[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4223526B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP4223526B2
JP4223526B2 JP2006239505A JP2006239505A JP4223526B2 JP 4223526 B2 JP4223526 B2 JP 4223526B2 JP 2006239505 A JP2006239505 A JP 2006239505A JP 2006239505 A JP2006239505 A JP 2006239505A JP 4223526 B2 JP4223526 B2 JP 4223526B2
Authority
JP
Japan
Prior art keywords
rotor
outer peripheral
permanent magnet
peripheral side
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006239505A
Other languages
Japanese (ja)
Other versions
JP2008067424A (en
Inventor
博文 新
昇栄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006239505A priority Critical patent/JP4223526B2/en
Priority to EP07010074A priority patent/EP1860754A1/en
Priority to US11/802,307 priority patent/US7548005B2/en
Priority to CN 200710104225 priority patent/CN101079559B/en
Publication of JP2008067424A publication Critical patent/JP2008067424A/en
Application granted granted Critical
Publication of JP4223526B2 publication Critical patent/JP4223526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/641

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、回転子に永久磁石を備えた電動機に関し、特に、回転子の永久磁石の界磁特性を変更できる電動機に関するものである。   The present invention relates to an electric motor having a permanent magnet in a rotor, and more particularly to an electric motor capable of changing the field characteristics of a permanent magnet of a rotor.

電動機として、夫々個別に永久磁石を備える内周側回転子と外周側回転子とが同軸に配設され、この両回転子を周方向に相対的に回動させる(両回転子の相対的な位相を変更する)ことにより、回転子全体としての界磁特性を変更できるようにしたものが知られている(例えば、特許文献1参照)。   As an electric motor, an inner circumferential rotor and an outer circumferential rotor each having a permanent magnet are arranged coaxially, and both rotors are rotated relative to each other in the circumferential direction (relative to both rotors). It is known that the field characteristics of the entire rotor can be changed by changing the phase) (see, for example, Patent Document 1).

この電動機では、電動機の回転速度に応じて両回転子における相対的な位相を変更する場合には、遠心力の作用により径方向に沿って変位する部材によって、外周側回転子と内周側回転子との何れか一方を他方に対して周方向に回動させる。また、固定子に発生する回転磁界の速度に応じて両回転子における相対的な位相を変更する場合には、各回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することによって、外周側回転子および内周側回転子の周方向の相対位置を変更する。   In this electric motor, when the relative phase of both rotors is changed according to the rotational speed of the electric motor, the outer rotor and the inner rotor are rotated by a member that is displaced along the radial direction by the action of centrifugal force. Either one of the children is rotated in the circumferential direction with respect to the other. In addition, when the relative phase of both rotors is changed according to the speed of the rotating magnetic field generated in the stator, a control current is applied to the stator winding in a state where each rotor maintains the rotation speed due to inertia. By energizing and changing the rotating magnetic field speed, the relative positions in the circumferential direction of the outer peripheral rotor and the inner peripheral rotor are changed.

この電動機においては、外周側回転子と内周側回転子の永久磁石を互いに異極同士で対向させる(同極配置にする)ことで、回転子全体の界磁を強めて誘起電圧を増大させ、逆に、外周側回転子と内周側回転子の永久磁石を互いに同極同士で対向させる(対極配置にする)ことで、回転子全体の界磁を弱めて誘起電圧を減少させる。
特開2002−204541号公報
In this electric motor, the permanent magnets of the outer rotor and the inner rotor are opposed to each other with different polarities (with the same polarity arrangement), thereby strengthening the field of the entire rotor and increasing the induced voltage. On the contrary, the permanent magnets of the outer and inner rotors are opposed to each other with the same polarity (with a counter electrode arrangement), thereby weakening the field of the entire rotor and reducing the induced voltage.
JP 2002-204541 A

しかし、この従来の電動機の場合、外周側回転子と内周側回転子の相対位相を変更できる条件が限られており、電動機の運転停止時や任意の回転時に自由に相対位相を変更することができない。特に、ハイブリッド車や電動車両の駆動用として用いる場合には、車両の運転状況に応じて瞬時に所望の電動機特性に変更することが望まれ、この要望に応えるためにも相対位相の変更制御の自由度を高めることが重要となる。そこで、本出願人は、相対位相の変更制御の自由度の高い位相変更手段を組み込むことを検討しているが、内周側回転子と外周側回転子の永久磁石間に作用する吸引・反発力が、電動機の開発を進めるうえでの障害となっている。   However, in the case of this conventional electric motor, the conditions under which the relative phase between the outer peripheral rotor and the inner peripheral rotor can be changed are limited, and the relative phase can be freely changed when the motor is stopped or rotated arbitrarily. I can't. In particular, when used for driving a hybrid vehicle or an electric vehicle, it is desired to instantaneously change to a desired motor characteristic according to the driving situation of the vehicle. It is important to increase the degree of freedom. Therefore, the present applicant is considering incorporating phase changing means with a high degree of freedom in changing the relative phase, but attracting and repelling acting between the permanent magnets of the inner and outer rotors. Power is an obstacle to the development of electric motors.

即ち、上記従来の電動機の場合、図7に示すように、内周側回転子と外周側回転子の相対回動に応じて両者の永久磁石による吸引・反発力が回転方向に作用するため、内周側回転子と外周側回転子の相対的な位相を変更する際には、この吸引・反発力に抗する大きな力を付与しなければならない。このため、従来の電動機においては、位相変更手段を作動させるためのエネルギーのロスが大きくなるうえ、位相変更手段の大型化を避けることができない。   That is, in the case of the above-described conventional electric motor, as shown in FIG. 7, the attractive / repulsive force of both permanent magnets acts in the rotational direction in accordance with the relative rotation of the inner peripheral rotor and the outer peripheral rotor. When changing the relative phases of the inner and outer rotors, a large force must be applied against the suction / repulsion force. For this reason, in the conventional electric motor, the loss of energy for operating the phase changing means becomes large, and the enlargement of the phase changing means cannot be avoided.

そこでこの発明は、内周側回転子と外周側回転子の相対的な位相を変更する際に回動方向に作用する永久磁石の吸引・反発力の影響を抑制できるようにして、位相変更のためのエネルギーロスの低減と位相変更手段の小型化を図ることが可能な電動機を提供しようとするものである。   Therefore, the present invention can suppress the influence of the attraction / repulsion force of the permanent magnet acting in the rotation direction when changing the relative phase of the inner and outer rotors, Therefore, an object of the present invention is to provide an electric motor capable of reducing energy loss and reducing the size of the phase changing means.

上記の課題を解決するための手段として、請求項1に記載の発明は、円周方向に沿うように複数の内周側永久磁石(例えば、後述の実施形態における内周側永久磁石9)が配設された内周側回転子(例えば、後述の実施形態における内周側回転子6)と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように複数の外周側永久磁石(例えば、後述の実施形態における外周側永久磁石50,53)が配設された外周側回転子(例えば、後述の実施形態における外周側回転子5)と、前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段(例えば、後述の実施形態における回動機構11)と、を備えた電動機であって、前記内周側永久磁石は、磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように配置され、前記外周側回転子は、磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように前記外周側永久磁石が配置された第1の回転子層(例えば、後述の実施形態における第1の回転子層5A)と、磁化方向が略円周方向を向き、かつ円周方向で隣接するもの同士が同磁極同士で対向するように前記外周側永久磁石が配置された第2の回転子層(例えば、後述の実施形態における第2の回転子層5B)と、を備え、前記第1の回転子層と前記第2の回転子層とが、軸方向で一体に併設されて成ることを特徴とする。 As means for solving the above problems, the invention according to claim 1 is characterized in that a plurality of inner peripheral side permanent magnets (for example, inner peripheral side permanent magnets 9 in embodiments described later) are arranged along the circumferential direction. The inner circumferential rotor arranged (for example, the inner circumferential rotor 6 in an embodiment described later) and the outer circumferential side of the inner circumferential rotor are arranged coaxially and relatively rotatably, An outer rotor (for example, an outer rotor in an embodiment described later) in which a plurality of outer permanent magnets (for example, outer permanent magnets 50 and 53 in an embodiment described later) are disposed along the circumferential direction. 5) and phase changing means (for example, a rotating mechanism 11 in an embodiment to be described later) for relatively rotating the inner and outer rotors to change the relative phases of the two. The inner peripheral side permanent magnet has a magnetization direction of approximately The outer rotor is arranged such that the magnetization direction is substantially in the radial direction and the different magnetic poles are alternately arranged along the circumferential direction. The first rotor layer (for example, the first rotor layer 5A in the embodiment described later) in which the outer peripheral side permanent magnets are arranged so as to be aligned, the magnetization direction is substantially in the circumferential direction, and the circumferential direction A second rotor layer (for example, a second rotor layer 5B in an embodiment described later) in which the outer peripheral side permanent magnets are arranged so that adjacent ones face each other with the same magnetic poles, The first rotor layer and the second rotor layer are integrally formed in the axial direction .

これにより、内周側回転子と外周側回転子の第1の回転子層の間においては、例えば、内周側永久磁石と外周側永久磁石が異磁極同士で対向する強め界磁の状態から同磁極同士で対向する弱め界磁の状態に変化する間に、吸引方向に作用していた磁気力が反発方向に作用するようになる。また、内周側回転子と外周側回転子の第2の回転子層の間においては、例えば,内周側永久磁石が回転方向両側の外周側永久磁石と同磁極同士で面する強め界磁の状態から、内周側永久磁石が回転方向両側の外周側永久磁石と異磁極同士で面する弱め界磁の状態に変化する間に、反発方向に作用していた磁気力が吸引方向に作用するようになる。したがって、内周側回転子−第1の回転子層間の界磁状態と内周側回転子−第2の回転子層間の界磁状態が一致するように設定しておけば、内周側回転子と外周側回転子の間の界磁の可変レシオを大きくすることが可能になるともに、内周側回転子−第1の回転子層間の磁気作用と、内周側回転子−第2の回転子層間の磁気作用を相互に相殺する方向に働かせることが可能になる。   Thereby, between the inner rotor and the first rotor layer of the outer rotor, for example, from the state of a strong field where the inner permanent magnet and the outer permanent magnet face each other with different magnetic poles. The magnetic force acting in the attracting direction acts in the repulsion direction while changing to the field weakening state where the magnetic poles face each other. In addition, between the inner rotor and the second rotor layer of the outer rotor, for example, the strong magnetic field in which the inner permanent magnet faces the same pole as the outer permanent magnet on both sides in the rotation direction. The magnetic force acting in the repulsion direction acts in the attracting direction while the inner permanent magnet changes from the state of FIG. To come. Therefore, if the field state between the inner circumferential rotor-first rotor layer and the field state between the inner circumferential rotor-second rotor layer are set to coincide, the inner circumferential rotation The variable ratio of the field between the rotor and the outer rotor can be increased, and the magnetic action between the inner rotor and the first rotor layer and the inner rotor and the second rotor can be increased. It becomes possible to make the magnetic action between the rotor layers work in the direction of canceling each other.

請求項2に記載の発明は、請求項1に記載の電動機において、前記外周側永久磁石は、前記内周側永久磁石に対する前記第1の回転子層側の吸引・反発と前記第2の回転子層側の吸引・反発が、前記内周側回転子と外周側回転子の任意の相対位相において逆になるように設定されていることを特徴とする。
これにより、内周側回転子−第1の回転子層間の吸引・反発と、内周側回転子−第2の回転子層間の吸引・反発が常に逆になるため、内周側回転子と外周側回転子の相対位相を変更するときには、永久磁石による反力の影響が少なくなる。
According to a second aspect of the present invention, in the electric motor according to the first aspect, the outer peripheral side permanent magnet is configured to attract and repel the first rotor layer side and the second rotation with respect to the inner peripheral side permanent magnet. The suction / repulsion on the child layer side is set so as to be reversed at an arbitrary relative phase between the inner circumferential rotor and the outer circumferential rotor.
As a result, the suction / repulsion between the inner circumferential rotor-first rotor layer and the suction / repulsion between the inner circumferential rotor-second rotor layer are always reversed. When the relative phase of the outer rotor is changed, the influence of the reaction force by the permanent magnet is reduced.

請求項3に記載の発明は、請求項1または2のいずれか1項に記載の電動機において、前記外周側回転子は、前記第1の回転子層と第2の回転子層のうちの一方が軸方向中央に配置され、他方側が軸方向両側に配置されていることを特徴とする。
これにより、外周側回転子に作用する吸引方向の反力と反発方向の反力が軸方向全体でバランスする。
The invention according to claim 3 is the electric motor according to claim 1, wherein the outer peripheral rotor is one of the first rotor layer and the second rotor layer. Is arranged in the center in the axial direction, and the other side is arranged on both sides in the axial direction.
Thereby, the reaction force in the suction direction and the reaction force in the repulsion direction acting on the outer peripheral rotor are balanced in the entire axial direction.

請求項4に記載の発明は、円周方向に沿うように複数の内周側永久磁石(例えば、後述の実施形態における内周側永久磁石9)が配設された内周側回転子(例えば、後述の実施形態における内周側回転子6)と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように複数の外周側永久磁石(例えば、後述の実施形態における外周側永久磁石150)が配設された外周側回転子(例えば、後述の実施形態における外周側回転子105)と、前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段(例えば、後述の実施形態における回動機構11)と、を備えた電動機であって、前記内周側永久磁石は、磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように配置され、前記外周側回転子は、磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように前記外周側永久磁石が配置されるとともに、磁化方向が略円周方向を向き、かつ円周方向で隣接するもの同士が同磁極同士で対向するように副外周側永久磁石(例えば、後述の実施形態における副外周側永久磁石153)が配置され、前記外周側永久磁石は、前記同磁極で対向する副外周側永久磁石の間において前記同磁極が径方向外側に向くように配置されていることを特徴とする。 The invention according to claim 4 is an inner circumferential rotor (for example, an inner circumferential side permanent magnet (for example, an inner circumferential side permanent magnet 9 in an embodiment described later)) arranged along the circumferential direction. And an inner peripheral rotor 6) in an embodiment described later, and a plurality of outer peripheral sides so as to be coaxially and relatively rotatable on the outer peripheral side of the inner peripheral rotor and along the circumferential direction. An outer peripheral rotor (for example, an outer peripheral rotor 105 in an embodiment described later) provided with a permanent magnet (for example, an outer peripheral permanent magnet 150 in an embodiment described later), the inner rotor and the outer periphery side An electric motor comprising phase changing means (for example, a turning mechanism 11 in an embodiment described later) for rotating the rotor relative to each other to change the relative phase between the two, the inner peripheral side permanent magnet The magnetization direction is substantially the radial direction and the different magnetic poles are along the circumferential direction. The outer peripheral rotor has the outer peripheral permanent magnets arranged such that the magnetization direction is substantially in the radial direction and the different magnetic poles are alternately arranged along the circumferential direction. The sub-periphery side permanent magnet (for example, the sub-periphery side permanent magnet 153 in the embodiment described later) is such that the magnetization direction is substantially in the circumferential direction and the adjacent ones in the circumferential direction face each other with the same magnetic poles. The outer peripheral side permanent magnets are arranged such that the same magnetic poles are directed radially outward between the sub outer peripheral side permanent magnets opposed by the same magnetic poles .

これにより、例えば、内周側永久磁石と外周側永久磁石が異磁極同士で対向する強め界磁の状態から同磁極同士で対向する弱め界磁の状態に変化する間には、吸引方向に作用していた内周側永久磁石−外周側永久磁石間の磁気力が反発方向に作用するようになる。また、例えば、内周側永久磁石が回転方向両側の副外周側永久磁石と同磁極同士で面する強め界磁の状態から、内周側永久磁石が回転方向両側の副外周側永久磁石と異磁極同士で面する弱め界磁の状態に変化する間には、反発方向に作用していた内周側永久磁石−副外周側永久磁石間の磁気力が吸引方向に作用するようになる。したがって、内周側永久磁石−外周側永久磁石間の界磁状態と、内周側永久磁石−副外周側永久磁石間の界磁状態が一致するように設定しておけば、内周側回転子と外周側回転子の間の界磁の可変レシオを大きくすることが可能になるとともに、内周側永久磁石−外周側永久磁石間の磁気作用と、内周側永久磁石−副外周側永久磁石間の磁気作用を相互に相殺する方向に働かせることが可能になる。   Thus, for example, during the transition from the strong field state where the inner peripheral side permanent magnet and the outer peripheral side permanent magnet face each other with different magnetic poles to the weak field state where the same magnetic poles face each other, it acts in the attraction direction. The magnetic force between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet that has been applied acts in the repulsion direction. Also, for example, the inner peripheral permanent magnet is different from the sub outer peripheral permanent magnet on both sides in the rotational direction from the state of the strong magnetic field facing the same magnetic poles as the sub outer peripheral permanent magnet on both sides in the rotational direction. While changing to the state of field weakening facing each other between the magnetic poles, the magnetic force between the inner peripheral side permanent magnet and the sub outer peripheral side permanent magnet that has been acting in the repulsion direction acts in the attracting direction. Therefore, if the field state between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet matches the field state between the inner peripheral side permanent magnet and the sub outer peripheral side permanent magnet, the inner peripheral side rotation It is possible to increase the variable ratio of the field between the rotor and the outer rotor, the magnetic action between the inner peripheral permanent magnet and the outer peripheral permanent magnet, and the inner peripheral permanent magnet to the sub outer peripheral permanent. It becomes possible to make the magnetic action between the magnets act in the direction of canceling each other.

請求項5に記載の発明は、請求項4に記載の電動機において、前記外周側永久磁石と副外周側永久磁石は、前記内周側永久磁石に対する外周側永久磁石側の吸引・反発と副外周側永久磁石側の吸引・反発が、前記内周側回転子と外周側回転子の任意の相対位相において逆になるように設定されていることを特徴とする。
これにより、内周側永久磁石−外周側永久磁石間の吸引・反発と、内周側永久磁石−副外周側永久磁石間の吸引・反発が常に逆になるため、内周側回転子と外周側回転子の相対位相を変更するときには、永久磁石による反力の影響が少なくなる。
According to a fifth aspect of the present invention, in the electric motor according to the fourth aspect, the outer peripheral side permanent magnet and the sub outer peripheral side permanent magnet are attracted and repelled on the outer peripheral side permanent magnet side and the sub outer peripheral side with respect to the inner peripheral side permanent magnet. The attraction / repulsion on the side permanent magnet side is set so as to be reversed at an arbitrary relative phase between the inner circumferential rotor and the outer circumferential rotor.
As a result, the attraction / repulsion between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet and the attraction / repulsion between the inner periphery side permanent magnet and the sub outer peripheral side permanent magnet are always reversed. When the relative phase of the side rotor is changed, the influence of the reaction force by the permanent magnet is reduced.

請求項1に記載の発明によれば、界磁の可変レシオを低下させることなく、内周側回転子−第1の回転子層間の磁気作用と、内周側回転子−第2の回転子層間の磁気作用を相互に相殺させることができるため、内周側回転子と外周側回転子の相対位相の変更時における永久磁石の吸引・反発力の影響を少なくすることができ、その結果、位相変更のためのエネルギーロスを低減することが可能になるとともに、位相変更手段の小型化を図ることも可能になる。   According to the first aspect of the present invention, the magnetic action between the inner circumferential rotor-first rotor layer and the inner circumferential rotor-second rotor can be achieved without reducing the variable field ratio. Since the magnetic action between the layers can be canceled each other, the influence of the attraction / repulsion force of the permanent magnet when the relative phase of the inner rotor and outer rotor is changed can be reduced. It becomes possible to reduce the energy loss for the phase change, and to reduce the size of the phase change means.

請求項2に記載の発明によれば、内周側回転子と外周側回転子の相対位相を変更するときにおける永久磁石の吸引・反発力の影響を確実に低減することができる。   According to the second aspect of the present invention, it is possible to reliably reduce the influence of the attraction / repulsion force of the permanent magnet when the relative phase between the inner circumferential rotor and the outer circumferential rotor is changed.

請求項3に記載の発明によれば、外周側回転子に作用する吸引方向の反力と反発方向の反力が軸方向全体でバランスするため、内周側回転子と外周側回転子の位相制御をより安定化させることができる。   According to the invention described in claim 3, since the reaction force in the suction direction and the reaction force in the repulsion direction acting on the outer rotor are balanced in the entire axial direction, the phases of the inner rotor and the outer rotor are balanced. Control can be further stabilized.

請求項4に記載の発明によれば、界磁の可変レシオを低下させることなく、内周側永久磁石−外周側永久磁石間の磁気作用と、内周側永久磁石−副外周側永久磁石間の磁気作用を相互に相殺させることができるため、内周側回転子と外周側回転子の相対位相の変更時における永久磁石の吸引・反発力の影響を少なくすることができ、その結果、位相変更のためのエネルギーロスを低減することが可能になるとともに、位相変更手段の小型化を図ることも可能になる。   According to the fourth aspect of the present invention, the magnetic action between the inner peripheral side permanent magnet and the outer peripheral side permanent magnet and between the inner peripheral side permanent magnet and the sub outer peripheral side permanent magnet are obtained without reducing the variable ratio of the field. Can cancel each other out, so the influence of the attraction and repulsion force of the permanent magnet when the relative phase of the inner rotor and outer rotor is changed can be reduced. It becomes possible to reduce the energy loss for the change, and it is possible to reduce the size of the phase changing means.

請求項5に記載の発明によれば、内周側回転子と外周側回転子の相対位相を変更するときにおける永久磁石の吸引・反発力の影響を確実に低減することができる。   According to the fifth aspect of the present invention, it is possible to reliably reduce the influence of the attraction / repulsion force of the permanent magnet when the relative phase between the inner circumferential rotor and the outer circumferential rotor is changed.

以下、この発明の各実施形態を図面に基づいて説明する。最初に、図1〜図5に示す第1の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings. First, the first embodiment shown in FIGS. 1 to 5 will be described.

この実施形態の電動機1は、図1に示すように円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータであり、例えばハイブリッド車や電動車両等の走行駆動源として用いられる。固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。車両の走行駆動源として用いる場合には、電動機1の回転力はトランスミッション(図示せず)を介して車輪の駆動軸(図示せず)に伝達される。この場合、電動機1は車両の減速時に発電機として機能させれば、回生エネルギーとして蓄電器に回収することもできる。また、ハイブリッド車においては、電動機1の回転軸4をさらに内燃機関のクランクシャフト(図示せず)に連結することにより、内燃機関による発電にも利用することができる。   The electric motor 1 of this embodiment is an inner rotor type brushless motor in which a rotor unit 3 is arranged on the inner peripheral side of an annular stator 2 as shown in FIG. Used as a drive source. The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. When used as a vehicle driving source, the rotational force of the electric motor 1 is transmitted to a wheel drive shaft (not shown) via a transmission (not shown). In this case, if the electric motor 1 functions as a generator when the vehicle is decelerated, it can be recovered as regenerative energy in the electric storage device. Further, in the hybrid vehicle, the rotating shaft 4 of the electric motor 1 can be further connected to a crankshaft (not shown) of the internal combustion engine so that it can be used for power generation by the internal combustion engine.

回転子ユニット3は、図1〜図4に示すように、円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6が設定角度の範囲で回動可能とされている。   As shown in FIGS. 1 to 4, the rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed coaxially inside the outer circumferential rotor 5. The outer peripheral side rotor 5 and the inner peripheral side rotor 6 are rotatable within a set angle range.

内周側回転子6は、回転子本体であるロータ鉄心7が円環状に形成され、そのロータ鉄心7の外周側に偏寄した位置に、複数の磁石装着スロット7aが円周方向等間隔に形成されている。各磁石装着スロット7aは、ロータ鉄心7の接線方向に沿う矩形状の開口がロータ鉄心7の軸線と略平行に形成され、かつ、その矩形状の開口がロータ鉄心7の軸方向の一端から他端に亙っている。この各磁石装着スロット7aには、厚み方向に磁化された平板状の永久磁石9(以下、「内周側永久磁石9」と呼ぶ)が装着されている。
ここで、各内周側永久磁石9は、磁石装着スロット7aに装着された状態において磁化方向が内周側回転子6の径方向を向き、かつ、円周方向で隣接するもの同士の磁極(例えば、径方向外側に向く磁極)が異磁極になっている。つまり、内周側永久磁石9は、内周側回転子6上に異磁極が円周方向に沿って交互に並ぶように配置されている。また、内周側回転子6の外周面のうちの、円周方向で隣接する磁石スロット7a,7a間位置には、磁束の流れを制御するための切欠部10が形成されている。
In the inner rotor 6, the rotor core 7, which is the rotor body, is formed in an annular shape, and a plurality of magnet mounting slots 7 a are arranged at equal intervals in the circumferential direction at a position offset toward the outer periphery of the rotor core 7. Is formed. Each magnet mounting slot 7 a has a rectangular opening along the tangential direction of the rotor core 7 formed substantially parallel to the axis of the rotor core 7, and the rectangular opening extends from one end of the rotor core 7 in the axial direction. Crawling on the edge. Each of the magnet mounting slots 7a is mounted with a plate-like permanent magnet 9 magnetized in the thickness direction (hereinafter referred to as “inner peripheral side permanent magnet 9”).
Here, each inner peripheral side permanent magnet 9 has a magnetizing direction that faces the radial direction of the inner rotor 6 and is adjacent to each other in the circumferential direction when mounted in the magnet mounting slot 7a. For example, a magnetic pole facing radially outward is a different magnetic pole. That is, the inner peripheral permanent magnet 9 is arranged on the inner peripheral rotor 6 such that different magnetic poles are alternately arranged along the circumferential direction. In addition, a notch 10 for controlling the flow of magnetic flux is formed at a position between the magnet slots 7a and 7a adjacent in the circumferential direction on the outer peripheral surface of the inner rotor 6.

一方、外周側回転子5は、ロータ本体であるロータ鉄心8が内周側回転子6と同様に円環状に形成されている。この外周側回転子5は、図1に示すように、軸方向両側の第1の回転子層5A,5Aの間に断面構造の異なる第2の回転子層5Bが接合されている。   On the other hand, in the outer rotor 5, the rotor core 8, which is a rotor body, is formed in an annular shape like the inner rotor 6. As shown in FIG. 1, the outer peripheral rotor 5 has a second rotor layer 5B having a different sectional structure joined between first rotor layers 5A, 5A on both axial sides.

第1の回転子層5Aは、図2に示すようにロータ鉄心8の内周側に偏寄した位置に、複数の磁石装着スロット8aが円周方向等間隔に形成されている。各磁石装着スロット8aは、ロータ鉄心8の接線方向に沿う矩形状の開口が外周側回転子5の軸線と平行に形成され、その開口が第1の回転子層5Aの軸方向の一端から他端に亙っている。各磁石装着スロット8aには、厚み方向に磁化された平板状の永久磁石50(以下、「外周側永久磁石50」と呼ぶ)が装着されている。この外周側永久磁石50の場合も、内周側回転子6の内周側永久磁石9と同様に、磁石装着スロット8aに装着された状態において、磁化方向が径方向を向き、隣接するもの同士の磁極が異磁極となっている。つまり、外周側永久磁石50は、第1の回転子層5A上に異磁極が円周方向に沿って交互に並ぶように配置されている。
なお、図2中、51は、ロータ鉄心8上の隣接する磁石装着スロット8a,8aの中間位置に形成されたボルト締結孔であり、このボルト締結孔51を通して後述するドライブプレート16が外周側回転子5に結合されるようになっている。また、図2中52は、第1の回転子層5Aのロータ鉄心8のうちの、磁石装着スロット8aの両端部から径方向外側に向けて延設された磁束障壁用孔である。
As shown in FIG. 2, the first rotor layer 5 </ b> A has a plurality of magnet mounting slots 8 a formed at equal intervals in the circumferential direction at positions offset toward the inner peripheral side of the rotor core 8. Each magnet mounting slot 8a has a rectangular opening along the tangential direction of the rotor core 8 formed in parallel with the axis of the outer rotor 5, and the opening extends from one end of the first rotor layer 5A in the axial direction. Crawling on the edge. Each magnet mounting slot 8a is mounted with a flat permanent magnet 50 magnetized in the thickness direction (hereinafter referred to as “outer peripheral permanent magnet 50”). Also in the case of the outer peripheral side permanent magnet 50, as in the case of the inner peripheral side permanent magnet 9 of the inner peripheral side rotor 6, in the state where it is mounted in the magnet mounting slot 8 a, the magnetization direction is directed in the radial direction and adjacent to each other. Are different magnetic poles. That is, the outer peripheral side permanent magnets 50 are arranged on the first rotor layer 5A so that different magnetic poles are alternately arranged along the circumferential direction.
In FIG. 2, 51 is a bolt fastening hole formed at an intermediate position between adjacent magnet mounting slots 8a, 8a on the rotor iron core 8, and the drive plate 16 described later rotates through the bolt fastening hole 51 on the outer peripheral side. It is connected to the child 5. In FIG. 2, 52 is a magnetic flux barrier hole extending radially outward from both ends of the magnet mounting slot 8a in the rotor core 8 of the first rotor layer 5A.

また、第2の回転子層5Bのロータ鉄心8には、図3に示すように複数の磁石装着スロット8bが円周方向等間隔に形成されている。この各磁石装着スロット8bは、ロータ鉄心8の径方向に沿う矩形状の開口が第2の回転子層5Bの軸方向の一端から他端に亙るように形成されている。この各磁石装着スロット8bには、厚み方向に磁化された平板状の永久磁石53(以下「外周側永久磁石53」と呼ぶ)が装着されている。この外周側永久磁石53は、磁石装着スロット8bに装着された状態において、磁化方向が略円周方向(正確には、外周側回転子5の軸心を中心とする円の接線方向)を向き、円周方向で隣接するもの同士が同極同士で対向するようになっている。つまり、第2の回転子層5Bには、外周側永久磁石53…によるN極同士の対向配置とS極同士の対向配置が円周方向に沿って交互に設けられている。   Further, as shown in FIG. 3, the rotor core 8 of the second rotor layer 5B has a plurality of magnet mounting slots 8b formed at equal intervals in the circumferential direction. Each of the magnet mounting slots 8b is formed such that a rectangular opening along the radial direction of the rotor core 8 extends from one end to the other end in the axial direction of the second rotor layer 5B. Each of the magnet mounting slots 8b is mounted with a flat plate-like permanent magnet 53 magnetized in the thickness direction (hereinafter referred to as “outer peripheral permanent magnet 53”). In the state where the outer peripheral side permanent magnet 53 is mounted in the magnet mounting slot 8b, the magnetization direction is substantially in the circumferential direction (more precisely, the tangential direction of the circle centered on the axis of the outer rotor 5). Those adjacent in the circumferential direction are opposed to each other with the same polarity. That is, in the second rotor layer 5B, the opposing arrangement of N poles and the opposing arrangement of S poles by the outer peripheral side permanent magnets 53 are alternately provided along the circumferential direction.

以上の構成の第1の回転子層5Aと第2の回転子層5Bは、第1の回転子層5A側の隣接する外周側永久磁石50,50の間に第2の回転子層5B側の外周側永久磁石53が位置されるように相互に結合されている。そして、両回転子層5A,5Bの外周側永久磁石50,53の磁極は、両回転子層5A,5Bを軸方向で重ね合わせて見た場合に、第2の回転子層5B側の隣接する外周側永久磁石53,53(これを「隣接磁石53,53」と呼ぶ)の間に位置される第1の回転子層5A側の外周側永久磁石50が、前記隣接磁石53,53の対向磁極と同極で向き合うようになっている。つまり、例えば、第2の回転子層5BのN極同士で向き合う外周側永久磁石53,53の間には、径方向外側面がN極となるように第1の回転子層5Aの外周側永久磁石50が配置され、第2の回転子層5BのS極同士で向き合う外周側永久磁石53,53の間には、径方向外側面がS極となるように第1の回転子層5Aの外周側永久磁石50が配置されている。   The first rotor layer 5A and the second rotor layer 5B having the above-described configuration are arranged on the second rotor layer 5B side between the adjacent outer peripheral permanent magnets 50, 50 on the first rotor layer 5A side. The outer peripheral side permanent magnets 53 are coupled to each other so as to be positioned. And the magnetic poles of the outer peripheral side permanent magnets 50, 53 of both rotor layers 5A, 5B are adjacent to the second rotor layer 5B side when the two rotor layers 5A, 5B are viewed in the axial direction. Outer peripheral side permanent magnets 50 on the first rotor layer 5A side located between the outer peripheral side permanent magnets 53 and 53 (referred to as “adjacent magnets 53 and 53”) It faces the same polarity as the opposing magnetic pole. That is, for example, the outer peripheral side of the first rotor layer 5A is arranged between the outer peripheral permanent magnets 53 and 53 facing each other between the N poles of the second rotor layer 5B so that the radially outer surface is the N pole. The first rotor layer 5A is disposed between the outer peripheral side permanent magnets 53 and 53, where the permanent magnets 50 are arranged and facing each other between the south poles of the second rotor layer 5B, so that the radially outer surface is the south pole. The outer peripheral side permanent magnet 50 is arranged.

ところで、内周側回転子6の内周側永久磁石9と第1の回転子層5Aの外周側永久磁石50は夫々同数設けられ、夫々の永久磁石9,50が1対1で対応するようになっている。このため、内周側回転子6の永久磁石9と第1の回転子層5Aの永久磁石50を互いに異極同士で対向させる(同極配置にする)ことにより、内周側回転子6と第1の回転子層5Aの間の界磁が最も強められる強め界磁の状態を得ることができるとともに、内周側回転子6の永久磁石9と第1の回転子層5Aの永久磁石50を互いに同極同士で対向させる(異極配置にする)ことにより、内周側回転子6と第1の回転子層5Aの間の界磁が最も弱められる弱め界磁の状態を得ることができる。   By the way, the inner peripheral side permanent magnet 9 of the inner peripheral side rotor 6 and the outer peripheral side permanent magnet 50 of the first rotor layer 5A are provided in the same number, and the permanent magnets 9 and 50 correspond to each other on a one-to-one basis. It has become. For this reason, by making the permanent magnet 9 of the inner peripheral side rotor 6 and the permanent magnet 50 of the first rotor layer 5A face each other with different polarities (with the same polarity arrangement), the inner peripheral side rotor 6 and It is possible to obtain a strong field state in which the field between the first rotor layers 5A is most strengthened, and the permanent magnet 9 of the inner rotor 6 and the permanent magnet 50 of the first rotor layer 5A. Are opposed to each other with the same poles (disposed in different polarities), thereby obtaining a field-weakening state in which the field between the inner circumferential rotor 6 and the first rotor layer 5A is most weakened. it can.

また、内周側回転子6の内周側永久磁石9と、第2の回転子層5Bの隣接する外周側永久磁石53,53間のエリア(以下、「同極間エリア」)は同数設けられており、内周側永久磁石9と第2の回転子層5B側の同極間エリアが1対1で対応するようになっている。このため、内周側回転子6の永久磁石9と、第2の回転子層5B側の同極間エリアの磁石磁極を異極同士で対面させることにより、内周側回転子6と第2の回転子層5Bの間の界磁が磁路短絡によって最も弱められる弱め界磁の状態を得ることができるとともに、内周側回転子6の永久磁石9と、第2の回転子層5B側の同極間エリアの磁石磁極を同極同士で対面させることにより、内周側回転子6と第2の回転子層5Bの間の界磁が所謂ハルバッハ効果によって最も強められる強め界磁の状態を得ることができる。   Further, the same number of areas are provided between the inner peripheral side permanent magnet 9 of the inner peripheral side rotor 6 and the adjacent outer peripheral side permanent magnets 53, 53 of the second rotor layer 5 </ b> B (hereinafter referred to as “between-pole areas”). The inner-periphery-side permanent magnet 9 and the area between the same poles on the second rotor layer 5B side have a one-to-one correspondence. For this reason, by making the permanent magnet 9 of the inner peripheral side rotor 6 and the magnet magnetic pole in the same pole area on the second rotor layer 5B side face each other, the inner peripheral side rotor 6 and the second rotor Can obtain a field-weakening state in which the field between the rotor layers 5B is weakened most by a magnetic path short circuit, and the permanent magnet 9 of the inner rotor 6 and the second rotor layer 5B side. By making the magnetic poles in the same-polarity area face each other, the field between the inner rotor 6 and the second rotor layer 5B is in a strong field state that is most enhanced by the so-called Halbach effect. Can be obtained.

また、この回転子ユニット3においては、第1の回転子層5Aと第2の回転子層5Bが上記のような磁石配置とされているため、内周側回転子6と第1の回転子層5Aが強め界磁状態のときには、内周側回転子6と第2の回転子層5Bも強め界磁状態になり、内周側回転子6と第1の回転子層5Aが弱め界磁状態のときには、内周側回転子6と第2の回転子層5Bも弱め界磁状態になる。   Further, in this rotor unit 3, since the first rotor layer 5A and the second rotor layer 5B have the magnet arrangement as described above, the inner circumferential rotor 6 and the first rotor are arranged. When the layer 5A is in the strong field state, the inner peripheral rotor 6 and the second rotor layer 5B are also in the strong field state, and the inner peripheral rotor 6 and the first rotor layer 5A are in the weak field state. In the state, the inner rotor 6 and the second rotor layer 5B are also in the field weakening state.

ただし、内周側回転子6と第1の回転子層5Aが強め界磁状態のときには、内周側永久磁石9と外周側磁石50の磁極が異磁極で対向するため、内周側回転子6と第1の回転子層5Aには永久磁石9,50による吸引力が回動方向に作用し、内周側回転子6と第2の回転子層5Bが強め界磁状態のときには、内周側永久磁石9と外周側磁石53の磁極が同磁極で対向するために、内周側回転子6と第2の回転子層5Aには永久磁石9,53による反発力が回動方向に作用する。また、逆に、内周側回転子6と各回転子層5A,5Bの間が夫々弱め界磁状態のときには、内周側永久磁石9と外周側磁石50の磁極が同磁極同士で対向し、内周側永久磁石9と外周側磁石53の磁極が異磁極同士で対向するため、内周側回転子6と第1の回転子層5Aの間には永久磁石9,50による反発力が回動方向に作用し、内周側回転子6と第2の回転子層5Aの間には永久磁石9,53による吸引力が回動方向に作用する。   However, when the inner rotor 6 and the first rotor layer 5A are in a strong field state, the inner peripheral rotor 9 and the outer magnet 50 are opposed to each other with different magnetic poles. 6 and the first rotor layer 5A are attracted by the permanent magnets 9 and 50 in the rotational direction, and when the inner rotor 6 and the second rotor layer 5B are in a strong field state, Since the magnetic poles of the peripheral permanent magnet 9 and the outer peripheral magnet 53 are opposite to each other, the repulsive force of the permanent magnets 9 and 53 is applied to the inner peripheral rotor 6 and the second rotor layer 5A in the rotational direction. Works. Conversely, when the inner rotor 6 and each of the rotor layers 5A and 5B are in a weak field state, the inner permanent magnet 9 and the outer magnet 50 are opposed to each other. Since the magnetic poles of the inner peripheral side permanent magnet 9 and the outer peripheral side magnet 53 are opposed to each other, the repulsive force of the permanent magnets 9 and 50 is generated between the inner peripheral side rotor 6 and the first rotor layer 5A. Acting in the rotational direction, the attractive force by the permanent magnets 9 and 53 acts in the rotational direction between the inner rotor 6 and the second rotor layer 5A.

また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11(位相変更手段)を備えている。この回動機構11は非圧縮性の作動流体である作動油の圧力によって操作されるようになっている。   The rotor unit 3 includes a rotation mechanism 11 (phase changing means) for rotating the outer peripheral rotor 5 and the inner peripheral rotor 6 relative to each other. The rotating mechanism 11 is operated by the pressure of hydraulic oil that is an incompressible working fluid.

回動機構11は、図1〜図4に示すように回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の両側の側端部を跨ぐ円板状の一対のドライブプレート16,16を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。   As shown in FIGS. 1 to 4, the rotating mechanism 11 includes a vane rotor 14 that is spline-fitted to the outer periphery of the rotating shaft 4 and an annular housing that is relatively rotatable on the outer peripheral side of the vane rotor 14. 15, and the annular housing 15 is integrally fitted and fixed to the inner peripheral surface of the inner peripheral rotor 6, and the vane rotor 14 is provided on both side end portions of the annular housing 15 and the inner peripheral rotor 6. Are integrally coupled to the outer circumferential rotor 5 via a pair of disk-shaped drive plates 16, 16 straddling each other. Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。この実施形態の場合、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制するストッパとしても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。   In the vane rotor 14, a plurality of vanes 18 projecting radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in the concave portions 19. Each recess 19 is constituted by a bottom wall 20 having an arc surface that substantially matches the rotational trajectory of the tip of the vane 18 and a substantially triangular partition wall 21 that separates the adjacent recesses 19, 19. The vane 18 can be displaced between the one partition wall 21 and the other partition wall 21 during relative rotation of the annular housing 15. In the case of this embodiment, the partition wall 21 also functions as a stopper that restricts the relative rotation of the vane rotor 14 and the annular housing 15 by contacting the vane 18. A seal member 22 is provided along the axial direction at the tip of each vane 18 and the tip of the partition wall 21, and the vane 18, the bottom wall 20 of the recess 19, and the partition wall 21 are provided by these seal members 22. And the outer peripheral surface of the boss portion 17 are liquid-tightly sealed.

また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、図1に示すように内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。   Further, the base portion 15a of the annular housing 15 fixed to the inner peripheral rotor 6 is formed in a cylindrical shape having a constant thickness, and is also provided with respect to the inner peripheral rotor 6 and the partition wall 21 as shown in FIG. Projects outward in the axial direction. Each end projecting outward of the base portion 15a is slidably held in an annular guide groove 16a formed in the drive plate 16, and the annular housing 15 and the inner peripheral rotor 6 are connected to the outer peripheral rotor. 5 and the rotating shaft 4 are supported in a floating state.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動油が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図2,図3中の矢印Rで示す電動機1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の回転方向Rと逆側に進めることを言うものとする。   The drive plates 16 and 16 on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (both end surfaces in the axial direction) of the annular housing 15, and the side of each recess 19 of the annular housing 15. Respectively. Therefore, each recessed part 19 forms the independent space part by the boss | hub part 17 of the vane rotor 14, and the drive plates 16 and 16 of both sides, and this space part becomes the introduction space 23 in which hydraulic fluid is introduce | transduced. Each introduction space 23 is divided into two chambers by the corresponding vanes 18 of the vane rotor 14, and one room is an advance side working chamber 24 and the other room is a retard side working chamber 25. The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the working fluid introduced inside, and the retard side working chamber 25 is The inner rotor 6 is rotated relative to the outer rotor 5 in the retard direction by the pressure of the working fluid introduced therein. In this case, “advance angle” means that the inner rotor 6 is advanced in the rotation direction of the electric motor 1 indicated by the arrow R in FIGS. 2 and 3 with respect to the outer rotor 5. “Angle” means that the inner rotor 6 is advanced to the opposite side of the rotation direction R of the electric motor 1 with respect to the outer rotor 5.

また、進角側作動室24と遅角側作動室25に対する作動油の給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、油圧制御装置の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置の遅角側給排通路27に接続されているが、進角側給排通路26と遅角側給排通路27の一部は、図1に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした2位置に形成された環状溝26bと環状溝27bに夫々接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c…,27c…に接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。   Further, supply and discharge of hydraulic oil to and from the advance side working chamber 24 and the retard side working chamber 25 are performed through the rotating shaft 4. Specifically, the advance side working chamber 24 is connected to the advance side supply / discharge passage 26 of the hydraulic control device, and the retard side operation chamber 25 is connected to the retard side supply / discharge passage 27 of the hydraulic control device. However, as shown in FIG. 1, a part of the advance side supply / discharge passage 26 and the retard side supply / discharge passage 27 are formed by passage holes 26a, 27a formed along the axial direction of the rotary shaft 4, respectively. It is configured. The end portions of the passage holes 26a and 27a are respectively connected to an annular groove 26b and an annular groove 27b formed at two positions offset in the axial direction of the outer peripheral surface of the rotary shaft 4, and the respective annular grooves 26b and 27b. Are connected to a plurality of conduction holes 26c... 27c formed in the boss portion 17 of the vane rotor 14 along the substantially radial direction. Each conduction hole 26c of the advance side supply / discharge passage 26 connects the annular groove 26b and each advance side working chamber 24, and each conduction hole 27c of the retard side supply / exhaust passage 27 connects to the annular groove 27b and each retard side. The working chamber 25 is connected.

なお、この電動機1は、進角側作動室24と遅角側作動室25に対する作動油の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、こうして磁界の強さが変更されると、それに伴って誘起電圧定数が変化し、その結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。   The electric motor 1 can arbitrarily change the state of the strong field and the state of the weak field by controlling the supply and discharge of hydraulic oil to and from the advance side working chamber 24 and the retard side working chamber 25. Thus, when the strength of the magnetic field is changed, the induced voltage constant is changed accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, when the induced voltage constant increases due to the strong field, the allowable rotational speed at which the motor 1 can be operated decreases, but the maximum torque that can be output increases. Conversely, when the induced voltage constant decreases due to the weak field, Although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

以上のように、この実施形態の電動機1においては、内周側回転子6と外周側回転子5の位相角を変更する回動機構11が油圧によって操作されるため、両回転子6,5の位相角を任意のタイミングで迅速に、かつ自由に変更することができる。   As described above, in the electric motor 1 of this embodiment, the rotating mechanism 11 that changes the phase angle between the inner peripheral rotor 6 and the outer peripheral rotor 5 is operated by hydraulic pressure. Can be quickly and freely changed at an arbitrary timing.

そして、この電動機1においては、内周側回転子6と外周側回転子5の各回転子層5A,5Bとの間の界磁状態が一致するように設定されているため、内周側回転子6と外周側回転子5を相対回動させたときの可変レシオを大きく確保することができる。また、内周側回転子6と第2の回転子層5Bの間では、強め界磁の状態において、内周側永久磁石9と外周側永久磁石53による所謂ハルバッハ効果によって大きな誘起電圧定数を確保できることから、電動機1の出力トルクを容易に増大させることができる。   And in this electric motor 1, since it has set so that the field state between each rotor layer 5A, 5B of the inner peripheral side rotor 6 and the outer peripheral side rotor 5 may correspond, internal rotation side rotation A large variable ratio can be secured when the rotor 6 and the outer rotor 5 are relatively rotated. In addition, a large induced voltage constant is secured between the inner circumferential rotor 6 and the second rotor layer 5B by a so-called Halbach effect by the inner circumferential permanent magnet 9 and the outer circumferential permanent magnet 53 in a strong field state. As a result, the output torque of the electric motor 1 can be easily increased.

また、この電動機1の場合、内周側回転子6と第1の回転子層5Aの間に永久磁石9,50による吸引作用が働くときには、内周側回転子6と第2の回転子層5Bの間に永久磁石9,53による反発作用が働き、逆に、内周側回転子6と第1の回転子層5Aの間に永久磁石9,50による反発作用が働くときには、内周側回転子6と第2の回転子層5Bの間に永久磁石9,53による吸引作用が働くように設定されているため、内周側回転子6と外周側回転子5の間の吸引・反発作用を全体としてほぼ相殺させることができる。
図5は、内周側回転子6と外周側回転子5を相対回動させたときにおける内周側永久磁石9と第1の回転子層5A側の外周側永久磁石50のトルクの変化を点線で示すとともに、内周側永久磁石9と第2の回転子層5B側の外周側永久磁石53のトルクの変化を一転鎖線で示し、これらの合成トルクの変化を実線で示したものである。この特性図から明らかなように、この実施形態の電動機1においては、内周側回転子6と外周側回転子5の間に働く総合的な永久磁石9,50,53の相対トルクは全体レベルが低く、しかも、変動幅の小さいものとなる。
したがって、この電動機1においては、内周側回転子6と外周側回転子5の位相変更時における永久磁石9,50,53の吸引・反発力の影響を少なくすることができるため、位相変更のためのエネルギーロスを低減できるとともに、回動機構11や油圧ポンプ(図示せず)を小型化することができる。また、総合的な永久磁石9,50,53の相対トルクの変動幅が小さくなることから、油圧制御装置による位相制御を容易に、かつ安定的に行うことができるという利点もある。
In the case of the electric motor 1, when the attracting action by the permanent magnets 9 and 50 acts between the inner peripheral rotor 6 and the first rotor layer 5 </ b> A, the inner peripheral rotor 6 and the second rotor layer When the repulsive action by the permanent magnets 9 and 50 works between the inner peripheral side rotor 6 and the first rotor layer 5A, the inner peripheral side works. Since the permanent magnets 9 and 53 are set so that the attraction action acts between the rotor 6 and the second rotor layer 5B, the attraction / repulsion between the inner circumference side rotor 6 and the outer circumference side rotor 5 is performed. The action can be almost canceled as a whole.
FIG. 5 shows changes in torque of the inner peripheral side permanent magnet 9 and the outer peripheral side permanent magnet 50 on the first rotor layer 5A side when the inner peripheral side rotor 6 and the outer peripheral side rotor 5 are relatively rotated. The change in torque of the inner peripheral side permanent magnet 9 and the outer peripheral side permanent magnet 53 on the second rotor layer 5B side is indicated by a one-dot chain line, and the change in these combined torques is indicated by a solid line. . As is apparent from this characteristic diagram, in the electric motor 1 of this embodiment, the relative torque of the integrated permanent magnets 9, 50, 53 acting between the inner rotor 6 and the outer rotor 5 is at an overall level. Is low and the fluctuation range is small.
Therefore, in this electric motor 1, since the influence of the attraction / repulsive force of the permanent magnets 9, 50, 53 when the phases of the inner circumferential rotor 6 and the outer circumferential rotor 5 are changed can be reduced. Therefore, the rotation mechanism 11 and the hydraulic pump (not shown) can be reduced in size. In addition, since the fluctuation range of the relative torque of the permanent magnets 9, 50, 53 is reduced, there is an advantage that phase control by the hydraulic control device can be performed easily and stably.

さらに、この実施形態の電動機1においては、一対の第1の回転子層5A,5Aの間に第2の回転子層5Bが挟み込まれているため、外周側回転子に作用する吸引方向の反力と反発方向の反力が軸方向全体でバランスし、内部応力のバランスが良好になるとともに位相制御もより安定する。   Furthermore, in the electric motor 1 of this embodiment, since the second rotor layer 5B is sandwiched between the pair of first rotor layers 5A, 5A, the suction direction reaction acting on the outer peripheral rotor is counteracted. The force and the reaction force in the repulsion direction are balanced in the entire axial direction, the internal stress balance is improved and the phase control is more stable.

なお、外周側回転子5は、上記のバランスについての利点は得られなくなるものの、単純に二つの回転子層5A,5Bを軸方向で結合するようにしても良い。また、各二つ以上の回転子層5A,5Bを軸方向に交互に配置するようにしても良い。
また、電動機1の内周側永久磁石9と外周側永久磁石50の間に作用する磁気反力と、内周側永久磁石9と外周側永久磁石53の間に作用する磁気反力は、両回転子6,5の任意の相対位置における絶対値がほぼ同じになるように設定しても良いが、一方の磁気反力の絶対値が他方の磁気反力の絶対値よりも大きくなるようにしても良い。このようにした場合には、例えば、回動機構11を操作しない場合における相対位相を強め界磁側、若しくは、弱め界磁側に自動的に戻すことが可能になる。
The outer rotor 5 may simply couple the two rotor layers 5A and 5B in the axial direction, although the above-described balance advantage cannot be obtained. Further, two or more rotor layers 5A and 5B may be alternately arranged in the axial direction.
Further, the magnetic reaction force acting between the inner peripheral side permanent magnet 9 and the outer peripheral side permanent magnet 50 of the electric motor 1 and the magnetic reaction force acting between the inner peripheral side permanent magnet 9 and the outer peripheral side permanent magnet 53 are both The absolute values at arbitrary relative positions of the rotors 6 and 5 may be set to be substantially the same, but the absolute value of one magnetic reaction force is made larger than the absolute value of the other magnetic reaction force. May be. In this case, for example, the relative phase when the rotation mechanism 11 is not operated can be automatically returned to the strong field side or the weak field side.

図6は、この発明の第2の実施形態の、第1の実施形態の図2または図3に相対する部分断面側面図である。以下、第2の実施形態について説明するが、第1の実施形態と同一部分には同一符号を付し、重複する説明を一部省略するものとする。
この実施形態の電動機101は、固定子(図示せず)や回転子ユニット3の配置や、回動機構11の構造等は第1の実施形態と同様であるが、外周側回転子105の構造が第1の実施形態のものと異なっている。
即ち、この電動機101の外周側回転子105は、第1の実施形態の外周側回転子5のように断面構造の異なる2種の回転子層を接合したものではなく、軸方向のほぼ全域が図6に示すような一様な断面構造となっている。ロータ鉄心108には、接線方向に沿う矩形状の開口が外周側回転子105の軸線と平行に形成されて成る磁石装着スロット108aと、径方向に沿う矩形状の開口が外周側回転子105の軸線と平行に形成されて成る磁石装着スロット108bが、夫々円周方向等間隔に形成され、各磁石装着スロット108a,108bに外周側永久磁石150と副外周側永久磁石153が装着されている。外周側永久磁石150と副外周側永久磁石153はいずれも平板状に形成され、厚み方向に磁化されている。そして、外周側永久磁石150は、磁石装着スロット108aに装着された状態において、磁化方向が径方向を向き、円周方向で隣接するもの同士の磁極が異磁極となっている。また、副外周側永久磁石153は、磁石装着スロット108bに装着された状態において、磁化方向が略円周方向を向き、円周方向で隣接するもの同士が同極同士で対向するようになっている。
FIG. 6 is a partial cross-sectional side view of the second embodiment of the present invention corresponding to FIG. 2 or 3 of the first embodiment. Hereinafter, the second embodiment will be described, but the same parts as those in the first embodiment are denoted by the same reference numerals, and a part of the overlapping description will be omitted.
In the electric motor 101 of this embodiment, the arrangement of the stator (not shown) and the rotor unit 3 and the structure of the rotation mechanism 11 are the same as those of the first embodiment. Is different from that of the first embodiment.
That is, the outer peripheral side rotor 105 of the electric motor 101 is not formed by joining two types of rotor layers having different cross-sectional structures as the outer peripheral side rotor 5 of the first embodiment. It has a uniform cross-sectional structure as shown in FIG. The rotor core 108 has a magnet mounting slot 108 a in which a rectangular opening along the tangential direction is formed in parallel with the axis of the outer rotor 105, and a rectangular opening along the radial direction of the outer rotor 105. Magnet mounting slots 108b formed in parallel to the axis are formed at equal intervals in the circumferential direction, and the outer peripheral permanent magnet 150 and the sub outer peripheral permanent magnet 153 are mounted in each of the magnet mounting slots 108a and 108b. Both the outer peripheral permanent magnet 150 and the sub outer peripheral permanent magnet 153 are formed in a flat plate shape and are magnetized in the thickness direction. When the outer peripheral side permanent magnet 150 is mounted in the magnet mounting slot 108a, the magnetization direction is the radial direction, and the magnetic poles adjacent to each other in the circumferential direction are different magnetic poles. Further, in the state in which the secondary outer peripheral side permanent magnet 153 is mounted in the magnet mounting slot 108b, the magnetization direction is substantially in the circumferential direction, and adjacent ones in the circumferential direction are opposed to each other with the same polarity. Yes.

この電動機101の場合も、外周側永久磁石150は、内周側回転子6の内周側永久磁石9と異磁極同士で対向することによって強め界磁の状態になり、同磁極同士で対向することによって弱め界磁の状態になる。一方、副外周側永久磁石153は、同極間エリアの磁石磁極を内周側回転子6の内周側永久磁石9に同極同士で対面させることによって強め界磁の状態になり、同極間エリアの磁石磁極を内周側回転子6の内周側永久磁石9に異磁極同士で対面させることによって弱め界磁の状態になる。
Also in the case of the electric motor 101, the outer peripheral side permanent magnet 150 is in a strong field state by facing the inner peripheral side permanent magnet 9 of the inner peripheral side rotor 6 with different magnetic poles, and is opposed to each other with the same magnetic poles. As a result, the field is weakened. On the other hand, the sub outer peripheral side permanent magnet 153 is in a strong field state by causing the magnet poles in the same pole area to face the inner circumference side permanent magnet 9 of the inner rotor 6 with the same poles. the magnet poles between areas on the inner circumference side permanent magnets 9 on the inner periphery side rotor 6 in a state of weak field by facing in different magnetic poles.

したがって、この電動機101の場合、外周側永久磁石150による界磁と副外周側永久磁石153による界磁が強め弱めのピークがほぼ一致するように合成されるために、界磁の可変レシオを充分に大きくすることができ、しかも、外周側永久磁石150による吸引・反発作用と、副外周側永久磁石153による吸引・反発作用が常に逆に働くことから、位相変更時における永久磁石9,150,153の吸引・反発力の影響を少なくし、位相変更のためのエネルギーロスの低減と回動機構11や機構駆動用の油圧ポンプ等の小型化を図ることができる。   Therefore, in the case of this electric motor 101, since the field by the outer peripheral side permanent magnet 150 and the field by the sub outer peripheral side permanent magnet 153 are combined so that the weaker peaks almost coincide with each other, the variable ratio of the field is sufficiently high. In addition, since the attraction / repulsion action by the outer peripheral side permanent magnet 150 and the attraction / repulsion action by the sub-periphery side permanent magnet 153 are always reversed, the permanent magnets 9, 150, The influence of the suction / repulsion force 153 can be reduced, the energy loss for phase change can be reduced, and the rotation mechanism 11 and the hydraulic pump for driving the mechanism can be downsized.

この実施形態の電動機101は、以上で説明した他にも第1の実施形態とほぼ同様の効果を得ることができるが、外周側回転子105が一様な断面に形成されていることから、外周側回転子105の製造が容易になり、その分、製造コトスの低減が可能になるという利点がある。   The electric motor 101 of this embodiment can obtain substantially the same effect as the first embodiment in addition to the above description, but the outer peripheral rotor 105 is formed in a uniform cross section. There is an advantage that the outer rotor 105 can be easily manufactured, and the manufacturing cost can be reduced accordingly.

なお、この発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の第2の実施形態においては、外周側永久磁石150と副外周側永久磁石153が円周方向に交互に配置されているが、副外周側永久磁石153を円周方向に等間隔に配置し、隣接する副外周側永久磁石153,153の一部の同極間エリアにのみ外周側永久磁石150を配置するようにしても良い。   In addition, this invention is not limited to the said embodiment, A various design change is possible in the range which does not deviate from the summary. For example, in the second embodiment, the outer peripheral side permanent magnets 150 and the sub outer peripheral side permanent magnets 153 are alternately arranged in the circumferential direction, but the sub outer peripheral side permanent magnets 153 are equally spaced in the circumferential direction. The outer peripheral side permanent magnets 150 may be disposed only in the same interpolar area of the adjacent sub outer peripheral side permanent magnets 153 and 153.

この発明の第1の実施形態の電動機の要部断面図。1 is a cross-sectional view of a main part of an electric motor according to a first embodiment of the present invention. 同実施形態の外周側回転子のみを図1のA−A線に沿って断面した回転子ユニットの側面図。The side view of the rotor unit which cut | disconnected only the outer peripheral side rotor of the embodiment along the AA line of FIG. 同実施形態の外周側回転子のみを図1のB−B線に沿って断面した回転子ユニットの側面図。The side view of the rotor unit which cut | disconnected only the outer peripheral side rotor of the embodiment along the BB line of FIG. 同実施形態の回転子ユニットの分解斜視図。The disassembled perspective view of the rotor unit of the embodiment. 同実施形態の相対トルク−電気角度特性図。The relative torque-electrical angle characteristic view of the same embodiment. この発明の第2の実施形態の回転子ユニットの側面図。The side view of the rotor unit of 2nd Embodiment of this invention. 従来の技術における相対トルク−電気角度特性図。The relative torque-electrical angle characteristic figure in a prior art.

符号の説明Explanation of symbols

1,101…電動機
5,105…外周側回転子
5A…第1の回転子層
5B…第2の回転子層
6…内周側回転子
9…内周側永久磁石
11…回動機構(位相変更手段)
50,53,150…外周側永久磁石
153…副外周側永久磁石
DESCRIPTION OF SYMBOLS 1,101 ... Electric motor 5,105 ... Outer peripheral side rotor 5A ... First rotor layer 5B ... Second rotor layer 6 ... Inner peripheral side rotor 9 ... Inner peripheral side permanent magnet 11 ... Turning mechanism (phase (Change means)
50, 53, 150 ... outer peripheral side permanent magnet 153 ... sub outer peripheral side permanent magnet

Claims (5)

円周方向に沿うように複数の内周側永久磁石が配設された内周側回転子と、
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように複数の外周側永久磁石が配設された外周側回転子と、
前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、
を備えた電動機であって、
前記内周側永久磁石は、磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように配置され、
前記外周側回転子は、
磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように前記外周側永久磁石が配置された第1の回転子層と、
磁化方向が略円周方向を向き、かつ円周方向で隣接するもの同士が同磁極同士で対向するように前記外周側永久磁石が配置された第2の回転子層と、を備え、
前記第1の回転子層と前記第2の回転子層とが、軸方向で一体に併設されて成ることを特徴とする電動機。
An inner circumferential rotor in which a plurality of inner circumferential permanent magnets are arranged along the circumferential direction;
An outer peripheral rotor that is coaxially and relatively rotatably disposed on the outer peripheral side of the inner peripheral rotor, and in which a plurality of outer peripheral permanent magnets are disposed along the circumferential direction,
Phase changing means for changing the relative phase of the inner and outer rotors by relatively rotating the inner and outer rotors;
An electric motor with
The inner peripheral permanent magnet is arranged such that the magnetization direction is substantially in the radial direction and the different magnetic poles are alternately arranged along the circumferential direction,
The outer circumferential rotor is
A first rotor layer in which the outer peripheral permanent magnets are arranged such that the magnetization direction is substantially in the radial direction and the different magnetic poles are alternately arranged along the circumferential direction;
A second rotor layer in which the outer peripheral side permanent magnet is arranged such that the magnetization direction faces the substantially circumferential direction and the adjacent ones in the circumferential direction face each other with the same magnetic poles,
The electric motor, wherein the first rotor layer and the second rotor layer are integrally provided in the axial direction .
前記外周側永久磁石は、前記内周側永久磁石に対する前記第1の回転子層側の吸引・反発と前記第2の回転子層側の吸引・反発が、前記内周側回転子と外周側回転子の任意の相対位相において逆になるように設定されていることを特徴とする請求項1に記載の電動機。   The outer peripheral side permanent magnet is configured such that attraction and repulsion on the first rotor layer side and attraction and repulsion on the second rotor layer side with respect to the inner peripheral side permanent magnet are The electric motor according to claim 1, wherein the electric motor is set to be reversed at an arbitrary relative phase of the rotor. 前記外周側回転子は、前記第1の回転子層と第2の回転子層のうちの一方が軸方向中央に配置され、他方側が軸方向両側に配置されていることを特徴とする請求項1または2のいずれか1項に記載の電動機。   The outer peripheral rotor is characterized in that one of the first rotor layer and the second rotor layer is disposed in the center in the axial direction and the other side is disposed on both sides in the axial direction. The electric motor according to any one of 1 and 2. 円周方向に沿うように複数の内周側永久磁石が配設された内周側回転子と、
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿うように複数の外周側永久磁石が配設された外周側回転子と、
前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、
を備えた電動機であって、
前記内周側永久磁石は、磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように配置され、
前記外周側回転子は、
磁化方向が略径方向を向き、かつ異磁極が円周方向に沿って交互に並ぶように前記外周側永久磁石が配置されるとともに、
磁化方向が略円周方向を向き、かつ円周方向で隣接するもの同士が同磁極同士で対向するように副外周側永久磁石が配置され、
前記外周側永久磁石は、前記同磁極で対向する副外周側永久磁石の間において前記同磁極が径方向外側に向くように配置されていることを特徴とする電動機。
An inner circumferential rotor in which a plurality of inner circumferential permanent magnets are arranged along the circumferential direction;
An outer peripheral rotor that is coaxially and relatively rotatably disposed on the outer peripheral side of the inner peripheral rotor, and in which a plurality of outer peripheral permanent magnets are disposed along the circumferential direction,
Phase changing means for changing the relative phase of the inner and outer rotors by relatively rotating the inner and outer rotors;
An electric motor with
The inner peripheral permanent magnet is arranged such that the magnetization direction is substantially in the radial direction and the different magnetic poles are alternately arranged along the circumferential direction,
The outer circumferential rotor is
The outer peripheral side permanent magnet is arranged so that the magnetization direction is substantially in the radial direction and the different magnetic poles are alternately arranged along the circumferential direction,
The secondary outer peripheral side permanent magnet is arranged so that the magnetization direction faces the substantially circumferential direction and the adjacent ones in the circumferential direction face each other with the same magnetic poles,
The electric motor according to claim 1, wherein the outer peripheral permanent magnet is disposed between the sub outer peripheral permanent magnets opposed by the same magnetic pole so that the same magnetic pole faces radially outward .
前記外周側永久磁石と副外周側永久磁石は、前記内周側永久磁石に対する外周側永久磁石側の吸引・反発と副外周側永久磁石側の吸引・反発が、前記内周側回転子と外周側回転子の任意の相対位相において逆になるように設定されていることを特徴とする請求項4に記載の電動機。   The outer peripheral side permanent magnet and the sub outer peripheral side permanent magnet are arranged so that the outer peripheral side permanent magnet side attracting and repelling and the sub outer peripheral side permanent magnet side attracting and repelling with respect to the inner peripheral side permanent magnet are The electric motor according to claim 4, wherein the electric motor is set to be reversed at an arbitrary relative phase of the side rotor.
JP2006239505A 2006-05-24 2006-09-04 Electric motor Expired - Fee Related JP4223526B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006239505A JP4223526B2 (en) 2006-09-04 2006-09-04 Electric motor
EP07010074A EP1860754A1 (en) 2006-05-24 2007-05-21 Electric motor
US11/802,307 US7548005B2 (en) 2006-05-24 2007-05-22 Electric motor having improved relative phase control
CN 200710104225 CN101079559B (en) 2006-05-24 2007-05-23 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239505A JP4223526B2 (en) 2006-09-04 2006-09-04 Electric motor

Publications (2)

Publication Number Publication Date
JP2008067424A JP2008067424A (en) 2008-03-21
JP4223526B2 true JP4223526B2 (en) 2009-02-12

Family

ID=39289631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239505A Expired - Fee Related JP4223526B2 (en) 2006-05-24 2006-09-04 Electric motor

Country Status (1)

Country Link
JP (1) JP4223526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961257B2 (en) * 2007-05-15 2012-06-27 本田技研工業株式会社 Electric motor
JP4961289B2 (en) * 2007-07-20 2012-06-27 本田技研工業株式会社 Electric motor

Also Published As

Publication number Publication date
JP2008067424A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
WO2007141948A1 (en) Motor and motor control device
US7548005B2 (en) Electric motor having improved relative phase control
JP4762866B2 (en) Axial gap type motor
JP5037083B2 (en) Electric motor
JP4223526B2 (en) Electric motor
JP4890056B2 (en) Electric motor
JP4584206B2 (en) Electric motor
JP4213171B2 (en) Electric motor
JP4932418B2 (en) Electric motor
JP4999535B2 (en) Rotor yoke and rotor yoke manufacturing method and electric motor
JP2008151214A (en) Vane type hydraulic equipment, motor, and valve timing control device for internal combustion engine
JP4545702B2 (en) Electric motor
JP2008067577A (en) Motor
JP2009254005A (en) Motor
JP5037076B2 (en) Electric motor
JP4499052B2 (en) Electric motor
JP5286588B2 (en) Electric motor
JP4494354B2 (en) Electric motor
JP4828393B2 (en) Electric motor
JP2009240013A (en) Electric motor
JP5225567B2 (en) Electric motor
JP4961289B2 (en) Electric motor
JP2009240012A (en) Electric motor
JP2009240057A (en) Electric motor
JP4503543B2 (en) Electric motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees