[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4222839B2 - Hydrocarbon reforming method - Google Patents

Hydrocarbon reforming method Download PDF

Info

Publication number
JP4222839B2
JP4222839B2 JP2003000403A JP2003000403A JP4222839B2 JP 4222839 B2 JP4222839 B2 JP 4222839B2 JP 2003000403 A JP2003000403 A JP 2003000403A JP 2003000403 A JP2003000403 A JP 2003000403A JP 4222839 B2 JP4222839 B2 JP 4222839B2
Authority
JP
Japan
Prior art keywords
reforming
hydrocarbon
catalyst
oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000403A
Other languages
Japanese (ja)
Other versions
JP2004209408A (en
Inventor
公仁 鈴木
健一郎 藤本
圭一 冨重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2003000403A priority Critical patent/JP4222839B2/en
Priority to AU2003292717A priority patent/AU2003292717A1/en
Priority to PCT/JP2003/017057 priority patent/WO2004060557A1/en
Publication of JP2004209408A publication Critical patent/JP2004209408A/en
Application granted granted Critical
Publication of JP4222839B2 publication Critical patent/JP4222839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素の高い反応速度での改質に有用な触媒及び炭化水素の改質方法に関するものである。
【0002】
【従来の技術】
従来、炭化水素の改質用触媒として最も多用されているニッケル/アルミナ系触媒(例えば、特公昭49-9312号公報等)は、アルミナ相が高温度域でα-アルミナ相に変化し、結晶成長も進行するため、比表面積が急激に低下し、これに応じて活性が低下する等の問題がある。
【0003】
また、これらの触媒は、ニッケルを多量に含み、触媒表面で炭素析出が起こりやすいので、それを防止するために、アルカリ成分としてカリウム化合物が添加されていることが多い。この場合には、使用中にカリウム化合物が反応装置、配管、その他に飛散して、腐食の発生等の問題がある。
【0004】
加えて上記触媒は、ニッケルの担持量は多いが、分散度が低く、活性金属が粗大析出しているため、高い反応速度で改質反応を進めることが困難であることや、被毒作用のある硫黄化合物を含有した炭化水素を改質する場合には、活性金属と硫黄との間で安定な化合物を生成して、硫黄被毒の影響を大きく受けるため、触媒活性が大幅に低下する等の問題がある。
【0005】
一方、アルミナに他の成分を添加して複合酸化物とした耐熱性担体を用いる方法も報告されている。例えば、アルミナにランタン、リチウムあるいはストロンチウムを含浸して調製したもの(米国特許第3966391号公報、同第4021185号公報、同第4061594号公報等)、また、アルミナに希土類塩からそれらの水酸化物を共沈させて調製したもの(特開昭63-175642号公報)、さらに、アルミナにマグネシアを添加して焼成したスピネル系のもの(特開昭55-139836号公報)等がある。
【0006】
これらは、いずれも多孔質の担体をまず調製し、含浸法(細孔内含浸法)により、その多孔体の細孔内にニッケル活性成分を担持させることを前提としたものであって、活性成分の微細分散に限界があるため、触媒活性の面で劣る。また、炭酸アルカリの高温蒸気による腐食性に対しても問題がある。
【0007】
ニッケル系以外の触媒として、アルミナ等にルテニウム、ロジウム、白金等の貴金属を担持した貴金属系触媒が知られている。この触媒は、貴金属成分の有する高い還元状態(金属状態)を保持し、且つ、炭素析出を抑制する性質を利用することにより、従来のニッケル系触媒と比較して、高い反応速度での改質が期待できること、及び、炭素の析出が少なく活性の維持も容易である、という特長を有する。しかしながら、この触媒は、ニッケル/アルミナ系触媒と同様、貴金属成分の分散度が低く、活性金属が粗大析出しているため、実際には、高い反応速度で改質反応を進めることが困難である。また、貴金属を多量に用いるため、高価になってしまい、経済的に不利という問題もある。
【0008】
こうした中、最近ニッケル/マグネシア系触媒が注目され、多くの報文及び特許が報告されている(特公昭46-43363号公報、特公昭55-50080号公報、特開昭63-137754号公報、特開昭63-248444号公報、触媒討論会講演予稿集, Vol.52, p.38 (1983)、Stud. Surf. Sci. Catal., Vol.119, p.861 (1998)、特開2000-469号公報、特開2002-173304号公報等)。このニッケル/マグネシア系触媒は、通常、ニッケル塩とマグネシウム塩の混合水溶液に沈殿剤を加えて、生成させた沈殿物を乾燥、焼成することにより調製される。この方法で得られる触媒は、MgOをマトリックスとし、一部のマグネシウムをニッケルで置換した固溶体複合酸化物を形成するものであり、その後の還元処理により、MgO中に含有された触媒活性金属種(ニッケル)が構造内部から表面に移動して凝集し、酸化物表面に金属クラスターとして、微細に分散した状態が形成される。従って、Niが高分散且つシンタリング耐性が高いため、高活性を示すと報告されている。しかしながら、本触媒の性能は、従来公知のニッケル/アルミナ系触媒と、ほぼ同等レベルにとどまっている。従って、さらに一層高い反応速度で炭化水素を改質することができる高性能な触媒を開発できれば、反応器の小型化やそれに伴った製造設備のコンパクト化が可能となり、合成ガスの製造コストを大幅に削減できることから、そのような高活性な触媒の開発が期待されている。
【0009】
また、ニッケル/マグネシア系触媒は、炭化水素の改質用触媒として最も多用されているニッケル/アルミナ系触媒と同様、硫黄化合物を含有した炭化水素の改質に対しては、硫黄被毒による大幅な活性低下が起こるという致命的な欠点がある。しかしながら、ここで用いる原料炭化水素として、代表的なものに、油田、ガス田、炭田から採取されるメタンを主成分とする天然ガスが想定されるが、それらには、精製前の段階で硫黄化合物(主として硫化水素)が相当高濃度(例えば、数千ppm程度)に含有されている。従って、これらの炭化水素源を原料とした場合には、硫黄被毒による活性低下の小さい改質用触媒を開発することができれば、高度な脱硫設備が不要となって、脱硫コストの削減が可能となるため、工業的にさらに安価な合成ガスを得ることができることから、硫黄被毒耐性の高い高性能な触媒の開発が望まれている。
【0010】
【特許文献1】
特公昭49-9312号公報
【特許文献2】
米国特許第3966391号公報
【特許文献3】
米国特許第4021185号公報
【特許文献4】
米国特許第4061594号公報
【特許文献5】
特開昭63-175642号公報
【特許文献6】
特開昭55-139836号公報
【非特許文献1】
触媒討論会講演予稿集, Vol.52, p.38 (1983)
【非特許文献2】
Stud. Surf. Sci. Catal., Vol.119, p.861 (1998)
【0011】
【発明が解決しようとする課題】
そこで、本発明は、上記従来触媒の問題点を解決し、炭化水素の高い反応速度での改質に好適で、且つ、硫化水素や硫化カルボニル等の硫黄化合物を含有した炭化水素の改質においても、硫黄被毒の影響を極力抑制して、高効率で行える改質方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
かかる実情において、本発明者らは、炭化水素及び硫黄化合物含有炭化水素の改質用触媒について鋭意検討した結果、Ni、Mgを含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に、白金族元素を担持することにより、従来のニッケル/アルミナ系触媒、貴金属系触媒やニッケル/マグネシア系触媒と比較して、高い活性を示し、且つ、反応時間に対する活性低下が小さいことを見出した。また、Ni、Mg及び金属元素M(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に、白金族元素を担持することによっても、従来公知の触媒と比較して、高活性を示し、且つ、反応時間に対する活性低下が小さいことを見出し、本発明を完成するに至った。すなわち、炭化水素の改質用触媒が、Ni、Mgを含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に、白金族元素を担持したものや、Ni、Mg及び金属元素M(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に、白金族元素を担持したもの、さらに、前記シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の含有量が1〜90質量%であること、加えて前記貴金属元素が白金、ルテニウム、パラジウム、ロジウムから選ばれる少なくとも1種類の元素であって、その担持量が金属換算で0.01〜10質量%であること、を特徴とするものである。
【0013】
さらに、本発明者らは、硫黄化合物含有炭化水素の改質方法についても鋭意検討した結果、上記触媒の少なくとも1種を用いることにより、従来のニッケル/アルミナ系触媒、貴金属系触媒やニッケル/マグネシア系触媒と比較して、硫黄被毒による活性低下が少なく、且つ、反応時間に対する活性低下が小さいことを見出し、本発明を完成するに至った。
【0014】
すなわち、本発明の炭化水素の改質方法は、硫化水素濃度20ppm以上の硫黄化合物含有炭化水素に対して、上記改質用触媒の少なくとも1種を用いる方法であり、該改質条件が、硫化水素濃度20ppm以上の硫黄化合物含有炭化水素中の炭素のモル数に対して外部供給される改質剤のモル比が0.5〜6、炭化水素に対して外部供給される改質剤と共に酸素を反応器に導入して炭化水素の燃焼反応熱を利用する内部熱供給型改質反応であり、酸素雰囲気下、反応温度500〜1300℃、反応圧力0.1〜20MPaの各条件とすることが好ましい。
【0015】
【発明の実施の形態】
本発明につき、以下に詳細に述べる。
【0016】
本発明の硫化水素濃度20ppm以上の硫黄化合物含有炭化水素と改質剤とから、当該炭化水素を改質する炭化水素の改質方法で使用する炭化水素の改質用触媒は、Ni、Mgを含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に白金族元素を担持したものである。ここで、Niは金属の状態で改質反応の主触媒として機能し、Mgは金属酸化物の状態で存在して塩基性を示すため、マグネシア上の二酸化炭素からの吸着酸素種がNi上で析出する炭素を一酸化炭素として脱離させることにより、炭素析出を抑制する機能を有すると思われる。また、シリカ、アルミナ、ゼオライトの各酸化物は、これまで触媒担体として触媒反応場として利用されたり、固体酸触媒として炭化水素のアルキル化反応等に用いられることが多いが、本系のような炭化水素の改質反応に対して、触媒機能を示すという報告は、これまで全くなされていなかった。しかしながら、本発明者らが鋭意検討した結果、シリカ、アルミナ、ゼオライトの各酸化物を添加することにより、さらに高い反応速度で改質反応が進行することを見出した。これは、シリカ、アルミナ、ゼオライトの各酸化物を複合酸化物に添加することにより、シリカ、アルミナ、ゼオライトの各酸化物がNi、Mgを含む結晶相を細かく分断して、酸化物固相中で高度に分散させること等により、各結晶相から表面に析出する活性種のNiが高度な分散状態になることで発現されたものと推察される。さらに、白金族元素は、金属の状態で改質反応の主触媒として機能するか、若しくは、隣接する活性金属種のNiの還元状態をより高めたり、反応進行中にNiが酸化されるのを防いで、金属状態を維持する機能を有すると思われる。
【0017】
また、本発明の硫化水素濃度20ppm以上の硫黄化合物含有炭化水素と改質剤とから、当該炭化水素を改質する炭化水素の改質方法で使用する炭化水素の改質用触媒は、Ni、Mg及び金属元素M(MはTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を少なくとも含む複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物である。ここで、Ni、Mg、白金族元素及びシリカ、アルミナ、ゼオライトの各酸化物の機能は、上述と同様である。一方、M又はその酸化物は、これまで担体として、あるいは、Mgと同様に、炭素析出を抑制する機能を有した助触媒として用いられることが多いが、主反応の反応速度を改善する助触媒作用を発揮するという知見は、これまで報告されていなかった。しかしながら、本発明者らが検討した結果、その添加により活性の向上が明確に認められ、M又はその酸化物は、触媒担体若しくは炭素析出を抑制する助触媒として機能しているのではなく、Niと同様に改質反応の主触媒として機能するか、若しくは、Niの触媒機能を促進する助触媒として機能しているものと推察される。
【0018】
さらに、上記複合酸化物中のシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の含有量が、1〜90質量%であることを特徴とする酸化物である。ここで、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の添加量が、全量に対して1質量%未満の場合には、添加効果がほとんど見られず、添加量が90質量%を超える場合には、主触媒のNi量が極端に少ないため、十分な触媒活性が得られない恐れがある。また、上記複合酸化物中のシリカの添加量は、好ましくは10〜80質量%、より好ましくは20〜70質量%である。
【0019】
加えて、上記酸化物に担持する白金族元素が、白金、ルテニウム、パラジウム、ロジウムから選ばれる少なくとも1種類の元素であって、その担持量が金属換算で0.01〜10質量%であることを特徴とするものである。ここで、白金族元素の担持量が、金属換算で0.01質量%未満の場合には、白金族元素の担持効果がほとんど現れずに触媒活性が十分でなく、また、担持量が10質量%を超える場合には、高価になってしまい、経済的に不利という問題もある。
【0020】
ここで、Ni、Mgを含む複合酸化物又はNi、Mg及び金属元素M(MはTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む酸化物の調製方法を以下に例示するが、特にこれらに制限されるものではない。
【0021】
(A) 含浸担持法
ニッケル化合物を水又は有機溶媒に溶解させた溶液を、マグネシア(及び必要に応じてMの酸化物)粉末上に滴下する等、マグネシア(及びMの酸化物)粒子表面に、ニッケル化合物をインシピエントウエットネス法、蒸発乾固法等の通常の含浸法によって担持させ、触媒を調製する。
【0022】
このようにして調製した前駆体を50〜150℃において乾燥し、水又は有機溶媒を除去する。その際、有機溶媒を用いる場合には、経済性の面から有機溶媒を回収し、再使用することが望ましい。
【0023】
次いで、得られたニッケル化合物担持マグネシア(-Mの酸化物)粉末を空気中900℃程度の焼成を行う。この温度は、ニッケル化合物の熱分解温度及びその速度、また、安全性の面等を考慮して決める。
【0024】
このようにして調製した酸化ニッケル担持マグネシア(及びMの酸化物)粉末はそのまま用いても良いが、通常の乾式成形機を用いて成形してもよい。この際の成形機としては、成形機であればいずれでも良く、例えば、打錠機、ブリケッティングマシン等の圧縮成形機等が好適に用いられる。また、その場合の成形体の形状は、球状、シリンダー状、リング状、小粒状等いずれでもよい。
【0025】
さらに、粒度の揃った粉体が必要な場合には、得られたタブレットを粉砕し、篩い分けして整粒する。ここでも、粉砕機は、特に制約するものではなく、例えば、乾式粉砕機が好適に用いられる。
【0026】
(B) 共沈-物理混合法
ニッケル化合物、マグネシウム化合物を所定の比に混合して、混合水溶液を作成し、その中へ沈殿剤としてカリウム化合物等を滴下し、pHを上げて、水酸化物の形で沈殿物を形成させた後、加温しながら沈殿溶液を攪拌し、熟成する。その沈殿溶液を吸引ろ過した後、熱水で過剰の沈殿剤の金属成分を洗浄し、50〜150℃において十分乾燥し、水分を除去する。
【0027】
次いで、得られた沈殿物を空気中1000℃程度の温度で固溶体化処理を行う。
【0028】
このようにして調製したニッケル/マグネシア固溶体酸化物に、必要に応じてMの酸化物粉末を所定の比となるように添加し、全体が均一になるよう、例えば、乳鉢等を用いて、十分混合する。また、これら混合物を空気中1000℃程度で焼成して、ニッケル/マグネシア固溶体酸化物へMの酸化物を固溶させても良い。
【0029】
この混合物をペレットとして用いる場合には、(A)に記載の方法等で成形する。また、最終的に粒度の揃った粉末が必要な場合は、さらに(A)と同様に粉砕し、整粒する。
【0030】
(C) 共沈法
ニッケル化合物、マグネシウム化合物、Mの化合物を所定の比に混合して、混合水溶液を作成する他は、(B)と同様にして、ニッケル、マグネシウム(さらに必要に応じてM)を含んだ水酸化物の沈殿物を調製し、乾燥、焼成を行って、複合酸化物を調製する。
【0031】
また、これら複合酸化物に、シリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を複合させる場合には、例えば、上記(A)の含浸担持法において、マグネシア(及びMの酸化物)粉末へこれら酸化物を混合したものに、ニッケル化合物を含浸担持する、又は、(B)の共沈‐物理混合法において、共沈法で得られたニッケル/マグネシア固溶体酸化物(及びMの酸化物)粉末と共に、これら酸化物粉末を混合する、あるいは、(C)の共沈法において得られた複合酸化物に、これら酸化物のスラリーを添加、混合した後に乾燥する等、の各種調製方法によって得ることができるが、特にこれらに制限されるものではない。
【0032】
この複合酸化物をペレットとして用いる場合には、(A)に記載の方法等で成形する。また、最終的に粒度の揃った粉末が必要な場合は、さらに(A)と同様に粉砕し、整粒する。
【0033】
このようにして調製したNi、Mgを含む酸化物、若しくは、Ni、Mg及び金属元素M(MはTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む酸化物に、白金族元素を担持する方法としては、例えば、白金族元素の化合物を用いたインシピエントウエットネス法、蒸発乾固法等の通常の含浸法やCVD法等を好適に用いることができるが、特にこれらに制限されるものではない。また、ここでの白金族元素の化合物には、その酸及び塩、塩化物、有機金属等の水や有機溶媒に十分に溶解するものであれば、いずれの形態のものも好適に使用することができ、例えば、白金化合物としては、塩化白金酸、塩化白金、白金アセチルアセトナート等が挙げられる。
【0034】
また、本発明の硫化水素濃度20ppm以上の硫黄化合物含有炭化水素の改質方法は、上述した複合酸化物の少なくとも1種を触媒として用い、炭化水素中の炭素のモル数に対して、外部供給される改質剤のモル比が0.5〜6、酸素共存の雰囲気下、反応温度500〜1300℃、反応圧力0.1〜20MPaの少なくとも1つの条件で改質反応を行うことが好ましい。
【0035】
ここで、炭化水素の改質に対して、白金族元素担持複合酸化物が高い反応速度で改質反応を進めることができる理由は、白金族元素の高い還元性により改質反応の主触媒として機能するか、又は、主触媒成分であるNiの還元度を高める(より金属状態に近づける)、若しくは、Niの反応進行に伴うカチオンへの酸化を防ぎ、金属状態を維持する等、活性種であるNiの触媒機能を促進する助触媒効果が発揮されるためと推察する。また、ニッケル/マグネシア系酸化物にシリカ、アルミナ、ゼオライトの酸化物が共存することにより、白金族元素で触媒機能が促進される活性金属のNiが、より高分散な状態で存在するためと推察する。
【0036】
また、硫黄化合物含有炭化水素の改質に対し、白金族元素担持複合酸化物が高い活性を示す理由は、複合酸化物表面に存在する活性金属であるNiが金属の状態で高分散することにより、安定且つ不活性なニッケル硫化物の形成が困難になるため、若しくは、Mの硫黄に対する反応性がNiよりも高く、ニッケル硫化物の形成を抑制する効果が発揮されるためと推察する。
【0037】
さらに、炭化水素中の炭素のモル数に対する外部供給される改質剤(水蒸気や二酸化炭素等)のモル比については、炭化水素若しくは硫黄化合物含有炭化水素が、適度な濃度の改質剤と高効率に改質反応を進められることが好ましく、この比が0.5未満であると、炭化水素に対する改質剤の量が不足して、改質活性が高くならなかったり、炭素析出が増大する恐れがあり、6を超える場合には、過剰に加えられた改質剤により、触媒自体が酸化されて活性が劣化したり、エネルギー効率が低下してしまう恐れが高くなる。
【0038】
また、炭化水素の改質反応は大きな吸熱反応であるため、通常は反応器の外壁をバーナーで加熱することで反応熱を供給しているが、伝熱効率が悪く反応速度が熱供給律速になってしまう恐れがあり、高い反応速度条件下で反応を進めることができない恐れが高くなる。そこで、上記改質剤と同時に酸素を系内に導入し、炭化水素の燃焼反応を反応器内で進行させて、その反応熱を改質反応に利用する内部熱供給型改質反応を進めることにより、熱供給律速を解消して、本発明の高速改質触媒の機能を有効に発揮できるようになることから、上記改質剤と共に酸素を導入することが好適である。ここで、上記改質剤と共に反応器に導入する酸素の量に関しては、炭化水素中の炭素のモル数に対して酸素のモル比が、0.01〜1.5であることが好ましく、この比が0.01未満であると、燃焼反応の起こる割合が不足して反応熱が不十分なため、熱供給が律速になって、高い反応速度が得られない恐れがあり、1.5を超える場合には、過剰に加えられた酸素により、改質されるべき炭化水素の多くが燃焼されて、改質反応の起こる割合が小さくなり、合成ガスや炭化水素を十分に得られない恐れが高くなる。また、上記改質剤と共に用いる酸素のモル比は、より好ましくは0.05〜1.0である。
【0039】
反応温度については、炭化水素若しくは硫黄化合物含有炭化水素が高効率で改質されて、高い生産性で合成ガスを製造するのが好ましく、500℃より低温で反応を進行させた場合、炭化水素の改質反応が吸熱反応であるため平衡転化率が下がること、及び反応速度が下がること等の理由から、触媒活性が大きく低下することがある。また、1300℃を超える温度で反応させた場合には、触媒のシンタリングが起こる恐れがあることや、反応器を構成する材料への負担が大きく、反応器を長期にわたり安定に運転することが困難になること、反応器に用いる材料が非常に高価になるという問題が生ずることがある。
【0040】
反応圧力については、炭化水素又は硫黄化合物含有炭化水素の改質反応が、高い生産性且つコンパクトな装置で、改質可能な加圧下で行なうのが好ましいが、20MPaを超える圧力下では、平衡転化率が下がり、反応効率を高められないという問題や、炭素析出が起こりやすくなる恐れがあり、また、装置のコンパクト化は図れるものの、その圧力に備えた高圧用設備、反応器用材料が必要となり、設備費が高価になるという問題が生ずることがある。一方、0.1MPa未満の圧力下では、平衡的には有利な方向ではあるものの、生産性が高くならないという問題や、高圧反応へ供給する場合には、合成ガスをそのまま供給できないという問題がある。また、本改質反応で得られる合成ガスをメタノール合成やフィッシャー-トロプシュ合成等に利用する場合には、各々の反応圧力と等しい圧力で改質するのが好ましい。
【0041】
本発明における硫化水素濃度20ppm以上の硫黄化合物含有炭化水素の改質方法で用いる改質用触媒を構成する各元素に関しては、いろいろな機能を有すると思われるが、現在のところ主な機能として以下のように考察する。すなわち、白金族元素担持複合酸化物中の主触媒成分であるNiは、複合酸化物中に金属状態で高分散しているため、高い反応速度条件下でも高効率に改質反応を進めることが可能であり、且つ、硫黄化合物が含まれる雰囲気下であっても、高い活性を発現する。また、Mgは、酸化物の状態で存在して高塩基性を示し、炭素析出速度を大幅に抑制して、触媒活性の長寿命化に大きな役割を果たす。また、Mは、一般的な触媒の担体や炭素析出を抑制する助触媒としての機能ではなく、改質反応の主触媒か、又は、Niの触媒機能を促進する助触媒としての機能を発揮するものと考えられる。また、Ni−Mg複合酸化物及びNi−Mg−M複合酸化物の一方又は両方に、シリカ、アルミナ、ジルコニアの各酸化物を添加した複合酸化物中のシリカ、アルミナ、ジルコニアの各酸化物は、複合酸化物固相内でNi含有酸化物相が高度に分散した状態を形成し、各Ni含有酸化物相から固相析出するNiをより高分散させることが可能になる機能を発揮するものと考えられる。さらに、白金族元素は、改質反応の主触媒か、又は、Niの還元状態をさらに高め、且つ、反応進行過程でもその高い状態を維持する等の触媒機能を促進する助触媒としての機能を発揮するものと考えられる。
【0042】
【実施例】
(実施例1)
酢酸ニッケルと硝酸マグネシウムを、ニッケルとマグネシウムのモル比が1:9になるように精秤して、60℃の加温下で混合水溶液を調製したものに、60℃に加温した炭酸カリウム水溶液を加え、スターラーで十分に攪拌した。その後、60℃で保持したまま、1時間攪拌を続けて、熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄を行った。洗浄後に得られた沈殿物を120℃で12時間乾燥後、空気中950℃にて20時間焼成を行い、ニッケル/マグネシア固溶体酸化物を得た。
【0043】
この固溶体酸化物粉末に、高純度シリカ粉末を同じ質量精秤して添加、十分に混合し、圧縮成形器を用いてこの混合物を600kg/cm2でプレスした後、十分に粉砕して100〜300メッシュ(63μm〜150μm)に整粒することにより、Ni-Mg-Si複合酸化物を調製した。このようにして得られた酸化物粉末に対して、金属換算で0.1質量%となるよう調整した塩化白金酸水溶液を含浸し、120℃で12時間乾燥させた後、500℃で3時間焼成することにより、0.1質量%Pt担持Ni-Mg-Si複合酸化物を調製した。
【0044】
この触媒粉末約1gを、予め管内部の中央位置に石英皿を取りつけた石英製反応管へ充填し、反応管を流動床型反応器の所定の位置にセットした。
【0045】
改質反応を始める前に、まず反応器をアルゴンガス雰囲気下で900℃まで昇温した後、水素ガスを50ml/min流しながら、900℃で30分間還元処理を行った。メタンガス、水素ガス、アルゴンガスを、メタン50モル%、水素30モル%、二酸化炭素5モル%、アルゴン15モル%になるように調整後、表1に示すような種々の濃度の硫化水素を含有するように添加し、さらにメタンと改質剤(水蒸気+二酸化炭素)のモル比が以下に示す割合になるようにウオーターポンプを調節して、反応管内に供給した。ここで、反応条件は以下のとおりである。
【0046】
水蒸気改質の反応温度 : 500〜1300℃
水蒸気改質の反応圧力 : 0.1〜20MPa
硫化水素濃度 : 0〜2000ppm
改質剤(水蒸気+二酸化炭素)/メタン比 : 0.5〜6
水蒸気改質反応のW/F(触媒重量/ガス流量) : 0.5〜5gh/mol
反応生成ガスの成分に関しては、流動床型反応器の出口から排出された生成ガスを、一旦氷温トラップを経由させた後、ガスクロマトグラフィー(ヒューレットパッカード製HP6890)に注入して、分析を行った。ガスクロマトグラフィーで用いたカラムには、UnibeadsC60/80(GLサイエンス製)を、検出器にはTCDを用いた。改質反応の反応度合は、メタン転化率で判断し、そのメタン転化率は、出口ガス中の各成分の濃度より、以下の式により算出した。
【0047】
【数1】

Figure 0004222839
【0048】
各種条件での改質反応後のメタン転化率は、以下の表1のようになった。
【0049】
【表1】
Figure 0004222839
【0050】
表1のNo.1、2の結果、本測定条件下では、W/Fの変化に対して活性がほとんど変化せず、高い反応速度で改質反応が行われることが判明した。また、No.4、5の結果は、改質剤/メタン比を大きく変化させても、本測定条件下では、改質反応率がほぼ一定で、改質剤の量によらず高い反応率で反応が進むことを示唆している。さらに、No.6、7の結果は、H2Sを一定濃度随伴した雰囲気下で反応温度を大きく変化させた場合、温度により反応率は変化したものの、500℃の低温でも比較的高い反応率で改質が進むことを表している。また、No.8の結果より、H2Sを高濃度(2000ppm程度)に随伴した雰囲気下でも、ある程度高い活性を維持したまま、改質反応が進んでいることがわかる。
【0051】
(実施例2)
実施例1と同様にして、ニッケル/マグネシア固溶体酸化物を調製した後、シリカゾル(触媒化成工業製)を、触媒中のSiO2が20質量%(以下、触媒”A”)、50質量%(以下、触媒”B”)、70質量%(以下、触媒”C”)の割合になるように添加し、スラリーを調製した。その後、平均粒径が約50μmになるような条件で噴霧乾燥を行い、そこで得られた粉末を空気中950℃で20時間焼成を行った。さらに、得られた固溶体酸化物を粉砕して、100〜300メッシュ(63μm〜150μm)に整粒した。このようにして得られた複合酸化物への白金担持は、実施例1と全く同様に行った。この白金担持複合酸化物粉末を用いた改質反応についても、実施例1と全く同様に行った。各反応条件でのメタン転化率を表2に示す。
【0052】
【表2】
Figure 0004222839
【0053】
表2より、白金担持Ni-Mg-Siの複合酸化物は、シリカの添加量により多少メタン転化率が変化するが、上記のいずれの触媒でも、その転化率の値は非常に高い。また、シリカの炭化水素及び硫黄化合物含有炭化水素の改質反応に対する触媒活性の向上効果が明確に認められる。したがって、本白金担持複合酸化物触媒は、炭化水素の改質用触媒として非常に有望である。
【0054】
参考例1
実施例1と同様にして、Ni−Mg−Si複合酸化物を調製した後、0.01質量%、0.3質量%、2質量%、5質量%、10質量%となるよう調製した塩化白金酸水溶液を含浸して、以下実施例1と同様にして、各々0.01質量%Pt担持Ni−Mg−Si複合酸化物(以下、触媒”D”)、0.3質量%Pt担持Ni−Mg−Si複合酸化物(以下、触媒”E”)、2質量%Pt担持Ni−Mg−Si複合酸化物(以下、触媒”F”)、5質量%Pt担持Ni−Mg−Si複合酸化物(以下、触媒”G”)、10質量%Pt担持Ni−Mg−Si複合酸化物(以下、触媒”H”)を調製した。これらの白金担持複合酸化物粉末を用いた改質反応についても、実施例1と全く同様に行った。各反応条件でのメタン転化率を表3に示す。
【0055】
【表3】
Figure 0004222839
【0056】
表3より、白金担持Ni-Mg-Siの複合酸化物は、白金の担持量により多少メタン転化率が変化し、特に担持量が数%未満の場合には、担持量と共にメタン転化率が増加し、活性の改善が見られるが、担持量が数%オーダーになると転化率は担持量に依らずほぼ一定となった。その結果、上記のいずれの触媒も触媒活性が高く、本白金担持複合酸化物触媒は、炭化水素の改質用触媒として非常に有望である。
【0057】
参考例2
塩化白金酸水溶液の代わりに、塩化ルテニウム水溶液、塩化パラジウム水溶液、塩化ロジウム水溶液を用いた以外は実施例1と同様にして、各々0.1質量%Ru担持Ni−Mg−Si複合酸化物(以下、触媒”I”)、0.1質量%Pd担持Ni−Mg−Si複合酸化物(以下、触媒”J”)、0.1質量%Rh担持Ni−Mg−Si複合酸化物(以下、触媒”K”)を調製した。これらの白金族担持複合酸化物粉末を用いた改質反応についても、実施例1と全く同様に行った。各反応条件でのメタン転化率を表4に示す。
【0058】
【表4】
Figure 0004222839
【0059】
表4より、各白金族元素担持Ni-Mg-Siの複合酸化物は、いずれの場合も同程度の高いメタン転化率を示したことから、白金族の元素の種類に依らず高い触媒活性を有することが判明し、白金族担持複合酸化物触媒は白金族元素として白金、ルテニウム、パラジウム、ロジウムのいずれの元素を用いた場合でも、炭化水素の改質用触媒として非常に有望である。
【0060】
参考例3
塩化チタンと酢酸ニッケル、硝酸マグネシウムを、チタンとニッケルとマグネシウムのモル比が1:1:8になるように精秤して用いる他は、実施例1と同様にして、Ti−Ni−Mg−Si複合酸化物(以下、触媒”L”)を調製した。以下、同様にして、塩化酸化ジルコニウムを用いてZr−Ni−Mg−Si複合酸化物を、酸化ハフニウムを用いてHf−Ni−Mg−Si複合酸化物を、塩化バナジウムを用いてV−Ni−Mg−Si複合酸化物を、塩化ニオブを用いてNb−Ni−Mg−Si複合酸化物を、塩化タンタルを用いてTa−Ni−Mg−Si複合酸化物を、硝酸クロムを用いてCr−Ni−Mg−Si複合酸化物を調製した。これらの複合酸化物に対して、実施例1と同様にして、0.1質量%白金担持複合酸化物粉末調製した。ここで、各触媒をそれぞれ”M”、”N”、”O”、”P”、”Q”、”R”とする。これらの各種触媒を用いた改質反応についても、実施例1と全く同様に行った。各反応条件でのメタン転化率を表5に示す。
【0061】
【表5】
Figure 0004222839
【0062】
表5より、各白金担持M-Ni-Mg-Siの複合酸化物は、いずれも触媒活性が高いことがわかる。また、表1と比較すると、Mの導入により、活性の改善が明確に認められる。本結果より、白金担持複合酸化物触媒は、炭化水素の改質用触媒として非常に有望である。
【0063】
参考例4
モリブデン酸アンモニウムと酢酸ニッケル、硝酸マグネシウムを、モリブデンとニッケルとマグネシウムのモル比が1:1:8になるように、精秤して用いる他は、実施例1と同様にして、Mo−Ni−Mg−Si複合酸化物を調製した。以下、同様にして、モリブデン酸アンモニウムの代わりに、タングステン酸アンモニウムを用いてW−Ni−Mg−Si複合酸化物を、酢酸マンガンを用いてMn−Ni−Mg−Si複合酸化物を、硝酸銅を用いてCu−Ni−Mg−Si複合酸化物を、硝酸亜鉛を用いてZn−Ni−Mg−Si複合酸化物を、硝酸カドミウムを用いてCd−Ni−Mg−Si複合酸化物を、硝酸アルミニウムを用いてAl−Ni−Mg−Si複合酸化物を、酢酸ケイ素を用いてSi−Ni−Mg複合酸化物をそれぞれ調製した。これらの複合酸化物に対して、実施例1と同様にして、0.1質量%白金担持複合酸化物粉末調製した。ここで、各触媒をそれぞれ”S”、”T”、”U”、”V”、”W”、”X”、”Y”、”Z”とする。これらの各種触媒を用いた改質反応についても、実施例1と全く同様に行った。各反応条件でのメタン転化率を表6に示す。
【0064】
【表6】
Figure 0004222839
【0065】
表6より、各白金担持M-Ni-Mg-Siの複合酸化物は、いずれも触媒活性が高いことがわかる。また、表1と比較すると、Mの導入により、活性の改善が明確に認められる。本結果より、白金担持複合酸化物触媒は、炭化水素の改質用触媒として非常に有望である。
【0066】
参考例5
参考例3で得られたジルコニウム/ニッケル/マグネシウム複合酸化物(触媒”M”)に対して、シリカ粉末を1質量%となるように秤量して添加し、乳鉢で十分混合して、シリカ含有Zr−Ni−Mg複合酸化物を得た。この複合酸化物に、実施例1と同様にして、0.1質量%白金担持複合酸化物粉末調製した。この白金担持複合酸化物粉末を触媒”AA”とする。同様に、シリカ40質量%混合物、シリカ90質量%混合物、Y型ゼオライト10質量%混合物、γ−アルミナ45質量%混合物、シリカ40質量%及びγ−アルミナ10質量%をそれぞれ混合し、0.1質量%白金担持により調製した各酸化物粉末を、各々触媒”AB”、”AC”、”AD”、”AE”、”AF”とする。
【0067】
このようにして得られた複合酸化物粉末を用いた改質反応は、実施例1と全く同様に行った。各反応条件でのメタン添加率を表7に示す。
【0068】
【表7】
Figure 0004222839
【0069】
表7より、Zr-Ni-Mg系酸化物へのシリカ、アルミナ、ゼオライト混合複合酸化物に対する0.1質量%Pt担持品は、シリカ、アルミナ、ゼオライトの添加量により多少メタン転化率が変化するが、上記のいずれの触媒でも、添加しない系と比べて、その転化率の値は向上し、シリカ、アルミナ、ゼオライトの添加効果が明確に認められる。
【0070】
(比較例1)
実施例1と同様にして、ニッケル/マグネシア系固溶体酸化物を調製した後、乳鉢で十分に粉砕して、100〜300メッシュ(63μm〜150μm)に整粒した。この酸化物粉末を用いて、実施例1と全く同様に改質反応を行った。各反応条件でのメタン転化率を表8に示す。
【0071】
【表8】
Figure 0004222839
【0072】
表8より、ニッケル/マグネシア系固溶体触媒は、いずれの条件下でもメタン転化率が低く、触媒活性が十分ではないことがわかる。
【0073】
(比較例2)
実施例1と同様にして、ニッケル/マグネシア系固溶体酸化物を調製した後、乳鉢で十分に粉砕して、100〜300メッシュ(63μm〜150μm)に整粒した。この酸化物粉末に対して、0.1質量%となるよう調整した塩化白金酸水溶液を用い、実施例1と同様にして、0.1質量%Pt担持Ni-Mg複合酸化物を調製した。この酸化物粉末を用いて、実施例1と全く同様に改質反応を行った。各反応条件でのメタン転化率を表9に示す。
【0074】
【表9】
Figure 0004222839
【0075】
表9より、白金担持ニッケル/マグネシア系触媒は、表8の白金を担持しないニッケル/マグネシア系触媒と比べれば、多少活性が向上するものの、各条件下での転化率はいずれも低く、原料ガス中に硫化水素が共存するか否かにかかわらず、十分な触媒性能とはいえないことがわかる。
【0076】
【発明の効果】
本発明は、炭化水素の高い反応速度での改質に有用な触媒を用いた硫化水素濃度20ppm以上の硫黄化合物を含んだ炭化水素の改質方法を提供するものであり、本発明により、以下の効果が顕著に認められる。
i)炭化水素の改質に対して、高い反応速度での改質が可能であり、改質ガスの生産性が高い。
ii)硫黄化合物を高濃度に含有する硫黄被毒の過酷な条件下であっても、高い改質活性を発現する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst useful for reforming hydrocarbons at a high reaction rate and a method for reforming hydrocarbons.
[0002]
[Prior art]
Conventionally, nickel / alumina-based catalysts (for example, Japanese Examined Patent Publication No. 49-9312), which are most frequently used as hydrocarbon reforming catalysts, have an alumina phase that changes to an α-alumina phase at a high temperature range. Since the growth also proceeds, there is a problem that the specific surface area rapidly decreases and the activity decreases accordingly.
[0003]
In addition, these catalysts contain a large amount of nickel, and carbon deposition is likely to occur on the catalyst surface. Therefore, in order to prevent this, a potassium compound is often added as an alkali component. In this case, during use, the potassium compound scatters to the reactor, piping, etc., and there is a problem such as the occurrence of corrosion.
[0004]
In addition, the catalyst has a large amount of nickel supported, but the degree of dispersion is low, and the active metal is coarsely precipitated. Therefore, it is difficult to proceed the reforming reaction at a high reaction rate, and the poisoning action When reforming hydrocarbons containing a certain sulfur compound, a stable compound is generated between the active metal and sulfur, which is greatly affected by sulfur poisoning. There is a problem.
[0005]
On the other hand, a method of using a heat-resistant support made of a composite oxide by adding other components to alumina has also been reported. For example, those prepared by impregnating lanthanum, lithium or strontium into alumina (US Pat. Nos. 3,966,391, 4021185, 4061594, etc.), and alumina from rare earth salts thereof and their hydroxides And a spinel type prepared by adding magnesia to alumina and calcining (Japanese Patent Laid-Open No. 55-139836).
[0006]
These are based on the premise that a porous carrier is first prepared, and a nickel active component is supported in the pores of the porous body by an impregnation method (intrapore impregnation method). Since the fine dispersion of the components is limited, the catalytic activity is inferior. There is also a problem with the corrosiveness of alkali carbonate due to high temperature steam.
[0007]
As a catalyst other than a nickel catalyst, a noble metal catalyst in which a noble metal such as ruthenium, rhodium or platinum is supported on alumina or the like is known. This catalyst retains the high reduced state (metal state) of the noble metal component and utilizes the property of suppressing carbon deposition, thereby reforming at a higher reaction rate than conventional nickel-based catalysts. It can be expected, and it has the characteristics that carbon deposition is small and the activity can be easily maintained. However, this catalyst, like the nickel / alumina catalyst, has a low degree of dispersion of the noble metal component and the active metal is coarsely precipitated, so that it is actually difficult to advance the reforming reaction at a high reaction rate. . Further, since a large amount of noble metal is used, it becomes expensive and disadvantageously economical.
[0008]
Under these circumstances, nickel / magnesia catalysts have recently attracted attention, and many reports and patents have been reported (Japanese Patent Publication No. 46-43363, Japanese Patent Publication No. 55-50080, Japanese Patent Publication No. 63-137754, Japanese Unexamined Patent Publication No. 63-248444, Proceedings of Catalysis Conference, Vol.52, p.38 (1983), Stud. Surf. Sci. Catal., Vol.119, p.861 (1998), JP2000 -469, JP-A-2002-173304, etc.). This nickel / magnesia catalyst is usually prepared by adding a precipitant to a mixed aqueous solution of nickel salt and magnesium salt, and drying and calcining the generated precipitate. The catalyst obtained by this method forms a solid solution composite oxide in which MgO is used as a matrix and a part of magnesium is substituted with nickel, and the catalytically active metal species contained in MgO (subsequent reduction treatment) ( Nickel) moves from the inside of the structure to the surface and agglomerates to form a finely dispersed state as metal clusters on the oxide surface. Therefore, it is reported that Ni exhibits high activity because of high dispersion and high sintering resistance. However, the performance of the present catalyst is almost the same as that of a conventionally known nickel / alumina catalyst. Therefore, if a high-performance catalyst capable of reforming hydrocarbons at an even higher reaction rate can be developed, it will be possible to reduce the size of the reactor and the production equipment associated therewith, greatly increasing the production cost of synthesis gas. Therefore, development of such a highly active catalyst is expected.
[0009]
Nickel / magnesia-based catalysts, like nickel / alumina-based catalysts, which are most frequently used as hydrocarbon reforming catalysts, are greatly affected by sulfur poisoning when reforming hydrocarbons containing sulfur compounds. There is a fatal disadvantage that a significant decrease in activity occurs. However, as a typical raw material hydrocarbon used here, natural gas mainly composed of methane collected from oil fields, gas fields, and coal fields is assumed. A compound (mainly hydrogen sulfide) is contained in a considerably high concentration (for example, about several thousand ppm). Therefore, when these hydrocarbon sources are used as raw materials, advanced desulfurization equipment is not required and the desulfurization cost can be reduced if a reforming catalyst with a small decrease in activity due to sulfur poisoning can be developed. Therefore, industrially cheaper synthesis gas can be obtained, and therefore development of a high-performance catalyst having high resistance to sulfur poisoning is desired.
[0010]
[Patent Document 1]
Japanese Patent Publication No.49-9312
[Patent Document 2]
U.S. Pat.No. 3,966,391
[Patent Document 3]
US Patent No. 4021185
[Patent Document 4]
U.S. Pat.No. 4061594
[Patent Document 5]
JP 63-175642 A
[Patent Document 6]
JP 55-139836 A
[Non-Patent Document 1]
Proceedings of the Catalysis Conference, Vol.52, p.38 (1983)
[Non-Patent Document 2]
Stud. Surf. Sci. Catal., Vol.119, p.861 (1998)
[0011]
[Problems to be solved by the invention]
Therefore, the present invention solves the problems of the above conventional catalyst, is suitable for reforming hydrocarbons at a high reaction rate, and in reforming hydrocarbons containing sulfur compounds such as hydrogen sulfide and carbonyl sulfide. Can be performed with high efficiency by minimizing the effects of sulfur poisoning. Break The purpose is to provide quality methods.
[0012]
[Means for Solving the Problems]
In such a situation, the present inventors have conducted extensive studies on hydrocarbon and sulfur compound-containing hydrocarbon reforming catalysts, and as a result, have obtained at least one oxidation selected from silica, alumina, and zeolite into oxides containing Ni and Mg. By supporting a platinum group element in a composite oxide with added substances, it shows higher activity than the conventional nickel / alumina catalyst, noble metal catalyst and nickel / magnesia catalyst, and it is suitable for the reaction time. It was found that the decrease in activity was small. In addition, it contains Ni, Mg, and metal element M (at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si). By supporting a platinum group element on a composite oxide obtained by adding at least one oxide selected from silica, alumina, and zeolite to an oxide, it exhibits high activity as compared with a conventionally known catalyst, and The present inventors have found that the decrease in activity with respect to the reaction time is small and have completed the present invention. That is, a hydrocarbon reforming catalyst is a composite oxide in which at least one oxide selected from silica, alumina, and zeolite is added to an oxide containing Ni and Mg, and a platinum group element supported thereon, An oxide containing Ni, Mg, and metal element M (at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si) A composite oxide obtained by adding at least one oxide selected from silica, alumina and zeolite to a platinum group element, and further containing at least one oxide selected from silica, alumina and zeolite The amount is 1 to 90% by mass, and in addition, the noble metal element is at least one element selected from platinum, ruthenium, palladium and rhodium, and the supported amount is 0.01 to 10% by mass in terms of metal It is characterized by this.
[0013]
Furthermore, as a result of intensive investigations on the reforming method of sulfur compound-containing hydrocarbons, the present inventors have used conventional nickel / alumina catalysts, noble metal catalysts, nickel / magnesia by using at least one of the above catalysts. The present inventors have found that the decrease in activity due to sulfur poisoning is small and the decrease in activity relative to the reaction time is small compared to the system catalyst, and the present invention has been completed.
[0014]
That is, the hydrocarbon reforming method of the present invention comprises: Hydrogen sulfide concentration of 20ppm or more It is a method using at least one of the above reforming catalysts for a sulfur compound-containing hydrocarbon, and the reforming conditions are: Hydrogen sulfide concentration of 20ppm or more The molar ratio of the externally supplied modifier to the number of moles of carbon in the sulfur compound-containing hydrocarbon is 0.5 to 6, and oxygen is introduced into the reactor together with the externally supplied modifier to the hydrocarbon. It is an internal heat supply type reforming reaction that utilizes the combustion reaction heat of hydrocarbons, and it is preferable that the reaction temperature is 500 to 1300 ° C. and the reaction pressure is 0.1 to 20 MPa in an oxygen atmosphere.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0016]
Of the present invention Used in a hydrocarbon reforming method for reforming a hydrocarbon from a sulfur compound-containing hydrocarbon having a hydrogen sulfide concentration of 20 ppm or more and a modifier. The hydrocarbon reforming catalyst is obtained by supporting a platinum group element on a composite oxide obtained by adding at least one oxide selected from silica, alumina, and zeolite to an oxide containing Ni and Mg. Here, Ni functions as a main catalyst for the reforming reaction in a metal state, and Mg exists in a metal oxide state and exhibits basicity. Therefore, the adsorbed oxygen species from carbon dioxide on magnesia is on Ni. It seems to have a function of suppressing carbon deposition by desorbing the precipitated carbon as carbon monoxide. In addition, silica, alumina, and zeolite oxides have been used as catalyst carriers in the past as catalyst carriers or as solid acid catalysts in hydrocarbon alkylation reactions, etc. There have been no reports of catalytic functions for hydrocarbon reforming reactions. However, as a result of intensive studies by the present inventors, it was found that the reforming reaction proceeds at a higher reaction rate by adding each oxide of silica, alumina, and zeolite. This is because silica, alumina, and zeolite oxides are added to the composite oxide, so that each of the silica, alumina, and zeolite oxides finely divides the crystal phase containing Ni and Mg, It is inferred that the active species Ni precipitated on the surface from each crystal phase is expressed by a highly dispersed state due to a highly dispersed state. Furthermore, the platinum group element functions as a main catalyst for the reforming reaction in the metal state, or further enhances the reduction state of Ni of the adjacent active metal species, or Ni is oxidized during the progress of the reaction. It seems to have a function to prevent and maintain a metallic state.
[0017]
In addition, the present invention Used in a hydrocarbon reforming method for reforming a hydrocarbon from a sulfur compound-containing hydrocarbon having a hydrogen sulfide concentration of 20 ppm or more and a modifier. Hydrocarbon reforming catalyst is selected from Ni, Mg, and metal element M (M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si) And at least one oxide selected from silica, alumina, and zeolite is added to the composite oxide containing at least one element. Here, the functions of Ni, Mg, platinum group elements, and oxides of silica, alumina, and zeolite are the same as described above. On the other hand, M or its oxide has been often used as a support or as a cocatalyst having a function of suppressing carbon deposition as in the case of Mg, but it is a cocatalyst that improves the reaction rate of the main reaction. The knowledge of exerting the action has not been reported so far. However, as a result of the study by the present inventors, an improvement in the activity is clearly recognized by the addition thereof, and M or its oxide does not function as a catalyst support or a co-catalyst for suppressing carbon deposition, but Ni It is presumed that it functions as a main catalyst for the reforming reaction as well as a promoter for promoting the catalytic function of Ni.
[0018]
Furthermore, the oxide is characterized in that the content of at least one oxide selected from silica, alumina and zeolite in the composite oxide is 1 to 90% by mass. Here, when the addition amount of at least one oxide selected from silica, alumina, and zeolite is less than 1% by mass with respect to the total amount, the addition effect is hardly seen, and the addition amount is 90% by mass. If it exceeds, the amount of Ni in the main catalyst is extremely small, so there is a possibility that sufficient catalytic activity cannot be obtained. Further, the amount of silica added in the composite oxide is preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
[0019]
In addition, the platinum group element supported on the oxide is at least one element selected from platinum, ruthenium, palladium, and rhodium, and the supported amount is 0.01 to 10% by mass in terms of metal. It is what. Here, when the supported amount of platinum group element is less than 0.01% by mass in terms of metal, the platinum group element supporting effect hardly appears and the catalytic activity is not sufficient, and the supported amount is 10% by mass. When exceeding, it will become expensive and there also exists a problem of economical disadvantage.
[0020]
Here, a composite oxide containing Ni, Mg or Ni, Mg and a metal element M (M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, A method for preparing an oxide containing at least one element selected from Si) is exemplified below, but is not particularly limited thereto.
[0021]
(A) Impregnation support method
A solution in which a nickel compound is dissolved in water or an organic solvent is dropped on a magnesia (and M oxide) powder, for example, on the surface of the magnesia (and M oxide) powder. The catalyst is prepared by carrying it by a conventional impregnation method such as an ent wetness method or an evaporation to dryness method.
[0022]
The precursor thus prepared is dried at 50 to 150 ° C. to remove water or the organic solvent. At that time, when an organic solvent is used, it is desirable to recover and reuse the organic solvent from the economical aspect.
[0023]
Next, the obtained nickel compound-supported magnesia (-M oxide) powder is fired at about 900 ° C. in air. This temperature is determined in consideration of the thermal decomposition temperature and speed of the nickel compound, the safety aspect, and the like.
[0024]
The nickel oxide-supported magnesia (and M oxide) powder thus prepared may be used as it is, but may be molded using a normal dry molding machine. The molding machine at this time may be any molding machine. For example, a compression molding machine such as a tableting machine or a briquetting machine is preferably used. In addition, the shape of the molded body in that case may be any of a spherical shape, a cylindrical shape, a ring shape, a small granular shape, and the like.
[0025]
Further, when a powder having a uniform particle size is required, the obtained tablet is pulverized, sieved, and sized. Here, the pulverizer is not particularly limited, and for example, a dry pulverizer is preferably used.
[0026]
(B) Coprecipitation-physical mixing method
A nickel compound and a magnesium compound are mixed at a predetermined ratio to create a mixed aqueous solution, and a potassium compound or the like is dropped as a precipitant into the mixture, and the pH is raised to form a precipitate in the form of a hydroxide. Thereafter, the precipitation solution is stirred and aged while heating. After the precipitate solution is suction filtered, the excess metal component of the precipitant is washed with hot water, dried sufficiently at 50 to 150 ° C. to remove moisture.
[0027]
Next, the obtained precipitate is subjected to a solid solution treatment at a temperature of about 1000 ° C. in air.
[0028]
To the nickel / magnesia solid solution oxide prepared in this way, M oxide powder is added as necessary to a predetermined ratio, and the whole is uniform, for example, using a mortar or the like Mix. Further, these mixtures may be fired in air at about 1000 ° C. to dissolve the M oxide in the nickel / magnesia solid solution oxide.
[0029]
When this mixture is used as pellets, it is molded by the method described in (A). Further, when a powder having a uniform particle size is finally required, the powder is further pulverized and sized in the same manner as in (A).
[0030]
(C) Coprecipitation method
Nickel compound, magnesium compound, and M compound are mixed at a predetermined ratio to prepare a mixed aqueous solution, except that hydroxylation containing nickel and magnesium (and M if necessary) is performed in the same manner as (B). A precipitate of the product is prepared, dried and fired to prepare a composite oxide.
[0031]
Further, when these composite oxides are combined with at least one oxide selected from silica, alumina, and zeolite, for example, in the impregnation supporting method of (A), magnesia (and M oxide) powder. A nickel / magnesia solid solution oxide (and M oxide) obtained by coprecipitation in the coprecipitation-physical mixing method of (B). ) By mixing these oxide powders together with the powder, or by adding various oxide slurries to the composite oxide obtained in the coprecipitation method of (C), mixing and drying, etc. Although it can obtain, it does not restrict | limit in particular to these.
[0032]
When this composite oxide is used as pellets, it is molded by the method described in (A). Further, when a powder having a uniform particle size is finally required, the powder is further pulverized and sized in the same manner as in (A).
[0033]
Ni, Mg containing oxide prepared in this way, or Ni, Mg and metal element M (M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Examples of a method for supporting a platinum group element on an oxide containing at least one element selected from Cd, Al, and Si) include, for example, an incipient wetness method using a compound of a platinum group element, evaporation to dryness, and the like. A normal impregnation method such as a method or a CVD method can be preferably used, but is not particularly limited thereto. In addition, the compound of the platinum group element here is preferably used in any form as long as it is sufficiently soluble in water and organic solvents such as acids and salts, chlorides, and organic metals. For example, examples of the platinum compound include chloroplatinic acid, platinum chloride, platinum acetylacetonate, and the like.
[0034]
In addition, the present invention Hydrogen sulfide concentration of 20ppm or more In the method for reforming a sulfur compound-containing hydrocarbon, at least one of the above-described composite oxides is used as a catalyst, and the molar ratio of the reformer supplied externally is 0. 0 relative to the number of moles of carbon in the hydrocarbon. It is preferable to carry out the reforming reaction under the conditions of 5 to 6 and in an oxygen coexisting atmosphere under the reaction temperature of 500 to 1300 ° C. and the reaction pressure of 0.1 to 20 MPa.
[0035]
Here, the reason why the platinum group element-supported composite oxide can advance the reforming reaction at a high reaction rate with respect to the reforming of hydrocarbons is as a main catalyst of the reforming reaction due to the high reducibility of the platinum group element. It can function or increase the degree of reduction of the main catalyst component Ni (closer to the metallic state), or prevent oxidation to cations accompanying the progress of the Ni reaction and maintain the metallic state. This is presumed to be because of the promoter effect that promotes the catalytic function of some Ni. In addition, the presence of nickel, magnesia oxide and silica, alumina, and zeolite oxides suggests that Ni, an active metal whose catalytic function is promoted by platinum group elements, is present in a more highly dispersed state. To do.
[0036]
The reason why the platinum group element-supported composite oxide exhibits high activity for the reforming of sulfur compound-containing hydrocarbons is that Ni, which is an active metal present on the surface of the composite oxide, is highly dispersed in the metal state. This is presumably because the formation of stable and inactive nickel sulfide is difficult, or the reactivity of M with respect to sulfur is higher than that of Ni, and the effect of suppressing the formation of nickel sulfide is exhibited.
[0037]
Furthermore, regarding the molar ratio of the externally supplied modifier (such as water vapor or carbon dioxide) to the number of moles of carbon in the hydrocarbon, hydrocarbons or sulfur compound-containing hydrocarbons have a high concentration of modifier and a high concentration. It is preferable that the reforming reaction can proceed efficiently. If this ratio is less than 0.5, the amount of the reforming agent relative to the hydrocarbon is insufficient, and the reforming activity may not be increased or the carbon deposition may increase. If the number exceeds 6, the excessively added modifier oxidizes the catalyst itself, thereby deteriorating the activity or reducing the energy efficiency.
[0038]
Also, because the reforming reaction of hydrocarbons is a large endothermic reaction, the reaction heat is usually supplied by heating the outer wall of the reactor with a burner, but the heat transfer efficiency is poor and the reaction rate becomes the rate of heat supply. There is a risk that the reaction cannot proceed under high reaction rate conditions. Therefore, oxygen is introduced into the system at the same time as the above reforming agent, and the combustion reaction of hydrocarbon proceeds in the reactor, and the internal heat supply type reforming reaction that uses the reaction heat for the reforming reaction is advanced. Therefore, it is preferable to introduce oxygen together with the above-described reforming agent because the heat supply rate-limiting is eliminated and the function of the high-speed reforming catalyst of the present invention can be effectively exhibited. Here, with respect to the amount of oxygen introduced into the reactor together with the above modifier, the molar ratio of oxygen to the number of moles of carbon in the hydrocarbon is preferably 0.01 to 1.5, and this ratio is less than 0.01. If the ratio exceeds 1.5, the rate of combustion reaction will be insufficient and the reaction heat will be insufficient, so the heat supply will be rate-determined and high reaction rate may not be obtained. By the generated oxygen, most of the hydrocarbons to be reformed are combusted, and the rate at which the reforming reaction occurs is reduced, and there is a high possibility that the synthesis gas and hydrocarbons cannot be sufficiently obtained. Further, the molar ratio of oxygen used together with the modifier is more preferably 0.05 to 1.0.
[0039]
Regarding the reaction temperature, it is preferable that hydrocarbons or hydrocarbons containing sulfur compounds are reformed with high efficiency to produce synthesis gas with high productivity, and when the reaction proceeds at a temperature lower than 500 ° C., Since the reforming reaction is an endothermic reaction, the catalytic activity may be greatly reduced due to a decrease in equilibrium conversion rate and a decrease in reaction rate. In addition, when the reaction is performed at a temperature exceeding 1300 ° C, there is a possibility that sintering of the catalyst may occur, the burden on the materials constituting the reactor is large, and the reactor can be operated stably over a long period of time. Problems can arise which can be difficult and the materials used in the reactor can be very expensive.
[0040]
Regarding the reaction pressure, the reforming reaction of hydrocarbons or hydrocarbons containing sulfur compounds is preferably carried out under high-productivity and compact equipment under reformable pressure, but at a pressure exceeding 20 MPa, equilibrium conversion is performed. The rate drops and the reaction efficiency cannot be increased, and there is a possibility that carbon deposition is likely to occur.Although the device can be made compact, high pressure equipment and reactor materials are required for that pressure, There may be a problem that the equipment cost becomes high. On the other hand, under a pressure of less than 0.1 MPa, there is a problem that the productivity is not increased, but there is a problem that the synthesis gas cannot be supplied as it is when it is supplied to a high-pressure reaction, although it is in an equilibrium advantageous direction. Further, when the synthesis gas obtained by this reforming reaction is used for methanol synthesis, Fischer-Tropsch synthesis, etc., it is preferable to reform at a pressure equal to each reaction pressure.
[0041]
In the present invention Hydrogen sulfide concentration of 20ppm or more Of hydrocarbons containing sulfur compounds Used in reforming method Each element constituting the reforming catalyst seems to have various functions, but at present, the main functions are considered as follows. That is, Ni, which is the main catalyst component in the platinum group element-supported composite oxide, is highly dispersed in a metallic state in the composite oxide, so that the reforming reaction can proceed with high efficiency even under high reaction rate conditions. It is possible and expresses high activity even in an atmosphere containing a sulfur compound. Moreover, Mg exists in the state of an oxide, shows high basicity, suppresses a carbon deposition rate significantly, and plays a big role in the lifetime improvement of catalyst activity. M does not function as a general catalyst carrier or as a co-catalyst for suppressing carbon deposition, but functions as a main catalyst for reforming reaction or as a co-catalyst for promoting the catalytic function of Ni. It is considered a thing. Moreover, each oxide of silica, alumina, and zirconia in a composite oxide obtained by adding each oxide of silica, alumina, and zirconia to one or both of Ni-Mg composite oxide and Ni-Mg-M composite oxide is A function that forms a state in which the Ni-containing oxide phase is highly dispersed in the solid phase of the composite oxide and that allows Ni to be solid-phase precipitated from each Ni-containing oxide phase to be more highly dispersed. it is conceivable that. Furthermore, the platinum group element functions as a main catalyst for the reforming reaction or as a co-catalyst that promotes a catalytic function such as further increasing the reduction state of Ni and maintaining the high state even in the course of the reaction. It is thought that it demonstrates.
[0042]
【Example】
(Example 1)
A potassium carbonate aqueous solution heated to 60 ° C is prepared by precisely weighing nickel acetate and magnesium nitrate so that the molar ratio of nickel to magnesium is 1: 9 and preparing a mixed aqueous solution at 60 ° C. And stirred well with a stirrer. Thereafter, stirring was continued for 1 hour while maintaining at 60 ° C., and after aging, suction filtration was performed, and washing was sufficiently performed with pure water at 80 ° C. The precipitate obtained after washing was dried at 120 ° C. for 12 hours and then calcined in air at 950 ° C. for 20 hours to obtain a nickel / magnesia solid solution oxide.
[0043]
To this solid solution oxide powder, a high-purity silica powder is precisely weighed and added, mixed well, and this mixture is mixed with a compression molding machine at 600 kg / cm. 2 Then, the Ni-Mg-Si composite oxide was prepared by sufficiently pulverizing and sizing to 100 to 300 mesh (63 μm to 150 μm). The oxide powder thus obtained is impregnated with an aqueous chloroplatinic acid solution adjusted to 0.1% by mass in terms of metal, dried at 120 ° C. for 12 hours, and then fired at 500 ° C. for 3 hours. Thus, a 0.1% by mass Pt-supported Ni—Mg—Si composite oxide was prepared.
[0044]
About 1 g of this catalyst powder was filled in a quartz reaction tube having a quartz dish previously attached to the center position inside the tube, and the reaction tube was set at a predetermined position of the fluidized bed reactor.
[0045]
Before starting the reforming reaction, the reactor was first heated to 900 ° C. under an argon gas atmosphere, and then reduced at 900 ° C. for 30 minutes while flowing hydrogen gas at 50 ml / min. After adjusting methane gas, hydrogen gas, and argon gas to 50 mol% methane, 30 mol% hydrogen, 5 mol% carbon dioxide, and 15 mol% argon, it contains various concentrations of hydrogen sulfide as shown in Table 1. Further, the water pump was adjusted so that the molar ratio of methane and the modifier (water vapor + carbon dioxide) was as shown below, and the resulting mixture was supplied into the reaction tube. Here, the reaction conditions are as follows.
[0046]
Steam reforming reaction temperature: 500-1300 ° C
Reaction pressure for steam reforming: 0.1 ~ 20MPa
Hydrogen sulfide concentration: 0-2000ppm
Modifier (steam + carbon dioxide) / methane ratio: 0.5-6
Steam reforming reaction W / F (catalyst weight / gas flow rate): 0.5 to 5 gh / mol
Regarding the components of the reaction product gas, the product gas discharged from the outlet of the fluidized bed reactor is once passed through an ice temperature trap and then injected into gas chromatography (HP 6890 made by Hewlett Packard) for analysis. It was. Unibeads C60 / 80 (manufactured by GL Sciences) was used as a column used in gas chromatography, and TCD was used as a detector. The degree of reaction of the reforming reaction was judged by the methane conversion rate, and the methane conversion rate was calculated by the following equation from the concentration of each component in the outlet gas.
[0047]
[Expression 1]
Figure 0004222839
[0048]
The methane conversion after the reforming reaction under various conditions is as shown in Table 1 below.
[0049]
[Table 1]
Figure 0004222839
[0050]
As a result of Nos. 1 and 2 in Table 1, it was found that under the present measurement conditions, the activity hardly changed with respect to the change in W / F, and the reforming reaction was carried out at a high reaction rate. The results of Nos. 4 and 5 show that even when the modifier / methane ratio is changed greatly, the reforming reaction rate is almost constant under the measurement conditions, and the high reaction rate is obtained regardless of the amount of the modifying agent. This suggests that the reaction proceeds. Furthermore, the results of Nos. 6 and 7 are H 2 When the reaction temperature is greatly changed in an atmosphere accompanied by a constant concentration of S, the reaction rate changes depending on the temperature, but the reforming proceeds at a relatively high reaction rate even at a low temperature of 500 ° C. From the result of No.8, H 2 It can be seen that the reforming reaction proceeds while maintaining high activity to some extent even in an atmosphere accompanied by a high concentration of S (approximately 2000 ppm).
[0051]
(Example 2)
In the same manner as in Example 1, after preparing a nickel / magnesia solid solution oxide, silica sol (manufactured by Catalyst Kasei Kogyo) was added to the SiO 2 in the catalyst. 2 Was added at a ratio of 20 mass% (hereinafter referred to as catalyst “A”), 50 mass% (hereinafter referred to as catalyst “B”), and 70 mass% (hereinafter referred to as catalyst “C”) to prepare a slurry. Thereafter, spray drying was performed under conditions such that the average particle size was about 50 μm, and the powder obtained there was calcined at 950 ° C. for 20 hours in air. Further, the obtained solid solution oxide was pulverized and sized to 100 to 300 mesh (63 μm to 150 μm). Platinum loading on the composite oxide thus obtained was carried out in exactly the same manner as in Example 1. The modification reaction using this platinum-supported composite oxide powder was also carried out in exactly the same manner as in Example 1. Table 2 shows the methane conversion rate under each reaction condition.
[0052]
[Table 2]
Figure 0004222839
[0053]
From Table 2, the platinum-supported Ni—Mg—Si composite oxide slightly changes in methane conversion rate depending on the amount of silica added, but the conversion value is very high for any of the above catalysts. Moreover, the improvement effect of the catalyst activity with respect to the reforming reaction of the hydrocarbon of silica and sulfur compound containing hydrocarbon is recognized clearly. Therefore, the present platinum-supported composite oxide catalyst is very promising as a hydrocarbon reforming catalyst.
[0054]
( Reference example 1 )
In the same manner as in Example 1, after preparing a Ni—Mg—Si composite oxide, the chlorides prepared to be 0.01% by mass, 0.3% by mass, 2% by mass, 5% by mass, and 10% by mass were prepared. A platinum acid aqueous solution was impregnated, and in the same manner as in Example 1, 0.01 mass% Pt-supported Ni—Mg—Si composite oxide (hereinafter referred to as catalyst “D”), 0.3 mass% Pt-supported Ni, respectively. -Mg-Si composite oxide (hereinafter referred to as catalyst "E"), 2 mass% Pt-supported Ni-Mg-Si composite oxide (hereinafter referred to as catalyst "F"), 5 mass% Pt-supported Ni-Mg-Si composite oxidation A product (hereinafter referred to as catalyst “G”) and a 10 mass% Pt-supported Ni—Mg—Si composite oxide (hereinafter referred to as catalyst “H”) were prepared. The reforming reaction using these platinum-supported complex oxide powders was also carried out in the same manner as in Example 1. Table 3 shows the methane conversion rate under each reaction condition.
[0055]
[Table 3]
Figure 0004222839
[0056]
From Table 3, the platinum-supported Ni-Mg-Si composite oxide has a slight change in methane conversion depending on the amount of platinum supported, especially when the amount supported is less than several percent, the methane conversion increases with the amount supported However, although the activity was improved, the conversion became almost constant regardless of the supported amount when the supported amount was on the order of several percent. As a result, any of the above catalysts has high catalytic activity, and the present platinum-supported composite oxide catalyst is very promising as a catalyst for reforming hydrocarbons.
[0057]
( Reference example 2 )
A 0.1% by mass Ru-supported Ni—Mg—Si composite oxide (hereinafter referred to as “Ru”) was used in the same manner as in Example 1 except that a ruthenium chloride aqueous solution, a palladium chloride aqueous solution and a rhodium chloride aqueous solution were used instead of the chloroplatinic acid aqueous solution. , Catalyst “I”), 0.1 mass% Pd-supported Ni—Mg—Si composite oxide (hereinafter referred to as catalyst “J”), 0.1 mass% Rh-supported Ni—Mg—Si composite oxide (hereinafter referred to as catalyst) "K") was prepared. The reforming reaction using these platinum group-supported composite oxide powders was also carried out in the same manner as in Example 1. Table 4 shows the methane conversion rate under each reaction condition.
[0058]
[Table 4]
Figure 0004222839
[0059]
From Table 4, the platinum-group-element-supported Ni-Mg-Si composite oxides showed the same high methane conversion rate in all cases, and therefore high catalytic activity regardless of the type of platinum-group elements. The platinum group-supported composite oxide catalyst is very promising as a catalyst for reforming hydrocarbons, regardless of whether platinum, ruthenium, palladium, or rhodium is used as the platinum group element.
[0060]
( Reference example 3 )
Ti—Ni—Mg— was used in the same manner as in Example 1 except that titanium chloride, nickel acetate, and magnesium nitrate were precisely weighed so that the molar ratio of titanium, nickel, and magnesium was 1: 1: 8. A Si composite oxide (hereinafter referred to as catalyst “L”) was prepared. Hereinafter, similarly, Zr—Ni—Mg—Si composite oxide using zirconium chloride oxide, Hf—Ni—Mg—Si composite oxide using hafnium oxide, and V—Ni— using vanadium chloride are used. Mg-Si composite oxide, Nb-Ni-Mg-Si composite oxide using niobium chloride, Ta-Ni-Mg-Si composite oxide using tantalum chloride, Cr-Ni using chromium nitrate An Mg—Si composite oxide was prepared. With respect to these composite oxides, 0.1 mass% platinum-supported composite oxide powder was prepared in the same manner as in Example 1. Here, each catalyst is referred to as “M”, “N”, “O”, “P”, “Q”, “R”. The reforming reaction using these various catalysts was also carried out in the same manner as in Example 1. Table 5 shows the methane conversion rate under each reaction condition.
[0061]
[Table 5]
Figure 0004222839
[0062]
Table 5 shows that each platinum-supported M-Ni-Mg-Si composite oxide has high catalytic activity. In addition, compared with Table 1, the improvement in activity is clearly recognized by the introduction of M. From these results, the platinum-supported composite oxide catalyst is very promising as a hydrocarbon reforming catalyst.
[0063]
( Reference example 4 )
Mo—Ni— was prepared in the same manner as in Example 1 except that ammonium molybdate, nickel acetate and magnesium nitrate were precisely weighed so that the molar ratio of molybdenum to nickel and magnesium was 1: 1: 8. Mg-Si composite oxide was prepared. In the same manner, W-Ni-Mg-Si composite oxide using ammonium tungstate instead of ammonium molybdate, Mn-Ni-Mg-Si composite oxide using manganese acetate, copper nitrate Cu—Ni—Mg—Si composite oxide using zinc nitrate, Zn—Ni—Mg—Si composite oxide using zinc nitrate, Cd—Ni—Mg—Si composite oxide using cadmium nitrate, nitric acid Al—Ni—Mg—Si composite oxide was prepared using aluminum, and Si—Ni—Mg composite oxide was prepared using silicon acetate. With respect to these composite oxides, 0.1 mass% platinum-supported composite oxide powder was prepared in the same manner as in Example 1. Here, each catalyst is referred to as “S”, “T”, “U”, “V”, “W”, “X”, “Y”, “Z”, respectively. The reforming reaction using these various catalysts was also carried out in the same manner as in Example 1. Table 6 shows the methane conversion rate under each reaction condition.
[0064]
[Table 6]
Figure 0004222839
[0065]
Table 6 shows that each platinum-supported M-Ni-Mg-Si composite oxide has high catalytic activity. In addition, compared with Table 1, the improvement in activity is clearly recognized by the introduction of M. From these results, the platinum-supported composite oxide catalyst is very promising as a hydrocarbon reforming catalyst.
[0066]
( Reference Example 5 )
Reference example 3 Silica powder was weighed and added to 1% by mass with respect to the zirconium / nickel / magnesium composite oxide (catalyst “M”) obtained in Step 1, and mixed well in a mortar, and the silica-containing Zr—Ni A Mg composite oxide was obtained. A 0.1% by mass platinum-supported composite oxide powder was prepared from this composite oxide in the same manner as in Example 1. This platinum-supported composite oxide powder is referred to as catalyst “AA”. Similarly, 40% by mass of silica, 90% by mass of silica, 10% by mass of Y-type zeolite, 45% by mass of γ-alumina, 40% by mass of silica, and 10% by mass of γ-alumina were mixed. The respective oxide powders prepared by supporting platinum by mass% are designated as catalysts “AB”, “AC”, “AD”, “AE”, “AF”, respectively.
[0067]
The reforming reaction using the composite oxide powder thus obtained was carried out in the same manner as in Example 1. Table 7 shows the methane addition rate under each reaction condition.
[0068]
[Table 7]
Figure 0004222839
[0069]
From Table 7, the 0.1% by mass Pt supported product with respect to the mixed oxide of silica, alumina, and zeolite to the Zr-Ni-Mg-based oxide, the methane conversion rate slightly changes depending on the addition amount of silica, alumina, and zeolite. In any of the above catalysts, the conversion value is improved as compared with the system without addition, and the addition effect of silica, alumina, and zeolite is clearly recognized.
[0070]
(Comparative Example 1)
In the same manner as in Example 1, after preparing a nickel / magnesia solid solution oxide, it was sufficiently pulverized in a mortar and sized to 100 to 300 mesh (63 μm to 150 μm). Using this oxide powder, a reforming reaction was performed in the same manner as in Example 1. Table 8 shows the methane conversion rate under each reaction condition.
[0071]
[Table 8]
Figure 0004222839
[0072]
From Table 8, it can be seen that the nickel / magnesia solid solution catalyst has a low methane conversion rate under any conditions and its catalytic activity is not sufficient.
[0073]
(Comparative Example 2)
In the same manner as in Example 1, after preparing a nickel / magnesia solid solution oxide, it was sufficiently pulverized in a mortar and sized to 100 to 300 mesh (63 μm to 150 μm). A 0.1% by mass Pt-supported Ni—Mg composite oxide was prepared in the same manner as in Example 1 by using a chloroplatinic acid aqueous solution adjusted to 0.1% by mass with respect to this oxide powder. Using this oxide powder, a reforming reaction was performed in the same manner as in Example 1. Table 9 shows the methane conversion rate under each reaction condition.
[0074]
[Table 9]
Figure 0004222839
[0075]
From Table 9, although the platinum-supported nickel / magnesia catalyst is slightly more active than the nickel / magnesia catalyst not supported by platinum in Table 8, the conversion rate under each condition is low, and the raw material gas It can be seen that the catalyst performance is not sufficient regardless of whether hydrogen sulfide coexists in the catalyst.
[0076]
【The invention's effect】
The present invention is a catalyst useful for reforming hydrocarbons at high reaction rates. With hydrogen sulfide concentration of 20 ppm or more The present invention provides a method for reforming hydrocarbons containing sulfur compounds, and the following effects are remarkably recognized by the present invention.
i) For reforming hydrocarbons, reforming at a high reaction rate is possible, and the productivity of reformed gas is high.
ii) High reforming activity is exhibited even under the severe conditions of sulfur poisoning containing a high concentration of sulfur compounds.

Claims (9)

Ni、Mgを含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に、白金族元素を担持してなる炭化水素の改質用触媒を用い、硫化水素濃度20ppm以上の硫黄化合物含有炭化水素と改質剤とから、当該炭化水素を改質することを特徴とする炭化水素の改質方法。 Hydrogen sulfide using a catalyst for reforming hydrocarbons, in which a platinum group element is supported on a composite oxide obtained by adding at least one oxide selected from silica, alumina, and zeolite to an oxide containing Ni and Mg A hydrocarbon reforming method comprising reforming a hydrocarbon from a sulfur compound-containing hydrocarbon having a concentration of 20 ppm or more and a modifier. Ni、Mg及び金属元素M(MはTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Zn、Cd、Al、Siから選ばれる少なくとも1種類の元素)を含む酸化物へシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物を加えた複合酸化物に、白金族元素を担持してなる炭化水素の改質用触媒を用い、硫化水素濃度20ppm以上の硫黄化合物含有炭化水素と改質剤とから、当該炭化水素を改質することを特徴とする炭化水素の改質方法。 Ni, Mg and metal element M (M is at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Zn, Cd, Al, Si) Sulfur having a hydrogen sulfide concentration of 20 ppm or more using a hydrocarbon reforming catalyst in which a platinum group element is supported on a composite oxide obtained by adding at least one oxide selected from silica, alumina, and zeolite to an oxide A hydrocarbon reforming method comprising reforming a hydrocarbon from a compound-containing hydrocarbon and a modifier. 前記触媒中のシリカ、アルミナ、ゼオライトから選ばれる少なくとも1種類の酸化物の含有量が1〜90質量%であることを特徴とする請求項1又は2に記載の炭化水素の改質方法The hydrocarbon reforming method according to claim 1 or 2, wherein the content of at least one oxide selected from silica, alumina and zeolite in the catalyst is 1 to 90% by mass. 前記白金族元素が、白金、ルテニウム、パラジウム、ロジウムから選ばれる少なくとも1種類の元素であることを特徴とする請求項1〜3のいずれかに記載の炭化水素の改質方法The method for reforming a hydrocarbon according to any one of claims 1 to 3, wherein the platinum group element is at least one element selected from platinum, ruthenium, palladium, and rhodium. 前記白金族元素の含有量が、金属換算で0.01〜10質量%であることを特徴とする請求項1〜4のいずれかに記載の炭化水素の改質方法The method for reforming a hydrocarbon according to any one of claims 1 to 4, wherein the platinum group element content is 0.01 to 10 mass% in terms of metal. 前記炭化水素中の炭素のモル数に対して外部供給される改質剤のモル比が0.5〜6である請求項1〜5のいずれかに記載の炭化水素の改質方法。The method for reforming a hydrocarbon according to any one of claims 1 to 5, wherein the molar ratio of the reformer supplied externally to the number of moles of carbon in the hydrocarbon is 0.5 to 6. 前記炭化水素に対して外部供給される改質剤と共に酸素を反応器に導入して炭化水素の燃焼反応熱を利用する内部熱供給型改質反応で炭化水素を改質することを特徴とする請求項1〜6のいずれかに記載の炭化水素の改質方法。 Characterized by reforming hydrocarbon with internal heat supply reforming reaction utilizing the oxygen combustion reaction heat of hydrocarbon introduced into the reactor together with the modifier supplied from outside of the hydrocarbon reforming a hydrocarbon according to any one of claims 1 to 6. 前記炭化水素の改質反応の温度が500〜1300℃であることを特徴とする請求項1〜7のいずれかに記載の炭化水素の改質方法。Reforming a hydrocarbon according to any one of claims 1 to 7, the temperature of the reforming reaction of the hydrocarbon is characterized by a 500 to 1300 ° C.. 前記炭化水素の改質反応の圧力が0.1〜20MPaである請求項1〜8のいずれかに記載の炭化水素の改質方法。The method for reforming a hydrocarbon according to any one of claims 1 to 8, wherein the pressure of the reforming reaction of the hydrocarbon is 0.1 to 20 MPa.
JP2003000403A 2002-12-27 2003-01-06 Hydrocarbon reforming method Expired - Fee Related JP4222839B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003000403A JP4222839B2 (en) 2003-01-06 2003-01-06 Hydrocarbon reforming method
AU2003292717A AU2003292717A1 (en) 2002-12-27 2003-12-26 Catalyst and method for reforming hydrocarbon
PCT/JP2003/017057 WO2004060557A1 (en) 2002-12-27 2003-12-26 Catalyst and method for reforming hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000403A JP4222839B2 (en) 2003-01-06 2003-01-06 Hydrocarbon reforming method

Publications (2)

Publication Number Publication Date
JP2004209408A JP2004209408A (en) 2004-07-29
JP4222839B2 true JP4222839B2 (en) 2009-02-12

Family

ID=32818724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000403A Expired - Fee Related JP4222839B2 (en) 2002-12-27 2003-01-06 Hydrocarbon reforming method

Country Status (1)

Country Link
JP (1) JP4222839B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101280200B1 (en) * 2004-02-19 2013-06-28 이데미쓰 고산 가부시키가이샤 Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JP4776403B2 (en) * 2006-03-08 2011-09-21 新日本製鐵株式会社 Hydrocarbon reforming catalyst
JP4767738B2 (en) * 2006-04-06 2011-09-07 新日本製鐵株式会社 Hydrocarbon reforming catalyst
KR100818262B1 (en) * 2006-12-18 2008-04-01 삼성에스디아이 주식회사 Catalyst for fuel reforming reaction, and hydrogen producing method using the same
JP5531615B2 (en) * 2007-07-19 2014-06-25 戸田工業株式会社 Catalyst for cracking hydrocarbons
JP5335505B2 (en) * 2009-03-19 2013-11-06 旭化成ケミカルズ株式会社 Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP2010222151A (en) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp Silica-based material and method for producing the same and metal supporting material
JP5794993B2 (en) 2010-09-16 2015-10-14 旭化成ケミカルズ株式会社 Silica-based material and method for producing the same, noble metal support and method for producing carboxylic acids using the same as a catalyst
CN102784640B (en) * 2011-05-20 2014-08-20 上海浦景化工技术有限公司 Catalyst for synthesizing oxalate by CO coupling reaction and preparation method thereof
JP6102473B2 (en) * 2013-05-01 2017-03-29 三菱化学株式会社 Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
JP7069805B2 (en) * 2017-02-21 2022-05-18 日本製鉄株式会社 Hydrogen production method and cerium oxide catalyst for hydrogen production

Also Published As

Publication number Publication date
JP2004209408A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4222827B2 (en) Hydrocarbon reforming method
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
CN115485233B (en) Catalyst composition for ammonia decomposition
JP4335356B2 (en) Nickel-based catalyst for reforming and production method of synthesis gas using the same
WO2005079979A1 (en) Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
US20050096215A1 (en) Process for producing synthesis gas using stabilized composite catalyst
JP4222839B2 (en) Hydrocarbon reforming method
JP2000084410A (en) Preparation of autothermal reforming catalyst and production of hydrogen or synthesis gas
Maboudi et al. Effect of mesoporous nanocrystalline supports on the performance of the Ni–Cu catalysts in the high-temperature water-gas shift reaction
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
WO2008127492A2 (en) Sulfur-tolerant and carbon-resistant catalysts
JP4505126B2 (en) Reforming catalyst manufacturing method
JP6631245B2 (en) Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon
WO2007015620A1 (en) Steam reforming ni-based catalyst without pre-reduction treatment
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP3834621B2 (en) Catalyst for water gas shift reaction
JP4776403B2 (en) Hydrocarbon reforming catalyst
JPH06134305A (en) Heat resistant catalyst and method for using the same
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
WO2004060557A1 (en) Catalyst and method for reforming hydrocarbon
JP4767738B2 (en) Hydrocarbon reforming catalyst
JP4421913B2 (en) Method for producing catalyst for producing hydrocarbons and method for producing hydrocarbons using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R151 Written notification of patent or utility model registration

Ref document number: 4222839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees