JP4221888B2 - Continuous production method and continuous production apparatus for porous membrane - Google Patents
Continuous production method and continuous production apparatus for porous membrane Download PDFInfo
- Publication number
- JP4221888B2 JP4221888B2 JP2000284651A JP2000284651A JP4221888B2 JP 4221888 B2 JP4221888 B2 JP 4221888B2 JP 2000284651 A JP2000284651 A JP 2000284651A JP 2000284651 A JP2000284651 A JP 2000284651A JP 4221888 B2 JP4221888 B2 JP 4221888B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- solvent
- polymer solution
- porous
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Moulding By Coating Moulds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリマー溶液の流延膜から溶媒置換速度を調節しながら相転換法によってポリマー多孔質膜を得ることができる方法であって、特にバラツキが少なく均質な貫通した多孔特性を有する多孔質膜を連続的に得ることができる多孔質膜の製造方法および製造装置に関する。
【0002】
【従来の技術】
多孔質ポリマー膜は、フィルター、分離膜、電池用セパレータ等の産業用材料、医療材料の素材、光学材料や電子材料などに幅広く使用されている。多孔質ポリマー膜の製造方法は、例えば、ポリマーに無機微粒粉体や有機液状体を混合し製膜したあとで前記無機微粒粉体や有機液状体を抽出除去して細孔を形成する方法、結晶性ポリマーを賦形したあとアニール処理をおこなって賦形物にラメラ積層構造を形成し次いで延伸してこのラメラ積層結晶間を剥離させてフィブリルを成長させることにより細孔を形成する方法、また、ポリマー溶液を流延しそれを凝固液(ポリマー溶液の溶媒とは相溶性を有し、ポリマーは不溶な有機溶剤、水など)に浸漬してその際に生じる相分離現象を利用して細孔を形成させる相転換法などがある。
【0003】
前記相転換法は、酢酸セルロース、ポリスルホン、ポリカーボネート、ポリビニルアルコール、ポリアミド、ポリイミド、ポリ弗化ビニリデンなどのポリマーから多孔質膜を製造するときに好適に用いられる。しかし、相転換法で得られる多孔質膜は最表面に緻密層が形成され膜内部に細孔が形成された非対称膜であるため、得られた膜の用途がガス分離膜などに限定されていた。
【0004】
特開平11−310658号公報には、ポリアミック酸溶液をキャストした後に多孔質フィルムを積層し、該積層体を貧溶媒に浸漬することを特徴とするポリイミド多孔膜の製造方法が開示されている。この方法によれば、直径約0.01〜10μmの貫通孔を有するポリイミド多孔質膜を得ることができた。この方法で得られる貫通した微細孔を有する多孔質膜は前記の種々の用途において極めて有用である。
【0005】
【発明が解決しようとする課題】
本発明は、前記特開平11−310658号公報に示された多孔質膜を得る方法において、膜厚、孔径、空孔率、孔形状などの多孔質特性を均質に制御することができる工業的な多孔質膜の連続製造方法および連続製造装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は、上述の課題を解決することを目的としたものであって、ベルトコンベア上に溶液粘度が10〜30000ポイズのポリマー溶液を供給してポリマー溶液流延膜を形成する工程と、前記ポリマー溶液流延膜を均一な膜厚に調整する工程と、溶媒置換速度調整材を連続的に供給し前記ポリマー溶液流延膜の上に貼り合せる工程と、前記工程で形成されたベルトコンベアとポリマー溶液流延膜と溶媒置換速度調整材とからなる積層体を前記ポリマーに対する非溶媒を含む凝固液中に浸漬し且つ凝固液中を移動させて多孔質ポリマー膜を析出させる工程と、前記積層体を構造安定化溶媒中に浸漬する工程と、前記構造安定化溶媒中に浸漬中あるいは前記構造安定化溶媒から取り出した後で前記積層体から溶媒置換速度調整材および多孔質ポリマー膜を剥離する工程と、剥離された前記多孔質ポリマー膜を乾燥及び/あるいは熱処理する工程とを含んで構成される多孔質膜の連続製造方法に関する。さらに、本発明は駆動可能なベルトコンベアと、ポリマー溶液を供給する供給部と、ポリマー溶液流延膜の膜厚調整部と、溶媒置換速度調整材を連続的に供給して前記ポリマー流延膜の上に貼り合せる供給部及び貼り合せ部と、凝固液槽及び構造安定化溶媒槽と、溶媒置換速度調整材及び多孔質ポリマー膜の剥離部とを含んで構成され、ベルトコンベア上に均質な厚みのポリマー溶液流延膜を形成した後で前記流延膜の上に溶媒置換速度調整材を貼り合せて積層体を形成し、次いで前記積層体を凝固液に浸漬し且つ凝固液中を移動させて多孔質ポリマー膜を析出させるように構成された多孔質膜の連続製造装置に関する。
【0007】
【発明の実施の形態】
本願請求項1〜6に記載の多孔質膜の連続製造方法と、本願請求項7〜10に記載の連続製造装置は、各々の各構成が以下に述べるように相互に対応した関係を持つものである。
【0008】
本発明の多孔質膜の連続製造法について説明する。ポリマー溶液はポリマーが溶媒中に均一に溶解され十分脱気される。前記ポリマー溶液のポリマー濃度は0.3〜60重量%、好ましくは1〜30重量%である。0.3重量%未満では得られる多孔質膜の強度が低下するので好ましくなく、60重量%を越えるとポリマーの析出の制御が難しくなるので好ましくない。また、ポリマー溶液の溶液粘度(回転粘度)は10〜30000ポイズ、好ましくは50〜10000ポイズ、特に好ましくは100〜5000ポイズである。溶液粘度が30000ポイズを越えるとベルトコンベア上に容易に流延させたり膜厚を均一に調整するのが困難になり且つ溶媒置換速度の制御が難しくなって孔径、空孔率、孔形状などの多孔質特性を均質に制御することが困難になるので適当ではない。10ポイズ未満では流延膜としての形状を保持できなくなり厚みムラが生じ易くなるのでるので適当ではない。均一な膜厚を得るためには前記ポリマー溶液は一定流量でベルトコンベア上に供給されることが好適である。供給方法としては、ポリマー溶液を貯えた供給装置内を気体特に乾燥空気あるいは不活性ガスなどを用いて一定の圧力に加圧することによってポリマー溶液をノズル(Tダイ)から押し出す方法が気泡などの混入を防げるので好ましい。ポリマー溶液は例えばTダイによってベルトコンベア上に一定の幅を持って一定流量で供給されることが好ましい。
【0009】
ベルトコンベアは表面が平滑であり且つ析出した多孔質膜を容易に剥がすことができる剥離性を有するものが好ましい。また、有機溶剤と接触しても耐久性が優れたものである必要があるので、金属製ベルト特にステンレス製のベルトが好ましい。また、ベルトコンベアは速度を変えることが出来るものであって、且つ、駆動中は変動が少なく定速度になるものが好適である。
【0010】
ベルトコンベア上に流延されたポリマー溶液流延膜は膜厚が調整される。膜厚の調整は、例えばベルトコンベアと幅方向に均一な隙間を持つように設置されその隙間が調整できるブレード(ドクターナイフ)によって好適におこなわれるが、膜厚を精度よく均一に調整する必要があるのでベルト下面が例えばロールやプレートによって支えられている部位でおこなわれることが好ましい。また、本発明の方法においてポリマー流延膜厚は1〜2000μm、特に好ましくは10〜500μmに調整される。膜厚が1μmより小さいと得られる多孔質膜の強度が十分でなくなり好ましくない。また、膜厚が2000μmを越えると得られる多孔質膜の膜厚方向の多孔質構造の均一性が悪くなるので、孔径、空孔率、孔形状などの多孔質特性を均質に制御することが難しくなるので好ましくない。
【0011】
次いで、前記ポリマー溶液流延膜の上に溶媒置換速度調整材を貼り合せる。この張り合せの際、ポリマー溶液流延膜の膜厚が実質的に変化しないように圧力が制御されることが好適である。実質的に変化しないとは、貼り合せられる前のポリマー流延膜の膜厚に対して90%以上の膜厚、好ましくは95%以上の膜厚を保持するようにして貼り付けることである。貼り合せるときの圧力が高いとポリマー溶液が強制的に流動して、流延膜厚のバラツキが大きくなり、得られる多孔質膜の膜厚や孔径、空孔率、孔形状などの多孔質特性を均質に制御することが困難になるので好ましくない。
【0012】
また、前記溶媒置換速度調整材の貼り合せはベルトコンベア上のポリマー溶液流延膜を略水平方向へ移動させながおこなっても構わないが、ベルトコンベア上のポリマー溶液流延膜を略垂直方向へあるいはポリマー溶液流延膜を上側にした状態で垂直方向に対して60度以下(より好ましくは略垂直から45度以下)の角度で下方へ移動させながら、溶媒置換速度調整材を前記ポリマー溶液流延膜の上に貼り合せることが、貼り合せた溶媒置換速度調整材の重量によってポリマー流延膜の膜厚が変化しにくいので特に好適である。例えば、ベルトコンベアとポリマー流延膜との積層体がロールによって略水平方向から略垂直方向へ方向を変えながら進んでいく途中で貼り合せをおこなうことが特に好適である。
【0013】
本発明の溶媒置換速度調整材は、多孔質フィルムであり、ポリマー流延膜を凝固液と接触させてポリマーを析出させる際に、ポリマー溶液の溶媒と凝固液が適切な速度で透過することができる程度の透過性を有するものが好ましい。特に、透気度(ガーレー値)が50〜1000秒/100cc、更に250〜800秒/100ccであるものが好ましい。溶媒置換速度調整材の膜厚は5〜500μm、好ましくは5〜100μmであり、フィルム断面方向に貫通した孔径が0.01〜10μm、好ましくは0.03〜1μmの孔が十分な密度で分散しているものが好適である。溶媒置換速度調整材の透気度が上記範囲より大きいと溶媒置換速度が速すぎて析出するポリマー表面に緻密層が形成されるなど溶媒置換速度を十分調整できなくなるので適当でなく、上記範囲よりも小さいと溶媒置換速度が遅くなり過ぎて析出ポリマーに形成される多孔質構造が不均一になる。
【0014】
溶媒置換速度調整材としては、具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロース、テフロンなどを材料にした不織布或いは多孔質膜などが用いられ、特にポリオレフィン製の微多孔膜を用いると、製造された多孔質膜のフィルム表面の平滑性に優れるので好適である。
【0015】
本発明においては、ベルトコンベアとポリマー流延膜と溶媒置換速度調整材とが貼り合せられた積層体を凝固液に浸漬し且つ凝固液中を移動させて多孔質ポリマー膜を析出させる。凝固液中では、非溶媒が溶媒置換速度調整材を介してポリマー溶液流延膜と接触しポリマー溶液流延膜中の溶媒と徐々に置換されポリマー溶液流延膜の相分離が進んて多孔質ポリマー膜が析出する。この溶媒と非溶媒の置換が偏りなくおこなわれれば、得られる多孔質膜の膜厚や孔径、空孔率、孔形状などの多孔質特性を均質にすることができる。溶媒と非溶媒の置換にバラツキが生じると、相分離の進み具合が均質にならないので得られる多孔質膜の膜厚や孔径、空孔率、孔形状などが不均質になる。本発明の特徴の一つは、前記積層体を凝固液中で移動させ、前記積層体表面に接する溶媒を常にリフレッシュさせながら多孔質ポリマー膜を析出させることにある。すなわち、ポリマー流延膜中の溶媒と凝固液中の非溶媒とが置換するときに起こる局所的な溶媒と非溶媒の濃度、組成の偏りを表面に接する溶媒を常にリフレッシュすることによって抑制し、溶媒と非溶媒との置換を偏りなく進めることによって、得られる多孔質膜の膜厚や孔径、空孔率、孔形状などの多孔質特性をより均質に制御する。
【0016】
また、本発明において、ベルトコンベアとポリマー流延膜と溶媒置換速度調整材とが貼り合せられた積層体を凝固液中に進入させる速度即ちベルトコンベアの速度は、0.01m/分〜50m/分であることが好ましい。0.01m/分未満では生産性が悪いので好適でなく、50m/分を越えると、装置が大きくなり過ぎて、ベルト駆動の制御や凝固液(凝固槽)の管理等に問題が生じるので好ましくない。
【0017】
本発明の凝固液としては、前記ポリマーの非溶媒、又は、これら非溶媒99.9〜40重量%と前記ポリマー溶液の溶媒0.1〜60重量%との混合溶媒を用いることができる。凝固液に非溶媒と溶媒とからなる混合溶媒を用いた場合には析出する多孔質膜の構造が均一になり易いので好適である。即ち、凝固液として用いられる非溶媒はポリマー非溶媒であり且つポリマー溶液の溶媒と相溶性を持つものであり、例えばメタノール、エタノール、イソプロピルアルコールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテルなどのエーテル類、水などが用いられる。
【0018】
次いで、ベルトコンベアと析出した多孔質膜と溶媒置換速度調整材とは貼り合せた状態で、構造安定化溶媒中に浸漬される。構造安定化溶媒は、前記凝固液中で析出した多孔質膜中に残存しているポリマー溶液の溶媒を完全に除去して多孔質構造を安定化させる。前記凝固液はポリマー溶液の相分離を促す作用をもつものであり、非溶媒と溶媒との混合液などを用いてもよいが、構造安定化溶媒は凝固液と相溶性は持つがポリマーに対しては溶解性を示さない溶剤が好ましい。例えば低級アルコール、ヘキサン、水などを好適に用いることができる。
【0019】
更に、構造安定化溶媒はベルトコンベアと析出した多孔質膜と溶媒置換速度調整材との剥離を促進する効果も持っている。従って、構造安定化溶媒中に浸漬されている間に溶媒置換速度調整材や析出した多孔質膜を剥離させてもよい。あるいは、構造安定化溶媒中から取り出したあとで、溶媒置換速度調整材や析出した多孔質膜を剥離させてもよい。構造安定化溶媒に浸漬しないで溶媒置換速度調整材や多孔質膜を剥離させ乾燥や熱処理をおこなうと、多孔質膜中にポリマー溶液の溶媒がかなり残存した状態で応力や熱を加えられるので多孔質構造が変形を起こしやすく、均一な多孔質特性を得るためには好ましいものではない。
【0020】
溶媒置換速度調整材とベルトコンベアから剥離された多孔質膜は、次いで乾燥及び/あるいは熱処理される。この工程は、ポリマーの種類や用いた溶媒の種類によってそれぞれ好適に処理をおこなうことが好ましい。例えばポリアミック酸の多孔質膜では80〜100℃の熱風乾燥に続いて、200℃〜500℃の温度範囲での高温熱処理を施して熱イミド化することによって、最終的にポリイミド多孔質膜を得ることができる。これらの乾燥や熱処理の際、多孔質膜の幅方向の熱収縮を抑制するために例えば幅方向の両端部をピンテンター等で支えて一定の張力を掛け、又、該膜の縦方向の熱収縮を抑制するために例えば膜にテンションロールで一定の張力を掛けておこなうことは、多孔質構造(孔形状、孔径など)を安定化させて均一な多孔質をもった多孔質膜を得ることができるので好適である。
【0021】
本発明において用いられるポリマーは、通常の相転換法において用いられているポリマーであればよく、酢酸セルロース、ポリスルホン、ポリカーボネート、ポリビニルアルコール、ポリアミド、ポリイミド、ポリ弗化ビニリデン、それらの前駆体、及び、それらの混合物などを好適に用いることができるが、耐熱性、耐溶剤、寸歩安定性、絶縁性などにおいて極めて優れた特性を有するので芳香族ポリイミドあるいは芳香族ポリイミド前駆体が特に有用であり好適に用いることができる。
【0022】
以下ポリマーとしてポリイミド前駆体を用いた場合について説明する。前記ポリイミド前駆体とは、テトラカルボン酸成分とジアミン成分、好ましくは芳香族モノマーを重合して得られたポリアミック酸或いはその部分的にイミド化したものであり、熱イミド化あるいは化学イミド化することで閉環してポリイミド樹脂とすることができるものである。ポリイミド樹脂とは、イミド化率が約80%以上、好適には約95%以上の耐熱性ポリマーである。
【0023】
前記ポリイミド前駆体の溶媒として用いる有機溶媒は、パラクロロフェノール、N−メチル−2−ピロリドン(NMP)、ピリジン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、フェノール、クレゾールなどが挙げられる。
【0024】
前記のテトラカルボン酸成分と芳香族ジアミン成分は、上記の有機溶媒中に大略等モル溶解し重合して、対数粘度(30℃、濃度;0.5g/100mL NMP)が0.3以上、特に0.5〜7であるポリイミド前駆体が製造される。また、重合を約80℃以上の温度でおこなった場合に、部分的に閉環してイミド化したポリイミド前駆体が製造される。
【0025】
前記の芳香族ジアミンとしては、例えば、一般式(1)
H2N−R(R1)m−A−(R2)nR’−NH2 (1)
(ただし、前記一般式において、RおよびR’は直接結合あるいは二価の芳香族環、R1およびR2は、水素、低級アルキル、低級アルコキシ、ハロゲン原子などの置換基であり、Aは直接結合あるいはO、S、CO、SO2、SO、CH2、C(CH3)2などの二価の基であり、mおよびnは1〜4の整数である。)で示される芳香族ジアミン化合物が好ましい。
【0026】
前記芳香族ジアミンの具体的な化合物としては、4,4’−ジアミノジフェニルエーテル(以下、DADEと略記することもある)、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジエトキシ−4,4’−ジアミノジフェニルエーテル、パラフェニレンジアミンなどが挙げられる。
【0027】
また、前記の芳香族ジアミン成分としては、ジアミノピリジンであってもよく、具体的には、2,6−ジアミノピリジン、3,6−ジアミノピリジン、2,5−ジアミノピリジン、3,4−ジアミノピリジンなどが挙げられる。
芳香族ジアミン成分は上記の各芳香族ジアミン成分を2種以上組み合わせて使用してもよい。
【0028】
前記のテトラカルボン酸成分としては、好適にはビフェニルテトラカルボン酸成分が挙げられ、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、s−BPDAと略記することもある)、2,3,3’,4−ビフェニルテトラカルボン酸二無水物が好ましいが、3,3’,4,4’−又は2,3,3’,4’−ビフェニルテトラカルボン酸、あるいは3,3’,4,4’−又は2,3,3’,4’−ビフェニルテトラカルボン酸の塩またはそれらのエステル誘導体であってもよい。ビフェニルテトラカルボン酸成分は、上記各ビフェニルテトラカルボン酸類の混合物であってもよい。
【0029】
また、上記のテトラカルボン酸成分は、ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)エーテル、ビス(3,4−ジカルボキシフェニル)チオエーテルあるいはそれらの酸無水物、塩またはエステル化誘導体などのテトラカルボン酸類であってもよい。またこれら芳香族テトラカルボン酸成分の一部をブタンテトラカルボン酸、あるいはそれらの酸無水物、塩またはエステル化誘導体などの脂肪族テトラカルボン酸類で、全テトラカルボン酸成分に対して10モル%以下、特に5モル%以下の割合で置き換えてもよい。
【0030】
前記のポリイミド前駆体は、前記有機溶媒に0.3〜60重量%、好ましくは1〜30重量%の割合で溶解してポリイミド前駆体溶液に調製される(有機溶媒を加えてもよくあるいは重合溶液をそのまま用いてもよい)。ポリイミド前駆体の割合が0.3重量%より小さいと多孔質膜を作製した際のフィルム強度が低下するので適当でなく、60重量%より大きいと溶液粘度調整が難しく溶液粘度が高くなって流延が難しくなるし、多孔質膜析出の制御が難しくなるので好ましくないため上記の範囲が好適である。前記のポリマー濃度において、ポリマー溶液は好適な溶液粘度である10〜30000ポイズ、より好ましくは50〜10000ポイズ、特に好ましくは100〜5000ポイズに容易に調整できる。
【0031】
本発明法において得られたポリイミド前駆体からなる多孔質膜は、加熱処理によって熱イミド化されてポリイミド多孔質膜とされる。化学イミド化でもイミド化できるが、熱イミド化する方法では工程が複雑にならないのに加え、得られる膜の強度が大きくなる傾向があるので好適である。熱イミド化は前述のとおり、大気中にて250℃〜500℃で5分間〜60分間熱処理することによって好適におこなうことができる。
【0032】
次に、本発明の多孔質膜の連続製造装置について、代表的な実施形態の概略図である図1〜図4によって説明する。尚、本発明の連続製造装置は図1〜図4の概略図に示された実施形態に限定されるものではない。
本発明の連続製造装置は速度可変で、かつ定速で駆動するベルトコンベア1を備える。ベルトコンベア1は表面が平滑であり且つ析出した多孔質膜を容易に剥がすことができる剥離性を有するものが好ましい。また、有機溶剤と接触しても耐久性が優れたものである必要があるので、金属製ベルト特にステンレス製のベルトが好ましい。
【0033】
また、ポリマー溶液を一定流量で供給する供給部2を備える。この供給部は、ポリマー溶液を脱気された状態で保持し一定流量で、ノズル(或いは、Tダイ)3からベルトコンベア上に供給する。供給はポンプを用いておこなってもよいが、ポリマー溶液を収納した密閉された容器に気体好ましくは乾燥空気または窒素ガスなどの不活性気体を注入して一定の圧力によってポリマー溶液を一定流量で押し出す方法によって、気泡を混入させることなく好適におこなうことができる。また、ベルトコンベア上への供給形態はノズルから押し出す方法やスプレイする方法などがあり、それらのノズルがベルトの幅方向にトラバースするものでもよいが、ベルトの幅方向にスリットを持つTダイを通して幅方向に一定幅で均一に供給されるものが好適である。こうすると溶液粘度が比較的高いときでも膜厚が揃ったポリマー溶液の流延膜を形成することができる。形成された流延膜はベルトによって移動して膜厚調整部4によってより高い精度で厚みを調整される。膜厚調整部4はベルト表面に対して一定の隙間を置いて備えられたブレード(ドクターナイフ)によって構成される。隙間の大きさは可変である。また、膜厚を精度よく均一に調整するためにベルト下面が例えばロールや平滑表面を持つ台座によって支えられたり、更にベルトの遊びを防ぐために下面が吸引されて平滑面に吸着されるように構成されていてもよい。
【0034】
また、本発明の連続製造装置は、溶媒置換速度調整材の供給部5と貼り合せ部6とを備える。溶媒置換速度調整材の供給部5は例えば溶媒置換速度調整材が供給ロールから連続的に供給され、貼り合せ部6では例えばピンチロールによってガイドされてベルトコンベア上に形成されたポリマー溶液流延膜の上に貼り合せられる。この際、ピンチロールとベルトコンベアとの間の隙間は、溶媒置換速度調整材が張り付けられてもポリマー流延膜の厚みが実質的に変化しない程度の圧力を加えるように調整が可能なものである。また、貼り合せ部は、ベルトコンベア上のポリマー溶液流延膜を略水平方向へ移動させながおこなうように構成されていても構わないが、ベルトコンベア上のポリマー溶液流延膜を略垂直方向にあるいはポリマー溶液流延膜を上にした状態で垂直方向に対して60度以下(より好ましくは45度以下)の角度で下方へ移動させながら、溶媒置換速度調整材を前記ポリマー溶液流延膜の上に貼り合せるように構成されると、貼り合せた溶媒置換速度調整材の重量によってポリマー流延膜の膜厚が変化しにくいので特に好適である。例えば、図1〜図4に示されているように、ベルトコンベアとポリマー流延膜がロールに導かれて略水平方向から略垂直方向へ進んでいく部位で貼り合せがおこなわれるように構成されると、溶媒置換速度調整材の重量によってポリマー溶液流延膜が影響を受けて膜厚などの変動が起こりにくいので好適である。
【0035】
また、本発明の連続製造装置では、ポリマー溶液供給部2、流延膜の膜厚調整部4、溶媒置換速度調整材の貼り合せ部6、貼り合せ部から凝固液槽7までのベルトコンベア1が通過する空間の湿度及び温度が制御できるように構成されることが好ましい。温度はポリマー溶液粘度に影響を与えるので一定に制御する必要がある。また、吸湿性の溶媒を用いている場合には低湿度に保持しないと溶媒が水分を吸湿してポリマーを析出させ易くなるという問題が生じる。温度も湿度も相分離析出工程に影響を与えるので、一定に管理することが孔径、空孔率、孔形状などの多孔質特性を均質に制御するうえで重要である。更に、塵埃の影響を避けるためにこれらの空間のクリーン度は必要なレベルに保持されるようにクリーン化装置が備えられることが望ましい。
【0036】
また、本発明の連続製造装置は、凝固液槽7および構造安定化溶媒槽8を備える。これらの槽には、それぞれ前述の凝固液と構造安定化液が貯えられている。本発明では、ベルトコンベアとポリマー溶液の流延膜と溶媒置換速度調節材とを貼り合せた積層体が凝固液に浸漬され、且つ、凝固液中を移動するように構成される。浸漬中にポリマー溶液の溶媒と凝固液溶媒が徐々に置換して相分離を起こして多孔質膜が析出する。これらの溶媒の置換を均質におこなうことが多孔質膜の孔径、空孔率、孔形状などの多孔質特性を均質に制御する上で極めて重要である。本発明では、前記積層体を凝固液溶媒中で移動させて積層体表面に接する溶媒を常にリフレッシュさせ、局所的な溶媒濃度の偏りを抑制するように構成されている。また、浸漬は十分行われる必要があるのでこれらの槽は複数備えられていても構わない。また、図2の実施形態のように、凝固液槽内で積層体が蛇行するようにして、十分な浸漬時間を稼ぐように構成されてもよい。相分離は、温度や溶媒の組成によって影響を受けるので凝固液槽は温度や溶媒組成などの管理が十分おこなわれるようになっていることが好適である。
【0037】
また、本発明の製造装置においては、、図1及び図2の実施形態のように前記積層体が略垂直に凝固液へ進入させるように構成されてもよいし、図3及び図4の実施形態のように前記積層体が凝固液表面に対して傾斜して凝固液に進入するように構成されても構わない。また、図4の実施形態のように、前記積層体が凝固液へ進入し移動する工程で積層体が凝固液表面に対して傾斜して移動するように構成し、また、凝固液からの取り出される工程でも積層体が凝固液表面に対して傾斜して移動するように構成すれば、凝固液の水位を高くして浸漬時間(浸漬距離)を長くしたり、凝固液の水位を低くして浸漬時間(浸漬距離)を短くしたりするなどの調整が容易にできるので極めて好適である。更に、積層体の凝固液への進入速度もまた溶媒置換、相分離析出挙動に対して影響を与えるので0.01m/分〜50m/分の範囲で調整可能であることが望ましい。
【0038】
また、本発明の製造装置においては、ベルトコンベアの駆動は特に限定されるものではなく通常の駆動方法を用いることができるが、駆動ロールやフリーロールを用いて好適におこなわれる。また、図1〜図4の13で示したようなロールでは、積層体の溶媒置換速度調整材がロール表面と直接接触するので、多孔質膜へ加わる圧縮応力を緩和するために、ロール表面をゴムなどの弾性体で被覆したものが好適に用いられる。このようなロールの表面がステンレスなどの金属では、多孔質膜が圧縮応力を受けて多孔形態が変形することがあるので好ましいものではない。
【0039】
構造安定化溶媒槽8は、構造安定化溶媒中で溶媒置換速度調節材及び/あるいは析出した多孔質膜を剥離するように、溶媒置換速度調節材の剥離部9や析出した多孔質膜の剥離部10が組み込まれていてもよい。この場合には、最初に溶媒置換速度調整材を剥離して多孔質膜に溶媒をより接触させた後で多孔質膜を剥離するように配置することが、各々の剥離が容易になるので好適である。また、構造安定化溶媒を出た後で溶媒置換速度調節材及び/あるいは析出した多孔質膜を剥離するように、構造安定化溶媒槽8と溶媒置換速度調節材の剥離部9と多孔質膜の剥離部10が構成されてもよい。
【0040】
剥離された多孔質膜は乾燥及び/あるいは熱処理がおこなわれる。このためには熱風乾燥器及び/あるいは高温熱処理装置が備えられる。熱風乾燥器及び/あるいは高温熱処理装置は、ポリマー供給部から剥離部までと一体化して、剥離された多孔質膜が連続的に乾燥及び/あるいは熱処理されるように構成されていてもよいし、あるいは、乾燥及び/あるいは熱処理を別の工程となるように熱風乾燥器及び/あるいは高温熱処理装置が配置されてもよい。
【0041】
本発明によって、特に好ましくは空孔率が15〜85%、平均孔径が0.01〜10μmの微細な連続孔を有する多孔質構造を持つ多孔質膜を得ることができる。この微細な連続孔は任意の表面から細孔が通路状に他の表面まで連続しており、屈曲しながら非直線的に通じているものである。また、本発明によって得られる多孔質膜は空孔率が高くしても機械的強度が高いものであり、しかも、膜厚や孔径、空孔率、孔形状などの多孔質特性が均質な多孔質膜であるので、種々の用途において極めて有用である。
【0042】
【実施例】
次に、本発明を実施例によって説明する。但し、本発明は以下の実施例に限定されるものではない。
(参考例)
ポリアミック酸溶液の調整
テトラカルボン酸成分としてs−BPDAを、ジアミン成分としてDADEを用い、S−BPDAに対するDADEのモル比が0.996で且つ該モノマー成分の合計重量が10重量%になるようにNMPに溶解し、温度40℃、6時間重合をおこなってポリイミド前駆体溶液を得た。ポリイミド前駆体溶液の溶液粘度は800ポイズであった。
【0043】
(実施例)
多孔質膜の製造
図4で概略図を示した装置を用いて多孔質膜を製造した。
ポリマー供給部に、参考例で得たあとで減圧脱気したポリイミド前駆体溶液を気泡を巻き込まないように注ぎ込み、2.5kg/cm2に加圧した窒素ガスを注入してその圧力によって、前記ポリイミド前駆体溶液をTダイを通じて0.3m/分の速さで駆動するステンレス製のベルトコンベア上に流延し、続いて厚さ調整部によって流延膜の厚さを100μmに調整した。溶媒置換速度調整材としてポリエチレン多孔質膜(宇部興産(株)製、ユーポアUP2015、透気度550秒/100cc)を用い、ピンチロールを介して前記流延膜上に実質的に膜厚は変化しないようにして貼り付けた。これらの工程は温度23℃、相対湿度50%の雰囲気下でおこなった。次に、ベルトコンベアと流延膜とポリエチレン多孔質膜とを貼り合せた積層体をメタノールが貯えられた凝固液槽中に進入させ5分間凝固液中を移動させて浸漬しポリイミド前駆体多孔質膜を析出させた。これを更にロールによって凝固液槽から水が貯えられた構造安定化溶媒槽へ導いて浸漬し、構造安定化溶媒槽から出たあとで、溶媒置換速度調整材を剥離して取り除き、次いで、ポリイミド前駆体多孔質膜をベルトコンベアから剥離した。
【0044】
次に、ポリイミド前駆体多孔質膜は、両端部を膜を支えるに十分な間隔で並ぶピンにより固定して幅方向の収縮を抑制し、且つ、進行方向に収縮を抑制する程度の張力を掛けながら、温度80℃の乾燥槽を10分間で通過させて乾燥し、続いて400℃の熱処理槽を20分間で通過させて熱イミド化をおこないポリイミド多孔質膜を得た。
【0045】
得られたポリイミド多孔質膜は、可撓性を持ち30.0μmの均一な膜厚を持っており、表面にメタノールを滴下すると裏面に透過する連続孔を有していた。走査型電子顕微鏡で観察したところ平均孔径は0.23μmの均一性の高い多孔質膜であり、空孔率は65%で透気度は160秒/100ccであった。
【0046】
更に、引き続き連続製造したポリイミド多孔質膜を10mごとにサンプリングして平均孔径と透気度を測定した結果を表1に示す。孔径は平均値が0.24μmで標準偏差が0.022であり、また、透気度は平均値が155秒/100ccで標準偏差が11.0であった。また、膜厚は平均値が29.9μmで標準偏差は1.004であった。
【0047】
【表1】
【0048】
尚、本発明において、多孔質膜の孔径、透気度は次の方法によって測定した。▲1▼多孔質膜の平均孔径
膜表面の走査型電子顕微鏡写真を撮り、50点以上の開口部について孔面積を測定し、該孔面積の平均値から次式に従って孔形状が真円であるとした際の平均直径を計算より求めた。次式のSaは孔面積の平均値を意味する。
平均孔径=2×(Sa/π)1/2
▲2▼透気度
JIS P8117に準じて測定した。測定装置としてB型ガーレーデンソメーター(東洋精機社製)を使用した。試料の膜を直径28.6mm、面積645mm2の円孔に締付ける。内筒重量567gにより、筒内の空気を試験円孔部から筒外へ通過させる。空気100ccが通過する時間を測定し、透気度(ガーレー値)とした。
▲3▼空孔率
所定の大きさに切取った膜の膜厚、面積及び重量を測定し、目付重量から次式により空孔率を求めた。次式のSは膜面積、dは膜厚、wは測定した重量、Dは該多孔質膜を形成するポリマー密度であり、例えば芳香族ポリイミドでは1.34とした。
空孔率=(1−W/(S×d×D))×100
【0049】
【発明の効果】
本発明は以上説明をしたようなものであるから、以下に述べるような効果を奏する。
本発明の多孔質膜の連続製造方法および連続製造装置によって、膜厚、孔径、空孔率、孔形状などの多孔質特性が均質な多孔質ポリマー膜を工業的に連続製造することができる。
【図面の簡単な説明】
【図1】図1は本発明の多孔質膜の連続製造装置の実施形態の一つの概略図である。
【図2】図2は本発明の多孔質膜の連続製造装置の実施形態の一つの概略図である。
【図3】図3は本発明の多孔質膜の連続製造装置の実施形態の一つの概略図である。
【図4】図4は本発明の多孔質膜の連続製造装置の実施形態の一つの概略図である。
【符号の説明】
1:ベルトコンベア
2:ポリマー溶液供給部
3:Tダイ
4:ブレード
5:溶媒置換速度調整材供給部
6:貼り合せ部(ピンチロール)
7:凝固液槽
8:構造安定化溶媒槽
9:溶媒置換速度調整材剥離ロール
10:多孔質膜剥離ロール
11:駆動ロール
12:フリーロール
13:ゴムロール
14:溶媒置換速度調整材
15:多孔質膜[0001]
BACKGROUND OF THE INVENTION
The present invention is a method by which a polymer porous membrane can be obtained from a cast membrane of a polymer solution by a phase inversion method while adjusting the solvent substitution rate, and is particularly porous having a uniform and porous property with little variation. The present invention relates to a porous membrane manufacturing method and a manufacturing apparatus capable of continuously obtaining a membrane.
[0002]
[Prior art]
Porous polymer membranes are widely used for industrial materials such as filters, separation membranes and battery separators, raw materials for medical materials, optical materials and electronic materials. A method for producing a porous polymer film is, for example, a method of forming pores by extracting and removing the inorganic fine particle powder or organic liquid after forming a film by mixing an inorganic fine powder or organic liquid with a polymer, A method of forming pores by forming a lamellar layered structure on a shaped object after forming a crystalline polymer and then stretching and peeling between the lamellar layered crystals to grow fibrils, or The polymer solution is cast and immersed in a coagulation liquid (compatible with the solvent of the polymer solution, and the polymer is an insoluble organic solvent, water, etc.) and finely divided by utilizing the phase separation phenomenon that occurs at that time. There is a phase change method for forming pores.
[0003]
The phase change method is suitably used when a porous membrane is produced from a polymer such as cellulose acetate, polysulfone, polycarbonate, polyvinyl alcohol, polyamide, polyimide, polyvinylidene fluoride, and the like. However, since the porous membrane obtained by the phase change method is an asymmetric membrane in which a dense layer is formed on the outermost surface and pores are formed inside the membrane, the use of the obtained membrane is limited to gas separation membranes, etc. It was.
[0004]
Japanese Patent Application Laid-Open No. 11-310658 discloses a method for producing a polyimide porous film characterized by laminating a porous film after casting a polyamic acid solution and immersing the laminate in a poor solvent. According to this method, a polyimide porous membrane having through holes having a diameter of about 0.01 to 10 μm could be obtained. A porous membrane having through micropores obtained by this method is extremely useful in the various applications described above.
[0005]
[Problems to be solved by the invention]
Industrial Applicability The present invention is an industrial technique capable of uniformly controlling porous properties such as film thickness, pore diameter, porosity, pore shape and the like in the method for obtaining a porous membrane disclosed in JP-A-11-310658. It is to provide a continuous production method and continuous production apparatus for a porous membrane.
[0006]
[Means for Solving the Problems]
The present invention aims to solve the above-mentioned problems, and a step of supplying a polymer solution having a solution viscosity of 10 to 30000 poise on a belt conveyor to form a polymer solution casting film, A step of adjusting the polymer solution casting film to a uniform film thickness, a step of continuously supplying a solvent displacement rate adjusting material and bonding the polymer solution casting film on the polymer solution casting membrane, and a belt conveyor formed in the step A step of immersing a laminate comprising a polymer solution casting film and a solvent substitution rate adjusting material in a coagulation liquid containing a non-solvent for the polymer and moving the coagulation liquid to deposit a porous polymer film; A step of immersing the body in a structure-stabilizing solvent, and after immersing in the structure-stabilizing solvent or after being taken out of the structure-stabilizing solvent, a solvent substitution rate adjusting material and a porous A step of peeling off the mer film, a process for the continuous production porous film made exfoliated said porous polymeric membrane drying and / or and a step of heat treatment. The present invention further provides a belt conveyor that can be driven, a supply unit that supplies a polymer solution, a film thickness adjusting unit for a polymer solution casting film, and a solvent replacement speed adjusting material that are continuously supplied to the polymer casting film. And a coagulating liquid tank and a structure-stabilizing solvent tank, a solvent replacement speed adjusting material and a porous polymer film peeling part, and uniform on the belt conveyor. After forming a polymer solution casting film having a thickness, a laminate is formed by laminating a solvent displacement rate adjusting material on the casting film, and then the laminate is immersed in the coagulating liquid and moved in the coagulating liquid. The present invention relates to an apparatus for continuously producing a porous film configured to deposit a porous polymer film.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The continuous manufacturing method of the porous membrane according to
[0008]
The continuous production method of the porous membrane of the present invention will be described. In the polymer solution, the polymer is uniformly dissolved in the solvent and sufficiently deaerated. The polymer concentration of the polymer solution is 0.3 to 60% by weight, preferably 1 to 30% by weight. If it is less than 0.3% by weight, the strength of the resulting porous film is lowered, which is not preferable. If it exceeds 60% by weight, it is difficult to control the precipitation of the polymer, which is not preferable. The solution viscosity (rotational viscosity) of the polymer solution is 10 to 30000 poise, preferably 50 to 10000 poise, and particularly preferably 100 to 5000 poise. When the solution viscosity exceeds 30000 poise, it becomes difficult to cast on a belt conveyor or to adjust the film thickness uniformly, and it becomes difficult to control the solvent replacement speed, and the pore diameter, porosity, hole shape, etc. This is not appropriate because it is difficult to control the porous properties uniformly. If it is less than 10 poise, the shape as a cast film cannot be maintained, and thickness unevenness is likely to occur. In order to obtain a uniform film thickness, the polymer solution is preferably supplied on a belt conveyor at a constant flow rate. As a supply method, a method of pushing out the polymer solution from a nozzle (T die) by pressurizing the inside of the supply device storing the polymer solution to a certain pressure using a gas, particularly dry air or an inert gas, is mixed with bubbles or the like. Is preferable. The polymer solution is preferably supplied at a constant flow rate with a constant width on a belt conveyor by, for example, a T-die.
[0009]
The belt conveyor is preferably one having a smooth surface and a releasability capable of easily peeling the deposited porous film. Further, since it is necessary to have excellent durability even in contact with an organic solvent, a metal belt, particularly a stainless steel belt is preferable. Further, it is preferable that the belt conveyor can change the speed and has a constant fluctuation during driving.
[0010]
The film thickness of the polymer solution cast film cast on the belt conveyor is adjusted. The adjustment of the film thickness is preferably performed by a blade (doctor knife) that is installed with a uniform gap in the width direction with the belt conveyor, for example, but it is necessary to adjust the film thickness accurately and uniformly. Therefore, it is preferable that the lower surface of the belt is carried out at a portion supported by, for example, a roll or a plate. In the method of the present invention, the polymer cast film thickness is adjusted to 1 to 2000 μm, particularly preferably 10 to 500 μm. When the film thickness is smaller than 1 μm, the strength of the obtained porous film is not sufficient, which is not preferable. Moreover, since the uniformity of the porous structure in the film thickness direction of the obtained porous film deteriorates when the film thickness exceeds 2000 μm, it is possible to uniformly control the porous characteristics such as the pore diameter, the porosity, and the pore shape. Since it becomes difficult, it is not preferable.
[0011]
Next, a solvent replacement rate adjusting material is bonded onto the polymer solution casting film. It is preferable that the pressure is controlled so that the film thickness of the polymer solution cast film does not substantially change during the pasting. “Substantially not changing” means that the film is pasted so as to maintain a film thickness of 90% or more, preferably 95% or more with respect to the film thickness of the polymer cast film before being bonded. If the pressure at the time of bonding is high, the polymer solution will forcibly flow, resulting in large variations in the cast film thickness, and the porous properties such as film thickness, pore diameter, porosity, and pore shape of the resulting porous film This is not preferable because it is difficult to control the temperature uniformly.
[0012]
The solvent replacement speed adjusting material may be bonded without moving the polymer solution casting film on the belt conveyor in a substantially horizontal direction, but the polymer solution casting film on the belt conveyor in a substantially vertical direction. Or with the polymer solution casting membrane facing upward, the solvent displacement rate adjusting material is moved downward at an angle of 60 degrees or less (more preferably 45 degrees or less from substantially vertical) with respect to the vertical direction. It is particularly preferable to bond the film on the casting film because the film thickness of the polymer casting film hardly changes depending on the weight of the solvent replacement speed adjusting material. For example, it is particularly preferable that the lamination of the belt conveyor and the polymer cast film is performed in the middle of progressing while changing the direction from a substantially horizontal direction to a substantially vertical direction by a roll.
[0013]
The solvent substitution rate adjusting material of the present invention is a porous film, and when the polymer casting film is brought into contact with the coagulation liquid to precipitate the polymer, the solvent of the polymer solution and the coagulation liquid may permeate at an appropriate rate. What has the permeability which can be performed is preferable. In particular, those having an air permeability (Gurley value) of 50 to 1000 seconds / 100 cc, more preferably 250 to 800 seconds / 100 cc are preferred. The film thickness of the solvent substitution rate adjusting material is 5 to 500 μm, preferably 5 to 100 μm, and the pore diameter penetrating in the film cross-sectional direction is 0.01 to 10 μm, preferably 0.03 to 1 μm. What is doing is suitable. If the air permeability of the solvent substitution rate adjusting material is larger than the above range, the solvent substitution rate is too high, and a dense layer is formed on the surface of the polymer that precipitates. If it is smaller, the solvent substitution rate becomes too slow and the porous structure formed in the precipitated polymer becomes non-uniform.
[0014]
As the solvent substitution rate adjusting material, specifically, a polyolefin such as polyethylene or polypropylene, a nonwoven fabric or a porous film made of cellulose, Teflon, or the like is used. Especially, when a microporous film made of polyolefin is used, This is preferable because the smoothness of the film surface of the porous film is excellent.
[0015]
In the present invention, a laminated body in which a belt conveyor, a polymer casting film, and a solvent substitution rate adjusting material are bonded together is immersed in a coagulating liquid and moved in the coagulating liquid to deposit a porous polymer film. In the coagulation liquid, the non-solvent comes into contact with the polymer solution casting membrane via the solvent substitution rate adjusting material and gradually substitutes for the solvent in the polymer solution casting membrane, so that the phase separation of the polymer solution casting membrane proceeds and becomes porous. A polymer film is deposited. If the substitution between the solvent and the non-solvent is performed without any deviation, the porous properties such as the film thickness, pore diameter, porosity, pore shape and the like of the obtained porous membrane can be made uniform. When the solvent and non-solvent substitution varies, the degree of progress of phase separation is not uniform, so that the thickness, pore diameter, porosity, pore shape, etc. of the resulting porous membrane are not uniform. One of the features of the present invention is to deposit the porous polymer film while moving the laminate in a coagulating liquid and constantly refreshing the solvent in contact with the surface of the laminate. In other words, the local solvent and non-solvent concentrations that occur when the solvent in the polymer casting film and the non-solvent in the coagulation liquid are replaced, and the composition bias are suppressed by constantly refreshing the solvent in contact with the surface, By proceeding with the replacement of the solvent with the non-solvent without any bias, the porous properties such as the film thickness, pore diameter, porosity, and pore shape of the resulting porous membrane are controlled more uniformly.
[0016]
In the present invention, the speed at which the laminated body in which the belt conveyor, the polymer cast film, and the solvent replacement speed adjusting material are bonded to the coagulating liquid, that is, the speed of the belt conveyor is 0.01 m / min to 50 m / min. Minutes are preferred. If it is less than 0.01 m / min, the productivity is poor, which is not suitable. If it exceeds 50 m / min, the apparatus becomes too large, and problems such as belt drive control and coagulation liquid (coagulation tank) management occur. Absent.
[0017]
As the coagulation liquid of the present invention, a non-solvent of the polymer or a mixed solvent of 99.9 to 40% by weight of the non-solvent and 0.1 to 60% by weight of the solvent of the polymer solution can be used. When a mixed solvent composed of a non-solvent and a solvent is used for the coagulation liquid, it is preferable because the structure of the deposited porous film tends to be uniform. That is, the non-solvent used as the coagulation liquid is a polymer non-solvent and is compatible with the solvent of the polymer solution. For example, alcohols such as methanol, ethanol, isopropyl alcohol, ketones such as acetone, diethyl ether, etc. Ethers, water and the like are used.
[0018]
Next, the belt conveyor, the deposited porous film, and the solvent replacement rate adjusting material are bonded together and immersed in the structure stabilizing solvent. The structure stabilizing solvent stabilizes the porous structure by completely removing the solvent of the polymer solution remaining in the porous film deposited in the coagulating liquid. The coagulation liquid has a function of promoting the phase separation of the polymer solution, and a mixed liquid of a non-solvent and a solvent may be used. However, the structure stabilizing solvent has compatibility with the coagulation liquid but is not compatible with the polymer. In particular, a solvent that does not exhibit solubility is preferable. For example, lower alcohol, hexane, water and the like can be preferably used.
[0019]
Further, the structure stabilizing solvent has an effect of promoting the peeling between the belt conveyor, the deposited porous film, and the solvent replacement speed adjusting material. Therefore, the solvent replacement rate adjusting material or the deposited porous film may be peeled off while being immersed in the structure stabilizing solvent. Alternatively, after taking out from the structure stabilizing solvent, the solvent replacement rate adjusting material or the deposited porous film may be peeled off. If the solvent substitution rate adjusting material or porous membrane is peeled off without being immersed in the structure stabilizing solvent and then dried or heat treated, stress and heat can be applied with the polymer solution solvent remaining in the porous membrane. It is not preferable for obtaining a uniform porous property because the material structure is easily deformed.
[0020]
The porous film peeled off from the solvent replacement speed adjusting material and the belt conveyor is then dried and / or heat-treated. In this step, it is preferable that the treatment is suitably performed depending on the type of polymer and the type of solvent used. For example, in the case of a porous film of polyamic acid, a polyimide porous film is finally obtained by performing hot imidization by performing high temperature heat treatment in a temperature range of 200 ° C. to 500 ° C. following hot air drying at 80 to 100 ° C. be able to. During these drying and heat treatments, in order to suppress thermal shrinkage in the width direction of the porous film, for example, both ends in the width direction are supported by a pin tenter or the like to apply a certain tension, and the heat shrinkage in the longitudinal direction of the film In order to suppress this, for example, applying a constant tension to the membrane with a tension roll can stabilize the porous structure (pore shape, pore diameter, etc.) and obtain a porous membrane having a uniform porosity. This is preferable because it is possible.
[0021]
The polymer used in the present invention may be a polymer used in a usual phase change method, and is cellulose acetate, polysulfone, polycarbonate, polyvinyl alcohol, polyamide, polyimide, polyvinylidene fluoride, a precursor thereof, and A mixture thereof can be preferably used, but aromatic polyimide or an aromatic polyimide precursor is particularly useful because it has extremely excellent characteristics in heat resistance, solvent resistance, step stability, insulation, etc. Can be used.
[0022]
The case where a polyimide precursor is used as the polymer will be described below. The polyimide precursor is a polyamic acid obtained by polymerizing a tetracarboxylic acid component and a diamine component, preferably an aromatic monomer, or partially imidized, and thermal imidization or chemical imidization. The ring can be closed with a polyimide resin. The polyimide resin is a heat-resistant polymer having an imidization ratio of about 80% or more, preferably about 95% or more.
[0023]
The organic solvent used as the solvent for the polyimide precursor is parachlorophenol, N-methyl-2-pyrrolidone (NMP), pyridine, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, Examples include phenol and cresol.
[0024]
The tetracarboxylic acid component and the aromatic diamine component are dissolved in approximately equimolar amounts in the organic solvent and polymerized, and the logarithmic viscosity (30 ° C., concentration: 0.5 g / 100 mL NMP) is 0.3 or more, particularly A polyimide precursor of 0.5-7 is produced. Further, when the polymerization is carried out at a temperature of about 80 ° C. or higher, a polyimide precursor that is partially ring-closed and imidized is produced.
[0025]
Examples of the aromatic diamine include the general formula (1).
H2N—R (R1) mA— (R2) nR′—NH2 (1)
(In the above general formula, R and R ′ are a direct bond or a divalent aromatic ring,
[0026]
Specific examples of the aromatic diamine include 4,4′-diaminodiphenyl ether (hereinafter sometimes abbreviated as DADE), 3,3′-dimethyl-4,4′-diaminodiphenyl ether, 3,3 ′. -Diethoxy-4,4'-diaminodiphenyl ether, paraphenylenediamine and the like.
[0027]
Further, the aromatic diamine component may be diaminopyridine, specifically, 2,6-diaminopyridine, 3,6-diaminopyridine, 2,5-diaminopyridine, 3,4-diamino. Examples include pyridine.
As the aromatic diamine component, two or more of the above aromatic diamine components may be used in combination.
[0028]
The tetracarboxylic acid component is preferably a biphenyltetracarboxylic acid component, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as s-BPDA). 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride is preferred, but 3,3 ′, 4,4′- or 2,3,3 ′, 4′-biphenyltetracarboxylic acid, or It may be a salt of 3,3 ′, 4,4′- or 2,3,3 ′, 4′-biphenyltetracarboxylic acid or an ester derivative thereof. The biphenyltetracarboxylic acid component may be a mixture of the above biphenyltetracarboxylic acids.
[0029]
The tetracarboxylic acid component includes pyromellitic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, bis (3,4). Tetracarboxylic acids such as -dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, bis (3,4-dicarboxyphenyl) thioether or acid anhydrides, salts or esterified derivatives thereof, Also good. Further, a part of these aromatic tetracarboxylic acid components is butanetetracarboxylic acid or aliphatic tetracarboxylic acids such as acid anhydrides, salts or esterified derivatives thereof, and it is 10 mol% or less based on the total tetracarboxylic acid components. In particular, it may be replaced at a ratio of 5 mol% or less.
[0030]
The polyimide precursor is prepared in a polyimide precursor solution by dissolving in the organic solvent at a ratio of 0.3 to 60% by weight, preferably 1 to 30% by weight (an organic solvent may be added or polymerization may be performed). The solution may be used as is). If the proportion of the polyimide precursor is less than 0.3% by weight, the film strength at the time of producing the porous film is lowered. The above range is preferable because it is difficult to extend the film and it is difficult to control the deposition of the porous film. At the above polymer concentration, the polymer solution can be easily adjusted to a suitable solution viscosity of 10 to 30000 poise, more preferably 50 to 10000 poise, particularly preferably 100 to 5000 poise.
[0031]
The porous film made of the polyimide precursor obtained in the method of the present invention is thermally imidized by heat treatment to form a polyimide porous film. Chemical imidization can also be used for imidization, but the thermal imidization method is suitable because the process is not complicated and the strength of the resulting film tends to increase. As described above, the thermal imidization can be suitably performed by heat treatment at 250 ° C. to 500 ° C. for 5 minutes to 60 minutes in the air.
[0032]
Next, the continuous production apparatus for a porous membrane of the present invention will be described with reference to FIGS. 1 to 4 which are schematic diagrams of representative embodiments. In addition, the continuous manufacturing apparatus of this invention is not limited to embodiment shown by the schematic of FIGS. 1-4.
The continuous production apparatus of the present invention includes a
[0033]
Moreover, the supply part 2 which supplies a polymer solution with a fixed flow rate is provided. The supply unit holds the polymer solution in a degassed state and supplies the polymer solution from the nozzle (or T-die) 3 onto the belt conveyor at a constant flow rate. The supply may be performed using a pump, but a gas, preferably an inert gas such as dry air or nitrogen gas, is injected into a sealed container containing the polymer solution, and the polymer solution is pushed out at a constant flow rate with a constant pressure. By the method, it can carry out suitably, without mixing a bubble. In addition, the supply form on the belt conveyor includes a method of extruding from a nozzle and a method of spraying, and these nozzles may be traversed in the width direction of the belt, but the width is passed through a T die having a slit in the width direction of the belt. What is supplied uniformly with a constant width in the direction is preferable. In this way, a cast film of a polymer solution having a uniform film thickness can be formed even when the solution viscosity is relatively high. The formed cast film is moved by the belt and the thickness is adjusted by the film
[0034]
Further, the continuous production apparatus of the present invention includes a
[0035]
In the continuous production apparatus of the present invention, the polymer solution supply unit 2, the cast film
[0036]
The continuous production apparatus of the present invention includes a coagulating
[0037]
Moreover, in the manufacturing apparatus of the present invention, the laminate may be configured to enter the coagulation liquid substantially vertically as in the embodiment of FIGS. 1 and 2, or the implementation of FIGS. 3 and 4. You may comprise so that the said laminated body may incline with respect to the coagulation liquid surface like a form, and may approach into coagulation liquid. Further, as in the embodiment of FIG. 4, the laminate is configured to move in an inclined manner with respect to the surface of the coagulation liquid in the step of entering and moving the coagulation liquid, and is removed from the coagulation liquid. If the laminate is configured to move at an angle with respect to the surface of the coagulation liquid, the water level of the coagulation liquid is increased to increase the immersion time (immersion distance), or the water level of the coagulation liquid is decreased. This is very suitable because adjustments such as shortening the immersion time (immersion distance) can be easily performed. Furthermore, since the rate of penetration of the laminate into the coagulation liquid also affects the solvent substitution and phase separation precipitation behavior, it is desirable that it can be adjusted in the range of 0.01 m / min to 50 m / min.
[0038]
Moreover, in the manufacturing apparatus of this invention, the drive of a belt conveyor is not specifically limited, Although a normal drive method can be used, it is suitably performed using a drive roll and a free roll. Moreover, in the roll as shown by 13 in FIGS. 1 to 4, since the solvent displacement rate adjusting material of the laminate is in direct contact with the roll surface, in order to relieve the compressive stress applied to the porous film, Those coated with an elastic body such as rubber are preferably used. When the surface of such a roll is a metal such as stainless steel, the porous film may be subjected to compressive stress and the porous form may be deformed, which is not preferable.
[0039]
The structure stabilizing
[0040]
The peeled porous film is dried and / or heat-treated. For this purpose, a hot-air dryer and / or a high-temperature heat treatment apparatus are provided. The hot air dryer and / or the high-temperature heat treatment apparatus may be configured so that the peeled porous film is continuously dried and / or heat-treated by being integrated from the polymer supply part to the peeling part, Alternatively, a hot air dryer and / or a high-temperature heat treatment apparatus may be arranged so that drying and / or heat treatment are performed in separate steps.
[0041]
According to the present invention, it is possible to obtain a porous film having a porous structure having fine continuous pores with a porosity of preferably 15 to 85% and an average pore diameter of 0.01 to 10 μm. These fine continuous holes are continuous from an arbitrary surface to other surfaces in the form of a passage, and are connected in a non-linear manner while being bent. In addition, the porous membrane obtained by the present invention has high mechanical strength even when the porosity is high, and the porous properties such as film thickness, pore diameter, porosity, pore shape and the like are homogeneous. Since it is a membrane, it is extremely useful in various applications.
[0042]
【Example】
Next, the present invention will be described by examples. However, the present invention is not limited to the following examples.
(Reference example)
Preparation of polyamic acid solution
Using s-BPDA as the tetracarboxylic acid component, DADE as the diamine component, dissolved in NMP such that the molar ratio of DADE to S-BPDA is 0.996 and the total weight of the monomer components is 10% by weight, Polymerization was performed at a temperature of 40 ° C. for 6 hours to obtain a polyimide precursor solution. The solution viscosity of the polyimide precursor solution was 800 poise.
[0043]
(Example)
Production of porous membrane
A porous membrane was produced using the apparatus shown schematically in FIG.
Pour the polyimide precursor solution that was degassed under reduced pressure after being obtained in the reference example into the polymer supply part so as not to entrap the bubbles, 2.5 kg / cm2Nitrogen gas pressurized is injected into the substrate, and the polyimide precursor solution is cast on a stainless steel belt conveyor driven at a speed of 0.3 m / min through a T die, and the thickness is adjusted. The thickness of the cast film was adjusted to 100 μm depending on the part. Polyethylene porous membrane (Ube Industries, Ltd., UPORE UP2015, air permeability 550 seconds / 100 cc) is used as a solvent replacement rate adjusting material, and the film thickness changes substantially on the cast membrane via a pinch roll. It was pasted so as not to. These steps were performed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%. Next, the laminated body in which the belt conveyor, the cast film and the polyethylene porous film are bonded is entered into a coagulating liquid tank in which methanol is stored, moved in the coagulating liquid for 5 minutes, and immersed in the polyimide precursor porous material. A film was deposited. This is further guided by a roll from the coagulating liquid tank to the structure stabilizing solvent tank where water is stored, and after leaving the structure stabilizing solvent tank, the solvent substitution rate adjusting material is peeled off and removed, and then polyimide The precursor porous membrane was peeled from the belt conveyor.
[0044]
Next, the polyimide precursor porous film is fixed at both ends with pins arranged at a sufficient interval to support the film, and the contraction in the width direction is suppressed, and the tension in the traveling direction is applied so as to suppress the contraction. However, it was dried by passing it through a drying bath at a temperature of 80 ° C. for 10 minutes, and then passed through a heat treatment bath at 400 ° C. for 20 minutes to perform thermal imidization to obtain a polyimide porous membrane.
[0045]
The obtained polyimide porous membrane had flexibility and a uniform film thickness of 30.0 μm, and had continuous pores that permeate the back surface when methanol was dropped onto the surface. When observed with a scanning electron microscope, it was a highly uniform porous film having an average pore diameter of 0.23 μm, a porosity of 65%, and an air permeability of 160 seconds / 100 cc.
[0046]
Furthermore, Table 1 shows the results of measuring the average pore diameter and the air permeability by sampling the continuously produced polyimide porous membrane every 10 m. The average value of the pore diameter was 0.24 μm and the standard deviation was 0.022, and the average permeability was 155 seconds / 100 cc and the standard deviation was 11.0. The average film thickness was 29.9 μm and the standard deviation was 1.004.
[0047]
[Table 1]
[0048]
In the present invention, the pore diameter and air permeability of the porous membrane were measured by the following methods. (1) Average pore diameter of porous membrane
Take a scanning electron micrograph of the membrane surface, measure the hole area for 50 or more openings, and calculate the average diameter when the hole shape is a perfect circle according to the following formula from the average value of the hole area Asked. Sa in the following formula means an average value of the pore areas.
Average pore diameter = 2 × (Sa / π)1/2
▲ 2 ▼ Air permeability
It measured according to JIS P8117. A B-type Gurley Densometer (manufactured by Toyo Seiki Co., Ltd.) was used as a measuring device. The sample membrane has a diameter of 28.6 mm and an area of 645 mm.2Tighten to the circular hole. With the inner cylinder weight of 567 g, the air in the cylinder is allowed to pass out of the cylinder from the test circular hole. The time required for 100 cc of air to pass through was measured and used as the air permeability (Gurley value).
(3) Porosity
The film thickness, area and weight of the film cut to a predetermined size were measured, and the porosity was determined from the weight per unit area according to the following formula. In the following formula, S is the film area, d is the film thickness, w is the measured weight, and D is the density of the polymer that forms the porous film, for example, 1.34 for aromatic polyimide.
Porosity = (1−W / (S × d × D)) × 100
[0049]
【The invention's effect】
Since the present invention is as described above, the following effects can be obtained.
By the continuous production method and continuous production apparatus of the porous membrane of the present invention, a porous polymer membrane having uniform porous properties such as film thickness, pore diameter, porosity and pore shape can be industrially continuously produced.
[Brief description of the drawings]
FIG. 1 is a schematic view of one embodiment of an apparatus for continuously producing a porous membrane of the present invention.
FIG. 2 is a schematic view of one embodiment of the continuous production apparatus for a porous membrane of the present invention.
FIG. 3 is a schematic view of one embodiment of the continuous production apparatus for a porous membrane of the present invention.
FIG. 4 is a schematic view of one embodiment of the continuous production apparatus for a porous membrane of the present invention.
[Explanation of symbols]
1: Belt conveyor
2: Polymer solution supply unit
3: T-die
4: Blade
5: Solvent replacement speed adjusting material supply unit
6: Bonding part (pinch roll)
7: Coagulation bath
8: Structure stabilization solvent tank
9: Solvent replacement speed adjusting material peeling roll
10: Porous film peeling roll
11: Drive roll
12: Freeroll
13: Rubber roll
14: Solvent replacement rate adjusting material
15: Porous membrane
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000284651A JP4221888B2 (en) | 2000-09-20 | 2000-09-20 | Continuous production method and continuous production apparatus for porous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000284651A JP4221888B2 (en) | 2000-09-20 | 2000-09-20 | Continuous production method and continuous production apparatus for porous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002086476A JP2002086476A (en) | 2002-03-26 |
JP4221888B2 true JP4221888B2 (en) | 2009-02-12 |
Family
ID=18768828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000284651A Expired - Lifetime JP4221888B2 (en) | 2000-09-20 | 2000-09-20 | Continuous production method and continuous production apparatus for porous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4221888B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ539786A (en) * | 2002-10-24 | 2007-05-31 | Toyo Boseki | Heat-resistant film and composite ion-exchange membrane made from a polymer solution |
CN1694791B (en) | 2002-11-12 | 2010-08-18 | 大赛璐化学工业株式会社 | Process for producing porous film and porous film |
DE10325140B4 (en) * | 2003-06-04 | 2014-12-31 | Lts Lohmann Therapie-Systeme Ag | Direct coating method and apparatus |
WO2006126735A1 (en) * | 2005-05-27 | 2006-11-30 | Fujifilm Corporation | Method for producing self-assembled construction |
JP2008237946A (en) * | 2007-03-23 | 2008-10-09 | Fujifilm Corp | Method and apparatus for manufacturing cellulose ester fine porous film |
CN102017233A (en) * | 2008-04-08 | 2011-04-13 | Sk能源株式会社 | Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature |
KR101440659B1 (en) * | 2010-05-25 | 2014-09-19 | 코오롱패션머티리얼 (주) | Polyimide porous nanofiber web and Method for manufacturing the same |
WO2011149241A2 (en) * | 2010-05-25 | 2011-12-01 | Kolon Fashion Material.Inc. | Polyimide porous web, method for manufacturing the same, and electrolyte membrane comprising the same |
TWI673154B (en) * | 2014-06-20 | 2019-10-01 | 日商東京應化工業股份有限公司 | Porous bismuth imide resin film production system, separator film, and porous bismuth imide resin film production method |
CN106362599A (en) * | 2016-08-29 | 2017-02-01 | 无锡零界净化设备有限公司 | Preparation method of supporting-layer-free micro-porous flat plate filter membrane |
CN113461933B (en) * | 2021-06-01 | 2022-09-06 | 浙江大学 | Polymer self-supporting nano film, continuous and macro preparation method and application thereof |
CN113441017A (en) * | 2021-07-02 | 2021-09-28 | 北京碧水源分离膜科技有限公司 | Process for preparing polyolefin-based reverse osmosis membrane |
CN117732286B (en) * | 2023-12-18 | 2024-06-07 | 上海乐纯生物技术股份有限公司 | High-penetration gradient spongy structure ultrafiltration membrane and preparation method thereof |
-
2000
- 2000-09-20 JP JP2000284651A patent/JP4221888B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002086476A (en) | 2002-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4221888B2 (en) | Continuous production method and continuous production apparatus for porous membrane | |
JP5641042B2 (en) | Porous polyimide membrane and method for producing the same | |
JP5577803B2 (en) | Porous polyimide membrane and method for producing the same | |
JP2855668B2 (en) | Polyimide separation membrane | |
JP5577804B2 (en) | Porous polyimide membrane and method for producing the same | |
JPH057749A (en) | Fluorine-containing polyimide type composite membrane and asymmetric membrane, preparation of them and gas separating/concentrating method using said membranes | |
JP3589125B2 (en) | Porous membrane manufacturing method and porous membrane | |
KR101305798B1 (en) | Porous Separation Membrane and Preparation Method thereof | |
JP4238416B2 (en) | Porous carbonized film and method for producing the same | |
US20030018094A1 (en) | Polyimide porous film | |
JP3994241B2 (en) | POLYIMIDE POROUS MEMBRANE AND MANUFACTURING METHOD | |
JP6330261B2 (en) | Method for producing polymer porous membrane and polymer porous membrane | |
JP2007092078A (en) | Preparation process for polyimide porous film | |
JP2003165128A (en) | Method and apparatus for continuously manufacturing porous film | |
JP3687480B2 (en) | Porous polyimide film and method for producing the same | |
JP2004359860A (en) | Polyimide porous membrane having microscale through paths, and method for manufacturing the same | |
JP4302342B2 (en) | Polyimide porous membrane and method for producing the same | |
JP2016194025A (en) | Method for producing polyimide film | |
JP2001068608A (en) | Heat conductor and electric and electronic equipment using the same | |
JP3966654B2 (en) | Method for producing porous membrane | |
WO2017014130A1 (en) | Porous membrane, water treatment membrane and method for producing porous membrane | |
JP2007169661A (en) | Polyimide porous film | |
JP2003026849A (en) | Porous polyimide film | |
JP2004168971A (en) | Method for preserving polyamic acid | |
JPS583603A (en) | Production of dried separating membrane made of polyimide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4221888 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |