JP4223852B2 - Chemical reactor - Google Patents
Chemical reactor Download PDFInfo
- Publication number
- JP4223852B2 JP4223852B2 JP2003099647A JP2003099647A JP4223852B2 JP 4223852 B2 JP4223852 B2 JP 4223852B2 JP 2003099647 A JP2003099647 A JP 2003099647A JP 2003099647 A JP2003099647 A JP 2003099647A JP 4223852 B2 JP4223852 B2 JP 4223852B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- storage body
- heat storage
- gas
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水素を発生させる化学反応装置に関する。
【0002】
【従来の技術】
燃料電池は水素と酸素とを反応させることで電気エネルギーを発生させる機器であるため、水素と酸素との供給が必須となる。酸素は大気(空気)から得ることができるが、水素は大規模には水素発生プラント設備、小規模には改質器と称する小型水素発生装置が必要となる。
【0003】
小型水素発生装置は、可搬式発電機など、水素ボンベを装備しにくい機器に好適である。このような水素発生装置として、水冷により温度を制御するものが知られている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2001−172003公報(第5−7頁、図3)
【0005】
特許文献1の図3を以下の図4で説明する。
図4は従来の水素発生装置の断面図である。ただし、符号は振り直した。
101は、改質反応部であり、原料ガスから部分酸化反応を含む反応により水素リッチな改質ガスを生成する(上記公報段落番号[0031]下から第1行及び第2行参照)。
【0006】
102は、シフト反応部であり、改質ガス中のCO濃度を水性ガスシフト反応により低減させる(上記公報段落番号[0032]第3行及び第4行参照)。
103は、CO選択酸化反応部であり、CO濃度をCO選択酸化反応によってさらに低減させる(上記公報段落番号[0032]第7行及び第8行参照)。
【0007】
104、104は水を供給する水供給管、105は水の通路となる流体流路、106は水の出口となる水戻し管であり、シフト反応部102及びCO選択酸化反応部103は、水で強制冷却する。
【0008】
周知の通り、改質反応は約700℃で反応が進行するために、改質反応部101は高温に保つ必要がある。これに対して、シフト反応は触媒の種類により異なるが350℃前後で反応が進行し、CO選択酸化反応は200℃で反応が進行する。そのために、シフト反応部102及びCO選択酸化反応部103を水冷により、温度を制御することにしたのが上記公報の改質装置108である。
【0009】
【発明が解決しようとする課題】
流体流路105を設けるために、筒状の容器107の壁厚を増さなければならず、改質装置108が大型になるとともに、重くなる。これでは設備のコンパクト化が難しくなり、可搬性という点では問題がある。
【0010】
加えて、冷却水を循環させるために冷却水の温度が下がりにくく、シフト反応部102及びCO選択酸化反応部103を所望の温度まで下げることは容易ではない。
【0011】
例えば、水の循環量を増加させたり、水の循環路に冷媒等を用いる冷却装置を設ければ、冷却水の温度を大きく低下させることはできるが、設備の増強のためにコンパクト化は更に難しくなる。
【0012】
また、容器107の壁に流体流路105を設けて間接的に冷却するより、もっと直接的に冷却することができれば、シフト反応部102及びCO選択酸化反応部103の温度を効率良く下げられ、特に可搬式小型水素発生装置の水素生成効率が高まり、コンパクト化にも貢献できる。
【0013】
更に、シフト反応部102及びCO選択酸化反応部103には、改質ガスの流れの途中に改質ガスから熱を回収するためのハニカム体又は伝熱フィンからなる熱回収部が複数設けられるので、冷却構造が複雑になり、コストが嵩む。
【0014】
そこで、本発明の目的は、化学反応装置を改良することで、CO低減を図るCO変成触媒の温度を効率良く低下させるとともに化学反応装置の軽量化及びコンパクト化を図り、更に、冷却構造の簡素化により化学反応装置のコスト低減を図ることにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために請求項1は、筒型容器に、改質触媒、CO変成触媒をこの順に直列に収納し、炭化水素又は脂肪族アルコールからなる原料ガスを改質触媒で水素と一酸化炭素と二酸化炭素との混合ガスに改質し、この混合ガスをCO変成触媒で変成処理することにより一酸化炭素濃度を低減し、水素を発生させる化学反応装置であって、改質触媒とCO変成触媒との間に、混合ガスの保有熱を蓄える蓄熱体を配置し、この蓄熱体に外部から水を供給する水供給管の先端を臨ませたことを特徴とする。
【0016】
筒型容器内の改質触媒とCO変成触媒との間に蓄熱体を配置し、蓄熱体に水供給管の先端を臨ませ、混合ガスの保有熱を蓄えて高温になった蓄熱体に水供給管で水を供給することにより、水の気化熱によって混合ガスを直接的に冷却するから、CO変成触媒の温度を効率良く低下させることができ、CO変成触媒を反応に適する温度に制御することができる。
【0017】
水供給管は蓄熱体に水を供給できればよいから、水供給管の配管は特に筒型容器の周壁内に設ける必要がなく、化学反応装置の大型化、重量増を抑えることができ、化学反応装置のコンパクト化を図ることができる。
【0018】
更に、蓄熱体と水供給管とで冷却装置を構成することにより、冷却装置が簡素になり、化学反応装置のコストを低減することができる。
【0019】
請求項2は、蓄熱体にガス透過性を有することを特徴とする。
蓄熱体にガス透過性を有することで、蓄熱体を透過する混合ガスと蓄熱体との熱交換をより促進させることができる。
【0020】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る化学反応装置の断面図であり、化学反応装置としての水素発生装置10は、筒型容器11と、この筒型容器11の上部鏡板12に取付けたガス入口13と、筒型容器11の下部鏡板14に取付けたガス出口15と、筒型容器11内の上部に嵌めた改質触媒16と、この改質触媒16の下方に位置するように筒型容器11に嵌めた蓄熱体17と、この蓄熱体17の下方であって筒型容器11内の中段から下部鏡板14に掛けて嵌めたCO変成触媒18及びその下のCO除去触媒19と、筒型容器11の外面全体に被せた保温材21と、外部から水を供給するために保温材21、CO除去触媒19及びCO変成触媒18を貫通させて蓄熱体17の内部に先端を挿入した水供給管22とからなり、上部鏡板12と改質触媒16との間にガス分散室23、改質触媒16と蓄熱体17との間に上部空間24、蓄熱体17とCO変成触媒18との間に下部空間25、CO変成触媒18とCO除去触媒19との間に変成部空間26、CO除去触媒19と下部鏡板14との間に最下部空間27を形成したことを構造的な特徴とする。
上記の蓄熱体17及び水供給管22は、冷却装置28を構成するものである。
【0021】
筒型容器11は、円筒容器を基本とするが、四角、五角、六角、八角などの角筒容器や、楕円筒容器であってもよく、要は筒であればよい。
【0022】
ガス分散室23には、ガス流れの偏りを防止するためにラッシリング(粒体、金網等)を詰める若しくは介在させる。これでガスは均等に上から下へ流すことができる。ただし、図ではラッシリングの表示を省いた。
【0023】
筒型容器11は、例えば内径50mm、板厚2mmのステンレス鋼板(SUS316)で構成し、同材の上部鏡板12及び下部鏡板14で塞いだ耐食・耐熱性密封容器である。
改質触媒16は、ルテニウム系触媒が望ましい。
【0024】
蓄熱体17は、透過性を有するとともに透過する混合ガスの圧力損失が小さく、耐熱性を有し、混合ガス及び水との反応性が無く、熱容量が大きく、熱伝導が良い材料である。
【0025】
CO変成触媒18は、銅−亜鉛(Cu−Zn)系触媒が適当である。
CO除去触媒19は、ルテニウム系触媒が望ましい。
水供給管22は、ステンレス鋼(SUS316)製であり、図示せぬ水タンクからポンプによって送られる水を蓄熱体17に流す。
【0026】
図2は本発明に係る水素発生装置の原理を示す原理説明図である。
まず、水素発生装置にガス入口から原料ガスとしてのイソブタンと、水と、空気とを供給すると、改質触媒では式▲1▼及び式▲2▼のような併用改質反応が進行する。
【0027】
式▲1▼、式▲2▼共に、左辺第3項のO2は左辺第1項のC4H10と部分酸化反応を起こす。この反応は発熱反応である。
一方、左辺第2項のH2Oが左辺第1項のC4H10と水蒸気改質反応を起こす。この反応は外部から熱を加える必要がある吸熱反応である。
【0028】
改質触媒では部分酸化反応と水蒸気改質反応とを併用して行うため、このような改質法を「併用改質反応」と呼ぶ。
この併用改質反応によって、式▲1▼、式▲2▼の右辺から明らかなように、混合ガス、即ち、改質ガスとしてH2とCO2とCOを生成し、また、図示しないが、他にCH4を生成する。この改質反応は約700℃で進行する。
【0029】
蓄熱体は、改質触媒による改質反応で得られた高温の改質ガスが透過することで高温となる部材であり、この蓄熱体に水供給管で外部から水を供給することにより、水が高温の改質ガス又は蓄熱体に接触することにより、水が蒸発するときの気化熱によって蓄熱体及び蓄熱体を透過する混合ガスから熱を奪い、混合ガスの温度を下げる、即ち冷却する。
【0030】
そして、温度が低下した改質ガスはCO変成触媒に至り、改質ガス中のCOにおいては、CO変成反応が進行する。即ち、CO変成触媒では、式▲3▼に示すように残存COに残存水蒸気(H2O)を接触させることで、改質触媒により生成した改質ガス中のCOの約90%をH2とCO2とに変化させる。このCO変成反応(「COシフト反応」ともいう。)は、200〜400℃で進行する。CO変成触媒の耐熱温度は400℃以下であり、この点からも上記したCO変成反応の温度が決まる。
このように、本発明は、改質ガスの温度を700℃から400℃以下まで降下させるのに、蓄熱体で水を蒸発させて行う冷却構造を採用する。
【0031】
上記したCO変成反応では、CO濃度は1%まで低下するが、COは燃料電池の触媒にとって有害なガスであるため、このままでは燃料電池へ供給できない。そこで、更に、CO除去触媒で、式▲4▼の反応を起こさせ、CO濃度を10ppm程度まで低減する。このCO除去反応(「CO選択酸化反応」ともいう。)は約200℃で進行する。
【0032】
図3(a),(b)は改質ガス用冷却装置の効果を示す実験装置図であり、(a)は本発明の第1実施例(第1の実施の形態)に係る実験装置図、(b)は比較例に係る実験装置図であり、(b)の比較例は、(a)の第1実施例に備える冷却装置を備えていないことに差異があり、その他は同じにした。
【0033】
(1)共通実験条件:
筒型容器11の材質 :SUS316
筒型容器11の大きさ:内径50mm×肉厚2mm×長さ200mm
ガス分散室22の高さH1 :20mm
ガス分散室22内のラッシリング材:外径3mm、内径1.5mm、長さ3mmのアルミナ製円筒
【0034】
改質触媒16の高さH2 :30mm
CO変成触媒18の高さH6 :80mm
下部鏡板14からCO変成触媒18の下面までの高さH7:40mm
保温材21の厚さTH :10mm
【0035】
改質触媒16の種類 :ルテニウム系触媒
CO変成触媒18の種類 :Cu−Zn系触媒
CO除去触媒19の種類 :ルテニウム系触媒
【0036】
まず、実施例1の実験を実施した。
(2)実施例1特有の実験条件
実験装置:図3(a)
上部空間24の高さH3 :5mm
蓄熱体 :SUS316製メッシュ30の金網を積層したもの
蓄熱体17の高さH4 :20mm
下部空間25の高さH5 :5mm
以下に示す組成及び量の原料をガス入口13から供給した。
【0037】
・原料の組成及び量
イソブタン : 500cc/min(気体)
水 : 3cc/min(液体)
空気 :4000cc/min(気体)
【0038】
上記の改質触媒による改質ガスの組成及び各組成の量は以下のようになった。・改質ガスの組成及び量
水素 :3540cc/min
一酸化炭素 : 950cc/min
二酸化炭素 : 950cc/min
イソブタン : 20cc/min
メタン : 20cc/min
窒素 :3170cc/min
水蒸気 :2550cc/min
【0039】
そして、改質ガスを冷却装置28で冷却する、即ち、蓄熱体17を透過させるとともに、水を水供給管22から蓄熱体17内へ2cc/min供給することで冷却した。
この後、改質ガスを引き続きCO変成触媒18、CO除去触媒19で反応させ、以下に示す生成ガスをガス出口15から得た。
【0040】
・生成ガスの組成及び量
水素 :4420cc/min
一酸化炭素 : 70cc/min
二酸化炭素 :1830cc/min
イソブタン : 20cc/min
メタン : 20cc/min
窒素 :3170cc/min
水蒸気 :4160cc/min
【0041】
そして、水素発生が安定した後に、水素発生装置10の複数箇所の温度を計測したところ、図3(a)に示した測定点の温度は以下に示す通りであった。
測定点T1(改質触媒16の中央) :700℃
測定点T2(蓄熱体17の中央) :420℃(この測定点T2の温度が500℃まで上昇した後に水の供給を開始した。)
測定点T3(CO変成触媒18の上部):400℃
測定点T4(CO変成触媒18の下部):250℃
【0042】
次に、比較例の実験を実施した。
(3)比較例特有の実験条件
実験装置:図3(b)
冷却装置の有無:無し
空間111の高さH8:30mm
【0043】
以下に示す組成及び量の原料をガス入口13から供給した。
・原料の組成及び量
イソブタン : 500cc/min(気体)
水 : 3cc/min(液体)
空気 :4000cc/min(気体)
【0044】
そして、改質触媒、CO変成触媒及びCO除去触媒でそれぞれ反応させ、以下に示す生成ガスをガス出口15から得た。
・生成ガスの組成及び量
水素 :3990cc/min
一酸化炭素 : 500cc/min
二酸化炭素 :1400cc/min
イソブタン : 20cc/min
メタン : 20cc/min
窒素 :3170cc/min
水蒸気 :2100cc/min
【0045】
そして、水素発生が安定した後に、水素発生装置112の複数箇所の温度を計測したところ、図3(b)に示した測定点の温度は以下に示す通りであった。
測定点T11(改質触媒16の中央) :700℃
測定点T13(CO変成触媒18の上部):630℃
測定点T14(CO変成触媒18の下部):500℃
【0046】
この比較例では、冷却装置が無いため、改質触媒で改質した改質ガスの温度を大きく低下させることができず、測定点T13の温度が400℃を大幅に越えた。CO変成触媒18は、400℃前後で機能を発揮するため、630℃では十分に機能しない。そのために、CO変成反応があまり促進されず、結果的にガス出口から少なからぬCOが出てきたと考えられる。
【0047】
次に実施例2(第2の実施の形態)の実験を実施した。
実験条件については、図3(a)に示した実施例1に対して蓄熱体17をSUS316製のポーラスメタル(多孔質金属)に変更した以外は同一にした。
ポーラスメタルとは、例えば、金属の粉末を圧縮成形した後に、加熱して粉末同士を結合させた焼結金属であり、実施例1の金網を積層した蓄熱体に比べて、熱伝導性が良く、混合ガスとの熱交換効率をより一層向上させることができる。
【0048】
上記のポーラスメタルを蓄熱体として用い、実施例1の原料を水素発生装置へ供給して、改質触媒16、CO変成触媒18及びCO除去触媒19でそれぞれ反応させて、以下に示す生成ガスを得た。
【0049】
・生成ガスの組成及び量
水素 :4460cc/min
一酸化炭素 : 40cc/min
二酸化炭素 :1860cc/min
イソブタン : 20cc/min
メタン : 20cc/min
窒素 :3170cc/min
水蒸気 :4120cc/min
【0050】
そして、水素発生が安定した後に、水素発生装置の複数箇所の温度を計測したところ、測定点の温度は以下に示す通りであった。
測定点T1(改質触媒の中央) :700℃
測定点T2(蓄熱体の中央) :400℃(この測定点T2の温度が500℃まで上昇した後に水の供給を開始した。)
測定点T3(CO変成触媒の上部):380℃
測定点T4(CO変成触媒の下部):200℃
【0051】
上記した実施例2では、CO変成触媒上部の温度が400℃以下となり、CO変成反応がスムーズに進行し、CO低減を促進させることができた。
【0052】
以上の図1で説明したように、本発明は第1に、筒型容器11に、改質触媒16、CO変成触媒18及びCO除去触媒19をこの順に直列に収納し、炭化水素又は脂肪族アルコールからなる原料ガスを改質触媒16で水素と一酸化炭素と二酸化炭素との混合ガスに改質し、この混合ガスをCO変成触媒18で変成処理することにより一酸化炭素濃度を低減し、さらにCO除去触媒19により一酸化炭素濃度を低レベルまで低減しつつ、水素を発生させる水素発生装置10であって、改質触媒16とCO変成触媒18との間に、混合ガスの保有熱を蓄える蓄熱体17を配置し、この蓄熱体17に外部から水を供給する水供給管22の先端を臨ませたことを特徴とする。
【0053】
筒型容器11内の改質触媒16とCO変成触媒18との間に蓄熱体17を配置し、蓄熱体17に水供給管22の先端を臨ませ、混合ガスの保有熱を蓄えて高温になった蓄熱体17に水供給管22で水を供給することにより、従来は、CO濃度低減部を壁内に流した水で間接的に冷却していたのに比べて、本発明では、水の気化熱によって混合ガス、CO変成触媒18及びCO除去触媒19を直接的に冷却するから、混合ガス、CO変成触媒18及びCO除去触媒19の温度を効率良く低下させることができ、CO変成触媒18及びCO除去触媒19を反応に適する温度に制御することができる。
【0054】
水供給管22は蓄熱体17に水を供給できればよいから、水供給管22の配管は特に筒型容器11の周壁内に設ける必要がなく、水素発生装置10の大型化、重量増を抑えることができ、水素発生装置10のコンパクト化を図ることができる。
【0055】
更に、蓄熱体17と水供給管22とで冷却装置28を構成するから、冷却装置28が簡素になり、水素発生装置10のコストを低減することができる。
【0056】
本発明は第2に、蓄熱体17にガス透過性を有することを特徴とする。
蓄熱体17にガス透過性を有することで、蓄熱体17を透過する混合ガスと蓄熱体17との熱交換をより促進させることができる。
【0057】
尚、本発明の蓄熱体としては、ステンレス鋼製の金網、ステンレス鋼製のポーラスメタルの他に、ステンレス鋼以外の金属製金網積層体、ポーラスセラミック(多孔質セラミック)、金属ファイバー成形体、セラミックファイバー成形体、あるいは、複数の粒状の金属又はセラミックを通気性を有する容器に収納したものでもよい。
【0058】
また、実施の形態に示したCO除去触媒は、水素発生装置内に配置したが、これに限らず、水素発生装置の外部に備えてもよい。その場合、水素発生装置の大きさを小さくすることが可能になり、設置の自由度が広がる。
【0059】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の化学反応装置は、改質触媒とCO変成触媒との間に、混合ガスの保有熱を蓄える蓄熱体を配置し、この蓄熱体に外部から水を供給する水供給管の先端を臨ませたので、混合ガスの保有熱を蓄えて高温になった蓄熱体に水供給管で水を供給することにより、水の気化熱によって混合ガス、CO変成触媒を直接的に冷却するから、CO変成触媒の温度を効率良く低下させることができ、CO変成触媒を反応に適する温度に制御することができる。従って、水素を効率的に製造することができる。
【0060】
水供給管は蓄熱体に水を供給できればよいから、水供給管の配管は特に筒型容器の周壁内に設ける必要がなく、化学反応装置の大型化、重量増を抑えることができ、化学反応装置のコンパクト化を図ることができる。
更に、蓄熱体と水供給管とで冷却装置を構成することにより、冷却装置が簡素になり、化学反応装置のコストを低減することができる。
【0061】
請求項2の化学反応装置は、蓄熱体にガス透過性を有するので、蓄熱体を透過する混合ガスと蓄熱体との熱交換をより促進させることができる。
【図面の簡単な説明】
【図1】本発明に係る化学反応装置の断面図
【図2】本発明に係る水素発生装置の原理を示す原理説明図
【図3】改質ガス用冷却装置の効果を示す実験装置図
【図4】従来の水素発生装置の断面図
【符号の説明】
10…化学反応装置(水素発生装置)、16…改質触媒、17…蓄熱体、18…CO変成触媒、22…水供給管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical reaction apparatus for generating hydrogen.
[0002]
[Prior art]
Since a fuel cell is a device that generates electric energy by reacting hydrogen and oxygen, supply of hydrogen and oxygen is essential. Although oxygen can be obtained from the atmosphere (air), hydrogen requires a hydrogen generation plant facility on a large scale and a small hydrogen generator called a reformer on a small scale.
[0003]
The small hydrogen generator is suitable for equipment that is difficult to equip with a hydrogen cylinder such as a portable generator. As such a hydrogen generator, one that controls the temperature by water cooling is known (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-172003 (page 5-7, FIG. 3)
[0005]
FIG. 3 of Patent Document 1 will be described with reference to FIG. 4 below.
FIG. 4 is a cross-sectional view of a conventional hydrogen generator. However, the code was re-assigned.
[0006]
[0007]
104 and 104 are water supply pipes for supplying water, 105 is a fluid flow path serving as a water passage, 106 is a water return pipe serving as a water outlet, and the
[0008]
As is well known, since the reforming reaction proceeds at about 700 ° C., the
[0009]
[Problems to be solved by the invention]
In order to provide the
[0010]
In addition, since the cooling water is circulated, it is difficult to lower the temperature of the cooling water, and it is not easy to lower the
[0011]
For example, if the amount of water circulation is increased or a cooling device using a refrigerant or the like is provided in the water circulation path, the temperature of the cooling water can be greatly reduced. It becomes difficult.
[0012]
If the
[0013]
Further, the
[0014]
Therefore, an object of the present invention is to improve the chemical reaction apparatus, to efficiently reduce the temperature of the CO conversion catalyst for reducing CO, to reduce the weight and size of the chemical reaction apparatus, and to simplify the cooling structure. The purpose is to reduce the cost of the chemical reaction apparatus.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to a first aspect of the present invention, a reforming catalyst and a CO shift catalyst are housed in series in this order in a cylindrical container, and a raw material gas composed of hydrocarbon or aliphatic alcohol is combined with hydrogen by the reforming catalyst. A chemical reaction device that reforms a mixed gas of carbon oxide and carbon dioxide and converts the mixed gas with a CO conversion catalyst to reduce the concentration of carbon monoxide and generate hydrogen. A heat storage body that stores the retained heat of the mixed gas is disposed between the CO conversion catalyst and the front end of a water supply pipe that supplies water from the outside faces the heat storage body.
[0016]
A heat accumulator is arranged between the reforming catalyst and the CO conversion catalyst in the cylindrical container, the tip of the water supply pipe is faced to the heat accumulator, and the heat stored in the mixed gas is stored in the hot water accumulator. By supplying water through the supply pipe, the mixed gas is directly cooled by the heat of vaporization of water, so the temperature of the CO conversion catalyst can be efficiently reduced, and the CO conversion catalyst is controlled to a temperature suitable for the reaction. be able to.
[0017]
Since the water supply pipe only needs to be able to supply water to the heat storage body, there is no need to provide the water supply pipe in the peripheral wall of the cylindrical container, and it is possible to suppress the increase in the size and weight of the chemical reaction device. The apparatus can be made compact.
[0018]
Furthermore, by configuring the cooling device with the heat storage body and the water supply pipe, the cooling device is simplified, and the cost of the chemical reaction device can be reduced.
[0019]
According to a second aspect of the present invention, the heat storage body has gas permeability.
By having gas permeability in the heat storage body, heat exchange between the mixed gas that passes through the heat storage body and the heat storage body can be further promoted.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a cross-sectional view of a chemical reaction apparatus according to the present invention. A
The
[0021]
Although the
[0022]
In the gas dispersion chamber 23, lashing (particles, wire mesh, etc.) is packed or interposed in order to prevent the gas flow from being biased. This allows the gas to flow evenly from top to bottom. However, the illustration of lashing was omitted from the figure.
[0023]
The
The reforming
[0024]
The
[0025]
The
The
The
[0026]
FIG. 2 is a principle explanatory view showing the principle of the hydrogen generator according to the present invention.
First, when isobutane, water, and air are supplied from the gas inlet to the hydrogen generator, a combined reforming reaction such as Formula (1) and Formula (2) proceeds in the reforming catalyst.
[0027]
In both formulas (1) and ( 2 ), O 2 in the third term on the left side causes a partial oxidation reaction with C 4 H 10 in the first term on the left side. This reaction is an exothermic reaction.
On the other hand, H 2 O in the second term on the left side causes a steam reforming reaction with C 4 H 10 in the first term on the left side. This reaction is an endothermic reaction that requires heat to be applied from the outside.
[0028]
Since a reforming catalyst performs both a partial oxidation reaction and a steam reforming reaction, such a reforming method is called a “combined reforming reaction”.
As is apparent from the right side of the equations (1) and (2), this combined reforming reaction produces a mixed gas, that is, H 2 , CO 2, and CO as the reformed gas. In addition, CH 4 is generated. This reforming reaction proceeds at about 700 ° C.
[0029]
The heat storage body is a member that becomes high temperature when the high-temperature reformed gas obtained by the reforming reaction by the reforming catalyst permeates. By supplying water from the outside to the heat storage body through a water supply pipe, By contacting the high-temperature reformed gas or the heat storage body, heat is removed from the heat storage body and the mixed gas that permeates the heat storage body by the heat of vaporization when water evaporates, and the temperature of the mixed gas is lowered, that is, cooled.
[0030]
The reformed gas whose temperature has decreased reaches the CO shift catalyst, and the CO shift reaction proceeds in the CO in the reformed gas. That is, in the CO conversion catalyst, wherein ▲ 3 by contacting the residual water vapor (H 2 O), the remaining CO as shown in ▼, about 90% of the CO in the reformed gas generated by the reforming catalyst H 2 And CO 2 . This CO shift reaction (also referred to as “CO shift reaction”) proceeds at 200 to 400 ° C. The heat resistance temperature of the CO shift catalyst is 400 ° C. or less, and the temperature of the above-described CO shift reaction is also determined from this point.
Thus, the present invention employs a cooling structure in which the temperature of the reformed gas is lowered from 700 ° C. to 400 ° C. or less by evaporating water with the heat storage body.
[0031]
In the above-mentioned CO shift reaction, the CO concentration decreases to 1%, but CO cannot be supplied to the fuel cell as it is because it is a harmful gas for the catalyst of the fuel cell. Therefore, the reaction of the formula (4) is further caused by the CO removal catalyst to reduce the CO concentration to about 10 ppm. This CO removal reaction (also referred to as “CO selective oxidation reaction”) proceeds at about 200 ° C.
[0032]
FIGS. 3A and 3B are experimental apparatus diagrams showing the effects of the reformed gas cooling apparatus, and FIG. 3A is an experimental apparatus diagram according to the first embodiment (first embodiment) of the present invention. (B) is an experimental apparatus diagram according to a comparative example, the comparative example of (b) is different in that it does not include the cooling device provided in the first embodiment of (a), the other is the same .
[0033]
(1) Common experimental conditions:
Material of the cylindrical container 11: SUS316
Size of cylindrical container 11:
Height H1 of gas dispersion chamber 22: 20 mm
Lashing material in the gas dispersion chamber 22: an alumina cylinder having an outer diameter of 3 mm, an inner diameter of 1.5 mm, and a length of 3 mm.
Reforming
Height H7 from the
The thickness TH of the heat insulating material 21: 10 mm
[0035]
Type of reforming catalyst 16: Ruthenium-based catalyst CO conversion catalyst 18: Cu-Zn-based catalyst CO removal catalyst 19: Ruthenium-based catalyst
First, the experiment of Example 1 was performed.
(2) Experimental conditions specific to Example 1 Experimental apparatus: FIG. 3 (a)
Height H3 of the upper space 24: 5 mm
Heat storage body: Laminated mesh of SUS316 mesh 30 Height H4 of heat storage body 17: 20 mm
Raw materials having the following compositions and amounts were supplied from the
[0037]
-Composition and amount of raw material Isobutane: 500 cc / min (gas)
Water: 3cc / min (liquid)
Air: 4000cc / min (gas)
[0038]
The composition of the reformed gas by the above reforming catalyst and the amount of each composition were as follows. -Composition and amount of reformed gas Hydrogen: 3540 cc / min
Carbon monoxide: 950cc / min
Carbon dioxide: 950cc / min
Isobutane: 20cc / min
Methane: 20cc / min
Nitrogen: 3170 cc / min
Water vapor: 2550cc / min
[0039]
Then, the reformed gas was cooled by the cooling
Thereafter, the reformed gas was reacted with the
[0040]
-Composition and amount of generated gas Hydrogen: 4420 cc / min
Carbon monoxide: 70cc / min
Carbon dioxide: 1830cc / min
Isobutane: 20cc / min
Methane: 20cc / min
Nitrogen: 3170 cc / min
Water vapor: 4160cc / min
[0041]
And after hydrogen generation was stabilized, when the temperature of several places of the
Measurement point T1 (center of the reforming catalyst 16): 700 ° C.
Measurement point T2 (center of the heat storage body 17): 420 ° C. (The supply of water was started after the temperature of the measurement point T2 rose to 500 ° C.)
Measurement point T3 (above the CO shift catalyst 18): 400 ° C
Measurement point T4 (below CO conversion catalyst 18): 250 ° C.
[0042]
Next, an experiment of a comparative example was performed.
(3) Experimental conditions specific to the comparative example Experimental apparatus: FIG. 3 (b)
Presence or absence of cooling device:
[0043]
Raw materials having the following compositions and amounts were supplied from the
-Composition and amount of raw material Isobutane: 500 cc / min (gas)
Water: 3cc / min (liquid)
Air: 4000cc / min (gas)
[0044]
And it was made to react with a reforming catalyst, a CO shift catalyst, and a CO removal catalyst, respectively, and the following product gas was obtained from the
-Composition and amount of generated gas Hydrogen: 3990cc / min
Carbon monoxide: 500cc / min
Carbon dioxide: 1400cc / min
Isobutane: 20cc / min
Methane: 20cc / min
Nitrogen: 3170 cc / min
Water vapor: 2100cc / min
[0045]
And after hydrogen generation was stabilized, when the temperature of several places of the
Measurement point T11 (center of the reforming catalyst 16): 700 ° C.
Measurement point T13 (above the CO shift catalyst 18): 630 ° C.
Measurement point T14 (below the CO shift catalyst 18): 500 ° C.
[0046]
In this comparative example, since there was no cooling device, the temperature of the reformed gas reformed by the reforming catalyst could not be greatly reduced, and the temperature at the measurement point T13 greatly exceeded 400 ° C. Since the
[0047]
Next, an experiment of Example 2 (second embodiment) was performed.
The experimental conditions were the same as Example 1 shown in FIG. 3A except that the
Porous metal is, for example, a sintered metal obtained by compressing and molding metal powder and then bonding the powder together, and has better thermal conductivity than the heat storage body in which the metal mesh of Example 1 is laminated. The heat exchange efficiency with the mixed gas can be further improved.
[0048]
Using the porous metal as a heat accumulator, the raw material of Example 1 is supplied to the hydrogen generator, and reacted with the reforming
[0049]
-Composition and amount of generated gas Hydrogen: 4460 cc / min
Carbon monoxide: 40cc / min
Carbon dioxide: 1860cc / min
Isobutane: 20cc / min
Methane: 20cc / min
Nitrogen: 3170 cc / min
Water vapor: 4120cc / min
[0050]
And after hydrogen generation was stabilized, when the temperature of several places of a hydrogen generator was measured, the temperature of the measurement point was as showing below.
Measurement point T1 (center of the reforming catalyst): 700 ° C
Measurement point T2 (center of the heat storage body): 400 ° C. (The supply of water was started after the temperature of the measurement point T2 rose to 500 ° C.)
Measurement point T3 (above the CO shift catalyst): 380 ° C.
Measurement point T4 (lower part of CO shift catalyst): 200 ° C.
[0051]
In Example 2 described above, the temperature of the upper part of the CO shift catalyst became 400 ° C. or lower, the CO shift reaction proceeded smoothly, and CO reduction could be promoted.
[0052]
As described above with reference to FIG. 1, the present invention firstly stores a reforming
[0053]
A
[0054]
Since the
[0055]
Further, since the
[0056]
Second, the present invention is characterized in that the
By having gas permeability in the
[0057]
In addition to the stainless steel wire mesh and stainless steel porous metal, the heat storage body of the present invention includes a metal wire mesh laminate other than stainless steel, a porous ceramic (porous ceramic), a metal fiber molded body, and a ceramic. A fiber molded body or a plurality of granular metals or ceramics stored in a container having air permeability may be used.
[0058]
Moreover, although the CO removal catalyst shown in the embodiment is disposed in the hydrogen generator, the present invention is not limited thereto, and may be provided outside the hydrogen generator. In that case, the size of the hydrogen generator can be reduced, and the degree of freedom of installation is increased.
[0059]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
In the chemical reaction device according to claim 1, a heat storage body that stores the retained heat of the mixed gas is disposed between the reforming catalyst and the CO conversion catalyst, and a tip of a water supply pipe that supplies water from the outside to the heat storage body is provided. Because it was exposed, by supplying water to the heat storage body that has become a high temperature by storing the retained heat of the mixed gas, the mixed gas and the CO conversion catalyst are directly cooled by the heat of vaporization of water, The temperature of the CO shift catalyst can be efficiently reduced, and the CO shift catalyst can be controlled to a temperature suitable for the reaction. Therefore, hydrogen can be produced efficiently.
[0060]
Since the water supply pipe only needs to be able to supply water to the heat storage body, the pipe of the water supply pipe does not need to be particularly provided in the peripheral wall of the cylindrical container, and the chemical reaction device can be prevented from increasing in size and weight. The apparatus can be made compact.
Furthermore, by configuring the cooling device with the heat storage body and the water supply pipe, the cooling device is simplified, and the cost of the chemical reaction device can be reduced.
[0061]
In the chemical reaction device according to the second aspect, since the heat storage body has gas permeability, the heat exchange between the mixed gas that passes through the heat storage body and the heat storage body can be further promoted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a chemical reaction apparatus according to the present invention. FIG. 2 is a principle explanatory view showing the principle of a hydrogen generation apparatus according to the present invention. Fig. 4 Cross-sectional view of a conventional hydrogen generator [Explanation of symbols]
DESCRIPTION OF
Claims (2)
前記改質触媒とCO変成触媒との間に、前記混合ガスの保有熱を蓄える蓄熱体を配置し、この蓄熱体に外部から水を供給する水供給管の先端を臨ませたことを特徴とする化学反応装置。A reforming catalyst and a CO shift catalyst are housed in series in this order in a cylindrical container, and the raw material gas consisting of hydrocarbon or aliphatic alcohol is changed to a mixed gas of hydrogen, carbon monoxide and carbon dioxide by the reforming catalyst. A chemical reaction device for generating hydrogen by reducing the carbon monoxide concentration by converting the mixed gas with the CO conversion catalyst.
A heat storage body that stores the retained heat of the mixed gas is disposed between the reforming catalyst and the CO conversion catalyst, and a tip of a water supply pipe that supplies water from the outside to the heat storage body is faced. A chemical reaction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003099647A JP4223852B2 (en) | 2003-04-02 | 2003-04-02 | Chemical reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003099647A JP4223852B2 (en) | 2003-04-02 | 2003-04-02 | Chemical reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004307228A JP2004307228A (en) | 2004-11-04 |
JP4223852B2 true JP4223852B2 (en) | 2009-02-12 |
Family
ID=33464030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003099647A Expired - Fee Related JP4223852B2 (en) | 2003-04-02 | 2003-04-02 | Chemical reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4223852B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4912742B2 (en) * | 2006-05-18 | 2012-04-11 | パナソニック株式会社 | Hydrogen generator and fuel cell system |
JP5122319B2 (en) * | 2008-02-14 | 2013-01-16 | 株式会社日立製作所 | Solid oxide fuel cell |
-
2003
- 2003-04-02 JP JP2003099647A patent/JP4223852B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004307228A (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1138096B1 (en) | Fuel processing system | |
RU2411075C2 (en) | Compact reforming reactor | |
US5904913A (en) | Process for obtaining a high-hydrogen, low-carbon-monoxide gas | |
US6306354B1 (en) | Shift converter | |
AU2002338422A1 (en) | Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal | |
JPH07126201A (en) | Methanol production process | |
KR101866500B1 (en) | Hydrogen production rector including carbon monoxide removing unit | |
US7985704B2 (en) | Method of regenerating absorbent | |
JP4223852B2 (en) | Chemical reactor | |
JP4073065B2 (en) | Reactor containment hydrogen removal equipment | |
JPH02188406A (en) | Carbon monoxide converter | |
US20040229091A1 (en) | Systems and methods for carbon monoxide clean-up | |
JP2022076978A (en) | System and method for processing off-gas discharged from fuel cell | |
WO2013061040A2 (en) | Gas-to-liquid technology | |
KR102005715B1 (en) | Hydrogen production reactor including feed preheating part | |
JP2007112644A (en) | Co(carbon monoxide)-removal device, fuel reforming apparatus, and fuel cell system | |
JPH0975731A (en) | Catalytic structure and heat exchange type catalytic reactor | |
JP2718876B2 (en) | Fuel reformer | |
JP2000251918A (en) | Solid high polymer fuel cell system | |
JP2004075404A (en) | Hydrogen generating apparatus | |
AU745858B2 (en) | Fuel processing system | |
JP4429674B2 (en) | Hydrogen production apparatus and high-purity hydrogen production method using the apparatus | |
KR100415235B1 (en) | Fuel processing system | |
JP2001313049A (en) | Hydrogen supply device for fuel cell | |
JP2007131500A (en) | Hydrogen production apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081120 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |