JP4218364B2 - Method for producing metal oxide - Google Patents
Method for producing metal oxide Download PDFInfo
- Publication number
- JP4218364B2 JP4218364B2 JP2003032611A JP2003032611A JP4218364B2 JP 4218364 B2 JP4218364 B2 JP 4218364B2 JP 2003032611 A JP2003032611 A JP 2003032611A JP 2003032611 A JP2003032611 A JP 2003032611A JP 4218364 B2 JP4218364 B2 JP 4218364B2
- Authority
- JP
- Japan
- Prior art keywords
- metal oxide
- zro
- surfactant
- precipitate
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims description 32
- 150000004706 metal oxides Chemical class 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000000843 powder Substances 0.000 claims description 44
- 239000002244 precipitate Substances 0.000 claims description 37
- 239000004094 surface-active agent Substances 0.000 claims description 37
- 239000007864 aqueous solution Substances 0.000 claims description 30
- 239000002243 precursor Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 17
- 229910052684 Cerium Inorganic materials 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 12
- 239000000693 micelle Substances 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 54
- 239000003054 catalyst Substances 0.000 description 50
- 239000011148 porous material Substances 0.000 description 48
- 239000007789 gas Substances 0.000 description 32
- 239000006104 solid solution Substances 0.000 description 27
- -1 cerium ions Chemical class 0.000 description 23
- 239000010410 layer Substances 0.000 description 23
- 239000011163 secondary particle Substances 0.000 description 20
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 19
- 238000000746 purification Methods 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- 238000010304 firing Methods 0.000 description 10
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 9
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 8
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- 241000282320 Panthera leo Species 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 150000005215 alkyl ethers Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 description 1
- RZXLPPRPEOUENN-UHFFFAOYSA-N Chlorfenson Chemical compound C1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=C(Cl)C=C1 RZXLPPRPEOUENN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012693 ceria precursor Substances 0.000 description 1
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 1
- XQTIWNLDFPPCIU-UHFFFAOYSA-N cerium(3+) Chemical group [Ce+3] XQTIWNLDFPPCIU-UHFFFAOYSA-N 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- ITZXULOAYIAYNU-UHFFFAOYSA-N cerium(4+) Chemical compound [Ce+4] ITZXULOAYIAYNU-UHFFFAOYSA-N 0.000 description 1
- VZDYWEUILIUIDF-UHFFFAOYSA-J cerium(4+);disulfate Chemical compound [Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VZDYWEUILIUIDF-UHFFFAOYSA-J 0.000 description 1
- 229910000355 cerium(IV) sulfate Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical class C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- CZMAXQOXGAWNDO-UHFFFAOYSA-N propane-1,1,2-triol Chemical compound CC(O)C(O)O CZMAXQOXGAWNDO-UHFFFAOYSA-N 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940104261 taurate Drugs 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車の排ガス浄化触媒の触媒担体として用いられる金属酸化物の製造方法に関する。本発明で製造される金属酸化物は、これ以外にディーゼルパティキュレート酸化触媒用の触媒担体、固体電解質、電極材料、セラミックス分散強化粒子、紫外線遮蔽用材料などにも用いることができる。
【0002】
【従来の技術】
セリアは酸素吸蔵放出能( OSC)を有するため、内燃機関からの排ガスを浄化する排ガス浄化用触媒の助触媒として広く用いられている。また、 OSCを高めるためには比表面積を大きくすることが望ましいため、セリアは粉末状態として用いられている。
【0003】
しかしながら、排ガス浄化用触媒は高温で使用されるので、高温における浄化活性が高いことが必要である。そのためセリアには、粉末として高比表面積をもつようにして用いた場合においても、高温での使用時に比表面積の低下が生じないこと、つまり耐熱性に優れていることが要求されている。
【0004】
そこで従来より、セリアにジルコニアやセリウムを除く希土類元素の酸化物を固溶させることが提案されている。例えば特開平04−055315号公報には、セリウム(Ce)の水溶性塩とジルコニウム(Zr)の水溶性塩の混合水溶液からセリア前駆体とジルコニア前駆体とを共沈させ、それを熱処理する酸化セリウム微粉体の製造方法が開示されている。この製造方法によれば、共沈物を熱処理することによりCeO2とZrO2は複合酸化物となり、互いに固溶した酸化物固溶体が生成する。
【0005】
また特開平09−221304号公報には、CeとZrの金属塩が溶解した水溶液から酸化物前駆体を沈殿させる際に界面活性剤を添加しておくことで、結晶子の平均径が小さく高い固溶度となり、高い OSCが発現されるセリア−ジルコニア固溶体の製造方法が開示されている。
【0006】
このように酸化物前駆体を沈殿させる際に界面活性剤を添加しておくことにより、界面活性剤のミセルの中に複数種の沈殿粒子が均一に取り込まれる。そしてミセル中で中和、凝集及び熟成が進行することによって、複数成分が均一に含まれ濃縮された小さな空間の中で固溶体粒子の生成が進行する。さらに、界面活性剤の分散効果により沈殿微粒子の分散性が向上し、偏析が小さくなって接触度合いが高まる。これらにより固溶度が高くなるとともに、結晶子の平均径を小さくすることができる。
【0007】
さらに特表2001−524918号公報には、金属塩の水溶液から酸化物前駆体を沈殿させる際に界面活性剤を添加しておくことで、粒子サイズ分布、細孔容積などを最適に調整するジルコニアあるいはセリア−ジルコニア固溶体などの製造方法が開示されている。
【0008】
【特許文献1】
特開平04−055315号
【特許文献2】
特開平09−221304号
【特許文献3】
特表2001−524918号
【0009】
【発明が解決しようとする課題】
ところが金属塩の水溶液から酸化物前駆体を沈殿させる際に界面活性剤を添加しておく方法では、得られる酸化物粉末の二次粒子径が小さくなるとともに細孔容積も小さくなる場合があり、触媒担体として用いた場合にその特性が十分に発現されないことがあった。
【0010】
例えばハニカム基材に触媒担体粉末からコート層を形成し、そのコート層に貴金属などの触媒成分を担持した排ガス浄化用触媒においては、コート層中の下層部分の触媒成分が有効利用できないという問題がある。これは、排ガスがコート層を通過する際に下層まで拡散しにくいためであり、細孔容積が小さいことに起因していると考えられる。
【0011】
本発明はこのような事情に鑑みてなされたものであり、大きな細孔容積をもち、触媒担体としてきわめて有用な金属酸化物とすることを主たる目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の金属酸化物の製造方法の特徴は、Al 、 Zr 、 Ti 、 Si 及び Ce から選ばれる金属元素を含む化合物が溶解した水溶液にアルカリ性物質を添加することにより酸化物前駆体の沈殿物を得る第1工程と、沈殿物を洗浄する第2工程と、洗浄後の沈殿物を界面活性剤とともに水中で撹拌する第3工程と、第3工程後の沈殿物を焼成して金属酸化物粉末とする第4工程と、を順次行うことにある。
【0015】
本発明の製造方法において、界面活性剤は得られる金属酸化物粉末に対して2〜40重量%となるように添加されることが望ましい。また金属元素はZr又はCeとZrであり、本発明で得られる金属酸化物はZrO2又はCeO2−ZrO2固溶体であることが望ましい。
【0017】
【発明の実施の形態】
排ガス浄化用触媒の触媒担体として用いられている Al2O3、ZrO2、CeO2−ZrO2固溶体など従来の金属酸化物では、細孔径が 0.1μm以下の細孔の細孔容積が0〜 0.2cc/gと比較的小さな範囲にあった。そのためコート層におけるガス拡散性が低く、コート層の下層に担持されている触媒成分を有効利用することが困難であった。なお細孔容積とは、それぞれの細孔の合計容積をいう。また二次粒子は一次粒子が凝集してなるものであり、平均二次粒子径は金属酸化物の粉末の現実の平均粒子径に相当するものである。
【0018】
本発明で得られる金属酸化物は、細孔径が 0.1μm以下の細孔の細孔容積が 0.2cc/g以上である。この金属酸化物の粉末からコート層を形成することにより、ガス拡散性に優れたコート層となり、下層においても触媒成分と排ガスとの接触機会が増大する。したがって触媒成分を有効に活用することができ、浄化能が向上する。
【0019】
本発明で得られる金属酸化物粉末において、細孔径が 0.1μm以下の細孔の細孔容積が 0.2cc/gより小さい場合には、十分なガス拡散性が得られない。また平均二次粒子径があまり大きすぎると、脆くなりコート層とした場合に使用時の剥離などの不具合が生じる場合があるので、平均二次粒子径は30μm以下であることが望ましい。
【0020】
本発明で得られる金属酸化物は、 Al2O3,ZrO2,TiO2,SiO2,CeO2,あるいはこれらから選ばれる任意の複数種からなる複合酸化物である。例えばZrO2あるいはCeO2−ZrO2固溶体とすることが特に好ましい。ZrO2の場合には、例えばRhを担持した触媒とすることで、ガス拡散性が高いために水蒸気改質反応活性が大きく向上し、高い生成能をもつ水素生成触媒として利用することができる。またCeO2−ZrO2固溶体の場合には、ガス拡散性が高いために高い OSCが発現され、三元触媒などとしてきわめて有用である。
【0021】
本発明の製造方法では、先ず第1工程において、Al 、 Zr 、 Ti 、 Si 及び Ce から選ばれる金属元素を含む化合物が溶解した水溶液にアルカリ性物質を添加することにより酸化物前駆体の沈殿物を形成する。
【0022】
酸化物となる金属元素を含む化合物が溶解した水溶液としては、Al,Zr,Ti,Si,Ceから選ばれる金属を含む水溶性化合物の水溶液を用いることができ、例えば金属がCe又はZrの場合には、硝酸セリウム(III )、硝酸セリウム(IV)アンモニウム、塩化セリウム(III )、硫酸セリウム(III )、硫酸セリウム(IV)、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウムなどの水溶液を用いることができる。
【0023】
またアルカリ性物質としては、水溶液としてアルカリ性を示すものであれば用いることができる。加熱時に容易に分離できるアンモニアが特に望ましい。しかしアルカリ金属の水酸化物などの他のアルカリ性物質であっても、水洗によって容易に除去することができるので用いることができる。このアルカリ性物質の添加は水溶液として添加することが望ましく、徐々に滴下してもよいし一度に全量を混合することもできる。なお沈殿物の偏析を防止するために、金属元素が溶解した水溶液を撹拌しながら添加することが望ましい。
【0024】
CeO2−ZrO2固溶体を製造する場合には、セリウムの価数に注意する必要がある。4価のセリウムの場合には、CeO2はZrO2と比較的容易に固溶するので問題はないが、3価のセリウムの場合には、CeO2はZrO2と固溶しにくいので、例えば水溶液中に過酸化水素を共存させることが望ましい。このようにすれば、セリウム(III )が過酸化水素と錯体を作り酸化されてセリウム(IV)となるので、CeO2をZrO2と固溶させやすくすることができる。
【0025】
過酸化水素の添加量は、セリウムイオンの1/4以上であることが望ましい。過酸化水素の添加量がセリウムイオンの1/4未満であるとCeO2とZrO2の固溶が不十分となる。過酸化水素の過剰の添加は特に悪影響を及ぼさないが、経済的な面で不利となるのみでメリットはなく、セリウムイオンの1/2〜2倍の範囲にあることがより望ましい。なお、過酸化水素の添加時期は特に制限されず、アルカリ性物質の添加前でもよいし、同時あるいはそれより後に添加することもできる。また過酸化水素は後処理が不要となるので特に望ましい酸化剤であるが、場合によっては酸素ガスやオゾン、過塩素酸、過マンガン酸などの過酸化物など他の酸化剤を用いることもできる。
【0026】
さらに、酸化物となる金属元素を含む化合物が溶解した水溶液を103sec-1以上、望ましくは104sec-1以上の高せん断速度で高速撹拌しながらアルカリ性物質を添加することも好ましい。中和生成物である沈殿微粒子中の成分は、ある程度の偏析が避けられないため、強力な撹拌によりこの偏析を均一にするとともに分散性を向上させることができる。例えばセリウム塩とジルコニウム塩の水溶液から共沈させる場合、両者の沈殿するpHが異なるため同種の沈殿粒子が集団になりやすい。そこで高せん断速度で高速撹拌することにより、同種の沈殿微粒子の集団が破壊され、CeO2前駆体とZrO2前駆体の接触度合いが向上するため沈殿粒子がよく混合される。したがってCeO2−ZrO2固溶体の固溶度が向上するとともに結晶子の平均径を小さくすることができる。せん断速度が103sec-1未満では、固溶促進効果が十分でない。なお、せん断速度Vは、V=v/Dで表される。ここでvは撹拌機のロータとステータの速度差(m/sec )であり、Dはロータとステータの間隙(m)である。
【0027】
従来の共沈法においては、酸化物となる金属元素を含む化合物及びアルカリ性物質と、界面活性剤とが水溶液中で共存している。そのためアルカリ性物質添加時のpH変化によって界面活性剤の性質が変化し、界面活性剤の添加効果が損なわれるという不具合があった。
【0028】
そこで本発明の製造方法では、第2工程において酸化物前駆体の沈殿物を洗浄し、第3工程において洗浄後の沈殿物を界面活性剤とともに水中で撹拌している。第2工程における洗浄によって、酸化物前駆体からアルカリ性物質及び遊離酸などが洗い流されるため、第3工程においては界面活性剤はpH変化に晒されない。したがって界面活性剤の添加効果が最大に発現され、第4工程における焼成によって細孔径が 0.1μm以下の細孔の細孔容積が 0.2cc/g以上である金属酸化物を製造することができる。
【0029】
界面活性剤の作用は明らかではないが、以下のように推察される。つまり、アルカリ性物質で中和したばかりの状態では、酸化物となる金属元素は数nm以下の粒径の非常に微細な水酸化物又は酸化物の状態で沈殿する。そして第2工程における洗浄中などに一次粒子の凝集がある程度進行して二次粒子となる。
【0030】
第3工程における界面活性剤の添加により、界面活性剤のミセルの中にその二次粒子が取り込まれ、ミセル中で凝集及び熟成が進行することによって、濃縮された小さな空間の中で粒子の成長が進行する。さらに、界面活性剤の分散効果により二次粒子の分散性が向上する。これらの作用により、細孔径が 0.1μm以下の細孔の細孔容積が 0.2cc/g以上である金属酸化物粉末を製造することができると考えられる。
【0031】
第3工程における界面活性剤の添加量は、得られる金属酸化物粉末に対して2〜40重量%となる範囲、すなわち重量比で金属酸化物粉末:界面活性剤=98〜60:2〜40の範囲が好ましい。界面活性剤の添加量が2重量%未満では添加した効果が小さく、40重量%を超えて添加すると界面活性剤どうしの凝集によって酸化物前駆体の分散性が低下し、また第4工程における焼成時に界面活性剤の燃焼による発熱量が大きくなるため金属酸化物の凝集が生じて比表面積が小さくなってしまう。
【0032】
なお第3工程における水の量は、第1工程における水の量と同程度であることが好ましいが、撹拌できる範囲であれば特に制限されない。また第3工程における撹拌速度は1000 sec-1以上とすることが好ましく、10〜30℃の温度で5分間以上撹拌することが好ましい。撹拌による剪断力が大きすぎると発熱したり装置の消耗が激しくなり、剪断力が小さすぎると界面活性剤の分散状態が十分でない場合がある。また撹拌時の温度がこの範囲より低いと撹拌時間が長時間となり、この範囲より高い温度では発熱や装置の消耗が生じるようになる。
【0033】
界面活性剤としては、陰イオン系、陽イオン系及び非イオン系などのいずれも用いることができるが、その中でも形成するミセルが内部に狭い空間を形成しうる形状、例えば球状ミセルを形成し易い界面活性剤が望ましい。また臨界ミセル濃度(cmc)が0.1mol/リットル以下のものが望ましく、0.01mol /リットル以下の界面活性剤が望ましい。なお臨界ミセル濃度(cmc)とは、ある界面活性剤がミセルを形成する最低の濃度のことである。
【0034】
これらの界面活性剤を例示すると、陰イオン性界面活性剤である、アルキルベンゼンスルホン酸及びその塩、αオレフィンスルホン酸及びその塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、フェニルエーテル硫酸エステル塩、メチルタウリン酸塩、スルホコハク酸塩、エーテル硫酸塩、アルキル硫酸塩、エーテルスルホン酸塩、飽和脂肪酸及びその塩、オレイン酸等の不飽和脂肪酸及びその塩、その他のカルボン酸、スルホン酸、硫酸、リン酸、フェノールの誘導体等;
非イオン性界面活性剤である、ポリオキシエチレンポリプロピレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリスチリルフェニルエーテル、ポリオキシエチレンポリオキシポリプロピレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、グリコール,グリセリン,ソルビトール,マンニトール,ペンタエリスリトール,ショ糖などの多価アルコール、多価アルコールの脂肪酸部分エステル、多価アルコールのポリオキシエチレン脂肪酸部分エステル、多価アルコールのポリオキシエチレン脂肪酸エステル、ポリオキシエチレン化ヒマシ油、ポリグリセン脂肪酸エステル、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸部分エステル、トリアルキルアミンオキサイド等;
陽イオン性界面活性剤である、脂肪酸第一アミン塩、脂肪酸第二アミン塩、脂肪酸第三アミン塩、テトラアルキルアンモニウム塩,トリアルキルベンジルアンモニウム塩,アルキルピロジニウム塩,2-アルキル−1-アルキル−1-ヒドロキシエチルイミダゾリニウム塩,N,N-ジアルキルモルホリニウム塩,ポリエチレンポリアミン,脂肪酸アミド塩等の第四吸アンモニウム塩等;
両イオン性界面活性剤である、ベタイン化合物等;から選ばれる少なくとも一種を用いることができる。
【0035】
第4工程では、第3工程後の酸化物前駆体の沈殿物を焼成することにより、沈殿物中の金属元素を酸化物とする。この焼成雰囲気は、酸化雰囲気、還元雰囲気、中性雰囲気のいずれの雰囲気でもよい。沈殿物中の金属元素が酸化物となるのは、原料として使用した水溶液の水等に含まれる酸素が関与し、焼成時に沈殿物中の金属元素を酸化させるからである。したがって、還元雰囲気で焼成しても金属酸化物が得られる。なお焼成温度は 150〜 800℃とすることが好ましい。焼成温度が 150℃より低いと焼成に長時間必要となり、 800℃より高くなると比表面積が低下するようになる。
【0036】
また第3工程と第4工程の間に、さらに沈殿物の洗浄工程を行うことも好ましい。これにより界面活性剤を除去することができ、焼成時における界面活性剤の燃焼による発熱を回避することができる。
【0037】
そして得られた金属酸化物粉末に少なくとも貴金属を担持することで、排ガス浄化用触媒を製造することができる。貴金属としてはPt,Rh,Pd,Irなどから選ばれる少なくとも一種であり、従来と同様に吸着担持法、含浸担持法などによって担持することができ、酸化触媒,水素生成触媒,三元触媒などとして利用することができる。またアルカリ金属,アルカリ土類金属,希土類金属から選ばれる少なくとも一種のNOx 吸蔵材を貴金属とともに担持してNOx 吸蔵還元型触媒とすることもできる。触媒体積1リットル当たりの貴金属の担持量は 0.1〜20gの範囲が好ましく、NOx 吸蔵材の担持量は0.05モル〜2モルの範囲が好ましい。
【0038】
なお得られた金属酸化物粉末から排ガス浄化用触媒を製造する場合において、先ずコート層を形成してから貴金属あるいはNOx 吸蔵材などの触媒成分を担持してもよいし、金属酸化物粉末に予め触媒成分を担持した触媒粉末からコート層を形成することもできる。
【0039】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0040】
(実施例1)
第1工程:
3リットルのビーカ中において、硝酸セリウム水溶液442.29g(CeO2として28重量%)と、オキシ硝酸ジルコニウム水溶液 601.3g(ZrO2として18重量%)と、30%過酸化水素水 199.5gと、を1200gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら、25%アンモニア水溶液 319.9gを添加し、酸化物前駆体の沈殿物を得た。
【0041】
第2工程:
得られた沈殿物を遠心分離器にかけて上澄み液を捨て、これにイオン交換水を捨てた上澄み液を同量加えて撹拌し再び遠心分離器にかけた。この操作をさらに2回行うことにより、沈殿物を洗浄した。
【0042】
第3工程:
最後に上澄み液を捨てた後の沈殿物を再び3リットルのビーカに移し、イオン交換水1800gを加えてプロペラ撹拌器とホモジナイザを用いて撹拌した。そこへ陽イオン性界面活性剤(「アーマック」ライオン社製)5gと陰イオン性界面活性剤(「アーモフロー」ライオン社製)5gを加え、さらに5分間撹拌した。
【0043】
この分散液を遠心分離器にかけ、第2工程と同様にして沈殿物を洗浄した。
【0044】
第4工程:
最後に上澄み液を捨てた後の沈殿物を、脱脂炉を用い大気中にて 400℃で5時間焼成し、さらに大気中 700℃で5時間焼成してCeO2−ZrO2固溶体粉末を調製した。
【0045】
得られたCeO2−ZrO2固溶体粉末の、細孔径が 0.1μm以下の細孔の細孔容積は 0.3cc/gであり、平均二次粒子径は6μmであった。なお細孔容積は水銀ポロシメータにより測定し、平均二次粒子径はレーザー回折/散乱式粒度分布測定装置により測定した。
【0046】
触媒化:
得られたCeO2−ZrO2固溶体粉末に、所定濃度のPt−Pソルト水溶液の所定量を含浸させ、蒸発・乾固後大気中にて 300℃で3時間焼成してPtを担持した。Ptの担持量は1重量%である。このPt担持CeO2−ZrO2固溶体粉末とバインダとしての硝酸アルミニウム及びアルミナゾルとをイオン交換水と混合してスラリーを調製し、コージェライト製35ccハニカム基材(3ミル, 400セル)にウォッシュコートし、 500℃で1時間焼成してコート層を形成した。コート量はハニカム基材1リットルあたり 150gであり、Ptの担持量はハニカム基材1リットルあたり 1.5gである。
【0047】
(比較例1)
3リットルのビーカ中において、硝酸セリウム水溶液442.29g(CeO2として28重量%)と、オキシ硝酸ジルコニウム水溶液 601.3g(ZrO2として18重量%)と、30%過酸化水素水 199.5gと、界面活性剤(「レオコン」ライオン社製)12gを1200gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら、25%アンモニア水溶液 319.9gを添加し、酸化物前駆体の沈殿物を得た。
【0048】
得られた沈殿物を、洗浄することなく、脱脂炉を用い大気中にて 400℃で5時間焼成し、さらに大気中 700℃で5時間焼成してCeO2−ZrO2固溶体粉末を調製した。
【0049】
得られたCeO2−ZrO2固溶体粉末の細孔径が 0.1μm以下の細孔の細孔容積は0.05cc/gであり、平均二次粒子径は8μmであった。
【0050】
このCeO2−ZrO2固溶体粉末を用いたこと以外は実施例1と同様にして、比較例1の触媒を調製した。
【0051】
(実施例2)
第1工程:
3リットルのビーカ中において、オキシ硝酸ジルコニウム水溶液 278g(ZrO2として18重量%)を1800gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら、25%アンモニア水溶液67gを添加し、酸化物前駆体の沈殿物を得た。
【0052】
第2工程:
得られた沈殿物を遠心分離器にかけて上澄み液を捨て、これにイオン交換水を捨てた上澄み液を同量加えて撹拌し再び遠心分離器にかけた。この操作をさらに2回行うことにより、沈殿物を洗浄した。
【0053】
第3工程:
最後に上澄み液を捨てた後の沈殿物を再び3リットルのビーカに移し、イオン交換水1800gを加えてプロペラ撹拌器とホモジナイザを用いて撹拌した。そこへ陰イオン性界面活性剤(「アーモフロー」ライオン社製)5gを加え、さらに5分間撹拌した。
【0054】
この分散液を遠心分離器にかけ、第2工程と同様にして沈殿物を洗浄した。
【0055】
第4工程:
最後に上澄み液を捨てた後の沈殿物を、脱脂炉を用い大気中にて 400℃で5時間焼成し、さらに大気中 800℃で5時間焼成してZrO2粉末を調製した。
【0056】
得られたZrO2粉末の細孔分布を水銀ポロシメータにより測定し、結果を図1に示す。また実施例1と同様に測定された平均二次粒子径は7μmであった。
【0057】
触媒化:
得られたZrO2粉末に、所定濃度の硝酸ロジウム水溶液の所定量を含浸させ、蒸発・乾固後大気中にて 300℃で3時間焼成してRhを担持した。Rhの担持量は1重量%である。このPt担持ZrO2粉末とバインダとしての硝酸アルミニウム及びアルミナゾルとをイオン交換水と混合してスラリーを調製し、コージェライト製35ccハニカム基材(3ミル, 400セル)にウォッシュコートし、 500℃で1時間焼成してコート層を形成した。コート量はハニカム基材1リットルあたり40gであり、Rhの担持量はハニカム基材1リットルあたり 0.4gである。
【0058】
(比較例2)
3リットルのビーカ中において、オキシ硝酸ジルコニウム水溶液 278g(ZrO2として18重量%)を1800gのイオン交換水と混合し、プロペラ撹拌器で撹拌しながら、25%アンモニア水溶液67gを添加し、酸化物前駆体の沈殿物を得た。
【0059】
得られた沈殿物を、洗浄することなく、脱脂炉を用い大気中にて 400℃で5時間焼成し、さらに大気中 800℃で5時間焼成してZrO2粉末を調製した。
【0060】
得られたZrO2粉末の細孔分布を水銀ポロシメータにより測定し、結果を図1に示す。図1における縦軸のVは細孔径を意味する。また実施例1と同様に測定されたこのZrO2粉末の平均二次粒子径は8μmであった。
【0061】
このZrO2粉末を用いたこと以外は実施例2と同様にして、比較例2の触媒を調製した。
【0062】
<試験・評価>
実施例1及び比較例1の触媒を評価装置に配置し、表1に示すモデルガスを、リッチガス1分間及びリーンガス4分間の条件で交互に繰り返し流しながら、 900℃で5時間保持するリッチリーン耐久試験を行った。全流量は20L/分である。またこれとは別に、大気中にて 900℃で5時間保持するエアー耐久試験を行った。
【0063】
【表1】
【0064】
各耐久試験後の各触媒について、表2に示すモデルガスを、リッチガス1秒間及びリーンガス1秒間の条件で交互に繰り返し全流量20L/分で流しながら20℃/分の速度で昇温し、その間のHC,CO及びNOx の浄化率を連続的に測定した。そして各有害成分の50%が浄化される温度(T50)を算出し、結果を図2及び図3に示す。なお図2及び図3における棒グラフの頂点の数字は、実際のT50の値である。
【0065】
【表2】
【0066】
また実施例2及び比較例2の触媒を評価装置に配置し、表1に示したモデルガスを、リッチガス1分間及びリーンガス4分間の条件で交互に繰り返し流しながら、1000℃で5時間保持するリッチリーン耐久試験を行った。全流量は20L/分である。またこれとは別に、大気中にて 850℃で5時間保持するエアー耐久試験を行った。
【0067】
各耐久試験後の各触媒について、表2に示したモデルガスを、リッチガス1秒間及びリーンガス1秒間の条件で交互に繰り返し全流量20L/分で流しながら20℃/分の速度で昇温し、その間のHC,CO及びNOx の浄化率を連続的に測定した。そして各有害成分の50%が浄化される温度(T50)を算出し、結果を図4及び図5に示す。なお図4及び図5における棒グラフの頂点の数字は、実際のT50の値である。
【0068】
図2及び図3より、実施例1の触媒は比較例1の触媒に比べて各耐久試験後にも低温域から高い浄化能を示し、これはCeO2−ZrO2粉末の細孔容積及び平均二次粒子径の差に起因していると考えられる。すなわち実施例1の触媒は、コート層のガス拡散性に優れているため、コート層の下層に担持されているPtも有効に利用されたと考えられる。
【0069】
また図4及び図5より、実施例2の触媒は比較例2の触媒に比べて各耐久試験後にも低温域から高い浄化能を示し、これは図1に示すように実施例2の触媒の方が細孔容積が大きく、平均二次粒子径も大きいことに起因していると考えられる。すなわち実施例2の触媒は、コート層のガス拡散性に優れているため、コート層の下層に担持されているRhも有効に利用されたと考えられる。
【0070】
(実施例3)
第1工程:
3リットルのビーカ中において、硝酸セリウム水溶液589.71g(CeO2として28重量%)と、オキシ硝酸ジルコニウム水溶液 437.3g(ZrO2として18重量%)と、30%過酸化水素水 199.5gと、界面活性剤(「レオコン」ライオン社製)12gと、を1200gのイオン交換水と混合し、プロペラ撹拌器及びホモジナイザで撹拌しながら、25%アンモニア水溶液 340gを添加し、酸化物前駆体の沈殿物を得た。
【0071】
第2工程以下は実施例1と同様にして、本実施例のCeO2−ZrO2固溶体粉末を調製した。
【0072】
得られたCeO2−ZrO2固溶体粉末の、細孔径が 0.1μm以下の細孔の細孔容積は 0.3cc/gであり、平均二次粒子径は6μmであった。なお細孔容積は水銀ポロシメータにより測定し、平均二次粒子径はレーザー回折/散乱式粒度分布測定装置により測定した。
【0073】
(実施例4)
第1工程:
3リットルのビーカ中において、硝酸セリウム水溶液589.71g(CeO2として28重量%)と、オキシ硝酸ジルコニウム水溶液 437.3g(ZrO2として18重量%)と、30%過酸化水素水 199.5gと、30%過酸化水素水 199.5gと、を1200gのイオン交換水と混合し、25%アンモニア水溶液3gを添加して、プロペラ撹拌器で撹拌した。これを 120℃で2時間加圧熟成した。この溶液をプロペラ撹拌器で撹拌しながら、25%アンモニア水溶液 340gを添加し、酸化物前駆体の沈殿物を得た。
【0074】
第2工程以下は実施例1と同様にして、本実施例のCeO2−ZrO2固溶体粉末を調製した。
【0075】
得られたCeO2−ZrO2固溶体粉末の、細孔径が 0.1μm以下の細孔の細孔容積は 0.2cc/gであり、平均二次粒子径は6μmであった。なお細孔容積は水銀ポロシメータにより測定し、平均二次粒子径はレーザー回折/散乱式粒度分布測定装置により測定した。
【0076】
<試験・評価>
実施例3及び実施例4のCeO2−ZrO2固溶体粉末の細孔分布を水銀ポロシメータにより測定し、結果を図6に示す。
【0077】
図6より、実施例4のCeO2−ZrO2固溶体粉末の細孔分布は、実施例3に比べて微細な範囲に集中していることがわかる。これは、詳細な理由は不明であるが、微量のアンモニア水の添加と加圧熟成により、均一な核の生成が生じたことに起因していると考えられる。
【0078】
そして図6より、実施例4のCeO2−ZrO2固溶体粉末は、細孔径が0.01μm以上かつ0.05μm以下の細孔の細孔容積が 0.1cc/g以上であり、かつその細孔容積が、細孔径が0.01μm以上かつ 0.1μm以下の細孔の細孔容積の70%以上を占めていることが明らかである。
【0079】
【発明の効果】
すなわち本発明で得られた金属酸化物によれば、細孔容積と平均二次粒子径が従来より大きいためガス拡散性に優れ、その金属酸化物を用いた排ガス浄化用触媒によれば、コート層の下層に担持されている触媒成分と排ガスとの接触機会が増し浄化能が向上する。
【図面の簡単な説明】
【図1】実施例2及び比較例2のZrO2粉末の細孔分布を示すグラフである。
【図2】実施例1及び比較例1の触媒のリッチリーン耐久試験後の50%浄化温度を示すグラフである。
【図3】実施例1及び比較例1の触媒のエアー耐久試験後の50%浄化温度を示すグラフである。
【図4】実施例2及び比較例2の触媒のリッチリーン耐久試験後の50%浄化温度を示すグラフである。
【図5】実施例2及び比較例2の触媒のエアー耐久試験後の50%浄化温度を
【図6】実施例3及び実施例4のCeO2−ZrO2固溶体粉末の細孔分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is used as a catalyst carrier for an exhaust gas purification catalyst of an automobile.Method for producing metal oxideAbout.Manufactured in the present inventionIn addition to this, the metal oxide can also be used as a catalyst support for a diesel particulate oxidation catalyst, a solid electrolyte, an electrode material, ceramic dispersion strengthened particles, an ultraviolet shielding material, and the like.
[0002]
[Prior art]
Since ceria has an oxygen storage / release capacity (OSC), it is widely used as a promoter for exhaust gas purification catalysts that purify exhaust gas from internal combustion engines. In order to increase OSC, it is desirable to increase the specific surface area, so ceria is used as a powder.
[0003]
However, since the exhaust gas purifying catalyst is used at a high temperature, it is necessary that the purifying activity at a high temperature is high. For this reason, ceria is required to have no reduction in specific surface area when used at a high temperature, that is, excellent heat resistance, even when used as a powder having a high specific surface area.
[0004]
In view of this, it has been conventionally proposed that a rare earth element oxide other than zirconia or cerium is dissolved in ceria. For example, Japanese Patent Laid-Open No. 04-055315 discloses an oxidation in which a ceria precursor and a zirconia precursor are co-precipitated from a mixed aqueous solution of a water-soluble salt of cerium (Ce) and a water-soluble salt of zirconium (Zr) and heat-treated. A method for producing a cerium fine powder is disclosed. According to this production method, the coprecipitate is heat treated to give CeO.2And ZrO2Becomes a complex oxide, and an oxide solid solution that is solid-solved with each other is formed.
[0005]
JP-A 09-221304 discloses that the average diameter of the crystallite is small and high by adding a surfactant when the oxide precursor is precipitated from an aqueous solution in which the metal salt of Ce and Zr is dissolved. A method for producing a ceria-zirconia solid solution having a solid solubility and high OSC is disclosed.
[0006]
Thus, by adding a surfactant when the oxide precursor is precipitated, a plurality of types of precipitated particles are uniformly taken into the micelles of the surfactant. As the neutralization, aggregation and aging proceed in the micelles, the formation of solid solution particles proceeds in a small space in which a plurality of components are uniformly contained and concentrated. Furthermore, the dispersibility of the precipitated fine particles is improved by the dispersing effect of the surfactant, the segregation is reduced and the contact degree is increased. As a result, the solid solubility increases and the average diameter of the crystallites can be reduced.
[0007]
Furthermore, Japanese Patent Publication No. 2001-524918 discloses a zirconia that optimally adjusts the particle size distribution, pore volume, etc. by adding a surfactant when the oxide precursor is precipitated from an aqueous solution of a metal salt. Alternatively, a method for producing ceria-zirconia solid solution or the like is disclosed.
[0008]
[Patent Document 1]
JP 04-055315
[Patent Document 2]
JP 09-221304 A
[Patent Document 3]
Special table 2001-524918
[0009]
[Problems to be solved by the invention]
However, in the method of adding a surfactant when precipitating the oxide precursor from the aqueous solution of the metal salt, the secondary particle size of the resulting oxide powder may be reduced and the pore volume may be reduced, When used as a catalyst carrier, the characteristics may not be fully expressed.
[0010]
For example, in a catalyst for exhaust gas purification in which a coat layer is formed from a catalyst carrier powder on a honeycomb substrate and a catalyst component such as a noble metal is supported on the coat layer, there is a problem that the catalyst component in the lower layer portion in the coat layer cannot be effectively used. is there. This is because the exhaust gas hardly diffuses to the lower layer when passing through the coat layer, which is considered to be caused by the small pore volume.
[0011]
The present invention has been made in view of such circumstances, and its main object is to provide a metal oxide having a large pore volume and extremely useful as a catalyst support.
[0012]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems.Method for producing metal oxideThe features ofAl , Zr , Ti , Si as well as Ce A first step of obtaining a precipitate of an oxide precursor by adding an alkaline substance to an aqueous solution in which a compound containing a metal element selected from the above is dissolved, a second step of washing the precipitate, and a washed precipitate A third step of stirring in water together with the surfactant and a fourth step of firing the precipitate after the third step to obtain a metal oxide powder are sequentially performed.
[0015]
In the production method of the present invention, the surfactant is desirably added so as to be 2 to 40% by weight with respect to the obtained metal oxide powder. The metal element is Zr or Ce and Zr,Obtained in the present inventionMetal oxide is ZrO2Or CeO2−ZrO2It is desirable to be a solid solution.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Al used as a catalyst carrier for exhaust gas purification catalysts2OThree, ZrO2, CeO2−ZrO2In a conventional metal oxide such as a solid solution, the pore volume of pores having a pore diameter of 0.1 μm or less was in a relatively small range of 0 to 0.2 cc / g. Therefore, the gas diffusibility in the coat layer is low, and it is difficult to effectively use the catalyst component supported in the lower layer of the coat layer. The pore volume means the total volume of each pore. The secondary particles are formed by aggregation of the primary particles, and the average secondary particle diameter corresponds to the actual average particle diameter of the metal oxide powder.
[0018]
Obtained in the present inventionThe metal oxide has a pore volume of 0.2 cc / g or more of pores having a pore diameter of 0.1 μm or less. By forming a coat layer from this metal oxide powder, it becomes a coat layer with excellent gas diffusivity, and the contact opportunity between the catalyst component and the exhaust gas increases in the lower layer. Therefore, the catalyst component can be used effectively, and the purification performance is improved.
[0019]
Obtained in the present inventionIn the metal oxide powder, when the pore volume of pores having a pore diameter of 0.1 μm or less is smaller than 0.2 cc / g, sufficient gas diffusibility cannot be obtained. If the average secondary particle size is too large, the coating layer becomes brittle and may cause problems such as peeling during use, so that the average secondary particle size is preferably 30 μm or less.
[0020]
Obtained in the present inventionMetal oxide is Al2OThree, ZrO2, TiO2, SiO2, CeO2Or a composite oxide composed of any plural kinds selected from these. For example ZrO2Or CeO2−ZrO2It is particularly preferable to use a solid solution. ZrO2In this case, for example, by using a catalyst supporting Rh, since the gas diffusibility is high, the steam reforming reaction activity is greatly improved, and the catalyst can be used as a hydrogen production catalyst having high production ability. Also CeO2−ZrO2In the case of a solid solution, high OSC is expressed due to high gas diffusivity, and it is extremely useful as a three-way catalyst.
[0021]
In the production method of the present invention,First, in the first step,Al , Zr , Ti , Si as well as Ce Metal elements selected fromThe precipitate of the oxide precursor is formed by adding an alkaline substance to the aqueous solution in which the compound containing is dissolved.
[0022]
Examples of aqueous solutions in which compounds containing metal elements that form oxides are dissolved include Al, Zr, Ti, Si, and Ce.Chosen fromAn aqueous solution of a water-soluble compound containing a metal can be used. For example, when the metal is Ce or Zr, cerium (III) nitrate, cerium (IV) ammonium nitrate, cerium (III) chloride, cerium sulfate (III), An aqueous solution of cerium (IV) sulfate, zirconium oxynitrate, zirconium oxychloride, or the like can be used.
[0023]
Moreover, as an alkaline substance, what shows alkalinity as aqueous solution can be used. Ammonia, which can be easily separated during heating, is particularly desirable. However, other alkaline substances such as alkali metal hydroxides can be used because they can be easily removed by washing with water. The alkaline substance is preferably added as an aqueous solution, which may be gradually added dropwise or mixed all at once. In order to prevent segregation of precipitates, it is desirable to add an aqueous solution in which a metal element is dissolved with stirring.
[0024]
CeO2−ZrO2When producing a solid solution, it is necessary to pay attention to the valence of cerium. In the case of tetravalent cerium, CeO2ZrO2However, in the case of trivalent cerium, CeO2ZrO2For example, it is desirable to coexist hydrogen peroxide in an aqueous solution. In this way, cerium (III) forms a complex with hydrogen peroxide and is oxidized to cerium (IV).2ZrO2Can be easily dissolved.
[0025]
The amount of hydrogen peroxide added is desirably ¼ or more of cerium ions. If the amount of hydrogen peroxide added is less than 1/4 of cerium ion, CeO2And ZrO2Insufficient solid solution. The excessive addition of hydrogen peroxide has no particular adverse effect, but it is disadvantageous in terms of economy, has no merit, and is preferably in the range of 1/2 to 2 times that of cerium ions. In addition, the addition timing in particular of hydrogen peroxide is not restrict | limited, It may be before the addition of an alkaline substance, and can also be added simultaneously or after it. Hydrogen peroxide is a particularly desirable oxidizing agent because it does not require post-treatment, but in some cases, other oxidizing agents such as oxygen gas, peroxides such as ozone, perchloric acid and permanganic acid can be used. .
[0026]
Further, an aqueous solution in which a compound containing a metal element to be an oxide is dissolved is added.Threesec-1Or more, preferably 10Foursec-1It is also preferable to add the alkaline substance while stirring at a high shear rate as described above. Since the components in the precipitated fine particles, which are neutralized products, cannot avoid a certain degree of segregation, the segregation can be made uniform and the dispersibility can be improved by vigorous stirring. For example, when co-precipitated from an aqueous solution of cerium salt and zirconium salt, the same kind of precipitated particles are likely to be a group because the pH at which they precipitate is different. Therefore, high-speed stirring at a high shear rate destroys a group of precipitated fine particles of the same type, and CeO2Precursor and ZrO2Since the contact degree of the precursor is improved, the precipitated particles are well mixed. Therefore CeO2−ZrO2The solid solubility of the solid solution can be improved and the average diameter of the crystallite can be reduced. Shear rate is 10Threesec-1If it is less than 1, the solid solution promoting effect is not sufficient. The shear rate V is expressed by V = v / D. Here, v is a speed difference (m / sec) between the rotor and the stator of the stirrer, and D is a gap (m) between the rotor and the stator.
[0027]
In the conventional coprecipitation method, a compound containing a metal element that becomes an oxide, an alkaline substance, and a surfactant coexist in an aqueous solution. For this reason, there has been a problem that the property of the surfactant is changed by the pH change when the alkaline substance is added, and the effect of adding the surfactant is impaired.
[0028]
Therefore, in the production method of the present invention, the precipitate of the oxide precursor is washed in the second step, and the washed precipitate is stirred in water together with the surfactant in the third step. Since the alkaline substance and free acid are washed away from the oxide precursor by washing in the second step, the surfactant is not exposed to pH change in the third step. Therefore, the effect of adding the surfactant is maximized, and a metal oxide having a pore volume of 0.1 cc / g or more and a pore volume of 0.2 cc / g or more can be produced by firing in the fourth step.
[0029]
The action of the surfactant is not clear, but is presumed as follows. That is, in the state just neutralized with the alkaline substance, the metal element that becomes an oxide precipitates in a very fine hydroxide or oxide state having a particle size of several nm or less. Then, the aggregation of the primary particles proceeds to some extent during the cleaning in the second step and becomes secondary particles.
[0030]
By adding the surfactant in the third step, the secondary particles are taken into the micelles of the surfactant, and the particles grow in the concentrated small space by aggregating and aging in the micelles. Progresses. Furthermore, the dispersibility of the secondary particles is improved by the dispersing effect of the surfactant. By these actions, it is considered that a metal oxide powder having a pore diameter of 0.1 袖 m or less and a pore volume of 0.2 cc / g or more can be produced.
[0031]
The addition amount of the surfactant in the third step is in a range of 2 to 40% by weight with respect to the obtained metal oxide powder, that is, metal oxide powder: surfactant = 98 to 60: 2 to 40 in a weight ratio. The range of is preferable. If the added amount of the surfactant is less than 2% by weight, the effect of the addition is small. If the added amount exceeds 40% by weight, the dispersibility of the oxide precursor is reduced due to the aggregation of the surfactants, and firing in the fourth step Sometimes the amount of heat generated by the combustion of the surfactant increases, so that the metal oxide aggregates and the specific surface area decreases.
[0032]
The amount of water in the third step is preferably about the same as the amount of water in the first step, but is not particularly limited as long as it can be stirred. The stirring speed in the third step is 1000 sec.-1It is preferable to make it above, and it is preferable to stir at a temperature of 10 to 30 ° C. for 5 minutes or more. If the shearing force by stirring is too large, heat will be generated or the apparatus will be exhausted excessively. If the shearing force is too small, the surfactant may not be sufficiently dispersed. Further, if the temperature during stirring is lower than this range, the stirring time becomes longer, and if the temperature is higher than this range, heat generation or exhaustion of the apparatus occurs.
[0033]
As the surfactant, any of an anionic type, a cationic type and a nonionic type can be used, and among them, a shape in which the micelle to be formed can form a narrow space inside, for example, a spherical micelle is easily formed. A surfactant is desirable. A surfactant having a critical micelle concentration (cmc) of 0.1 mol / liter or less is desirable, and a surfactant having a concentration of 0.01 mol / liter or less is desirable. The critical micelle concentration (cmc) is the lowest concentration at which a surfactant forms micelles.
[0034]
Examples of these surfactants include anionic surfactants such as alkylbenzene sulfonic acid and its salt, α-olefin sulfonic acid and its salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether sulfate ester salt, Methyl taurate, sulfosuccinate, ether sulfate, alkyl sulfate, ether sulfonate, saturated fatty acid and its salt, unsaturated fatty acid such as oleic acid and its salt, other carboxylic acid, sulfonic acid, sulfuric acid, phosphorus Acids, phenol derivatives, etc .;
Nonionic surfactants such as polyoxyethylene polypropylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polystyryl phenyl ether, polyoxyethylene polyoxypolypropylene alkyl ether, polyoxyethylene poly Polyhydric alcohols such as oxypropylene glycol, glycol, glycerin, sorbitol, mannitol, pentaerythritol, sucrose, fatty acid partial ester of polyhydric alcohol, polyoxyethylene fatty acid partial ester of polyhydric alcohol, polyoxyethylene fatty acid of polyhydric alcohol Ester, polyoxyethylenated castor oil, polyglycene fatty acid ester, fatty acid diethanolamide, polyoxyethylene alkyl Min, triethanolamine fatty acid partial esters, trialkylamine oxide and the like;
Cationic surfactants, fatty acid primary amine salt, fatty acid secondary amine salt, fatty acid tertiary amine salt, tetraalkylammonium salt, trialkylbenzylammonium salt, alkylpyrodinium salt, 2-alkyl-1- Quaternary ammonium salts such as alkyl-1-hydroxyethylimidazolinium salts, N, N-dialkylmorpholinium salts, polyethylene polyamines, fatty acid amide salts, etc .;
At least one selected from betaine compounds and the like that are amphoteric surfactants can be used.
[0035]
In a 4th process, the metal element in a precipitate is made into an oxide by baking the precipitate of the oxide precursor after a 3rd process. The firing atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, and a neutral atmosphere. The reason why the metal element in the precipitate becomes an oxide is that oxygen contained in water or the like of the aqueous solution used as a raw material is involved, and the metal element in the precipitate is oxidized during firing. Therefore, a metal oxide can be obtained even when fired in a reducing atmosphere. The firing temperature is preferably 150 to 800 ° C. When the firing temperature is lower than 150 ° C, it takes a long time for firing. When the firing temperature is higher than 800 ° C, the specific surface area decreases.
[0036]
Moreover, it is also preferable to perform a precipitate washing step between the third step and the fourth step. As a result, the surfactant can be removed, and heat generation due to combustion of the surfactant during firing can be avoided.
[0037]
An exhaust gas purifying catalyst can be produced by supporting at least a noble metal on the obtained metal oxide powder.The noble metal is at least one selected from Pt, Rh, Pd, Ir, etc., and can be supported by an adsorption support method, an impregnation support method, etc. as in the past, as an oxidation catalyst, a hydrogen generation catalyst, a three-way catalyst, etc. Can be used. At least one NO selected from alkali metals, alkaline earth metals, and rare earth metalsx NO is stored with a precious metalx It can also be an occlusion reduction catalyst. The amount of precious metal supported per liter of catalyst volume is preferably in the range of 0.1 to 20 g.x The loading amount of the occlusion material is preferably in the range of 0.05 mol to 2 mol.
[0038]
In additionObtainedWhen producing an exhaust gas purification catalyst from metal oxide powder, first a coat layer is formed and then noble metal or NOx A catalyst component such as an occlusion material may be supported, or a coating layer may be formed from a catalyst powder in which a catalyst component is previously supported on a metal oxide powder.
[0039]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0040]
Example 1
First step:
In a 3 liter beaker, 442.29 g of cerium nitrate aqueous solution (CeO2281.3% by weight) and 601.3 g of zirconium oxynitrate aqueous solution (ZrO2189.5%) and 309.5% aqueous hydrogen peroxide (199.5g) were mixed with 1200g ion-exchanged water and stirred with a propeller stirrer. A precipitate was obtained.
[0041]
Second step:
The resulting precipitate was centrifuged to discard the supernatant, and the same amount of the supernatant from which ion-exchanged water was discarded was added and stirred, and then centrifuged again. This operation was further performed twice to wash the precipitate.
[0042]
Third step:
Finally, the precipitate after discarding the supernatant was again transferred to a 3-liter beaker, and 1800 g of ion-exchanged water was added, followed by stirring using a propeller stirrer and a homogenizer. Thereto were added 5 g of a cationic surfactant (manufactured by “Armac” Lion) and 5 g of an anionic surfactant (“Armoflow” Lion), and the mixture was further stirred for 5 minutes.
[0043]
This dispersion was centrifuged and the precipitate was washed in the same manner as in the second step.
[0044]
Fourth step:
Finally, the precipitate after discarding the supernatant is calcined at 400 ° C for 5 hours in the air using a degreasing furnace, and further calcined at 700 ° C for 5 hours in CeO.2−ZrO2A solid solution powder was prepared.
[0045]
Obtained CeO2−ZrO2The pore volume of the pores having a pore size of 0.1 μm or less in the solid solution powder was 0.3 cc / g, and the average secondary particle size was 6 μm. The pore volume was measured with a mercury porosimeter, and the average secondary particle size was measured with a laser diffraction / scattering particle size distribution analyzer.
[0046]
Catalytic:
Obtained CeO2−ZrO2The solid solution powder was impregnated with a predetermined amount of a Pt—P salt aqueous solution having a predetermined concentration, evaporated and dried, and then fired in the atmosphere at 300 ° C. for 3 hours to carry Pt. The amount of Pt supported is 1% by weight. This Pt-supported CeO2−ZrO2Solid solution powder, aluminum nitrate and alumina sol as binder are mixed with ion-exchanged water to prepare a slurry, which is washed on a cordierite 35cc honeycomb substrate (3 mil, 400 cells) and fired at 500 ° C for 1 hour. A coat layer was formed. The coating amount is 150 g per liter of honeycomb substrate, and the amount of Pt supported is 1.5 g per liter of honeycomb substrate.
[0047]
(Comparative Example 1)
In a 3 liter beaker, 442.29 g of cerium nitrate aqueous solution (CeO2281.3% by weight) and 601.3 g of zirconium oxynitrate aqueous solution (ZrO2189.5%), 199.5 g of 30% hydrogen peroxide solution, 12 g of surfactant (“Leocon” Lion) 12 g are mixed with 1200 g of ion-exchanged water, and stirred with a propeller stirrer, 25% ammonia 319.9 g of an aqueous solution was added to obtain an oxide precursor precipitate.
[0048]
The obtained precipitate is calcined in a degreasing furnace at 400 ° C. for 5 hours in the atmosphere without washing, and further calcined in the atmosphere at 700 ° C. for 5 hours to obtain CeO.2−ZrO2A solid solution powder was prepared.
[0049]
Obtained CeO2−ZrO2The pore volume of the pores having a pore diameter of 0.1 μm or less in the solid solution powder was 0.05 cc / g, and the average secondary particle diameter was 8 μm.
[0050]
This CeO2−ZrO2A catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that solid solution powder was used.
[0051]
(Example 2)
First step:
In a 3 liter beaker, 278 g of zirconium oxynitrate aqueous solution (ZrO218% by weight) was mixed with 1800 g of ion-exchanged water, and 67 g of 25% aqueous ammonia solution was added while stirring with a propeller stirrer to obtain a precipitate of an oxide precursor.
[0052]
Second step:
The resulting precipitate was centrifuged to discard the supernatant, and the same amount of the supernatant from which ion-exchanged water was discarded was added and stirred, and then centrifuged again. This operation was further performed twice to wash the precipitate.
[0053]
Third step:
Finally, the precipitate after discarding the supernatant was again transferred to a 3-liter beaker, and 1800 g of ion-exchanged water was added, followed by stirring using a propeller stirrer and a homogenizer. Thereto was added 5 g of an anionic surfactant (manufactured by “Armoflow” Lion), and the mixture was further stirred for 5 minutes.
[0054]
This dispersion was centrifuged and the precipitate was washed in the same manner as in the second step.
[0055]
Fourth step:
Finally, the precipitate after discarding the supernatant is baked at 400 ° C for 5 hours in the air using a degreasing furnace, and further baked at 800 ° C for 5 hours in the air.2A powder was prepared.
[0056]
Obtained ZrO2The pore distribution of the powder was measured with a mercury porosimeter, and the results are shown in FIG. The average secondary particle diameter measured in the same manner as in Example 1 was 7 μm.
[0057]
Catalytic:
Obtained ZrO2The powder was impregnated with a predetermined amount of an aqueous rhodium nitrate solution having a predetermined concentration, evaporated and dried, and then fired in the atmosphere at 300 ° C. for 3 hours to carry Rh. The amount of Rh supported is 1% by weight. This Pt supported ZrO2The powder and aluminum nitrate and alumina sol as binder are mixed with ion-exchanged water to prepare a slurry, which is washed on a cordierite 35cc honeycomb substrate (3 mil, 400 cells) and fired at 500 ° C. for 1 hour. A coat layer was formed. The coating amount is 40 g per liter of honeycomb substrate, and the amount of Rh supported is 0.4 g per liter of honeycomb substrate.
[0058]
(Comparative Example 2)
In a 3 liter beaker, 278 g of zirconium oxynitrate aqueous solution (ZrO218% by weight) was mixed with 1800 g of ion-exchanged water, and 67 g of 25% aqueous ammonia solution was added while stirring with a propeller stirrer to obtain a precipitate of an oxide precursor.
[0059]
The obtained precipitate is calcined in a degreasing furnace at 400 ° C. for 5 hours in the air without washing, and further calcined in the air at 800 ° C. for 5 hours to obtain ZrO.2A powder was prepared.
[0060]
Obtained ZrO2The pore distribution of the powder was measured with a mercury porosimeter, and the results are shown in FIG. V on the vertical axis in FIG. 1 means the pore diameter. This ZrO measured in the same manner as in Example 12The average secondary particle diameter of the powder was 8 μm.
[0061]
This ZrO2A catalyst of Comparative Example 2 was prepared in the same manner as Example 2 except that powder was used.
[0062]
<Test and evaluation>
The catalyst of Example 1 and Comparative Example 1 is placed in the evaluation apparatus, and the model gas shown in Table 1 is kept at 900 ° C. for 5 hours while being repeatedly flowed under the conditions of rich gas for 1 minute and lean gas for 4 minutes. A test was conducted. The total flow rate is 20 L / min. Separately from this, an air durability test was conducted in the atmosphere at 900 ° C. for 5 hours.
[0063]
[Table 1]
[0064]
For each catalyst after each endurance test, the model gas shown in Table 2 was heated up at a rate of 20 ° C./min while flowing at a total flow rate of 20 L / min alternately under conditions of rich gas for 1 sec and lean gas for 1 sec. HC, CO and NOx The purification rate was measured continuously. And the temperature at which 50% of each harmful component is purified (T50) And the results are shown in FIGS. The numbers at the vertices of the bar graphs in FIGS. 2 and 3 are the actual T50Is the value of
[0065]
[Table 2]
[0066]
In addition, the catalysts of Example 2 and Comparative Example 2 were placed in the evaluation apparatus, and the model gas shown in Table 1 was kept flowing at 1000 ° C. for 5 hours while alternately flowing repeatedly under conditions of rich gas for 1 minute and lean gas for 4 minutes. A lean endurance test was conducted. The total flow rate is 20 L / min. Separately from this, an air durability test was conducted in the air at 850 ° C. for 5 hours.
[0067]
For each catalyst after each endurance test, the model gas shown in Table 2 was heated at a rate of 20 ° C./min while repeatedly flowing at a total flow rate of 20 L / min under the conditions of rich gas for 1 second and lean gas for 1 second. HC, CO and NO in the meantimex The purification rate was measured continuously. And the temperature at which 50% of each harmful component is purified (T50) And the results are shown in FIGS. The numbers at the vertices of the bar graphs in FIGS. 4 and 5 are the actual T50Is the value of
[0068]
2 and 3, the catalyst of Example 1 shows higher purification performance from the low temperature range after each endurance test than the catalyst of Comparative Example 1, which is CeO.2−ZrO2This is considered to be due to the difference in the pore volume and average secondary particle size of the powder. That is, since the catalyst of Example 1 is excellent in gas diffusibility of the coat layer, it is considered that Pt supported on the lower layer of the coat layer was also effectively used.
[0069]
4 and 5, the catalyst of Example 2 shows higher purification performance from the low temperature range after each endurance test than the catalyst of Comparative Example 2, which is the same as that of the catalyst of Example 2 as shown in FIG. 1. This is probably because the pore volume is larger and the average secondary particle size is larger. That is, since the catalyst of Example 2 is excellent in gas diffusibility of the coat layer, it is considered that Rh supported on the lower layer of the coat layer was also effectively used.
[0070]
(Example 3)
First step:
In a 3 liter beaker, 589.71 g of cerium nitrate aqueous solution (CeO2As 28% by weight) and 437.3 g of zirconium oxynitrate aqueous solution (ZrO2189.5%), 199.5 g of 30% hydrogen peroxide, and 12 g of a surfactant (manufactured by Leocon Lion) are mixed with 1200 g of ion-exchanged water and stirred with a propeller stirrer and homogenizer. Then, 340 g of a 25% aqueous ammonia solution was added to obtain a precipitate of an oxide precursor.
[0071]
The second and subsequent steps are the same as in Example 1, and the CeO of this example2−ZrO2A solid solution powder was prepared.
[0072]
Obtained CeO2−ZrO2The pore volume of the pores having a pore size of 0.1 μm or less in the solid solution powder was 0.3 cc / g, and the average secondary particle size was 6 μm. The pore volume was measured with a mercury porosimeter, and the average secondary particle size was measured with a laser diffraction / scattering particle size distribution analyzer.
[0073]
(Example 4)
First step:
In a 3 liter beaker, 589.71 g of cerium nitrate aqueous solution (CeO2As 28% by weight) and 437.3 g of zirconium oxynitrate aqueous solution (ZrO2189.5%), 309.5% hydrogen peroxide water 199.5g, 30% hydrogen peroxide water 199.5g, and 1200g ion-exchanged water, added 3% 25% aqueous ammonia solution, propeller stirrer Stir with. This was subjected to pressure aging at 120 ° C. for 2 hours. While stirring this solution with a propeller stirrer, 340 g of a 25% aqueous ammonia solution was added to obtain a precipitate of an oxide precursor.
[0074]
The second and subsequent steps are the same as in Example 1, and the CeO of this example2−ZrO2A solid solution powder was prepared.
[0075]
Obtained CeO2−ZrO2The pore volume of the pores having a pore size of 0.1 μm or less in the solid solution powder was 0.2 cc / g, and the average secondary particle size was 6 μm. The pore volume was measured with a mercury porosimeter, and the average secondary particle size was measured with a laser diffraction / scattering particle size distribution analyzer.
[0076]
<Test and evaluation>
CeO of Example 3 and Example 42−ZrO2The pore distribution of the solid solution powder was measured with a mercury porosimeter, and the results are shown in FIG.
[0077]
From FIG. 6, CeO of Example 42−ZrO2It can be seen that the pore distribution of the solid solution powder is concentrated in a fine range as compared with Example 3. Although the detailed reason is unknown, it is considered that this is caused by the generation of uniform nuclei due to the addition of a small amount of aqueous ammonia and pressure aging.
[0078]
And from FIG. 6, the CeO of Example 42−ZrO2Solid solution powder has a pore volume of 0.01 cc / g or more and a pore volume of 0.1 cc / g or more and a pore volume of 0.01 μm or more and 0.1 μm or less. It is clear that it accounts for more than 70% of the pore volume.
[0079]
【The invention's effect】
IeObtained in the present inventionAccording to the metal oxide, since the pore volume and the average secondary particle diameter are larger than the conventional one, the gas diffusibility is excellent, and according to the exhaust gas purification catalyst using the metal oxide, it is supported on the lower layer of the coat layer. The opportunity for contact between the catalyst component and the exhaust gas is increased, and the purification performance is improved.
[Brief description of the drawings]
FIG. 1 ZrO of Example 2 and Comparative Example 22It is a graph which shows pore distribution of powder.
FIG. 2 is a graph showing a 50% purification temperature after a rich lean endurance test of the catalyst of Example 1 and Comparative Example 1.
FIG. 3 is a graph showing 50% purification temperature after an air durability test of the catalysts of Example 1 and Comparative Example 1.
4 is a graph showing a 50% purification temperature after a rich lean endurance test of catalysts of Example 2 and Comparative Example 2. FIG.
FIG. 5 shows the 50% purification temperature after the air durability test of the catalysts of Example 2 and Comparative Example 2.
FIG. 6: CeO of Example 3 and Example 42−ZrO2It is a graph which shows the pore distribution of solid solution powder.
Claims (5)
該沈殿物を洗浄する第2工程と、 A second step of washing the precipitate;
洗浄後の該沈殿物を界面活性剤とともに水中で撹拌する第3工程と、 A third step of stirring the precipitate after washing in water with a surfactant;
該第3工程後の沈殿物を焼成して金属酸化物粉末とする第4工程と、を順次行うことを特徴とする金属酸化物の製造方法。 A method for producing a metal oxide, comprising sequentially performing a fourth step of baking the precipitate after the third step to obtain a metal oxide powder.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003032611A JP4218364B2 (en) | 2002-03-29 | 2003-02-10 | Method for producing metal oxide |
US10/393,068 US7214643B2 (en) | 2002-03-22 | 2003-03-21 | Metal oxide and method for producing the same, and catalyst |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002094842 | 2002-03-29 | ||
JP2003032611A JP4218364B2 (en) | 2002-03-29 | 2003-02-10 | Method for producing metal oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004002148A JP2004002148A (en) | 2004-01-08 |
JP4218364B2 true JP4218364B2 (en) | 2009-02-04 |
Family
ID=30446359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003032611A Expired - Fee Related JP4218364B2 (en) | 2002-03-22 | 2003-02-10 | Method for producing metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4218364B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2859470B1 (en) * | 2003-09-04 | 2006-02-17 | Rhodia Elect & Catalysis | COMPOSITION BASED ON CERIUM OXIDE AND ZIRCONIUM OXIDE WITH REDUCIBILITY AND HIGH SURFACE, PREPARATION METHOD AND USE AS CATALYST |
ES2628829T3 (en) * | 2004-01-23 | 2017-08-04 | Very Small Particle Company Pty Ltd | Method for making metal oxides |
JP4660135B2 (en) * | 2004-07-26 | 2011-03-30 | 第一稀元素化学工業株式会社 | Zirconia-based porous body and method for producing the same |
JP4848554B2 (en) * | 2004-07-30 | 2011-12-28 | Dowaエレクトロニクス株式会社 | Production method of perovskite complex oxide with pore distribution with high catalytic activity |
JP4696767B2 (en) * | 2004-08-30 | 2011-06-08 | 株式会社豊田中央研究所 | Method for producing composite metal oxide porous body |
FR2875149B1 (en) * | 2004-09-15 | 2006-12-15 | Rhodia Chimie Sa | PROCESS FOR MANUFACTURING A CATALYSIS PARTICLE FILTER AND FILTER THUS OBTAINED |
JP4665770B2 (en) * | 2005-01-28 | 2011-04-06 | 株式会社豊田中央研究所 | Catalyst carrier and method for producing the same |
JP4984205B2 (en) * | 2005-06-13 | 2012-07-25 | 株式会社豊田中央研究所 | Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and method for producing exhaust gas purification catalyst carrier |
KR100723392B1 (en) * | 2006-02-02 | 2007-05-30 | 삼성에스디아이 주식회사 | Composite oxide support, low temperature shift reaction catalyst and preparation method thereof |
JP4971918B2 (en) * | 2007-01-25 | 2012-07-11 | 日産自動車株式会社 | Exhaust gas purification catalyst and method for producing the same |
JP5164665B2 (en) * | 2008-04-09 | 2013-03-21 | 第一稀元素化学工業株式会社 | Cerium-zirconium composite oxide and method for producing the same |
WO2011078315A1 (en) * | 2009-12-25 | 2011-06-30 | 阿南化成株式会社 | Complex oxide, method for producing same, and exhaust gas purifying catalyst |
JP5715450B2 (en) * | 2011-03-09 | 2015-05-07 | テイカ株式会社 | Nitrogen oxide selective reduction catalyst and production method thereof |
CN113631515B (en) * | 2019-03-28 | 2023-08-29 | 第一稀元素化学工业株式会社 | Zirconia porous body |
JP6986116B1 (en) * | 2020-06-30 | 2021-12-22 | 株式会社キャタラー | Exhaust gas purification catalyst |
JP6991384B1 (en) | 2021-08-12 | 2022-01-12 | 第一稀元素化学工業株式会社 | Zirconia-based porous body and method for producing zirconia-based porous body |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1570632A (en) * | 1976-01-05 | 1980-07-02 | Exxon Research Engineering Co | Preparation of catalysts of predetermined pore size distribution and pore volume |
JPS6050721B2 (en) * | 1980-02-19 | 1985-11-09 | 千代田化工建設株式会社 | Method for producing porous inorganic oxide |
US4721696A (en) * | 1987-03-11 | 1988-01-26 | Phillips Petroleum Company | Silica-modified alumina and process for its preparation |
JPH0622684B2 (en) * | 1987-11-24 | 1994-03-30 | トヨタ自動車株式会社 | Exhaust gas purification monolith catalyst |
FR2646843B1 (en) * | 1989-05-10 | 1991-12-13 | Rhone Poulenc Chimie | MICROPOROUS ZIRCONIA AND PROCESS FOR THE PREPARATION THEREOF |
JP2641108B2 (en) * | 1990-06-21 | 1997-08-13 | 大日精化工業株式会社 | Method for producing cerium oxide fine powder |
FR2714370B1 (en) * | 1993-12-24 | 1996-03-08 | Rhone Poulenc Chimie | Precursor of a composition and composition based on a mixed oxide of cerium and zirconium, method of preparation and use. |
JPH08333116A (en) * | 1995-04-13 | 1996-12-17 | Toyota Central Res & Dev Lab Inc | Powder |
JP3341973B2 (en) * | 1995-12-07 | 2002-11-05 | 株式会社豊田中央研究所 | Oxide solid solution particles and method for producing the same |
JP3262044B2 (en) * | 1996-10-07 | 2002-03-04 | 株式会社豊田中央研究所 | Composite oxide carrier and composite oxide-containing catalyst |
US6133194A (en) * | 1997-04-21 | 2000-10-17 | Rhodia Rare Earths Inc. | Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity |
-
2003
- 2003-02-10 JP JP2003032611A patent/JP4218364B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004002148A (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4218364B2 (en) | Method for producing metal oxide | |
US7214643B2 (en) | Metal oxide and method for producing the same, and catalyst | |
JP4547935B2 (en) | Exhaust gas purification catalyst, exhaust gas purification catalyst, and catalyst manufacturing method | |
WO2006064684A1 (en) | Catalyst, exhaust gas clarifying catalyst, and method for producing catalyst | |
WO2018159214A1 (en) | Filter for exhaust gas cleaning and method for manufacturing same | |
JP6598972B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4756571B2 (en) | Oxygen storage and release material | |
JP3238316B2 (en) | Exhaust gas purification catalyst | |
JP2005139029A (en) | Oxide powder, production method thereof and catalyst | |
JP5954159B2 (en) | Particulate filter with catalyst | |
JP5078125B2 (en) | Exhaust gas purification catalyst and regeneration method thereof | |
JP2010227799A (en) | Exhaust gas purification catalyst | |
JP7211709B2 (en) | Exhaust gas purifying three-way catalyst, manufacturing method thereof, and integral structure type exhaust gas purifying catalyst | |
WO2019187604A1 (en) | Diesel oxidation catalyst powder and method for manufacturing same, and integrated structure-type exhaust gas purification catalyst | |
JP6627813B2 (en) | Method for producing particulate filter with catalyst | |
JP6194699B2 (en) | Manufacturing method of particulate filter with catalyst | |
JP4273396B2 (en) | Exhaust gas purification catalyst | |
JP2003275580A (en) | Oxygen storage material | |
JP4265276B2 (en) | Exhaust gas purification catalyst | |
JP5949520B2 (en) | Particulate filter with catalyst | |
EP4134161B1 (en) | Exhaust gas purification catalyst | |
JP2005104799A (en) | Composite oxide and exhaust gas purification catalyst | |
JP4305748B2 (en) | Exhaust gas purification catalyst | |
JP4805031B2 (en) | Exhaust gas purification catalyst, its production method and use method | |
JP2005224705A (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081103 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |