを冷却するための図示しない電動ファンを駆動するための図示しない第2の発電機などである。このその他の原動機負荷18を駆動するために予め割り当てた馬力の値が図10のg(Ne)である。この馬力g(Ne)はその他の原動機負荷18が実際に消費する馬力値に対して余裕を持って大きめに設定してある。本明細書中では、この馬力を損失馬力という。
損失馬力の関数g(Ne)は、関数(Ne)と同様、関数g1(Ne)と関数g2(Ne)と関数g3(Ne)の合成である。関数g1(Nr)は、エンジン回転数NeがNrmin(例えば750rpm)からNrmax(例えば2000rpm)まで変化すると、損失馬力g1(Ne)は最小値Gminから最大値Gmaxまで変化する。関数g2(Ne)は、0≦Ne<Nrminの範囲において、損失馬力g(Ne)をg2=Gminの一定値としたものであり、関数g3(Ne)は、Nrmax<Ne≦Nemaxの範囲において、損失馬力g(Ne)をg3=Gmaxの一定値としたものである。
図10において、f(Ne)とg(Ne)との差分(f(Ne)−g(Ne))であるMrが電動モータ12R,12Lに与えてよい合計の有効最大馬力となる。換言すれば、Mr=f(Ne)−g(Ne)は、原動機4が出し得る最大出力馬力f(Ne)のうち走行用の電動モータ12R,12Lで使用可能な最大馬力(馬力の割当値)であり、電動モータ12R,12Lの最大出力馬力はその値、つまりMr=f(Ne)−g(Ne)を超えることはできない。
モータ最大出力馬力の関数Mr(Ne)は以上のような考えに基づいて設定されており、電動モータ12R,12Lの1台当たりの出力馬力上限値Pmaxは下記の式により与えられる。
Pmax=Mr/2=(f(Ne)−g(Ne))/2
手順112では、手順101で読み込んだアクセル操作量pを、図11に示す前進時の第1モータ目標出力馬力の関数Pm1(p)で表されるアクセル操作量対モータ目標出力馬力のデータマップに参照して、対応する第1モータ目標出力馬力Pm1を算出する(図2のブロック213)。
図11において、関数Pm1(p)は、アクセル操作量p=0では第1モータ目標出力馬力Pm1=0で、少し踏み込んだ状態、すなわち図11中のX1点からPm1が増加し、X2点付近からPm1の増加の比率を上げて、アクセル操作量が最大値pmaxより手前のX3点で、電動モータ12R,12Lで発生可能な最大馬力Pm1maxとなるように設定されている。図11のX3点におけるアクセル操作量px3は例えば最大操作量pmaxの95%程度である。
手順113では、手順101で読み込んだアクセル操作量pを、後進時の第2モータ目標出力馬力の関数Pm2(p)で表されるアクセル操作量対モータ目標出力馬力のデータマップに参照して、対応する第2モータ目標出力馬力Pm2を算出する(図2のブロック214)。
図12において、関数Pm2(p)は、アクセル操作量pが増加するに従い第2モータ目標出力馬力Pm2が増加するが、第2モータ目標出力馬力の最大値Pm2maxは前進用の関数Pm1(p)における最大値Pm1maxより小さい値となるように設定されている。なお、前進用の関数Pm1(p)で求めたモータ目標出力馬力に1より小さい正の定数を乗じて後進用のモータ目標出力馬力を求めてもよい。
手順114〜117では、手順101で読み込んだシフトレバー16の状態量SがN(中立)であれば、電動モータ12R,12Lの目標馬力(以下モータ目標出力馬力という)Pm0をPm0=0と置き、シフトレバー16の状態量SがF(前進)であれば、電動モータ12R,12Lの目標馬力(以下モータ目標出力馬力という)Pm0をPm0=Pm1と置き、シフトレバー16の状態量SがR(後進)であれば、モータ目標出力馬力Pm0をPm0=Pm2と置く(図2のブロック215,216)。
手順118では、そのモータ出力馬力上限値Pmaxとモータ目標出力馬力Pm0との小さい方の値を選択し、モータ出力目標馬力Pmとする(図4のブロック217)。
Pm=min(Pmax,Pm0)
つまり、手順118(図4のブロック217)では、電動モータ12R,12Lに与えられる最終的なモータ出力目標馬力PmがPmax以上にならないように制限する。このモータ出力目標馬力Pmは、図1に示した指令馬力MR,MLに対応する(MR=ML=Pm)。
手順121では、モータ出力目標馬力Pmと手順101で読み込んだ各電動モータ12R,12Lの回転数ωR,ωLとから下記の式によりモータ目標トルクTr1R,Tr1Lを計算する(図4のブロック221,222)。
Tr1R=K1×Pm/ωR
Tr1L=K1×Pm/ωL
K1:馬力と回転数からトルクを算出するための定数。
図13は、モータ出力目標馬力Pmと電動モータ12R,12Lの回転速度ωR,ωLとモータ目標トルクTr1R,Tr1Lとの関係を示す図である。モータ出力目標馬力Pmが決まると、そのときのモータ回転速度ωR,ωLに応じたモータ目標トルクTr1R,Tr1Lが定まる。例えば、モータ回転速度ωR,ωLがω1であるとき、モータ目標トルクはTr1R=Pm(ω1),Tr1L=Pm(ω1)となる。また、例えばダンプトラックが坂道にさしかかるなどして電動モータ12R,12Lの負荷トルクが増加し、モータ回転速度ωR,ωLが低下すると、それに応じてモータ目標トルクTr1R,Tr1Lが増加する。モータ負荷トルクが減少した場合は、逆に、モータ目標トルクTr1R,Tr1Lを減少させる。一方、モータ出力目標馬力Pmが増加すれば、それに応じてモータ目標トルクTr1R,Tr1Lが増加し、そのときのモータ負荷トルクが一定であればモータ回転速度ωR,ωLが増加する。モータ出力目標馬力Pmが減少した場合は、逆に、モータ負荷トルクが一定であればモータ回転速度ωR,ωLは減少する。
手順122では、手順101で読み込んだ各電動モータ12R,12Lの回転数ωR,ωLを、図14に示すモータ最大トルクの関数Trmax1(ω)で表されるモータ回転数対モータ最大トルクのデータマップに参照して、対応するモータ最大トルクTrmax1を計算する(図4のブロック223,224)。
図14において、関数Trmax1(ω)は、インバータ73R,73Lが各電動モータ12R,12Lに流せる最大電流値、インバータ73R,73L内のIGBTやGTOなどの駆動素子の出力限界、各モータ軸の強度など、駆動システムを構成する機器の仕様に基づいて設定したものである。図14に示すように、例えば、モータ回転速度ωR,ωLがω1であるとき、モータ最大トルクTrmax1はTrmax1(ω1)となる。モータ最大トルクTrmax1の最大値はTrmaxである。
手順123では、手順101で読み込んだアクセル操作量pを、モータ加速トルクの関数Trmax2(p)で表されるアクセル操作量対モータ加速トルクのデータマップに参照して、対応するモータ加速トルクTrmax2を計算する(図4のブロック225)。
関数Trmax2(p)は加速トルク制限値特性であり、図15において、関数Trmax2(p)は、アクセルペダル1の操作量pが無操作の0のときは、モータ加速トルクTrmax2は微速走行に適したトルク範囲の低めのトルク、好ましくは最小トルクTrmax2aであり、アクセルペダルの操作量pが0から中間操作量pc1までの微操作領域を含む範囲にあるときは、アクセル操作量pが増加するにしたがってモータ加速トルクTrmax2は最小トルクTrmax2aから微速走行に適したトルク範囲の高めのトルクTrmax2bまで増加し、アクセル操作量pが中間操作量pc1から最大操作量pmaxの手前の操作量pc2までの範囲にあるときは、アクセル操作量pが増加するにしたがってモータ加速トルクTrmax2はトルクTrmax2bから図14に示したモータ最大トルクTrmax1の最大値である最大トルクTrmaxまで、操作量0〜pc1の範囲よりも高い割合で増加し、アクセル操作量pがpc2を超えるとモータ加速トルクTrmax2は最大値Trmaxで一定となるように設定されている。微速走行に適したトルク範囲は図14に示したモータ最大トルクTrmax1の最大値Trmax(モータ許容最大トルク)の15%〜50%程度であると考えられており、その最小トルクTrmax2aは、好ましくは、最大値Trmaxの15%〜30%であり、図示の例では20%である。微速走行に適したトルク範囲の高めのトルクTrmax2bは、好ましくは、最大値Trmaxの30%〜50%であり、図示の例では40%である。
中間操作量pc1は、好ましくは、最大操作量pmaxの40%〜60%であり、図示の例では50%である。モータ加速トルクTrmax2が最大になる操作量pc2は、好ましくは、最大操作量pmaxの70%〜95%であり、図示の例では80%である。
手順124では、手順121で求めたモータ目標トルクTr1R,Tr1Lと、手順122で求めたモータ最大トルクTrmax1と、手順123で求めたモータ加速トルクTrmax2との比較を行い、それらの最小値を選択し、モータトルク指令値TrR,TrLとする(図4のブロック226,227)。すなわち、
TrR=min(Tr1R,Trmax1,Trmax2)
TrL=min(Tr1L,Trmax1,Trmax2)
手順125では、手順105又は106で求めたエンジン目標回転数Nrを原動機4の電子ガバナ4aに指令する。
手順101〜118(図4のブロック201〜217)の処理、手順123の処理(図3のブロック225)、及び手順125の処理は全体制御装置3により行われる処理であり、手順121,122,124(図4のブロック221〜224、ブロック226,227)の処理はインバータ制御装置7のトルク指令演算部71R,71Lにより行われる処理である。
手順126では、インバータ制御装置7内のモータ制御演算部72R,72Lによって手順123で求めたモータトルク指令値TrR,TrLをインバータ73R,73Lに指令し、各電動モータ12R,12Lのトルク制御がなされる。
以上において、手順111〜124,126(ブロック211〜227)の処理は、アクセルペダル1の操作量に応じてインバータ73R,73Lを制御し、電動モータ12R,12Lを制御するモータ制御手段を構成し、手順102〜106,125(ブロック201〜203)の処理は、シフトレバー16が中立位置にあるときは、作業用の油圧ポンプの駆動に適した第1目標回転数特性(関数Nr1(p))に基づいてアクセルペダル1の操作量に応じた目標回転数を演算し、この目標回転数に基づいて電子ガバナ4aを制御し、シフトレバー16が前進位置にあるときは、電動モータ12R,12Lの駆動に適した第2目標回転数特性関数Nr2(p))に基づいてアクセルペダル1の操作量に応じた目標回転数を演算し、この目標回転数に基づいて電子ガバナ4aを制御する原動機制御手段を構成する。
手順102(ブロック201)は、前記第1目標回転数特性に基づいてアクセルペダル1の操作量に応じた第1目標回転数Nr1を計算する第1目標回転数計算手段を構成し、手順103(ブロック202)は、第2目標回転数特性に基づいてアクセルペダル1の操作量に応じた第2目標回転数Nr2を計算する第2目標回転数計算手段を構成し、手順104〜106(ブロック203)は、シフトレバー16が中立位置Nにあるときは、第1目標回転数計算手段により計算した第1目標回転数Nr1を選択し、シフトレバー16が前進位置Fにあるときは第2目標回転数計算手段により計算した第2目標回転数Nr2を選択する目標回転数決定手段を構成する。
また、以上において、手順112〜117(ブロック213〜216)の処理は、アクセルペダル1の操作量に応じたモータ目標出力馬力Pm0を計算するモータ目標出力馬力計算手段を構成し、手順121(ブロック221,222)の処理は、モータ目標出力馬力Pm0と電動モータ12R,12Lの回転数ωR,ωLとに基づいてモータ目標トルクTr1R,Tr1Lを計算するモータ目標トルク計算手段を構成し、手順123(ブロック225)の処理は、アクセルペダル1の操作量に応じた電動モータ12R,12Lの加速トルク制限値(モータ加速トルクTrmax2)を計算する加速トルク制限値計算手段を構成し、手順124(ブロック226,227)の処理は、前記加速トルク制限値(モータ加速トルクTrmax2)が前記モータ目標トルクTr1R,Tr1Lよりも大きいときは、前記モータ目標トルクをモータトルク指令値TrR,TrLとして選択し、前記加速トルク制限値(モータ加速トルクTrmax2)が前記モータ目標トルクTr1R,Tr1Lよりも小さくなると前記加速トルク制限値をモータトルク指令値TrR,TrLとして選択するモータトルク指令値決定手段を構成し、手順126の処理と、インバータ制御装置7のトルク指令演算部71R,71L及びモータ制御演算部72R,72Lは、前記モータトルク指令値TrR,TrLに基づいてインバータ73R,73Lを制御するインバータ制御手段を構成する。
次に、本実施の形態の動作を説明する。
1.非走行時
非走行時は、シフトレバー16をN(中立)位置にする。シフトレバー16をN(中立)位置にしたとき、電動モータ12R,12Lの目標馬力Pm0はPm0=0であり、モータ駆動は行われない。
原動機側では、図5に示した非走行時の第1目標回転数の関数Nr1(p)のデータマップが選択され、関数Nr1(p)による第1目標回転数Nr1が原動機4の目標回転数Nrとして与えられる。このためアクセルペダル1を踏み込まない無操作時は、原動機4の目標回転数Nrはアイドル回転数の750rpとなり、燃料消費量を最少限に止めて燃費を低減することができる。また、アクセルペダル1を踏み込みと、その踏み込み量に応じて原動機4の目標回転数Nrは750rpmから定格回転数の1900rpmまで増加し、原動機4の回転数が最小から最大までの広い範囲で変化するため、ベッセル上げのようにダンプトラックを停止させて油圧系のみを操作して作業を行うときは、原動機4を安定に作動させかつ油圧ポンプ18aの最大流量を確保し、広い範囲で作業速度を調整することができる。
2.通常走行時
通常走行時は、シフトレバー16をF(前進)位置とする。シフトレバー16をF(前進)位置にしたとき、電動モータ側では、手順112により計算された図11に示した前進時の第1モータ目標出力馬力の関数Pm1(p)のデータマップが選択され、関数Pm1(p)による第1モータ目標出力馬力Pm1がモータ目標出力馬力Pm0として与えられる。
原動機側では、図6に示した走行時の第2目標回転数の関数Nr2(p)のデータマップが選択され、関数Nr2(p)による第2目標回転数Nr2が原動機4の目標回転数Nrとして与えられる。このためアクセルペダル1を踏み込まない無操作時は、原動機4の目標回転数Nrはアイドル回転数の750rpとなり、燃料消費量を最少限に止めて燃費を低減することができる。また、走行始動時に、アクセルペダル1を少しでも踏み込むと、原動機4の目標回転数Nrは直ちに中速回転数の1300rpmまで増加し、その後、アクセルペダルの踏み込み量に応じて原動機4の目標回転数Nrは1300rpmから最大回転数(定格回転数)の1900rpmまで増加する。これにより原動機4の回転数は中速回転数から最大回転数まで応答良く変化するため、アクセルペダル1を踏み込んだときの応答性が良くなり、良好な加速性を得ることができる。
また、図7のように、関数Nr2(p)の最大回転数を定格回転数の1900rpmより低めの例えば1800rpmに設定した場合は、原動機4の出力馬力は少し落ち走行速度は少し下がるが、走行時の燃料消費量を減らことができる。鉱山の道路の条件で、ベッセルに土砂や採鉱対象物を積載して登り道路を走行する場合、その傾斜が小さく5〜7%位しかないというケースも多い。このような場合には、ユーザによっては、走行速度は少し落ちても燃料消費量が減少する方が良いという要求もある。最大回転数を定格回転数より低めの回転数に設定することにより、このようなユーザの要求に応えることができる。
図8のように、アクセルペダル1の操作量が0のときに第2目標回転数Nrが直ちにアイドル回転数より高い中速回転数Nr2midとなるように設定した場合は、アクセルペダルが無操作であっても原動機4は中速回転数Nr2midで制御されるため図6例に比べて燃料消費量は増加する。しかし、この場合は、アクセルペダル1を踏み込んだときの応答性は更に良好となり、走行時の加速性を更に高める効果が得られる。
また、電動モータ側では、アクセルペダル1を最大付近まで踏み込んだときは、手順123において、図15に示したモータ加速トルクの関数Trmax2(p)のデータマップからモータ加速トルクTrmax2としてモータ最大トルクTrmax1の最大値Trmaxが求められるため、電動モータ12R,12Lの制御(走行制御)に対してモータ加速トルクTrmax2は制限とはならない。このため手順112により計算された第1モータ目標出力馬力Pm1(モータ目標出力馬力Pm0)に基づいて電動モータ12R,12Lは制御されるため、アクセルペダル1の操作量と電動モータ12R,12Lの出力馬力との関係が一致した良好な操作感覚が得られる。
更に、電動モータ側では、手順111において、原動機4の回転数に応じた電動モータ12R,12Lで使用可能な最大馬力Pmaxを計算し、手順118において、モータ目標出力馬力Pm0がその最大馬力Pmaxを超えないように制限するため、走行起動時の加速時に、原動機4の回転数が十分に上がりきらず、モータ目標出力馬力Pm0が最大馬力Pmaxを超えるような場合でも、モータ目標出力馬力Pm0はその最大馬力Pmaxに制限されるため、原動機4のストールを防止することができる。
3.微速走行時
微速走行時は、シフトレバー16をF(前進)位置とし、アクセルペダル1を少しだけ踏み込む。このとき、電動モータ側では、図11に示した前進時の第1モータ目標出力馬力の関数Pm1(p)による第1モータ目標出力馬力Pm1がモータ目標出力馬力Pm0として求められ、原動機側では、図6に示した非走行時の第1目標回転数の関数Nr1(p)による第1目標回転数Nr1が原動機4の目標回転数Nrとして求められるのは、通常走行時と同じである。
また、電動モータ側において、アクセルペダル1を少しだけ踏み込んだときは、その踏み込み量が例えば0から50%程度であるとすると、図15に示したモータ加速トルクの関数Trmax2(p)において、モータ加速トルクTrmax2としてモータ最大トルクTrmax1の最大値Trmaxの20〜40%の値が求められ、目標トルクTr1R,Tr1Lと、モータ最大トルクTrmax1と、モータ加速トルクTrmax2の最小値を選択する手順124では、モータトルク指令値TrR,TrLとしてモータ加速トルクTrmax2が選択される。このためアクセルペダル1を微操作したときの走行トルク及びトルク変化が小さく押さえられるため、微速走行時は良好な制御性が得られ、微妙な位置決めを容易に行うことができる。
図16は、手順124(ブロック226,227)におけるモータ目標トルクTr1R,Tr1Lとモータ加速トルクTrmax2との最小値の選択結果を示す図である。図中、A,B,C,D,Eは、それぞれ、図11及び図15のA,B,C,D,Eの各点に対応している。
アクセル操作量が図11のA,B,C,D,Eの各点にあるとき、手順121(ブロック221,222)では、図11のA,B,C,D,Eの各点に対応する第1モータ目標出力馬力と第1モータ目標出力馬力の関数Pm1(p)とから図16の実線と破線の双曲線で示されるモータ目標トルクTr1RA,Tr1LA〜Tr1RE,Tr1LE(以下Tr1A〜Tr1Eと略す)が計算される。また、アクセル操作量が図15のA,B,C,D,Eの各点にあるとき、手順123(ブロック225)では、モータ加速トルクの関数Trmax2(p)から図16の実線の直線で示されるモータ加速トルクTrmax2A〜Trmax2Eが計算される。手順124(ブロック226,227)では、それらの値の小さい方が選択され、モータトルク指令値TrR,TrLは図16に実線で示されるような値となる。
この図16において、実線A,B,Cで示されるモータトルク指令値は、アクセル操作量pが50%以下にあるときのものであり、その最大値は、モータ加速トルクTrmax2A〜Trmax2Cによりモータ最大トルクTrmax1の最大値Trmaxの20%から40%の範囲の小さな値に押さえられている。また、アクセルペダル操作時のアクセル操作量の変化に対するモータトルク指令値の変化も、例えばΔTAB1とΔTAB2との比較(ΔTAB1<ΔTAB2)、ΔTBC1とΔTBC2との比較(ΔTBC1<ΔTBC2)から分かるように、モータ目標トルクTr1A〜Tr1Eのモータトルク指令値の変化量に比べて小さく抑えられている。
このようにアクセル操作量pが50%以下の範囲で、モータトルク指令値の最大値が小さく抑えられ、かつアクセルペダル操作時のアクセル操作量の変化に対するモータトルク指令値の変化が小さく押さえられることにより、アクセルペダル操作時の電動モータ12R,12Lによる走行トルク及び走行トルク変化が小さくなり、走行速度の変化も小さくなって、微速走行時の制御性を高めることができる。
以上のように本実施の形態によれば、アクセルペダル1の操作量が0〜50%までは電動モータ12R,12Lの駆動の最大トルクを20〜40%に抑え、アクセルペダル1の操作量が50%以上では最大トルクを上げて、100%より手前で最大トルクの制限値を100%にすることにより、通常走行時はアクセルペダル1の操作量と電動モータ12R,12Lの出力馬力との関係が一致した良好な操作感覚が得られ、アクセルペダル1の操作量が小さいときはトルク及びトルク変化を低く制限し、微速走行時に良好な制御性が得られ、微妙な位置決めを容易に行うことができる。
また、シフトレバー15がN位置にあり、走行しないでベッセルを上下させる場合など非走行時の油圧系の駆動時には、アクセルペダル1の操作量に応じて例えば750〜1900rpmという目標回転数を与え、シフトレバー16がF位置又はR位置にある走行時は、アクセルペダル1に応じて例えば1300〜1900rpmの範囲で原動機4の目標回転数を与えるため、非走行時の油圧系の駆動時には、原動機を安定に作動させかつ油圧ポンプの最大流量を確保し、広い範囲で作業速度を調整することができ、走行時には、アクセルペダルを踏み込んだときの応答性が良くなり、良好な加速性を得ることができる。また、シフトレバー16がF位置又はR位置にある走行時であっても、アクセルペダル1の非操作時は原動機4の目標回転数は最小回転数となるため、燃費を向上することができる。
本発明の第2の実施の形態を図17〜図19を用いて説明する。本実施の形態は、アクセル操作量からモータ加速トルクを求める代わりにモータトルク制限比率を求めるものである。
図17は、本実施の形態に係わる駆動システムの処理手順を示す、図2と同様な機能ブロック図である。図18は、同処理手順をフローチャートで示す図であり、第1の実施の形態における図4に対応するものである。
本実施の形態において、原動機側の制御の処理手順(図3の手順101〜106の処理手順)及び電動モータ側のモータ最大トルクTmax1を算出するまでの処理手順(図3の手順111〜図4の手順122までの処理手順)は、第1の実施の形態と同じである。本実施の形態では、手順122において、各電動モータ12R,12Lの回転数ωR,ωLとモータ最大トルクの関数Trmax1(ω)とからモータ最大トルクTrmax1を計算した後、手順131において、アクセルペダル1の操作量pを、図19に示すモータトルク制限比率の関数Kmax(p)で表されるアクセル操作量対モータトルク制限比率のデータマップに参照して、対応するモータトルク制限比率Kmaxを計算する(図17のブロック225A)。
図19において、関数Kmax(p)は、図15に示したモータ加速トルクの関数の縦軸を制限比率(100分率)に変え、その数値をモータ許容最大トルクTrmaxに対する割合(%)に置き換えたものである。
手順132では、モータ最大トルクTrmax1と手順131において求めたモータトルク制限比率Kmaxとを乗算してモータ最大トルクTrmax2を算出する(図17のブロック231,232)。
手順133では、モータ目標トルクTr1R,Tr1Lと、手順132において求めたモータ最大トルクTrmax2との比較を行い、それらの最小値を選択し、モータトルク指令値TrR,TrLとする(図17のブロック233,234)。すなわち、
TrR=min(Tr1R,Trmax2)
TrL=min(Tr1L,Trmax2)
以後の手順125,126は図4に示した第1の実施の形態と同じであり、エンジン目標回転数Nrを原動機4の電子ガバナ4aに指令するとともに、モータトルク指令値TrR,TrLをインバータ73R,73Lに指令する。
以上において、手順131,132(ブロック225A,231,232)の処理は、第1の実施の形態における手順123(ブロック225)の処理と同様、アクセルペダル1の操作量に応じた電動モータ12R,12Lの加速トルク制限値(モータ最大トルクTrmax2)を計算する加速トルク制限値計算手段を構成し、手順133(ブロック233,234)の処理は、第1の実施の形態における手順124(ブロック226,227)の処理の処理と同様、加速トルク制限値(モータ最大トルクTrmax2)がモータ目標トルクTr1R,Tr1Lよりも大きいときは、モータ目標トルクをモータトルク指令値TrR,TrLとして選択し、加速トルク制限値(モータ最大トルクTrmax2)がモータ目標トルクTr1R,Tr1Lよりも小さくなると加速トルク制限値(モータ最大トルクTrmax2)をモータトルク指令値TrR,TrLとして選択するモータトルク指令値決定手段を構成する。
以上のように本実施の形態においても、手順131,132(ブロック225A,231,232)及び手順133(ブロック233,234)の処理機能は第1の実施の形態における手順123(ブロック225)及び手順124(ブロック226,227)の処理機能と同じであり、通常走行時にアクセルペダルの操作量と電動モータの出力馬力との関係が一致した良好な操作感覚が得られ、微速走行時は良好な制御性が得られ、微妙な位置決めを容易に行うことができる。
以上において、本発明の一実施の形態を説明したが、本発明の精神の範囲内で種々の変形が可能である。以下にその幾つかを説明する。
例えば、上記実施の形態では、手順111(ブロック211)で、原動機4の実回転数Neをモータ最大出力馬力の関数Mr(Ne)に参照して電動モータ12R,12Lで使用可能な最大馬力Mrを求めたが、通常はアクセルペダルを急激に操作せず、原動機4の実回転数Neは目標回転数Nrにほぼ等しいので、原動機4の実回転数Neに代え、目標回転数Nrを用いて電動モータ12R,12Lで使用可能な最大馬力Mrを求めてもよい。また、最大馬力Mrを1/2にして電動モータ12R,12Lの1台当たりの出力馬力上限値Pmaxを算出したが、手順118(ブロック217)でモータ出力馬力上限値Pmaxとモータ目標出力馬力Pm0との小さい方の値を選択した後、その値を1/2にしてモータ出力目標馬力Pmとしてもよい。
また、電動モータ12R,12Lは誘導モータとしたが、同期モータであってもよい。
本発明の一実施の形態による電気駆動ダンプトラックの駆動システムの全体構成を示す図である。 本実施の形態によるる駆動システムの処理手順を示す機能ブロック図である。 処理手順を示すフローチャートである。 処理手順を示すフローチャートである。 非走行時の第1目標回転数の関数Nr1(p)を示す図である。 走行時の第2目標回転数の関数Nr2(p)を示す図である。 走行時の第2目標回転数の関数Nr2(p)の変形例を示す図である。 走行時の第2目標回転数の関数Nr2(p)の他の変形例を示す図である。 モータ最大出力馬力の関数Pmax(Ne)を示す図である。 関数f(Ne)で表される回転数対原動機最大出力馬力のデータマップと、関数g(Ne)で表される回転数対その他原動機負荷損失馬力のデータマップを示す図である。 前進時の第1モータ目標出力馬力の関数Pm1(p)を示す図である。 後進時の第2モータ目標出力馬力の関数Pm2(p)を示す図である。 モータ出力目標馬力Pmと電動モータの回転速度ωR,ωLとモータ目標トルクTr1R,Tr1Lとの関係を示す図である。 モータ最大トルクの関数Trmax1(ω)で表されるモータ回転数対モータ最大トルクのデータマップを示す図である。 モータ加速トルクの関数Trmax2(p)を示す図である。 モータ目標トルクTr1R,Tr1Lとモータ加速トルクTrmax2との最小値の選択結果を示す図である。 本発明の第2の実施の形態による駆動システムの処理手順を示す機能ブロック図である。 第2の実施の形態の処理手順を示すフローチャートである。 モータトルク制限比率の関数Kmax(p)を示す図である。
符号の説明
1 アクセルペダル
2 リタードペダル
3 全体制御装置
4 原動機(ディーゼルエンジン)
5 交流発電機
6 整流回路
7 インバータ制御装置
8 チョッパ回路
9 グリッド抵抗
10 コンデンサ
11 整流後の電圧を検出するための抵抗
12R,12L 左右の電動モータ(誘導モータ)
13R,13L 減速機
14R,14L 左右の後輪(タイヤ)
15R,15L 電磁ピックアップセンサ
16 シフトレバー
18 その他の原動機負荷
71R,71L トルク指令演算部
72R,72L モータ制御演算部
73R,73L インバータ(スイッチング素子)
Nr1 第1目標回転数
Nr2 第2目標回転数
Nr 目標回転数
Pm1 第1モータ目標出力馬力
Pm2 第2モータ目標出力馬力
Pm0 モータ目標出力馬力
Pmax モータ出力馬力上限値
Pm モータ目標出力馬力
Tr1R,TrlL モータ目標トルク
Trmax2 モータ加速トルク
Trmax モータ許容最大トルク
TrR,TrL モータトルク指令値
関数Nr1(p) 第1目標回転数特性
関数Nr2(p) 第2目標回転数特性
関数Trmax2(p) 加速トルク制限値特性

Claims (7)

  1. 原動機と、
    この原動機の回転数とトルクを制御する電子ガバナと、
    前記原動機により駆動される交流発電機と、
    前記原動機により駆動される作業用の油圧ポンプと、
    前記交流発電機により電力が供給されて駆動する走行用の少なくとも2つの電動モータと、
    前記交流発電機に接続され、それぞれ、前記電動モータを制御する少なくとも2つのインバータとを有する電気駆動ダンプトラックの駆動システムにおいて、
    アクセルペダルと、
    中立位置及び前進位置を含む複数の位置のいずれかに操作されるシフトレバーと、
    前記アクセルペダルの操作量に応じて前記インバータを制御し、前記電動モータを制御するモータ制御手段と、
    前記シフトレバーが中立位置にあるときは、前記作業用の油圧ポンプの駆動に適した第1目標回転数特性に基づいて前記アクセルペダルの操作量に応じた目標回転数を演算し、この目標回転数に基づいて前記電子ガバナを制御し、前記シフトレバーが前進位置にあるときは、前記電動モータの駆動に適した第2目標回転数特性に基づいて前記アクセルペダルの操作量に応じた目標回転数を演算し、この目標回転数に基づいて前記電子ガバナを制御する原動機制御手段とを備えることを特徴とする駆動システム。
  2. 請求項1記載の電気駆動ダンプトラックの駆動システムにおいて、
    前記第1目標回転数特性は、前記アクセルペダルの操作量が0であるときは目標回転数が最小回転数であり、前記アクセルペダルの操作量が増加するにしたがって目標回転数が前記最小回転数から最大回転数まで増加するように設定され、前記第2目標回転数特性は、前記アクセルペダルの操作量が0又は0から予め定めた微少操作量の範囲内にあるときは目標回転数が前記最小回転数よりも高く前記最大回転数よりも低い中速回転数であり、前記アクセルペダルの操作量が増加するにしたがって目標回転数が前記中速回転数から高速回転数まで増加するように設定されていることを特徴とする駆動システム。
  3. 請求項2記載の電気駆動ダンプトラックの駆動システムにおいて、
    前記第2目標回転数特性は、前記アクセルペダルの操作量が0から前記微少操作量までの範囲内にあるときは目標回転数が最小回転数であり、前記アクセルペダルの操作量が前記微少操作量に達すると目標回転数が前記中速回転数までステップ的に増加するよう設定されていることを特徴とする駆動システム。
  4. 請求項2又は3記載の電気駆動ダンプトラックの駆動システムにおいて、
    前記最小回転数は700rpm〜800rpmの範囲内の回転数であり、前記中速回転数は900rpm〜1600rpmの範囲内の回転数であり、前記最大回転数及び前記高速回転数は1800rpm〜2100rpmの範囲内の回転数であることを特徴とする駆動システム。
  5. 請求項2又は3記載の電気駆動ダンプトラックの駆動システムにおいて、
    前記アクセルペダルの所定の微少量の操作量は前記アクセルペダルの最大操作量の2〜8%の範囲内の操作量であることを特徴とする駆動システム。
  6. 請求項1記載の電気駆動ダンプトラックの駆動システムにおいて、
    前記原動機制御手段は、前記第1目標回転数特性に基づいて前記アクセルペダルの操作量に応じた第1目標回転数を計算する第1目標回転数計算手段と、前記第2目標回転数特性に基づいて前記アクセルペダルの操作量に応じた第2目標回転数を計算する第2目標回転数計算手段と、前記シフトレバーが中立位置にあるときは、前記第1目標回転数計算手段により計算した第1目標回転数を選択し、前記シフトレバーが前進位置にあるときは前記第2目標回転数計算手段により計算した第2目標回転数を選択する目標回転数決定手段とを有することを特徴とする駆動システム。
  7. 請求項1記載の電気駆動ダンプトラックの駆動システムにおいて、
    前記モータ制御手段は、
    前記アクセルペダルの操作量に応じた第1モータ目標出力馬力を計算するモータ目標出力馬力計算手段と、
    前記第1モータ目標出力馬力と前記2つの電動モータの回転数とに基づいてモータ目標トルクを計算するモータ目標トルク計算手段と、
    前記アクセルペダルの操作量に応じた前記2つの電動モータの加速トルク制限値を計算する加速トルク制限値計算手段と、
    記モータ目標トルクが前記加速トルク制限値を超えないよう制限するモータトルク制限手段と、
    前記加速トルク制限値により制限されたモータ目標トルクに基づいて前記インバータを制御するインバータ制御手段とを備えることを特徴とする駆動システム。
JP2006157661A 2006-06-06 2006-06-06 電気駆動ダンプトラックの駆動システム Active JP4230494B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006157661A JP4230494B2 (ja) 2006-06-06 2006-06-06 電気駆動ダンプトラックの駆動システム
PCT/JP2007/059455 WO2007141979A1 (ja) 2006-06-06 2007-05-07 電気駆動ダンプトラックの駆動システム
AU2007256115A AU2007256115B2 (en) 2006-06-06 2007-05-07 Drive system for electrically driven dump truck
DE112007000597.1T DE112007000597B4 (de) 2006-06-06 2007-05-07 Antriebssystem für einen elektrisch angetriebenen Kipper
US12/161,692 US8249765B2 (en) 2006-06-06 2007-05-07 Drive system for electrically driven dump truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157661A JP4230494B2 (ja) 2006-06-06 2006-06-06 電気駆動ダンプトラックの駆動システム

Publications (3)

Publication Number Publication Date
JP2007326408A JP2007326408A (ja) 2007-12-20
JP2007326408A5 JP2007326408A5 (ja) 2008-08-14
JP4230494B2 true JP4230494B2 (ja) 2009-02-25

Family

ID=38801244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157661A Active JP4230494B2 (ja) 2006-06-06 2006-06-06 電気駆動ダンプトラックの駆動システム

Country Status (5)

Country Link
US (1) US8249765B2 (ja)
JP (1) JP4230494B2 (ja)
AU (1) AU2007256115B2 (ja)
DE (1) DE112007000597B4 (ja)
WO (1) WO2007141979A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157114A1 (ja) 2013-03-29 2014-10-02 日立建機株式会社 エンジン回転制御システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023503A1 (de) * 2004-05-10 2005-12-15 Volkswagen Ag Verfahren und Vorrichtung zum Motorstopp-Motorstart von Hybridfahrzeugen
JP4440232B2 (ja) * 2006-06-06 2010-03-24 日立建機株式会社 電気駆動ダンプトラックの駆動システム
EP2059588A4 (en) 2006-08-29 2010-07-28 Commw Scient Ind Res Org FATTY ACID SYNTHESIS
US8793002B2 (en) * 2008-06-20 2014-07-29 Caterpillar Inc. Torque load control system and method
JP4462366B2 (ja) 2008-04-01 2010-05-12 トヨタ自動車株式会社 動力出力装置およびこれを備える車両並びに動力出力装置の制御方法
BRPI0921467B1 (pt) 2008-11-18 2021-12-14 Commonwealth Scientific And Industrial Research Organisation Processo para a produção de óleo compreendendo ácido eicosapentaenóico (epa), ácido docosapentaenóico (dpa) e ácido docosahexaenóico (dha)
EP2592189A1 (en) * 2010-07-06 2013-05-15 Volvo Construction Equipment AB Horsepower control system of a hybrid excavator and control method therefor
DE102010052270A1 (de) * 2010-11-23 2013-05-16 Liebherr Mining Equipment Co. Verfahren und Vorrichtung zum Steuern des Antriebssystems für mobile Geräte wie eine mobile Bau- und/oder Abbaumaschine
JP5959874B2 (ja) 2012-02-15 2016-08-02 日立建機株式会社 ハイブリッド式作業車両
KR101958027B1 (ko) * 2012-12-26 2019-07-04 두산인프라코어 주식회사 하이브리드 건설기계의 엔진 제어 장치
EP3294581B1 (en) * 2015-05-13 2021-07-07 Volvo Construction Equipment AB A working machine arranged with means to drive and control a hydraulic pump

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817202A (ja) * 1981-07-24 1983-02-01 Hitachi Constr Mach Co Ltd 油圧回路の制御方法
US4867287A (en) * 1986-06-20 1989-09-19 Toyota Jidosha Kabushiki Kaisha Control method for magnetic powder clutch
US6055851A (en) * 1996-08-12 2000-05-02 Hitachi Construction Machinery Co., Ltd. Apparatus for diagnosing failure of hydraulic pump for work machine
JP3414310B2 (ja) * 1998-09-25 2003-06-09 トヨタ自動車株式会社 エンジンの始動制御装置
JP3295048B2 (ja) 1998-12-25 2002-06-24 ティー・シー・エム株式会社 産業用車両の走行駆動装置
US6314939B1 (en) * 1999-03-11 2001-11-13 Outboard Marine Corporation Methods and apparatus for controlling engine operation
JP4111629B2 (ja) * 1999-04-09 2008-07-02 株式会社小松製作所 ハイブリッド式ダンプトラック
DE60007917T2 (de) * 1999-05-26 2004-10-28 Toyota Jidosha K.K., Toyota Hybrid Kraftfahrzeug mit eingebauten Brennstoffzellen und Steuerverfahren dafür
DE60043729D1 (de) * 1999-06-28 2010-03-11 Kobelco Constr Machinery Ltd Bagger mit hybrid-antriebsvorrichtung
JP2001107762A (ja) 1999-10-08 2001-04-17 Tcm Corp 産業用車両の走行駆動装置
US7048515B2 (en) * 2001-06-21 2006-05-23 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system and method using a fuel injection control unit
US6734647B2 (en) * 2001-10-30 2004-05-11 Honda Giken Kogyo Kabushiki Kaisha Working machine
US6640469B1 (en) * 2002-05-29 2003-11-04 Detroit Diesel Corporation Snow blower vehicle and method for improving snow blower vehicle performance
US6643577B1 (en) * 2002-08-22 2003-11-04 Caterpillar Inc Operator control station and method for a work machine having more than one function
JP3912235B2 (ja) * 2002-09-10 2007-05-09 トヨタ自動車株式会社 車両の油圧制御装置
JP2005009381A (ja) * 2003-06-18 2005-01-13 Hitachi Constr Mach Co Ltd ハイブリッド式建設機械
CA2472842C (en) 2003-07-22 2012-05-29 Honda Motor Co., Ltd. Working machine
JP3989415B2 (ja) * 2003-07-22 2007-10-10 本田技研工業株式会社 作業機
US7058495B2 (en) * 2003-09-04 2006-06-06 Caterpillar Inc. Work implement control system and method
DE112005001057B4 (de) * 2004-05-13 2017-11-16 Komatsu Ltd. Drehsteuervorrichtung, Drehsteuerverfahren und Baumaschine
WO2006033399A1 (ja) * 2004-09-24 2006-03-30 Komatsu Ltd. 旋回制御装置、旋回制御方法、および建設機械

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157114A1 (ja) 2013-03-29 2014-10-02 日立建機株式会社 エンジン回転制御システム
CN104955698A (zh) * 2013-03-29 2015-09-30 日立建机株式会社 引擎旋转控制系统
CN104955698B (zh) * 2013-03-29 2017-03-08 日立建机株式会社 引擎旋转控制系统

Also Published As

Publication number Publication date
US8249765B2 (en) 2012-08-21
DE112007000597T5 (de) 2009-03-12
JP2007326408A (ja) 2007-12-20
AU2007256115B2 (en) 2010-02-18
AU2007256115A1 (en) 2007-12-13
WO2007141979A1 (ja) 2007-12-13
US20100222951A1 (en) 2010-09-02
DE112007000597B4 (de) 2019-05-02

Similar Documents

Publication Publication Date Title
JP4440232B2 (ja) 電気駆動ダンプトラックの駆動システム
JP4230494B2 (ja) 電気駆動ダンプトラックの駆動システム
JP4230493B2 (ja) 電気駆動ダンプトラックの駆動システム
JP4751854B2 (ja) 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
JP2007326404A (ja) 電気駆動ダンプトラックの駆動システム
JP3976225B2 (ja) 前後輪駆動車両の制御装置
US20130006456A1 (en) Systems and methods for engine load management for electric drive vehicles
JP5245886B2 (ja) 回生協調ブレーキ制御装置及び回生協調ブレーキ制御方法
JP2018034727A (ja) ハイブリッド車
JP5332235B2 (ja) 回生協調ブレーキ制御装置
JP4155962B2 (ja) ハイブリッド車両
JP2008044410A (ja) 電気駆動ダンプトラックの駆動システム
JP4311681B2 (ja) 電気駆動ダンプトラックの駆動システム
CN100368226C (zh) 动力输出装置及其控制方法和汽车
JPH10178705A (ja) 電気自動車
JP2003070107A (ja) 電気自動車のモータ制御装置
US11458950B2 (en) Drive force control system for hybrid vehicle
JP2006115588A (ja) 車両のモータトラクション制御装置
JP4814202B2 (ja) 電気駆動ダンプトラックの駆動システム
JP2011152009A (ja) 作業用車両の走行駆動装置
JP3906571B2 (ja) 車両の制御装置
JP2006149023A (ja) 電動車両の負荷制御装置
JP2007313994A5 (ja)
JP2010188787A (ja) 車両の駆動制御装置及び駆動制御方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Ref document number: 4230494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5