[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4221812B2 - Metal plate shape control method - Google Patents

Metal plate shape control method Download PDF

Info

Publication number
JP4221812B2
JP4221812B2 JP12115099A JP12115099A JP4221812B2 JP 4221812 B2 JP4221812 B2 JP 4221812B2 JP 12115099 A JP12115099 A JP 12115099A JP 12115099 A JP12115099 A JP 12115099A JP 4221812 B2 JP4221812 B2 JP 4221812B2
Authority
JP
Japan
Prior art keywords
shape
coil
width direction
deviation
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12115099A
Other languages
Japanese (ja)
Other versions
JP2000312910A (en
Inventor
龍次 浜田
篤 栗田
雄一 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12115099A priority Critical patent/JP4221812B2/en
Publication of JP2000312910A publication Critical patent/JP2000312910A/en
Application granted granted Critical
Publication of JP4221812B2 publication Critical patent/JP4221812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷間圧延における金属板の形状制御方法に関する。さらに詳しくは、本発明は、金属板をコイルに巻き取る際に発生する板厚の幅方向偏差が原因で生じる形状不良を抑制し、優れた形状の鋼板が得られる金属板の形状制御方法に関する。
【0002】
【従来の技術】
冷延鋼板などの金属板(以下、鋼板という)の圧延では、形状が幅方向と長手方向に平坦になるように圧延をおこなうことが品質上および操業上の双方の観点から極めて重要であり、平坦形状制御(以下、「平坦形状」を「形状」、「平坦形状制御」を「形状制御」ともいう)がおこなわれる。
【0003】
冷間圧延での形状制御方法としては、例えば、特開平5−185124号公報に開示されているように、圧延機出側に設置した形状測定器によって鋼板の形状をオンラインで測定し、測定された形状と目標とする形状との差に基づき圧延機に設けた形状制御手段を操作するフィードバック制御が主流である。
【0004】
圧延機の形状制御手段としては、多くの技術が実用化されている。例えば、ロールベンディング、ロールシフト、ロールクロス、VCロール等の可変クラウンロール、20段や12段クラスタ圧延機でのバックアップベアリングの押し出しパターン変更、また、左右の形状偏差を抑制する手段として圧下レベリングや非対称のロールベンディング等が挙げられる。
【0005】
鋼板形状をオンラインで測定する形状測定器としては、文献(「板材圧延における形状検出器の特徴とその活用状況」塑性と加工、20−217(1979)2、p89)に記載されているように接触式あるいは非接触式の装置があり、中空多分割ロールやソリッドロールに多数のロードセルを埋め込んだ接触式のロールタイプのものが多く用いられている。
【0006】
【発明が解決しようとする課題】
ところで、冷間圧延に供される鋼板は、幅方向での板厚分布が必ずしも均一ではなく、幅方向のほぼ中央部を凸部にしてほぼ対称な板厚分布を呈するクラウンと幅方向の一方の端部から他方の端部に向かって板厚がほぼ直線的に変化するウエッジと呼ばれる板厚偏差を有する。特に、各種ステンレス鋼の板バネや自動車用エンジンのメタルガスケット等の素材を供給するステンレス磨き帯鋼の分野では、軟鋼に比べて変形抵抗の大きなステンレス鋼を例えば0.3mm以下といった薄物に仕上げるため、小径の作業ロールを用いて700mm以下の比較的幅の狭い圧延機にて冷間圧延をおこなう場合がある。この場合には、溶鋼の鋳造や熱間圧延での設備制約や生産効率の観点から、素材を1メートル〜1.2メートルの幅で熱間圧延し、その後、2条にスリットして冷間圧延に供する事が多い。そのため、冷間圧延用の鋼板は、熱間圧延で生じたクラウンの影響によって左右の板厚が異なるものとなる。
【0007】
このような幅方向で板厚が異なる鋼板を圧延しコイル状に巻き取る場合に、形状検出器で測定される形状を目標値に一致するように制御すると、十分な形状精度が得られず、また、絞り込みや板の破断といった通板トラブルを招くことがある。しかしながら、この問題に関しては、これまでほとんど検討されていないのが実情である。
【0008】
本発明の課題は、上記従来技術の問題を解決し、板厚の幅方向偏差が原因で生じる形状不良を抑制し、高精度の鋼板が得られる金属板の形状制御方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、形状測定器で測定された形状を目標値に一致するように制御する従来技術を詳細に検討し、以下の(1)〜(3)の知見を得た。
【0010】
(1)幅方向の一方の端部の板厚がd1で他方の端部の板厚がd2である鋼板をコイル状に巻き取る際の一方の端部と他方の端部におけるコイル外径の差△Deは、コイル巻き数をnとすると、下記の式で表される。
【0011】
【数1】

Figure 0004221812
【0012】
しかし、実際には、コイル状に巻き取る際に、コイル径の大きい方では、相対的に引張応力が、一方、コイル径の小さい方では相対的に圧縮応力が生じることになり、板厚の薄い端部側のコイル間で隙間が生じるため、△Deは上記式を修正した下記の式で表される。
【0013】
【数2】
Figure 0004221812
【0014】
したがって、鋼板が幅方向で板厚偏差を有する場合、コイルには板厚の偏差とコイルの巻き数に比例するコイル外径の差が生じる。
【0015】
(2)図1は、コイル外径の幅方向差により幅方向に伸び歪み差が発生することを説明する模式図で、同図(A)は側面図、同図(B)はコイル正面図である。符号1は鋼板、2はコイル、3は圧延機、4は形状測定器、5は巻取り装置である。
【0016】
図1(A)、(B)に示すように、コイル外径が幅方向にテーパー状に変化すると、図1(A)における形状測定器4と巻取り装置5との間の鋼板1の経路長さが幅方向に異なり、幅方向に伸び歪の差が生じる。例えば、図1(B)のように、作業側(WS)のコイル外径が駆動側(DS)に比べて大きいとき、図1(A)における形状測定器4と鋼板1の接する点Aから鋼板1がコイル2と接する点Bを経由してコイル外周上の任意の点Cまでの距離は、コイル径の大きい作業側の方が、コイル径の小さい駆動側よりも長くなり、鋼板には、コイル外径の差に応じた伸び歪が付加されることになる。すなわち、コイル径の大きい側では相対的に引張の歪が生じ、コイル径が小さい側では圧縮の歪が生じる。
【0017】
(3)従って、鋼板には、圧延によって生じた伸び歪の幅方向偏差による張力に加えて、コイル外径の幅方向偏差に基づく張力が付与される。しかしながら、形状測定器は鋼板に作用する張力の板幅方向での分布を測定するものであり、圧延により生じる張力とコイル外径偏差により生じる張力とを区別することはできない。従って、双方を含んだ張力を検出し、その検出結果に基づいて制御をおこなう従来の方法では十分な形状精度が得られない。
【0018】
そこで、本発明者らは、板厚の幅方向偏差が原因で生じる伸び歪みの幅方向偏差(以下、伸び歪み偏差ともいう)を検討し、上記伸び歪み偏差Δε2(z)は下記の関数式で整理できることが実験データの解析より判った。
【0019】
【数3】
Figure 0004221812
【0020】
図2は、従来方法(形状測定器で測定された伸び歪み偏差を目標値に一致するように制御する方法)による得られた形状測定器によるオンライン形状測定結果とコイルを展開したサンプルによるオフライン形状測定結果を比較したグラフであり、同図(A)は巻取りの初期段階、同図(B)は巻取りの完了段階である。なお、同図(A)、(B)において、伸び差率は、幅中央部と幅方向各位置の伸び歪みの差で、単位は歪量を100,000 倍したIunit で表している。形状測定器で測定された形状は□印で、サンプル形状は○印で示す。
【0021】
図2(A)に示すように、巻き取りの初期段階では形状測定器で測定された形状はサンプルの形状とよく一致しているが、図2(B)に示すように巻取り完了段階では形状測定器で測定された形状はサンプル形状とは異なるものとなることが判った。
【0022】
図3は、形状測定器で測定された伸び歪み偏差からコイル外径偏差により生じる伸び歪み偏差を減算した伸び歪み偏差を目標値に一致するように制御する方法により得られた形状測定器によるオンライン形状測定結果とコイルを展開したサンプルによるオフライン形状測定結果を比較した巻取り完了段階のグラフである。なお、同図で伸び差率は、上記と同様で、単位は歪量を100,000 倍したIunit で表している。また、形状測定器で測定された形状をコイル外径偏差で生じる形状で補正した形状は□印で、サンプル形状は○印で示す
同図に示すように、形状測定器で測定された形状をコイル外径偏差による形状で補正した形状はサンプルの形状とよく一致することが判った。
【0023】
本発明は、上記知見に基づいて完成されたもので、その要旨は以下のとおりである。
【0024】
(1)金属板の形状制御手段を備えた圧延機とその圧延機で圧延された金属板をコイル状に巻き取る巻取り装置との間に形状測定器を設け、その形状測定器で測定される金属板の伸び歪みの幅方向偏差Δε1(z)とコイル外径の幅方向偏差とに基づいて形状制御手段を調整する金属板の形状制御方法であって、上記コイル外径の幅方向偏差から金属板の伸び歪みの幅方向偏差Δε2(z)を算出し、Δε1からΔε2を減算した伸び歪みの幅方向偏差を目標値に一致するように、形状制御手段を調整することを特徴とする金属板の形状制御方法。
【0025】
【発明の実施の形態】
以下、本発明の態様を金属板として鋼板を例に説明する。
【0026】
本発明では、鋼板の形状制御手段を備えた圧延機とその圧延機で圧延された鋼板をコイルに巻き取るコイル巻取り装置との間に鋼板形状を測定する形状測定器を設ける。
【0027】
図4は、本発明を実施する装置例を示す側面図である。
【0028】
同図に示すように、圧延機3とコイル2への巻取り装置5との間に鋼板1の形状測定器4が設けられる。
【0029】
圧延機としては、鋼板の形状制御手段を備えた汎用の圧延機でよく、例えば、ロールベンディング、ロールシフト、ロールクロス、VCロール等の可変クラウンロールなどの形状制御手段を備えた圧延機や、20段や12段クラスタ圧延機でのバックアップベアリングの押し出しパターン変更機構を備えたクラスタ圧延機などが用いられる。
【0030】
形状測定器としては、鋼板に作用する幅方向の張力分布の測定が可能な汎用の形状測定器でよく、例えば、中空分割ロール式の装置などを用いることができる。
【0031】
本発明では、形状測定器で鋼板の伸び歪みの幅方向偏差を求める。この方法は従来と同様でよく、以下に、分割ロールの形状測定器を例に説明する。
【0032】
図5は、中空多分割ロール式の形状測定器による鋼板の張力分布の測定を模式的に示す概要図である。
【0033】
同図に示すように、中空多分割ロール式の形状測定器4は軸方向に分割された複数のロール6(以下、分割ロールという)で構成され、それぞれの分割ロール6はその内部に図示しないロードセルや圧力センサーを備えている。鋼板はこの分割ロールに所定の角度を持って巻き付く様に通板される。
【0034】
図6は、鋼板の張力により分割ロールに作用する力を説明する模式図で、同図(A)は側面図、同図(B)は斜視図である。
【0035】
図6において、各分割ロール6に対応する鋼板1に作用する張力応力の平均値σi は、各分割ロールに作用する軸に直角方向の力Fi から、下記の近似式で表される。
【0036】
【数4】
Figure 0004221812
【0037】
一方、σi と各分割ロールに対応する鋼板の伸び歪みの偏差△εi との関係は、下記の式で表される。なお、伸び歪偏差は引張り方向を正の値、圧縮方向を負の値とし、張力は正の値、圧縮応力の場合は負の値とする。
【0038】
【数5】
Figure 0004221812
【0039】
各分割ロールに作用する力Fi を測定することにより、σi が(1)式で演算され、この演算結果から、(2)式より△εi を求めることができる。
【0040】
上記△εi の幅方向の分布から、幅方向の伸び歪み偏差△ε1(z)を下記の関数式で近似する。
【0041】
【数6】
Figure 0004221812
【0042】
本発明では、コイル外径偏差により発生する伸び歪みの幅方向偏差を求める。
【0043】
上記伸び歪みの幅方向偏差は、下記の関数式で整理されることが実験データより判った。
【0044】
【数7】
Figure 0004221812
【0045】
(4)式のD(z)は、少なくとも幅方向の両端部を測定することにより、幅方向に直線近似して求めることができる。あるいは、幅方向の両端部の板厚を測定し、測定した板厚とコイル巻き数から幅方向両端部のコイル外径を求めて、上記と同様に幅方向に直線近似してもよい。
【0046】
本発明では、上記△ε1(z)からΔε2(z)を減算して求まる伸び歪み偏差(以下、補正後の伸び歪み偏差ともいう)を目標の伸び歪み偏差に一致するように形状制御手段を調整して形状制御を行う。
【0047】
次ぎに、本発明の制御方法の手順を図で説明する。
【0048】
図7は、本発明の制御方法の手順を示すフローチャートである。
【0049】
(1)形状測定器で圧延中の伸び歪み偏差△ε1(z)を連続的に測定する。
【0050】
(2)同時に、コイル外径の直接測定ないし、板厚の幅方向偏差などの情報に基づきコイル外径の幅方向分布D(z)を連続的に算出する。
【0051】
(3)次いで、(4)式からコイル外径偏差により発生する伸び歪みの幅方向偏差Δε2(z)を求める。
【0052】
(4)△ε1(z)からΔε2(z)を減算した伸び歪み偏差(以下、補正後の伸び歪み偏差ともいう)を求める。
【0053】
(5)補正後の伸び歪み偏差が予め設定した目標値と比較し、その差が許容範囲内に収れんするように形状制御手段を調整してフィードバック制御をおこなう。
【0054】
上記フィードバック制御はコイルの全長に渡って適正な形状が得られるように連続的におこなう。なお、連続的とは、例えば数秒程度以下の間隔を意味する。
【0055】
【実施例】
(実施例1)
図4に示す構成の装置を用い、入側板厚:0.35mm、板幅:610mmのオーステナイト系ステンレス鋼板を入側張力:27kg/mm2 、出側張力29kg/mm2 を付加し、出側板厚:0.3mmに圧延した。圧延機は作業ロール径130mm、ロール軸長700mmの6段式圧延機で、形状測定器はロール径313mm、分割ロール型・ロードセル埋め込み方式の接触式の形状測定器を用い、巻き取りコイルの内径は710mmとした。なお、鋼板は4フィート幅のホットコイルを2条に幅分割したものを用いた。
【0056】
形状測定器によって測定した板幅方向での伸び歪の偏差は、(3)式のf1 (z)をzの4次式で表し、下記の式にて近似した。
【0057】
【数8】
Figure 0004221812
【0058】
コイル外径偏差による伸び歪み偏差は、(4)式のf2 (z)をzの1次式で表し、下記の式で近似した。
【0059】
【数9】
Figure 0004221812
【0060】
図8は、Cと△Dcの関係の一例を示すグラフで、予め実験データを整理して求めた。同図において、mは下記(7)式で定義される値である。
【0061】
【数10】
Figure 0004221812
【0062】
圧延に際しては、図7に示すように、形状測定器で張力の幅方向分布を測定して△ε1(z)を求めるとともに、コイル外径を作業側と駆動側の板幅端部から50mmの位置にて測定し、測定したコイル外径から直線近似してDcと△Dcを求め、次いで(6)式から△ε2(z)を演算して求め、△ε1(z)から△ε2(z)を減算した伸び歪み偏差を目標の伸び歪み偏差と比較し、その差が許容範囲内に収まるように形状制御を行った。
【0063】
比較例1は、形状制御をoffとし、また、比較例2では、形状測定器によって測定された伸び歪み偏差を目標値に一致するように形状制御を行った。
【0064】
圧延後のコイルを展開してサンプルを切断採取し、形状を測定し、その測定結果から幅方向の伸び歪み偏差△ε3(z)の分布を、下記の4次式で近似した。
【0065】
【数11】
Figure 0004221812
【0066】
図9は、形状測定器によって測定された形状を(5)式に示す4次式で近似した時の1次成分a1 の推移と、圧延機にて1次成分を制御するのに用いられる圧下レベリング量の推移ならびにコイルを展開して採取したサンプルの形状を(8)式に示す4次式で近似した時の1次成分b1 の推移を示すグラフで、同図(A)は比較例1、同図(B)は比較例2、同図(C)は本発明例である。
【0067】
比較例1は、図9(A)に示すように、圧延の進行とともに、形状測定器によって検出される形状の1次成分a1 が大きくなっているのに対して、サンプルでは、1次成分b1 は若干、負の方向に減少している。
【0068】
一方、比較例2では、図9(B)に示すように、圧延機の圧下レベリングを制御することによって、形状測定器により測定される形状の1次成分は、ほぼ、0となっているが、サンプルの値は圧延の進行に伴って大きくマイナス側に変化している。これに対して、本発明例では、図9(C)に示すように、形状測定器にて測定された形状の1次成分は圧延の進行とともに大きくなっているが、補正後の形状がほぼ0になるように圧下レベリングを制御しており、サンプルの1次成分もほぼ0となっており、圧下レベリングが適正に制御されていることがわかる。
【0069】
(実施例2)
実施例1と同様の圧延設備を用いて、出側板厚0.3〜0.1mm、板幅300〜610mmまでの種々サイズの板を圧延し、板の破断や絞り込みなどの通板トラブルの発生を調査した。形状制御は実施例1と同様の方法でおこなった。また、比較のため上述した比較例2と同様の形状制御の試験もおこなった。
【0070】
表1に板の破断と絞り込みの発生状況を示す。
【0071】
【表1】
Figure 0004221812
【0072】
同表に示すように、本発明例では、板の破断、絞り込みの発生比率(板破断または絞り込み発生本数/総圧延本数×100%)が比較例の1/3程度に減少し、通板安定性が著しく向上した。
【0073】
【発明の効果】
本発明によれば板厚の幅方向偏差に起因する形状の測定外乱を排除し、高精度の形状制御をおこなうことができる。また、形状の誤認識により生じる板の破断や絞り込みといった圧延トラブルを防止し、安定かつ高効率の圧延操業が可能となる。
【図面の簡単な説明】
【図1】図1(A)、(B)はコイル外径の幅方向差により幅方向に伸び歪み差が発生することを説明する模式図である。
【図2】従来方法による得られた形状測定器によるオンライン形状測定結果とコイルを展開したサンプルによるオフライン形状測定結果を比較したグラフであり、同図(A)は巻取りの初期段階、同図(B)は巻取りの完了段階である。
【図3】 形状測定器で測定された伸び歪み偏差からコイル外径偏差により生じる伸び歪み偏差を減算した伸び歪み偏差を目標値に一致するように制御する方法により得られた形状測定器によるオンライン形状測定結果とコイルを展開したサンプルによるオフライン形状測定結果を比較した巻取り完了段階のグラフである。
【図4】本発明を実施する装置例を示す側面図である。
【図5】中空多分割ロール式の形状測定器による鋼板の張力分布の測定を模式的に示す概要図である。
【図6】鋼板の張力により形状検出ロールに作用する力を説明する模式図で、同図(A)は側面図、同図(B)は斜視図である。
【図7】本発明の制御方法の手順を示すフローチャートである。
【図8】Cと△Dcの関係の一例を示すグラフである。
【図9】形状測定器によって測定された形状を(5)式に示す4次式で近似した時の1次成分a1 の推移と、圧延機にて1次成分を制御するのに用いられる圧下レベリング量の推移ならびにコイルを展開して採取したサンプルの形状を(8)式に示す4次式で近似した時の1次成分b1 の推移を示すグラフで、同図(A)は比較例1、同図(B)は比較例2、同図(C)は本発明例である。
【符号の説明】
1:鋼板、2:コイル、3:圧延機、
4:形状測定器、5:巻取り装置、
6:分割ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal plate shape control method in cold rolling. More specifically, the present invention relates to a shape control method of a metal plate that suppresses a shape defect caused by a width direction deviation of a plate thickness that occurs when the metal plate is wound around a coil and obtains a steel plate having an excellent shape. .
[0002]
[Prior art]
In rolling a metal plate such as a cold rolled steel plate (hereinafter referred to as a steel plate), it is extremely important from the viewpoint of quality and operation to perform rolling so that the shape is flat in the width direction and the longitudinal direction. Flat shape control (hereinafter, “flat shape” is also referred to as “shape” and “flat shape control” is also referred to as “shape control”) is performed.
[0003]
As a shape control method in cold rolling, for example, as disclosed in JP-A-5-185124, the shape of a steel sheet is measured online by a shape measuring device installed on the delivery side of the rolling mill. The feedback control for operating the shape control means provided in the rolling mill based on the difference between the target shape and the target shape is the mainstream.
[0004]
Many techniques have been put to practical use as shape control means for rolling mills. For example, variable crown rolls such as roll bending, roll shift, roll cross, and VC roll, change of the push-out pattern of the backup bearing in a 20-stage or 12-stage cluster rolling mill, and reduction leveling as a means for suppressing left and right shape deviation Examples include asymmetric roll bending.
[0005]
As a shape measuring instrument for measuring the shape of a steel sheet online, as described in the literature ("Characteristics of shape detector in plate rolling and its utilization status" plasticity and processing, 20-217 (1979) 2, p89). There are contact type or non-contact type devices, and a contact type roll type in which a large number of load cells are embedded in a hollow multi-division roll or a solid roll is often used.
[0006]
[Problems to be solved by the invention]
By the way, a steel sheet to be subjected to cold rolling does not necessarily have a uniform thickness distribution in the width direction, but a crown that exhibits a substantially symmetrical thickness distribution with a substantially central portion in the width direction as a convex portion and one of the width directions. There is a thickness deviation called a wedge in which the thickness changes almost linearly from one end to the other end. In particular, in the field of stainless steel strips that supply materials such as various stainless steel leaf springs and metal gaskets for automobile engines, stainless steel, which has a greater deformation resistance than mild steel, is finished to a thin thickness of, for example, 0.3 mm or less. In some cases, cold rolling is performed using a relatively narrow rolling mill of 700 mm or less using a small-diameter work roll. In this case, from the viewpoint of equipment restrictions and production efficiency in casting and hot rolling of molten steel, the material is hot-rolled in a width of 1 to 1.2 meters, and then slit into two strips and cold-rolled. Often used for rolling. Therefore, the steel sheets for cold rolling have different left and right plate thicknesses due to the influence of the crown generated by hot rolling.
[0007]
When rolling such steel sheets with different thicknesses in the width direction and winding them into a coil shape, if the shape measured by the shape detector is controlled to match the target value, sufficient shape accuracy cannot be obtained, In addition, there may be a trouble of passing through such as narrowing down or breaking of the plate. However, the fact is that this problem has hardly been studied so far.
[0008]
An object of the present invention is to provide a metal plate shape control method that solves the above-described problems of the prior art, suppresses shape defects caused by deviation in the width direction of the plate thickness, and obtains a highly accurate steel plate. .
[0009]
[Means for Solving the Problems]
The inventors of the present invention have studied in detail the conventional technique for controlling the shape measured by the shape measuring instrument so as to coincide with the target value, and have obtained the following findings (1) to (3).
[0010]
(1) The outer diameter of the coil at one end and the other end when winding a steel sheet in which the plate thickness at one end in the width direction is d1 and the plate thickness at the other end is d2 is coiled The difference ΔDe is expressed by the following equation, where n is the number of coil turns.
[0011]
[Expression 1]
Figure 0004221812
[0012]
However, in actuality, when the coil is wound, a relatively large tensile stress is generated in the larger coil diameter, while a relatively compressive stress is generated in the smaller coil diameter. Since a gap is generated between the coils on the thin end side, ΔDe is expressed by the following formula obtained by correcting the above formula.
[0013]
[Expression 2]
Figure 0004221812
[0014]
Therefore, when the steel sheet has a thickness deviation in the width direction, a difference in the coil outer diameter proportional to the thickness deviation and the number of turns of the coil occurs in the coil.
[0015]
(2) FIG. 1 is a schematic diagram for explaining that a difference in elongation strain occurs in the width direction due to a difference in the width direction of the outer diameter of the coil. FIG. 1 (A) is a side view and FIG. 1 (B) is a front view of the coil. It is. Reference numeral 1 is a steel plate, 2 is a coil, 3 is a rolling mill, 4 is a shape measuring instrument, and 5 is a winding device.
[0016]
As shown in FIGS. 1A and 1B, when the outer diameter of the coil changes in a taper shape in the width direction, the path of the steel plate 1 between the shape measuring instrument 4 and the winding device 5 in FIG. The length differs in the width direction, and a difference in elongation strain occurs in the width direction. For example, as shown in FIG. 1B, when the outer diameter of the coil on the working side (WS) is larger than that on the driving side (DS), from the point A where the shape measuring instrument 4 and the steel plate 1 in FIG. The distance from the point B where the steel plate 1 is in contact with the coil 2 to an arbitrary point C on the outer periphery of the coil is longer on the working side having a larger coil diameter than on the driving side having a smaller coil diameter. The elongation strain corresponding to the difference in coil outer diameter is added. That is, a tensile strain is relatively generated on the large coil diameter side, and a compressive strain is generated on the small coil diameter side.
[0017]
(3) Therefore, in addition to the tension due to the width direction deviation of the elongation strain generated by rolling, the steel sheet is given a tension based on the width direction deviation of the coil outer diameter. However, the shape measuring instrument measures the distribution in the sheet width direction of the tension acting on the steel sheet, and cannot distinguish between the tension generated by rolling and the tension generated by the deviation of the coil outer diameter. Therefore, the conventional method of detecting the tension including both and performing the control based on the detection result cannot provide sufficient shape accuracy.
[0018]
Therefore, the present inventors have studied the width direction deviation of elongation strain (hereinafter also referred to as elongation strain deviation) caused by the width direction deviation of the plate thickness, and the elongation strain deviation Δε2 (z) is expressed by the following functional formula. It was found from the analysis of experimental data that it can be organized by
[0019]
[Equation 3]
Figure 0004221812
[0020]
FIG. 2 shows an on-line shape measurement result obtained by a shape measuring instrument obtained by a conventional method (a method of controlling an elongation strain deviation measured by a shape measuring instrument so as to coincide with a target value) and an off-line shape obtained by developing a coil. It is the graph which compared the measurement result, the figure (A) is the initial stage of winding, and the figure (B) is the completion stage of winding. In FIGS. 2A and 2B, the elongation difference rate is the difference in elongation strain between the width central portion and each position in the width direction, and the unit is represented by Iunit obtained by multiplying the strain amount by 100,000. The shape measured by the shape measuring instrument is indicated by □, and the sample shape is indicated by ◯.
[0021]
As shown in FIG. 2 (A), the shape measured by the shape measuring instrument is in good agreement with the shape of the sample at the initial stage of winding, but at the completion stage of winding as shown in FIG. 2 (B). It was found that the shape measured by the shape measuring instrument was different from the sample shape.
[0022]
FIG. 3 shows an on-line shape measuring instrument obtained by a method of controlling the elongation strain deviation obtained by subtracting the elongation distortion deviation caused by the coil outer diameter deviation from the elongation distortion deviation measured by the shape measuring instrument so as to match the target value. It is a graph of the winding completion stage which compared the shape measurement result and the offline shape measurement result by the sample which developed the coil. In the figure, the elongation difference is the same as above, and the unit is represented by Iunit, which is 100,000 times the amount of strain. In addition, the shape measured with the shape measuring instrument is corrected by the shape generated by the deviation of the outer diameter of the coil. It was found that the shape corrected by the shape due to the deviation of the outer diameter of the coil matched well with the shape of the sample.
[0023]
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[0024]
(1) A shape measuring device is provided between a rolling mill equipped with a metal plate shape control means and a winding device that winds the metal plate rolled by the rolling mill into a coil shape, and is measured by the shape measuring device. The shape control method of the metal plate adjusts the shape control means based on the width direction deviation Δε1 (z) of the elongation strain of the metal plate and the width direction deviation of the coil outer diameter, and the width direction deviation of the coil outer diameter And calculating a width direction deviation Δε2 (z) of the elongation strain of the metal plate and adjusting the shape control means so that the width direction deviation of the elongation strain obtained by subtracting Δε2 from Δε1 matches the target value. Metal plate shape control method.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the aspect of the present invention will be described using a steel plate as an example of a metal plate.
[0026]
In this invention, the shape measuring device which measures a steel plate shape is provided between the rolling mill provided with the shape control means of the steel plate, and the coil winding apparatus which winds the steel plate rolled with the rolling mill on a coil.
[0027]
FIG. 4 is a side view showing an example of an apparatus for carrying out the present invention.
[0028]
As shown in the figure, a shape measuring instrument 4 for the steel sheet 1 is provided between a rolling mill 3 and a winding device 5 for the coil 2.
[0029]
The rolling mill may be a general-purpose rolling mill equipped with steel plate shape control means, for example, a rolling mill equipped with shape control means such as roll bending, roll shift, roll cloth, VC roll and other variable crown rolls, A cluster rolling mill equipped with a backup bearing push pattern changing mechanism in a 20-stage or 12-stage cluster rolling mill is used.
[0030]
The shape measuring device may be a general-purpose shape measuring device capable of measuring the tension distribution in the width direction acting on the steel sheet, and for example, a hollow split roll type device may be used.
[0031]
In this invention, the width direction deviation of the elongation distortion of a steel plate is calculated | required with a shape measuring device. This method may be the same as the conventional method, and will be described below by taking a split roll shape measuring device as an example.
[0032]
FIG. 5 is a schematic diagram schematically showing the measurement of the tension distribution of a steel sheet using a hollow multi-divided roll type shape measuring instrument.
[0033]
As shown in the figure, the hollow multi-divided roll type shape measuring device 4 is composed of a plurality of rolls 6 (hereinafter referred to as divided rolls) divided in the axial direction, and each divided roll 6 is not shown in the figure. It has a load cell and pressure sensor. The steel sheet is passed through the split rolls so as to be wound at a predetermined angle.
[0034]
6A and 6B are schematic views for explaining the force acting on the split rolls by the tension of the steel plate, where FIG. 6A is a side view and FIG. 6B is a perspective view.
[0035]
In FIG. 6, the average value σ i of the tensile stress acting on the steel sheet 1 corresponding to each divided roll 6 is expressed by the following approximate expression from the force F i perpendicular to the axis acting on each divided roll.
[0036]
[Expression 4]
Figure 0004221812
[0037]
On the other hand, the relationship between σ i and the deviation Δε i of the elongation strain of the steel sheet corresponding to each divided roll is expressed by the following equation. The elongation strain deviation is a positive value in the tensile direction, a negative value in the compression direction, a positive value in the tension, and a negative value in the case of compressive stress.
[0038]
[Equation 5]
Figure 0004221812
[0039]
By measuring the force F i acting on each split roll, σ i is calculated by equation (1), and Δε i can be obtained from equation (2) from this calculation result.
[0040]
From the distribution of Δε i in the width direction, the elongation strain deviation Δε1 (z) in the width direction is approximated by the following functional expression.
[0041]
[Formula 6]
Figure 0004221812
[0042]
In the present invention, the width direction deviation of the elongation strain generated by the coil outer diameter deviation is obtained.
[0043]
It has been found from experimental data that the width direction deviation of the elongation strain is arranged by the following functional formula.
[0044]
[Expression 7]
Figure 0004221812
[0045]
D (z) in equation (4) can be obtained by linearly approximating the width direction by measuring at least both ends in the width direction. Alternatively, the plate thicknesses at both ends in the width direction may be measured, the coil outer diameters at both ends in the width direction may be obtained from the measured plate thickness and the number of coil turns, and linear approximation may be performed in the width direction as described above.
[0046]
In the present invention, the shape control means is arranged so that the elongation strain deviation obtained by subtracting Δε2 (z) from Δε1 (z) (hereinafter also referred to as corrected elongation strain deviation) matches the target elongation strain deviation. Adjust and perform shape control.
[0047]
Next, the procedure of the control method of the present invention will be described with reference to the drawings.
[0048]
FIG. 7 is a flowchart showing the procedure of the control method of the present invention.
[0049]
(1) The elongation strain deviation Δε1 (z) during rolling is continuously measured with a shape measuring instrument.
[0050]
(2) At the same time, the coil outer diameter width direction distribution D (z) is continuously calculated based on information such as direct measurement of the coil outer diameter or width direction deviation of the plate thickness.
[0051]
(3) Next, the width direction deviation Δε2 (z) of the elongation strain generated by the coil outer diameter deviation is obtained from the equation (4).
[0052]
(4) An elongation strain deviation obtained by subtracting Δε2 (z) from Δε1 (z) (hereinafter also referred to as a corrected elongation strain deviation) is obtained.
[0053]
(5) The corrected elongation strain deviation is compared with a preset target value, and the shape control means is adjusted so that the difference falls within the allowable range, and feedback control is performed.
[0054]
The feedback control is continuously performed so that an appropriate shape can be obtained over the entire length of the coil. Note that “continuous” means, for example, an interval of about several seconds or less.
[0055]
【Example】
Example 1
Using the apparatus shown in FIG. 4, an austenitic stainless steel plate having an inlet side thickness of 0.35 mm and a plate width of 610 mm is applied with an inlet side tension of 27 kg / mm 2 and an outlet side tension of 29 kg / mm 2. Thickness: Rolled to 0.3 mm. The rolling mill is a six-stage rolling mill with a work roll diameter of 130 mm and a roll shaft length of 700 mm. The shape measuring instrument uses a roll diameter of 313 mm, a split roll type / load cell embedded type contact type measuring instrument, and the inner diameter of the winding coil. Was 710 mm. In addition, the steel plate used what divided | segmented the width | variety of the 4-foot-wide hot coil into two strips.
[0056]
The deviation of the elongation strain in the plate width direction measured by the shape measuring instrument is expressed by f 1 (z) in the equation (3) as a quaternary equation of z and approximated by the following equation.
[0057]
[Equation 8]
Figure 0004221812
[0058]
The elongation distortion deviation due to the outer diameter deviation of the coil is expressed by f 2 (z) in the equation (4) by a linear expression of z and approximated by the following equation.
[0059]
[Equation 9]
Figure 0004221812
[0060]
FIG. 8 is a graph showing an example of the relationship between C and ΔDc, which was obtained by organizing experimental data in advance. In the figure, m is a value defined by the following equation (7).
[0061]
[Expression 10]
Figure 0004221812
[0062]
At the time of rolling, as shown in FIG. 7, the width direction distribution of tension is measured by a shape measuring instrument to obtain Δε1 (z), and the coil outer diameter is 50 mm from the plate width end portions on the working side and the driving side. Dc and ΔDc are calculated by linear approximation from the measured coil outer diameter, then Δε2 (z) is calculated from equation (6), and Δε2 (z) is calculated from Δε1 (z). The elongation strain deviation obtained by subtracting) was compared with the target elongation strain deviation, and the shape was controlled so that the difference was within the allowable range.
[0063]
In Comparative Example 1, the shape control was set to off, and in Comparative Example 2, the shape control was performed so that the elongation strain deviation measured by the shape measuring instrument coincided with the target value.
[0064]
The rolled coil was developed, the sample was cut and collected, the shape was measured, and the distribution of the elongation strain deviation Δε3 (z) in the width direction was approximated by the following quaternary equation from the measurement result.
[0065]
## EQU11 ##
Figure 0004221812
[0066]
FIG. 9 shows the transition of the primary component a1 when the shape measured by the shape measuring instrument is approximated by the quaternary equation shown in equation (5), and the reduction used to control the primary component in the rolling mill. FIG. 8A is a graph showing the transition of the leveling amount and the transition of the primary component b1 when the shape of the sample collected by developing the coil is approximated by the quartic expression shown in the expression (8). (B) is Comparative Example 2, and (C) is an example of the present invention.
[0067]
In Comparative Example 1, as shown in FIG. 9A, the primary component a1 of the shape detected by the shape measuring instrument increases with the progress of rolling, whereas in the sample, the primary component b1 Is slightly decreasing in the negative direction.
[0068]
On the other hand, in Comparative Example 2, as shown in FIG. 9B, the primary component of the shape measured by the shape measuring instrument is almost zero by controlling the rolling leveling of the rolling mill. The value of the sample greatly changes to the minus side as the rolling progresses. In contrast, in the example of the present invention, as shown in FIG. 9C, the primary component of the shape measured by the shape measuring instrument increases with the progress of rolling, but the corrected shape is almost the same. The reduction leveling is controlled to be 0, and the primary component of the sample is also almost 0, indicating that the reduction leveling is appropriately controlled.
[0069]
(Example 2)
Using the same rolling equipment as in Example 1, various size plates with a thickness of 0.3 to 0.1 mm on the outlet side and a width of 300 to 610 mm are rolled to cause troubles such as plate breakage and narrowing. investigated. The shape control was performed in the same manner as in Example 1. For comparison, the same shape control test as in Comparative Example 2 was also performed.
[0070]
Table 1 shows the state of occurrence of breakage and narrowing of the plate.
[0071]
[Table 1]
Figure 0004221812
[0072]
As shown in the table, in the example of the present invention, the ratio of occurrence of sheet breakage and squeezing (number of sheets ruptured or squeezed / total number of rollings × 100%) was reduced to about 1/3 of the comparative example, and the plate was stable The properties improved significantly.
[0073]
【The invention's effect】
According to the present invention, it is possible to eliminate the measurement disturbance of the shape caused by the deviation in the width direction of the plate thickness, and perform highly accurate shape control. Further, it is possible to prevent rolling trouble such as breakage or narrowing of the plate caused by erroneous recognition of the shape, and stable and highly efficient rolling operation is possible.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic views for explaining that an elongation strain difference is generated in the width direction due to a width direction difference of a coil outer diameter.
FIG. 2 is a graph comparing an on-line shape measurement result obtained by a shape measuring instrument obtained by a conventional method and an off-line shape measurement result obtained by a sample in which a coil is developed. FIG. 2A is an initial stage of winding, FIG. (B) is a winding-up completion stage.
FIG. 3 is an on-line shape measuring instrument obtained by a method for controlling an elongation strain deviation obtained by subtracting an elongation distortion deviation caused by a coil outer diameter deviation from an elongation strain deviation measured by a shape measuring instrument so as to coincide with a target value. It is a graph of the winding completion stage which compared the shape measurement result and the offline shape measurement result by the sample which developed the coil.
FIG. 4 is a side view showing an example of an apparatus for carrying out the present invention.
FIG. 5 is a schematic diagram schematically showing the measurement of the tension distribution of a steel sheet using a hollow multi-divided roll type shape measuring instrument.
6A and 6B are schematic diagrams for explaining the force acting on the shape detection roll due to the tension of the steel plate, where FIG. 6A is a side view and FIG. 6B is a perspective view.
FIG. 7 is a flowchart showing the procedure of the control method of the present invention.
FIG. 8 is a graph showing an example of the relationship between C and ΔDc.
FIG. 9 shows the transition of the primary component a1 when the shape measured by the shape measuring instrument is approximated by the quaternary equation shown in equation (5), and the reduction used to control the primary component in the rolling mill. FIG. 8A is a graph showing the transition of the leveling amount and the transition of the primary component b1 when the shape of the sample collected by developing the coil is approximated by the quartic expression shown in the expression (8). (B) is Comparative Example 2, and (C) is an example of the present invention.
[Explanation of symbols]
1: steel plate, 2: coil, 3: rolling mill,
4: Shape measuring instrument, 5: Winding device,
6: Split roll

Claims (1)

金属板の形状制御手段を備えた圧延機とその圧延機で圧延された金属板をコイル状に巻き取る巻取り装置との間に形状測定器を設け、その形状測定器で測定される金属板の伸び歪みの幅方向偏差Δε1(z)とコイル外径の幅方向偏差とに基づいて形状制御手段を調整する金属板の形状制御方法であって、上記コイル外径の幅方向偏差により発生する金属板の伸び歪みの幅方向偏差Δε2(z)を算出し、Δε1からΔε2を減算した伸び歪みの幅方向偏差を目標値に一致するように、形状制御手段を調整することを特徴とする金属板の形状制御方法。A metal plate measured by the shape measuring device provided with a shape measuring device between a rolling mill provided with a shape control means of the metal plate and a winding device for winding the metal plate rolled by the rolling machine into a coil shape The shape control method of the metal plate adjusts the shape control means based on the width direction deviation Δε1 (z) of the elongation strain of the coil and the width direction deviation of the coil outer diameter, and is generated by the width direction deviation of the coil outer diameter. A metal characterized by calculating a width direction deviation Δε2 (z) of elongation strain of a metal plate and adjusting a shape control means so that a width direction deviation of elongation strain obtained by subtracting Δε2 from Δε1 matches a target value. Plate shape control method.
JP12115099A 1999-04-28 1999-04-28 Metal plate shape control method Expired - Fee Related JP4221812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12115099A JP4221812B2 (en) 1999-04-28 1999-04-28 Metal plate shape control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12115099A JP4221812B2 (en) 1999-04-28 1999-04-28 Metal plate shape control method

Publications (2)

Publication Number Publication Date
JP2000312910A JP2000312910A (en) 2000-11-14
JP4221812B2 true JP4221812B2 (en) 2009-02-12

Family

ID=14804096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12115099A Expired - Fee Related JP4221812B2 (en) 1999-04-28 1999-04-28 Metal plate shape control method

Country Status (1)

Country Link
JP (1) JP4221812B2 (en)

Also Published As

Publication number Publication date
JP2000312910A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
EP1894643B1 (en) Method and apparatus for monitoring and conditioning strip material
CN101678418A (en) Strip thickness control system for reverse rolling mill
JP4221812B2 (en) Metal plate shape control method
JP2002045908A (en) Method and device for controlling flatness of metallic sheet
JP3636151B2 (en) Metal strip manufacturing method
JP2981051B2 (en) Control method of steel sheet surface roughness in temper rolling
JP4288888B2 (en) Strip meander control device and meander control method for tandem rolling mill
KR20040056279A (en) Continuous cold rolling method of sheet steel
JPH05269527A (en) Method for controlling flat shape of metallic strip
JP2016172268A (en) Steel strip cold-rolling equipment and manufacturing method
JP7280506B2 (en) Cold tandem rolling equipment and cold tandem rolling method
WO2023119640A1 (en) Tail end squeezing prevention device
KR102178681B1 (en) Apparatus and method for diagnosing misalignment in rolling mill line
JP3117913B2 (en) Shape control method and temper rolling mill in temper rolling
JP3019720B2 (en) Rolling mill with camber straightening function
JP3064140B2 (en) Tandem rolling mill
JPH07323315A (en) Method for controlling feedback of plate crown and shape model
JPH0459114A (en) Method for controlling sheet thickness of rolling mill
RU2312721C2 (en) Cold rolling mill working roll exploitation method
JP2000015315A (en) Method for controlling position of work roll and device therefor
JP2024031268A (en) Cold rolling method and cold rolling facility
JPH10137828A (en) Cold tandem rolling method and cold tandem rolling mill
JPH0618651B2 (en) Width direction plate thickness difference control method and control device in the longitudinal direction of a thin steel plate
JP3277162B2 (en) Plate speed prediction method in rolling
JPH0714526B2 (en) Setup method for edge drop control of strip rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees