[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4225733B2 - Terminal, connector, lead frame material plate - Google Patents

Terminal, connector, lead frame material plate Download PDF

Info

Publication number
JP4225733B2
JP4225733B2 JP2002040670A JP2002040670A JP4225733B2 JP 4225733 B2 JP4225733 B2 JP 4225733B2 JP 2002040670 A JP2002040670 A JP 2002040670A JP 2002040670 A JP2002040670 A JP 2002040670A JP 4225733 B2 JP4225733 B2 JP 4225733B2
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
crystal grain
recrystallization
final cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002040670A
Other languages
Japanese (ja)
Other versions
JP2002356728A (en
Inventor
靖夫 富岡
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002040670A priority Critical patent/JP4225733B2/en
Publication of JP2002356728A publication Critical patent/JP2002356728A/en
Application granted granted Critical
Publication of JP4225733B2 publication Critical patent/JP4225733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Description

【0001】
【産業上の利用分野】
本発明は微細結晶粒をもつ端子、コネクター、リードフレーム用素材板に係り、特に曲げ加工等の加工に際して特性を向上させる技術に関する。
【0002】
【従来の技術】
近年、端子やコネクターといった電子機器類及びその部品の小型化、薄肉化傾向に伴って、これらの材料である銅あるいは銅合金には高い強度を有することが望まれている。端子やコネクター材においては、電気的接続を保つために接触圧を高める必要があり、このためには材料の強度の高いことが必要である。またリードフレームにおいては、半導体回路の高集積化にともなう多ピン化や薄肉化が要望されている。このため、リードフレームの搬送などの取扱い時の変形を防止するために、要求される強度レベルは一層厳しくなってきている。
【0003】
また、電子機器類およびその部品の小型化にともなって、成形性の自由度があることへの要求が高まっており、コネクター材料などの加工性が一段と重要視されるようになり、中でも曲げ性のより優れたものが要求されるようになってきている。また、半導体リードフレームのアウターリードにおいては、ガルウイング状の曲げ加工を施される場合にも優れた曲げ性が要求される。
【0004】
材料に曲げ変形を与えた際に、曲げ部にクラックを生じない良好な曲げ性を得るためには、材料の延性を高めること、あるいは結晶粒径を小さくすることが必要である。さらに、電子機器用として用いられる銅合金にとって、電気信号を伝達すると同時に、通電時に発生する熱を外部に放出する機能が必要であり、導電性とともに熱伝導性が高いことが要求される。特に、近年の電気信号の高周波化に対応するために、導電性向上への要求がますます高まっている。
【0005】
銅合金の導電性は強度と相反する関係にあり、強度を高めるために合金元素を添加すると導電性が低下するため、用途に応じて強度と導電性、さらに価格とのバランスの適した合金が用いられている。これまで、この強度と導電性をバランス良く有する合金の開発が盛んに行われてきており、一般的にはCu−Ni−Si合金やCu−Cr−Zr合金といった第2相粒子を含む析出強化型の銅合金が両者のバランスの優れた高機能材として用いられるようになってきている。
【0006】
【発明が解決しようとする課題】
このように、電子機器用の銅または銅合金の機械特性にとって、高い強度と良好な加工性を有することが望まれる。ところが、まず強度と延性は相反する関係にあり、それぞれの合金系において、加工硬化による強度上昇を得るために圧延加工を行うと延性が低下するため、圧延のままでは良好な加工性は得られなかった。一方、結晶粒径を微細化することは、ホールペッチ(Hall-Petch)の式で示される強度の上昇が期待される上に、曲げ性の向上にもつながるために、焼鈍再結晶時に結晶粒径が小さくなるようにコントロールすることが一般的であった。
【0007】
しかしながら、この方法において結晶粒を微細化するために焼鈍温度を低くしていくと、部分的に未再結晶粒が残存するようになるため、実質的には2〜3μm程度の再結晶粒を得るのが限界であり、さらなる結晶粒微細化の手法が待たれていた。さらに、再結晶したままでは、通常は強度レベルが低く実用には向かないため、その後ある程度の圧延加工を加える必要があり、これにより上記のような延性の低下を招いていた。このため、一般的には圧延加工のあとに、延性回復のため歪取焼鈍のプロセスを行うことを必要としていた。このプロセスのため、圧延加工で得た強度が低下することを余儀なくされる上、歪取焼鈍後においても十分な延性が得られず、最近の極端に厳しい曲げ変形要求には対応できない場合もあった。
【0008】
ところで、近年、焼鈍プロセスではなく、強いせん断加工を材料に加えることにより微細結晶粒とそれによる高い延性を得る方法について、伊藤らによる報告(ARB(Accumulative Roll-Bonding)、日本金属学会誌、64(2000)、429)や、堀田による報告(ECAP(Equal-Channel Angular Press)、金属学会セミナーテキスト 結晶粒微細化へのアプローチ、(2000)、日本金属学会、39)などのように、加工方法による研究がなされている。しかしながら、これらの加工方法では、電子機器用の材料として使用できるほどの量を作ることができないため、工業生産には向かない。
【0009】
【課題を解決するための手段】
本発明者等は、上記問題点を解決するために鋭意研究を重ねた結果、焼鈍ではなく圧延プロセスの条件を制御することにより、これまで得られなかったレベルの微細な結晶粒を得ることを見い出した。すなわち、通常の加工度で冷間圧延された材料の組織では、その後の焼鈍により再結晶が生じると、再結晶粒界がセルを通過する際に不連続的に転位の消失が生じ、大きさが不均一で断続的に大きな結晶粒が生成される。これを静的再結晶と称している。本発明者等の検討によれば、冷間圧延の加工度を極端に高くすることにより、通常は高温領域で発現される動的再結晶が冷間圧延においても発現され、しかも加工中に形成されるサブグレインが高角粒界に変わることにより発現される動的連続再結晶であることが判明している。この機構を利用することにより丸みを帯びた1μm以下の均一な結晶粒径が得られる。この方法によると、延性の低下を防ぐために強度を犠牲にすることなく微細結晶粒が得られる上、最終冷間圧延直後でも2%以上の伸びが得られることが判明し、冷間圧延のままでも許容できる曲げ性を得ることができた。また、最終冷間圧延後さらに歪取焼鈍を加えることにより伸びがさらに向上するため、極端に厳しい曲げを受ける場合においても対応が可能となった。さらに、このような製造方法によれば、電子機器用材料として工業的に量産することも可能である。なお、連続再結晶については後にさらに詳細に説明する。
【0010】
本発明の端子、コネクター、リードフレーム用素材板は上記知見に基づいてなされたもので、Ni:1.0〜4.8質量%、Si:0.2〜1.4質量%、残部Cu及び不純物からなり、時効処理または再結晶焼鈍の最終冷間圧延における加工度ηが下記式で表される場合に、η≧3.0なる圧延加工を施すことで動的連続再結晶を生じさせることにより、上記最終冷間圧延後に、15°以上の大きな傾角をもつ結晶粒界からなる粒径0.40μm以下の微細な結晶粒の組織を有し、引張試験により2.3%以上の伸びを示すことを特徴としている。
【数3】
η=ln(T0/T1)
T0:圧延前の板厚、T1:圧延後の板厚
【0011】
また、本発明の他の端子、コネクター、リードフレーム用素材板は、Cr:0.02〜0.4質量%、Zr:0.01〜0.25質量%、残部Cu及び不純物からなり、時効処理または再結晶焼鈍後の最終冷間圧延における加工度ηが下記式で表される場合に、η≧3.0なる圧延加工を施すことで動的連続再結晶を生じさせることにより、上記最終冷間圧延後に、15°以上の大きな傾角をもつ結晶粒界からなる粒径0.40μm以下の微細な結晶粒の組織を有し、引張試験により2.3%以上の伸びを示すことを特徴としている。
【数
η=ln(T/T
:圧延前の板厚、T:圧延後の板厚
【0012】
次に、上記数値限定の根拠を本発明の作用とともに説明する。
A.最終冷間圧延加工度、伸び、結晶粒径
最終冷間圧延したままの材料で良好な曲げ性を得るためには延性が高いことが必要である。曲げ部にクラックを生じない良好な曲げ性を得るためには、引張試験における破断伸びは、ゲージ長さが50mmのときで2.3%以上が必要である。最終冷間圧延のままで2.3%以上の破断伸びを得るためには、最終冷間圧延後の結晶粒径を0.40μm以下とする必要がある。結晶粒径をそのように小さくすることで冷間圧延のままで伸びが得られるのは、連続再結晶粒が形成される際に、転位が粒界に堆積することにより非平衡状態の粒界構造が形成され、これにより粒界すべりが発現されて延性が向上するからである。
【0013】
最終冷間圧延後の結晶粒径と伸びは冷間圧延加工度の影響を受ける。製品板厚に達するまでの最終冷間圧延加工による加工度ηを下記式で表す。
【数
η=ln(T/T
:圧延前の板厚、T:圧延後の板厚
【0014】
この場合において、ηが小さいと圧延組織が残存し、鮮明な微細結晶粒が得られないか、得られた場合においても結晶粒径が大きくなって粒界すべりを起こせないために良好な延性が得られない。本発明者等の検討によれば、0.40μm以下の微細な結晶粒径を得るためにはηを3以上とすれば良いことが判明している。
【0015】
これまでの通常の加工度で冷間圧延された材料の組織は、結晶粒内に導入された転位が互いにもつれてセル構造をとることがあったが、この場合にはセルの方位どうしの傾角が15°以下と低いため、結晶粒界としての性質はもたなかった。このため、図1に示すように、冷間圧延後の焼鈍により再結晶が生じると、上述のように、大きさが不均一で断続的に大きな結晶粒が生成される静的再結晶が生じる。
【0016】
これに対し、冷間圧延の加工度を極端に高くとることで微細な結晶粒が得られるのは、加工度が高くなるとマトリックス中に局所的にせん断変形を受けた領域が材料全体にわたって無数に発生し、図1に示すように、下部組織であるサブグレイン構造が非常に発達し、マトリックスとの大きな方位差を埋めるために多くの転位が導入されてそれらが粒界に堆積するからであり、この場合には15°以上の大きな傾角をもつ結晶粒界(高傾角粒界)が生成する。すなわち、元々は結晶粒の下部組織であるサブグレイン構造がそのまま結晶粒として形成され、この場合には結晶粒界は静的再結晶の場合と大きく異なり、粒界に直線性がなく、曲線部分を主体とする結晶粒界を形成することが特徴である。この動的連続再結晶は、冷間圧延時に形成される場合が多いが意図的に低温焼鈍を行い、通常の回復域に持ち来たすことによりさらに明瞭な高角粒界が発達することも判明している。その場合には後述のように延性がさらに向上することが判明している。
【0017】
この機構においては、Cuマトリックス中に析出物、分散物などの第2相粒子が存在する場合には、圧延による塑性歪み導入により導入される転位が第2相粒子の周囲に転位ループ等を形成するなどして転位が増殖され、転位密度が大幅に増大する。この状況では上記サブグレインの粒径の微細化がさらに促進され、さらなる高強度化が図られる。なお、この際の最終冷間圧延では、途中で焼鈍により回復または再結晶を起こさない限り、板厚の範囲に応じて圧延機を代えて複数の圧延機で冷間圧延することや、表面性状を整えるために酸洗や研磨を行うことは差し支えない。
【0018】
B.歪取焼鈍
上記最終冷間圧延材を歪取焼鈍すればさらに延性が向上するため、さらに良好な曲げ性が得られる。焼鈍条件としては、強度が極端に低下して製品価値を失うことのない程度の適度の焼鈍条件に設定する必要がある。その焼鈍条件は合金系により異なるが、80〜500℃の温度範囲、5〜60分の範囲において適度な焼鈍条件を選択することで、容易に6%以上の伸びを得ることができ、厳しい曲げ加工にも対応が可能となる。
【0019】
本発明に係る銅合金としては、Ni2SiなどのNiとSiとの金属間化合物を有するNi:1.0〜4.8質量%、Si:0.2〜1.4質量%、Cu:残部のCu−Ni−Si系合金と、Cr粒並びにCuとZrの金属間化合物を有するCr:0.02〜0.4質量%、Zr:0.01〜0.25質量%、Cu:残部のCu−Cr−Zr系合金であるが、上記銅合金系に副成分として、Sn、Fe、Ti、P、Mn、Zn、In、MgおよびAgの一種以上を総量で0.005〜2質量%添加しても良い。さらに、他の種類の析出物、分散物などの第2相粒子を有する銅合金であっても良い。
【0020】
【実施例】
次に、本発明の効果を実施例により更に具体的に説明する。まず、電気銅あるいは無酸素銅を原料とし、必要により他の添加元素とともに真空溶解炉中に所定量投入したあと、溶湯温度1250℃で出湯し表1〜3に示す成分組成のインゴットを得た。なお、表1にはCu−Ni−Si合金の成分、表2にはCu−Cr−Zr系合金の成分、表3には他の銅合金の成分を示す。
【0021】
【表1】

Figure 0004225733
【0022】
【表2】
Figure 0004225733
【0023】
【表3】
Figure 0004225733
【0024】
次に、これらのインゴットを950℃の温度での熱間圧延を行うことにより厚さ10mmの板にした。その後、表層の酸化層を機械研磨により除去し、冷間圧延により5mmの板とした後、時効析出型銅合金の場合には溶体化処理を、それ以外の場合には1回目の再結晶焼鈍を行った。その後さらに冷間圧延を行い中間厚さ1.1〜3.8mmの板を得た後、この板厚において時効処理または2回目の再結晶焼鈍を行った。時効処理を行う場合には、それぞれの合金組成において製品での強度が最も高くなる様に時効温度条件を調整し、また、再結晶させる場合には、結晶粒径が5〜15μmとなるように温度条件を調整して行った。その後、最終冷間圧延により厚さ0.15mmの板を作製し、評価実験用サンプルとした。それぞれの最終冷間圧延条件を表1〜表3に併記した。
【0025】
得られた板材から各種の試験片を採取して材料試験を行い、「結晶粒径」、「強度」、「伸び」、「曲げ性」および「導電性」について評価した。「結晶粒径」については、透過電子顕微鏡により明視野像の観察を行い、得られた写真上でJIS H 0501の切断法によって求めた。なお、結晶粒を観察した結果を図1に示す。「強度」、「伸び」についてはJIS Z 2241に規定された引張試験に従って5号試験片を用いることにより行い、引張強さ、破断伸びをそれぞれ測定することにより求めた。「曲げ性」については、W曲げ試験機によって曲げ加工を施し、その曲げ部を光学顕微鏡にて50倍の倍率で観察することにより割れの有無を調査して評価し、割れの発生のない場合を○、割れが発生した場合を×で表示した。「導電性」は四端子法を用いて導電率を測定することによって求めた。
【0026】
以上の評価結果を表1,2,4に示す。本発明合金は優れた強度、伸び、曲げ性を有していることがわかる。これに対し、比較例6〜8、14〜16、33〜34は最終圧延の加工度が低いために所望の組織が得られず、延性が低下して良好な曲げ性が得られなかった例である。なお、図2は本発明例No.12の透過電子顕微鏡写真であり、形成された連続再結晶の平均結晶粒径は1μm以下であり、その結晶粒界は曲線部分を主体とする丸みを帯びたものとなっている。なお、比較のために、比較例No.6の透過電子顕微鏡写真を図3に示すが、結晶粒界はほぼ直線状となっている。
【0027】
【表4】
Figure 0004225733
【0028】
次に、本発明例9、22、26、30および比較例33、34で作製した素材をさらに歪取焼鈍し、引張試験を行った。その結果を表5に示す。本発明例の合金では、歪取焼鈍により比較例の合金に比べて伸びがさらに向上することが判る。これによりさらに過酷な加工に耐えられることが期待される。
【0029】
【表5】
Figure 0004225733
【0030】
【発明の効果】
以上説明したように、本発明によれば、強度、加工性のバランスに優れた銅または銅合金を得ることができ、端子、コネクター、リードフレーム、プリント基板といった電子機器用素材の性能を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 再結晶の過程を説明するための模式図である。
【図2】 実施例における本発明例の合金の組織を示す透過電子顕微鏡写真である。
【図3】 実施例における本発明例の合金の組織を示す透過電子顕微鏡写真である。[0001]
[Industrial application fields]
The present invention is the terminal having a fine crystal grain, the connector relates to a blank for a lead frame, in particular to a technique for improving the characteristics during machining of bending and the like.
[0002]
[Prior art]
In recent years, as electronic devices such as terminals and connectors and their components are becoming smaller and thinner, it is desired that these materials such as copper or copper alloy have high strength. In the terminal and connector material, it is necessary to increase the contact pressure in order to maintain electrical connection. For this purpose, the material must have high strength. In addition, the lead frame is required to have a large number of pins and a thin wall due to high integration of semiconductor circuits. For this reason, in order to prevent deformation at the time of handling such as lead frame conveyance, the required strength level is becoming stricter.
[0003]
In addition, with the downsizing of electronic devices and their components, there is an increasing demand for flexibility in formability, and workability such as connector materials has become more important, especially bendability. There is a growing demand for better products. Also, the outer lead of the semiconductor lead frame is required to have excellent bendability even when subjected to gull-wing bending.
[0004]
In order to obtain good bendability that does not cause cracks in the bent portion when the material is subjected to bending deformation, it is necessary to increase the ductility of the material or reduce the crystal grain size. Furthermore, a copper alloy used for an electronic device needs to have a function of transmitting an electrical signal and simultaneously releasing heat generated during energization to the outside, and is required to have high conductivity as well as conductivity. In particular, in order to cope with the recent increase in the frequency of electrical signals, there is an increasing demand for improved conductivity.
[0005]
The electrical conductivity of copper alloys is in a relationship with strength, and the addition of alloying elements to increase the strength decreases the electrical conductivity.Therefore, an alloy with a balance between strength, electrical conductivity, and price is suitable depending on the application. It is used. Until now, the development of an alloy having a good balance between strength and conductivity has been actively conducted, and generally precipitation strengthening including second phase particles such as Cu—Ni—Si alloy and Cu—Cr—Zr alloy. A copper alloy of a type has come to be used as a highly functional material with an excellent balance between the two.
[0006]
[Problems to be solved by the invention]
Thus, it is desired that the mechanical properties of copper or copper alloy for electronic devices have high strength and good workability. However, strength and ductility are contradictory to each other, and in each alloy system, if rolling is performed to obtain an increase in strength due to work hardening, the ductility decreases, so that good workability can be obtained with rolling. There wasn't. On the other hand, miniaturization of the crystal grain size is expected to increase the strength shown by the Hall-Petch formula and also to improve the bendability. It was common to control so as to be small.
[0007]
However, when the annealing temperature is lowered in order to make the crystal grains finer in this method, unrecrystallized grains partially remain, so that substantially recrystallized grains of about 2 to 3 μm are formed. The limit is to obtain, and a technique for further crystal grain refinement has been awaited. Furthermore, since the strength level is generally low and unsuitable for practical use as it is recrystallized, it is necessary to apply a certain degree of rolling after that, and this causes a decrease in ductility as described above. For this reason, generally, after rolling, it has been necessary to carry out a strain relief annealing process to recover ductility. Because of this process, the strength obtained by rolling is inevitably reduced, and sufficient ductility cannot be obtained even after strain relief annealing, and it may not be possible to meet the latest extremely severe bending deformation requirements. It was.
[0008]
By the way, a report by Ito et al. (ARB (Accumulative Roll-Bonding), Journal of the Japan Institute of Metals, 64 (2000), 429), and reports by Horita (ECAP (Equal-Channel Angular Press), Metallurgical Society seminar text, Approach to crystal grain refinement, (2000), Japan Institute of Metals, 39) Has been studied. However, these processing methods are not suitable for industrial production because they cannot be produced in quantities that can be used as materials for electronic equipment.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have obtained a fine crystal grain at a level that has not been obtained so far by controlling the conditions of the rolling process rather than annealing. I found it. That is, in the structure of a material cold-rolled at a normal workability, when recrystallization occurs due to subsequent annealing, dislocation disappears discontinuously when the recrystallized grain boundary passes through the cell. Is nonuniform and intermittently large crystal grains are generated. This is called static recrystallization. According to the study by the present inventors, by remarkably increasing the workability of cold rolling, dynamic recrystallization, which is usually expressed in a high temperature region, is also expressed in cold rolling, and formed during processing. It has been found that this is a dynamic continuous recrystallization that is manifested by changing the subgrains to high-angle grain boundaries. By using this mechanism, a rounded uniform crystal grain size of 1 μm or less can be obtained. According to this method, it has been found that fine crystal grains can be obtained without sacrificing strength in order to prevent a decrease in ductility, and that an elongation of 2% or more can be obtained even immediately after the final cold rolling. However, acceptable bendability could be obtained. Moreover, since the elongation is further improved by further applying strain relief annealing after the final cold rolling, it has become possible to cope with extremely severe bending. Furthermore, according to such a manufacturing method, it is also possible to industrially mass-produce as an electronic device material. The continuous recrystallization will be described in detail later.
[0010]
The terminal plate, connector, and lead frame material plate of the present invention were made based on the above findings. Ni: 1.0 to 4.8% by mass, Si: 0.2 to 1.4% by mass, balance Cu and consists impurities, when the working ratio of definitive final cold rolling after the aging treatment or recrystallization annealing eta is represented by the following formula, resulting dynamic continuous recrystallization by performing rolling comprising eta ≧ 3.0 Thus, after the final cold rolling, it has a structure of fine crystal grains having a grain size of 0.40 μm or less composed of a crystal grain boundary having a large tilt angle of 15 ° or more, and 2.3 % or more by a tensile test. It is characterized by showing the growth of.
[Equation 3]
η = ln (T0 / T1)
T0: thickness before rolling, T1: thickness after rolling
In addition, the other terminal, connector, and lead frame material plate of the present invention comprises Cr: 0.02 to 0.4 mass%, Zr: 0.01 to 0.25 mass%, the balance Cu and impurities. When the degree of work η in the final cold rolling after treatment or recrystallization annealing is represented by the following formula, the above-mentioned final is obtained by performing dynamic continuous recrystallization by performing a rolling process of η ≧ 3.0 After cold rolling, it has a fine grain structure with a grain size of 0.40 μm or less consisting of a crystal grain boundary with a large tilt angle of 15 ° or more, and shows an elongation of 2.3 % or more by a tensile test. It is a feature.
[Equation 4 ]
η = ln (T 0 / T 1 )
T 0 : plate thickness before rolling, T 1 : plate thickness after rolling
Next, the grounds for the above numerical limitation will be described together with the operation of the present invention.
A. Final cold rolling work degree, elongation, crystal grain size In order to obtain good bendability with the material as it is finally cold-rolled, high ductility is required. In order to obtain good bendability that does not cause cracks in the bent portion, the breaking elongation in the tensile test needs to be 2.3 % or more when the gauge length is 50 mm. In order to obtain a breaking elongation of 2.3 % or more with the final cold rolling, the crystal grain size after the final cold rolling needs to be 0.40 μm or less. By reducing the crystal grain size in such a way, elongation can be obtained as it is in cold rolling because dislocations accumulate at the grain boundaries when continuous recrystallized grains are formed. This is because a structure is formed, thereby causing grain boundary sliding and improving ductility.
[0013]
The crystal grain size and elongation after the final cold rolling are affected by the cold rolling degree. The degree of work η by the final cold rolling until reaching the product sheet thickness is expressed by the following formula.
[Equation 5 ]
η = ln (T 0 / T 1 )
T 0 : Plate thickness before rolling, T 1 : Plate thickness after rolling
In this case, if η is small, the rolled structure remains and no clear fine crystal grains can be obtained, or even if it is obtained, the crystal grain size becomes large and grain boundary sliding does not occur, so that good ductility is achieved. I can't get it. According to the study by the present inventors, it has been found that η should be 3 or more in order to obtain a fine crystal grain size of 0.40 μm or less.
[0015]
The structure of a material that has been cold-rolled at a conventional degree of processing until now has a cell structure in which dislocations introduced into crystal grains are entangled with each other, but in this case, the tilt angle between the cell orientations. Was as low as 15 ° or less, and therefore did not have properties as a grain boundary. For this reason, as shown in FIG. 1, when recrystallization occurs due to annealing after cold rolling, as described above, static recrystallization is generated in which large crystal grains are intermittently generated with non-uniform sizes. .
[0016]
On the other hand, when the workability of cold rolling is made extremely high, fine crystal grains can be obtained because, when the workability becomes high, there are an infinite number of regions that have undergone local shear deformation in the matrix throughout the material. As shown in FIG. 1, the sub-grain structure, which is a substructure, is very developed, and many dislocations are introduced to fill a large misorientation with the matrix, and they are deposited at the grain boundaries. In this case, a crystal grain boundary (high tilt grain boundary) having a large tilt angle of 15 ° or more is generated. That is, the subgrain structure, which is originally the substructure of the crystal grain, is formed as it is as a crystal grain. In this case, the grain boundary is greatly different from that in the case of static recrystallization, the grain boundary is not linear, and the curved portion It is characterized by forming a crystal grain boundary mainly composed of. This dynamic continuous recrystallization is often formed during cold rolling, but it has also been found that a clear high-angle grain boundary develops by intentionally performing low-temperature annealing and bringing it to the normal recovery region. Yes. In that case, it has been found that the ductility is further improved as described later.
[0017]
In this mechanism, when second phase particles such as precipitates and dispersions exist in the Cu matrix, dislocations introduced by introducing plastic strain by rolling form dislocation loops and the like around the second phase particles. As a result, dislocations are proliferated and the dislocation density is greatly increased. In this situation, the refinement of the particle size of the subgrain is further promoted, and the strength is further increased. In this case, in the final cold rolling, as long as recovery or recrystallization does not occur due to annealing in the middle, it is possible to perform cold rolling with a plurality of rolling mills instead of rolling mills according to the range of sheet thickness, or surface properties It may be pickled or polished to adjust the surface.
[0018]
B. Straightening annealing If the final cold-rolled material is subjected to straightening annealing, the ductility is further improved, so that even better bendability is obtained. As the annealing conditions, it is necessary to set the annealing conditions to such an extent that the strength is not significantly reduced and the product value is not lost. The annealing conditions vary depending on the alloy system, but by selecting appropriate annealing conditions in the temperature range of 80 to 500 ° C. and in the range of 5 to 60 minutes, it is possible to easily obtain an elongation of 6% or more and severe bending. It can also be used for processing.
[0019]
As the copper alloy according to the present invention, Ni: 1.0 to 4.8% by mass, Si: 0.2 to 1.4% by mass, Cu: the balance of Ni and Si having an intermetallic compound such as Ni 2 Si Cu: Cu-Ni-Si-based alloy, Cr grains and Cr and an intermetallic compound of Cu and Zr: 0.02 to 0.4 mass%, Zr: 0.01 to 0.25 mass%, Cu: remaining Cu is a -cr-Zr-based alloy, as a secondary component in the copper alloy system, Sn, Fe, Ti, 0.005 to 2 wt% P, Mn, Zn, in , in a total amount of one or more of Mg and Ag It may be added. Further, it may be a copper alloy having second phase particles such as other types of precipitates and dispersions.
[0020]
【Example】
Next, the effect of the present invention will be described more specifically with reference to examples. First, electrolytic copper or oxygen-free copper was used as a raw material, and a predetermined amount was added into a vacuum melting furnace together with other additive elements as necessary. Then, hot water was discharged at a molten metal temperature of 1250 ° C. to obtain ingots having the component compositions shown in Tables 1 to 3. . Table 1 shows the components of the Cu—Ni—Si alloy, Table 2 shows the components of the Cu—Cr—Zr alloy, and Table 3 shows the components of other copper alloys.
[0021]
[Table 1]
Figure 0004225733
[0022]
[Table 2]
Figure 0004225733
[0023]
[Table 3]
Figure 0004225733
[0024]
Next, these ingots were hot-rolled at a temperature of 950 ° C. to form a plate having a thickness of 10 mm. Then, after removing the surface oxide layer by mechanical polishing and forming a 5 mm plate by cold rolling, solution treatment is applied in the case of an aging precipitation type copper alloy, otherwise the first recrystallization annealing is performed. Went. Thereafter, further cold rolling was performed to obtain a plate having an intermediate thickness of 1.1 to 3.8 mm, and then an aging treatment or a second recrystallization annealing was performed on this plate thickness. When aging treatment is performed, the aging temperature conditions are adjusted so that the strength in the product is the highest in each alloy composition, and when recrystallization is performed, the crystal grain size is 5 to 15 μm. The temperature conditions were adjusted. Thereafter, a plate having a thickness of 0.15 mm was produced by final cold rolling, and used as a sample for evaluation experiment. The respective final cold rolling conditions are also shown in Tables 1 to 3.
[0025]
Various test pieces were collected from the obtained plate material and subjected to material tests, and “crystal grain size”, “strength”, “elongation”, “bendability” and “conductivity” were evaluated. The “crystal grain size” was determined by observing a bright field image with a transmission electron microscope and cutting the obtained photograph by JIS H 0501. In addition, the result of having observed the crystal grain is shown in FIG. “Strength” and “elongation” were determined by using a No. 5 test piece in accordance with a tensile test defined in JIS Z 2241, and measuring tensile strength and elongation at break. “Bendability” is evaluated by investigating the presence or absence of cracks by performing bending with a W bending tester and observing the bent part with an optical microscope at a magnification of 50 times. Is indicated by ○, and the case where cracks are generated is indicated by ×. “Conductivity” was determined by measuring conductivity using a four-terminal method.
[0026]
The above evaluation results are shown in Tables 1, 2, and 4. It can be seen that the alloy of the present invention has excellent strength, elongation and bendability. On the other hand, Comparative Examples 6-8, 14-16, 33-34 were examples in which the desired structure was not obtained because the degree of workability of the final rolling was low, and ductility was lowered and good bendability was not obtained. It is. Note that FIG. FIG. 12 is a transmission electron micrograph of 12 wherein the average crystal grain size of the formed continuous recrystallization is 1 μm or less, and the crystal grain boundary is rounded with a curved portion as a main component. For comparison, Comparative Example No. The transmission electron micrograph of No. 6 is shown in FIG. 3, and the crystal grain boundary is almost linear.
[0027]
[Table 4]
Figure 0004225733
[0028]
Next, the materials produced in Invention Examples 9, 22, 26, and 30 and Comparative Examples 33 and 34 were further subjected to strain relief annealing, and a tensile test was performed. The results are shown in Table 5. It can be seen that in the alloy of the present invention, the elongation is further improved by strain relief annealing as compared with the comparative alloy. This is expected to withstand even more severe processing.
[0029]
[Table 5]
Figure 0004225733
[0030]
【The invention's effect】
As described above, according to the present invention, copper or a copper alloy having an excellent balance between strength and workability can be obtained, and the performance of materials for electronic devices such as terminals, connectors, lead frames, and printed circuit boards can be greatly improved. Can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a recrystallization process.
FIG. 2 is a transmission electron micrograph showing the structure of an alloy of an example of the present invention in Examples.
FIG. 3 is a transmission electron micrograph showing the structure of an alloy of an example of the present invention in an example.

Claims (3)

Ni:1.0〜4.8質量%、Si:0.2〜1.4質量%、残部Cu及び不純物からなり、時効処理または再結晶焼鈍の最終冷間圧延における加工度ηが下記式で表される場合に、η≧3.0なる圧延加工を施すことで動的連続再結晶を生じさせることにより、上記最終冷間圧延後に、15°以上の大きな傾角をもつ結晶粒界からなる粒径0.40μm以下の微細な結晶粒の組織を有し、引張試験により2.3%以上の伸びを示すことを特徴とする端子、コネクター、リードフレーム用素材板
【数1】
η=ln(T0/T1)
T0:圧延前の板厚、T1:圧延後の板厚
Ni: from 1.0 to 4.8 wt%, Si: 0.2 to 1.4 wt%, and the balance Cu and impurities, definitive final cold rolling after the aging treatment or recrystallization annealing working ratio η is below When expressed by the formula, by performing dynamic continuous recrystallization by performing a rolling process of η ≧ 3.0, from the grain boundary having a large inclination of 15 ° or more after the final cold rolling. A material plate for terminals, connectors, and lead frames, which has a fine crystal grain structure with a grain size of 0.40 μm or less and exhibits an elongation of 2.3 % or more by a tensile test.
[Expression 1]
η = ln (T0 / T1)
T0: thickness before rolling, T1: thickness after rolling
Cr:0.02〜0.4質量%、Zr:0.01〜0.25質量%、残部Cu及び不純物からなり、時効処理または再結晶焼鈍の最終冷間圧延における加工度ηが下記式で表される場合に、η≧3.0なる圧延加工を施すことで動的連続再結晶を生じさせることにより、上記最終冷間圧延後に、15°以上の大きな傾角をもつ結晶粒界からなる粒径0.40μm以下の微細な結晶粒の組織を有し、引張試験により2.3%以上の伸びを示すことを特徴とする端子、コネクター、リードフレーム用素材板
【数2】
η=ln(T0/T1)
T0:圧延前の板厚、T1:圧延後の板厚
Cr: 0.02 to 0.4 mass%, Zr: 0.01 to 0.25 wt%, and the balance Cu and impurities, definitive final cold rolling after the aging treatment or recrystallization annealing working ratio η is below When expressed by the formula, by performing dynamic continuous recrystallization by performing a rolling process of η ≧ 3.0, from the grain boundary having a large inclination of 15 ° or more after the final cold rolling. A material plate for terminals, connectors, and lead frames, which has a fine crystal grain structure with a grain size of 0.40 μm or less and exhibits an elongation of 2.3 % or more by a tensile test.
[Expression 2]
η = ln (T0 / T1)
T0: thickness before rolling, T1: thickness after rolling
Sn、Fe、Ti、P、Mn、Zn、In、MgおよびAgの一種以上を総量で0.005〜2質量%添加した請求項1又は2に記載の端子、コネクター、リードフレーム用素材板The terminal plate, connector, or lead frame material plate according to claim 1 or 2, wherein 0.005 to 2 mass% in total of at least one of Sn, Fe, Ti, P, Mn, Zn, In, Mg, and Ag is added.
JP2002040670A 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate Expired - Fee Related JP4225733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040670A JP4225733B2 (en) 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001091179 2001-03-27
JP2001-91179 2001-03-27
JP2002040670A JP4225733B2 (en) 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate

Publications (2)

Publication Number Publication Date
JP2002356728A JP2002356728A (en) 2002-12-13
JP4225733B2 true JP4225733B2 (en) 2009-02-18

Family

ID=26612249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040670A Expired - Fee Related JP4225733B2 (en) 2001-03-27 2002-02-18 Terminal, connector, lead frame material plate

Country Status (1)

Country Link
JP (1) JP4225733B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118832B2 (en) 2004-04-14 2008-07-16 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
JP4904455B2 (en) * 2004-09-21 2012-03-28 Dowaメタルテック株式会社 Copper alloy and manufacturing method thereof
JP4584692B2 (en) * 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4779100B2 (en) * 2004-12-13 2011-09-21 Dowaメタルテック株式会社 Manufacturing method of copper alloy material
JP2007084928A (en) * 2005-08-26 2007-04-05 Hitachi Cable Ltd Backing plate made of copper alloy, and method for producing the copper alloy
JP2008050655A (en) * 2006-08-24 2008-03-06 Hitachi Cable Ltd Backing plate made of copper alloy, and manufacturing method therefor
JP5225787B2 (en) * 2008-05-29 2013-07-03 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy plate or strip for electronic materials
US8876990B2 (en) 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks
WO2013146762A1 (en) * 2012-03-29 2013-10-03 大電株式会社 Microcrystal metal conductor and method for manufacturing same

Also Published As

Publication number Publication date
JP2002356728A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4255330B2 (en) Cu-Ni-Si alloy member with excellent fatigue characteristics
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
KR100515804B1 (en) Titanium copper alloy having high strength and method for producing the same, and terminal?connector using the titanium copper alloy
US20080277032A1 (en) Copper, copper alloy, and manufacturing method therefor
WO2013018228A1 (en) Copper alloy
KR102005332B1 (en) Method for manufacturing Cu-Co-Si-Fe-P alloy having Excellent Bending Formability
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP3908987B2 (en) Copper alloy excellent in bendability and manufacturing method thereof
JP4225733B2 (en) Terminal, connector, lead frame material plate
JP4494258B2 (en) Copper alloy and manufacturing method thereof
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2006283106A (en) Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article
KR102421870B1 (en) Cu-Ni-Si-Mn-Sn based Copper alloy material with excellent strength, electrical conductivity and bendability, and method for preparing the same
KR101875806B1 (en) Method for manufacturing copper-titanium-based copper alloy material for automobile and electronic parts and copper alloy material therefrom
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2555070B2 (en) Manufacturing method of high strength copper base alloy
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP4630025B2 (en) Method for producing copper alloy material
JP4679040B2 (en) Copper alloy for electronic materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070412

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees