[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4211399B2 - Wavelength conversion element and fundamental wave processing method - Google Patents

Wavelength conversion element and fundamental wave processing method Download PDF

Info

Publication number
JP4211399B2
JP4211399B2 JP2003004190A JP2003004190A JP4211399B2 JP 4211399 B2 JP4211399 B2 JP 4211399B2 JP 2003004190 A JP2003004190 A JP 2003004190A JP 2003004190 A JP2003004190 A JP 2003004190A JP 4211399 B2 JP4211399 B2 JP 4211399B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
face
conversion element
light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003004190A
Other languages
Japanese (ja)
Other versions
JP2004219530A (en
Inventor
一郎 関根
浩之 白石
正訓 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003004190A priority Critical patent/JP4211399B2/en
Publication of JP2004219530A publication Critical patent/JP2004219530A/en
Application granted granted Critical
Publication of JP4211399B2 publication Critical patent/JP4211399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、四ホウ酸リチウム(Li2 4 7 )単結晶などの非線形光学結晶からなる波長変換素子と、この波長変換素子を用いてレーザービームの波長変換を行うときにその変換光を安全に処理しうる基本波処理方法とに関するものである。
【0002】
【従来の技術】
この種の波長変換素子の非線形光学結晶としては、BBO(β−BaB2 4 )、CLBO(CsLiB6 10)、KTP(KTiOPO4 )、LN(LiNbO3 )、LBO(LiB3 5 )、KN(KNbO3 )などが知られており、とりわけ四ホウ酸リチウム(Li2 4 7 )単結晶は、もともと透明波長領域が短波長側に広く、β−ホウ酸バリウム単結晶など他の非線形光学結晶と比べてレーザー損傷閾値が大きいばかりでなく、SHG(第2高調波発生)およびSFG(和周波発生)で深紫外線領域ほどの短波長領域への波長変換が可能であり、さらに潮解性や加工性に深刻な問題がなく、他の非線形光学結晶と比べて取扱いが容易であるという利点があるため、波長変換素子の非線形光学結晶として注目されている。
【0003】
そして、これらの波長変換素子でレーザービームの波長変換を行う際には、レーザービームが波長変換素子の入射端面から入射して出射端面から出射することになるが、この出射端面をレーザービームの進行方向に対してどれだけ傾けるかについては2つの方法が採用されてきている。第1の方法は、波長変換素子の出射端面の法線をレーザービームの進行方向に合致させるものであり、第2の方法は、例えば特許文献1に開示されているように、波長変換素子の出射端面の法線をレーザービームの進行方向に対して少し傾けるものである。
【0004】
【特許文献1】
特開2001−296569号公報(段落〔0006〕の欄、図1)
【0005】
【発明が解決しようとする課題】
しかし、第1の方法では、波長変換素子の出射端面にレーザービームが直角に入射するため、出射端面によるレーザービームの断面積が最小になり、パワー密度が最大となる結果、特にレーザー出力が大きい場合(短波長レーザーの場合)に波長変換素子が損傷してしまう恐れがあった。
【0006】
他方、第2の方法だと、レーザービームの一部が波長変換素子の出射端面で斜めに反射するので、その反射光によって波長変換素子が局所的に加熱され、出力が光学的に不安定になる不具合があった。
【0007】
本発明は、このような事情に鑑み、高出力レーザーの波長変換に使用しても耐損傷性および出力安定性に問題が発生することのない波長変換素子を提供することを第1の目的とし、さらに、波長変換時の信頼性が高い基本波処理方法を提供することを第2の目的とする。
【0008】
【課題を解決するための手段】
まず、請求項1に記載の本発明は、非線形光学結晶からなるブロック状の素子本体(4)を有し、この素子本体の前記長手方向の一端部に、入射端面(2)を当該素子本体の長手方向に直交させて形成し、前記素子本体の前記長手方向の他端部に、当該素子本体の長手方向に対して前記レーザービームの変換光B2に対する偏光角となる角度θ1だけ傾斜させた出射端面(3)と、前記長手方向に対して前記出射端面で反射した前記レーザービームの未変換光B1を全反射して前記入射端面に戻す角度θ2だけ傾斜する全反射面(5)を形成したことを特徴とするものである。ここで、この全反射面の数は1つに限られず、複数であっても構わない。角度(θ1)を偏光角とすることにより、レーザービームの変換光が波長変換素子の出射端面に入射したとき、その透過光の比率が最大となるように作用する。
【0009】
また、請求項2に記載の本発明は、前記素子本体(4)を構成する非線形光学結晶として上記長手方向がC軸方向に対して位相整合角度θmだけ傾斜した四ホウ酸リチウム(Li24)単結晶を採用するとともに、前記角度θmを65〜70°の範囲に、前記θ1を50〜70°の範囲に、前記θ2を28〜40°の範囲に設定したことを特徴とするものである
【0010】
これらの構成を採用することにより、レーザービームの波長変換に際して、波長変換素子の出射端面によるレーザービームの断面積が拡大し、それに反比例して変換光のパワー密度が減少すると同時に、出射端面における反射光による波長変換素子の局所的な加熱が回避されるように作用する。
【0012】
一方、請求項3に記載の本発明は、請求項1または2に記載の波長変換素子(1)を用いてレーザービームを波長変換する際に、前記波長変換素子内にその入射端面(2)からレーザービームを入射させ、その未変換光B1を当該波長変換素子の出射端面(3)で変換光B2に対する偏光角で反射させ、この反射光を当該波長変換素子の全反射面(5)で全反射させて当該波長変換素子の入射端面(2)に戻すことを特徴とするものである
【0013】
また、請求項4に記載の本発明は、請求項1または2に記載の波長変換素子(1)を用いて固体レーザーの発振するレーザービームの第2高調波を波長変換して第4高調波を発生させる際に、前記波長変換素子内にその入射端面(2)からレーザービームを入射させ、その未変換光B1を当該波長変換素子の出射端面(3)で変換光B2に対する偏光角で反射させ、この反射光を当該波長変換素子の全反射面(5)で全反射させて当該波長変換素子の入射端面(2)に戻すことを特徴とするものである。ここで、「固体レーザー」にはYAGレーザー、ルビーレーザー、YLFレーザー、Nd:YVO4レーザーなどが含まれる。
【0015】
これらの構成を採用することにより、波長変換素子の出射端面における反射光が入射端面に戻されて安全に処理されうるように作用する。
【0016】
さらに、前記レーザービームの未変換光B1を前記波長変換素子(1)の出射端面(3)で反射させるときに、この出射端面を変換光に対する偏光角で反射させるように構成することにより、レーザービームの変換光が波長変換素子の出射端面に入射したとき、その透過光の比率が最大となるように作用する。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明に係る波長変換素子の第1の実施形態を示す図であって、(a)はその斜視図、(b)はその正面図である。
【0018】
この波長変換素子1は、図1に示すように、四ホウ酸リチウム(Li2 4 7 )単結晶からなるブロック状の素子本体4を有しており、素子本体4の長手方向(矢印M、N方向)はC軸方向に対して所定の位相整合角度θm(例えば、65〜70°)だけ傾斜している。素子本体4には、正方形状の入射端面2が素子本体4の長手方向に直交するように形成されているとともに、長方形状の出射端面3が素子本体4の長手方向に対して所定の角度θ1(例えば、50〜70°)だけ傾斜して形成されている。この角度θ1はレーザービームの変換光B2に対して偏光角(ブリュースター角)をなしている。さらに、素子本体4には長方形状の全反射面5が素子本体4の長手方向に対して所定の角度θ2(例えば、28〜40°)だけ傾斜する形で出射端面3の近傍に形成されている。なお、波長変換素子1の入射端面2、出射端面3および全反射面5はすべて、λ/4(レーザービームの波長の1/4)以上の面精度で研磨加工されている。この際、変換光B2、未変換光B1は、出射端面3に対してそれぞれP偏光、S偏光とする。
【0019】
波長変換素子1は以上のような構成を有するので、YAGレーザーの発振する波長1064nmのレーザービームの第2高調波(波長が532nmの可視光)を波長変換素子1で波長変換して第4高調波(波長が266nmの紫外光)を発生させる際には、このレーザービームを波長変換素子1に照射する。このとき、波長変換素子1の素子本体4の長手方向をレーザービームの照射方向に一致させる。すると、図1(b)に示すように、レーザービームがまず波長変換素子1の入射端面2に入射し、そこで未変換光と変換光の2つ、すなわち第2高調波(波長が532nmのグリーン光)B1と第4高調波B2とに分かれる。そして、第2高調波B1は素子本体4内をその長手方向(矢印M方向)に前進した後、その一部が出射端面3で屈折しつつ透過して素子本体4外に出ていき、残部は出射端面3で反射し、さらに全反射面5で全反射してから、素子本体4の長手方向(矢印N方向)に後退し、入射端面2から素子本体4外に出ていく。一方、第4高調波B2は素子本体4内をその長手方向(矢印M方向)から所定のウォークオフ角だけ傾いた方向に前進した後、出射端面3で屈折して素子本体4外に出ていく。
【0020】
このように、第2高調波B1は、波長変換素子1の出射端面3における反射光が入射端面2に戻されて安全に処理されうるので、波長変換時の信頼性を高めることができる。また、第4高調波B2は波長変換素子1の出射端面3に斜めに入射するので、出射端面3による断面積が拡大し、それに反比例してパワー密度が減少することから、たとえレーザー出力が大きくても波長変換素子1の損傷を防ぐことができる。また、第2高調波B1の一部は斜めに反射するものの、その反射光は全反射面5で全反射して入射端面2側に戻ることになるので、波長変換素子1が局所的に加熱される事態は生じず、波長変換素子1の出力安定性を高めることができる。さらに、第4高調波B2が出射端面3に入射する角度は偏光角であるため、その透過光の比率が最大(反射光の比率が最小)となることから、波長変換素子1による波長変換で得られる第4高調波B2の出力を最大限に増大させることができる。
【0021】
なお、上述の実施形態においては、四ホウ酸リチウム(Li2 4 7 )単結晶からなる素子本体4を有する波長変換素子1について説明したが、素子本体4の材料として四ホウ酸リチウム(Li2 4 7 )単結晶以外の非線形光学結晶(例えば、β−ホウ酸バリウム単結晶など)を採用しても構わない。
【0022】
また、上述の実施形態では、素子本体4に全反射面5を1つ形成した波長変換素子1について説明したが、全反射面5の数は1つに限られず、図2に示すように、2つの全反射面5、6を形成してもよく、或いは3つ以上の全反射面(図示せず)を形成することも可能である。
【0023】
また、上述の実施形態では、全反射面5で全反射した第2高調波B1を素子本体4の長手方向(矢印N方向)と平行に戻す場合について説明したが、この第2高調波B1は必ずしも素子本体4の長手方向と平行に戻す必要はなく、入射端面2に戻すことができる限り、図2に示すように、素子本体4の長手方向に対して傾斜をつけて戻しても構わない。
【0024】
さらに、上述の実施形態では、第2高調波B1の一部(出射端面3における反射光)を入射端面2側に戻す場合について説明したが、第4高調波B2のウォークオフ角に応じて出射端面3および全反射面5の角度θ1、θ2を適宜変更することにより、この第4高調波B2について同様な処理を行うこともできる。
【0025】
【実施例】
以下、本発明の実施例について説明する。
本発明に係る四ホウ酸リチウム(Li2 4 7 )単結晶からなる素子本体(θm=68.8°、θ1=59.3°、θ2=30.7°)を有する波長変換素子(本発明品)を作製するとともに、四ホウ酸リチウム(Li2 4 7 )単結晶からなる素子本体の出射端面の法線がレーザービームの進行方向に合致した従来の波長変換素子(従来品)を作製した。そして、これら2種類の波長変換素子(本発明品、従来品)を用いて、YAGレーザーの発振する波長1064nmのレーザービームを波長変換した第2高調波(波長が532nmのグリーン光)から第4高調波(波長が266nmの紫外光)を発生させ、そのときの耐損傷性および出力安定性を比較した。その結果、従来品では波長変換を開始してから約20時間後に損傷を起こし、出力が不安定になったのに対し、本発明品については、その約2倍の時間、つまり40時間を経過しても損傷が発生せず、出力も安定したままであった。
【0026】
【発明の効果】
以上説明したように、請求項1、2に記載の本発明によれば、レーザービームの波長変換に際して、波長変換素子の出射端面によるレーザービームの断面積が拡大し、それに反比例して変換光のパワー密度が減少すると同時に、出射端面における反射光による波長変換素子の局所的な加熱が回避されることから、高出力レーザーの波長変換に使用しても耐損傷性および出力安定性に問題が発生することのない波長変換素子を提供することができる。
【0027】
また、レーザービームの変換光が波長変換素子の出射端面に入射したとき、その透過光の比率が最大となるため、波長変換素子による波長変換で得られる高調波の出力を最大限に増大させることができる。
【0028】
一方、請求項3または4に記載の本発明によれば、波長変換素子の出射端面における反射光が入射端面に戻されて安全に処理されうるので、波長変換時の信頼性が高い基本波処理方法を提供することができる。
【0029】
さらに、レーザービームの変換光が波長変換素子の出射端面に入射したとき、その透過光の比率が最大となるため、波長変換素子による波長変換で得られる高調波の出力を最大限に増大させることができる。
【図面の簡単な説明】
【図1】本発明に係る波長変換素子の第1の実施形態を示す図であって、(a)はその斜視図、(b)はその正面図である。
【図2】本発明に係る波長変換素子の第2の実施形態を示す正面図である。
【符号の説明】
1……波長変換素子
2……入射端面
3……出射端面
4……素子本体
5……全反射面
B1……第2高調波(未変換光)
B2……第4高調波(変換光)
θ1……角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength conversion element made of a nonlinear optical crystal such as lithium tetraborate (Li 2 B 4 O 7 ) single crystal, and the converted light when wavelength conversion of a laser beam is performed using this wavelength conversion element. The present invention relates to a fundamental wave processing method that can be safely processed.
[0002]
[Prior art]
Nonlinear optical crystals of this type of wavelength conversion element include BBO (β-BaB 2 O 4 ), CLBO (CsLiB 6 O 10 ), KTP (KTiOPO 4 ), LN (LiNbO 3 ), LBO (LiB 3 O 5 ). KN (KNbO 3 ) is known, and in particular, lithium tetraborate (Li 2 B 4 O 7 ) single crystal originally has a wide transparent wavelength region on the short wavelength side, β-barium borate single crystal, etc. In addition to a large laser damage threshold as compared with the nonlinear optical crystal of SHG (second harmonic generation) and SFG (sum frequency generation), it is possible to perform wavelength conversion to a short wavelength region as deep UV region, There is no serious problem in deliquescence and workability, and there is an advantage that it is easy to handle as compared with other nonlinear optical crystals. Therefore, it has been attracting attention as a nonlinear optical crystal for wavelength conversion elements.
[0003]
When the wavelength conversion of the laser beam is performed by these wavelength conversion elements, the laser beam is incident from the incident end face of the wavelength conversion element and is emitted from the emission end face. Two methods have been adopted as to how much to tilt with respect to the direction. The first method is to match the normal line of the emission end face of the wavelength conversion element with the traveling direction of the laser beam, and the second method is, for example, as disclosed in Patent Document 1, the wavelength conversion element. The normal line of the emission end face is slightly inclined with respect to the traveling direction of the laser beam.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-296569 (paragraph [0006] column, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in the first method, since the laser beam is incident at a right angle on the exit end face of the wavelength conversion element, the laser beam cross-sectional area at the exit end face is minimized and the power density is maximized. As a result, the laser output is particularly large. In this case (in the case of a short wavelength laser), the wavelength conversion element may be damaged.
[0006]
On the other hand, in the second method, since a part of the laser beam is reflected obliquely at the emission end face of the wavelength conversion element, the wavelength conversion element is locally heated by the reflected light, and the output becomes optically unstable. There was a bug.
[0007]
In view of such circumstances, a first object of the present invention is to provide a wavelength conversion element that does not cause problems in damage resistance and output stability even when used for wavelength conversion of a high-power laser. Furthermore, it is a second object to provide a fundamental wave processing method with high reliability at the time of wavelength conversion.
[0008]
[Means for Solving the Problems]
First, the present invention described in claim 1 has a block-shaped element body (4) made of a nonlinear optical crystal , and an incident end face (2) is provided at one end of the element body in the longitudinal direction. The other end of the element body in the longitudinal direction is inclined by an angle θ1 that is a polarization angle with respect to the converted light B2 of the laser beam with respect to the longitudinal direction of the element body . emitting end surface (3), the total reflection surfaces inclined by the longitudinal direction relative to the unconverted light B1 of the laser beam reflected by the outgoing end face totally reflected to return to the incident end face angle θ2 and (5) it is characterized in that the formed. Here, the number of the total reflection surfaces is not limited to one and may be plural. By setting the angle (θ1) as the polarization angle, when the converted light of the laser beam is incident on the emission end face of the wavelength conversion element, the ratio of the transmitted light is maximized.
[0009]
The present invention according to claim 2 is a lithium tetraborate (Li 2 B) in which the longitudinal direction is inclined by a phase matching angle θm with respect to the C-axis direction as a nonlinear optical crystal constituting the element body (4). 4 O 7 ) A single crystal is used , the angle θm is set in the range of 65 to 70 °, the θ1 is set in the range of 50 to 70 °, and the θ2 is set in the range of 28 to 40 °. To do .
[0010]
By adopting these configurations, when converting the wavelength of the laser beam, the cross-sectional area of the laser beam by the output end face of the wavelength conversion element is enlarged, and the power density of the converted light is reduced in inverse proportion to it, and at the same time the reflection at the output end face It acts so that local heating of the wavelength conversion element by light is avoided.
[0012]
On the other hand, when the wavelength conversion element (1) according to claim 1 or 2 is used to convert the wavelength of a laser beam, the present invention described in claim 3 has an incident end face (2) in the wavelength conversion element. The unconverted light B1 is reflected at the exit end face (3) of the wavelength conversion element at a polarization angle with respect to the converted light B2, and the reflected light is reflected by the total reflection surface (5) of the wavelength conversion element. The light is totally reflected and returned to the incident end face (2) of the wavelength conversion element.
[0013]
According to a fourth aspect of the present invention, the wavelength conversion element (1) according to the first or second aspect is used to convert the wavelength of the second harmonic of the laser beam oscillated by the solid-state laser, thereby converting the fourth harmonic. When the laser beam is generated, a laser beam is incident on the wavelength conversion element from the incident end face (2), and the unconverted light B1 is reflected by the emission end face (3) of the wavelength conversion element at a polarization angle with respect to the converted light B2. The reflected light is totally reflected by the total reflection surface (5) of the wavelength conversion element and returned to the incident end face (2) of the wavelength conversion element. Here, “solid laser” includes YAG laser, ruby laser, YLF laser, Nd: YVO 4 laser, and the like.
[0015]
By adopting these configurations, the reflected light at the exit end face of the wavelength conversion element is returned to the entrance end face so that it can be safely processed.
[0016]
Further, when to be reflected at the light output end face of the unconverted light B1 before Symbol laser beam wavelength conversion element (1) (3), by configuring so as to reflect the emission end face at a polarization angle with respect to the converted light, When the converted light of the laser beam is incident on the exit end face of the wavelength conversion element, the ratio of the transmitted light is maximized.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B are diagrams showing a first embodiment of a wavelength conversion element according to the present invention, in which FIG. 1A is a perspective view thereof, and FIG. 1B is a front view thereof.
[0018]
As shown in FIG. 1, the wavelength conversion element 1 has a block-shaped element body 4 made of a lithium tetraborate (Li 2 B 4 O 7 ) single crystal. M and N directions) are inclined with respect to the C-axis direction by a predetermined phase matching angle θm (for example, 65 to 70 °). The element body 4 has a square incident end face 2 formed so as to be orthogonal to the longitudinal direction of the element body 4, and the rectangular exit end face 3 has a predetermined angle θ 1 with respect to the longitudinal direction of the element body 4. (E.g., 50-70 [deg.]). This angle θ1 forms a polarization angle (Brewster angle) with respect to the converted light B2 of the laser beam. Further, a rectangular total reflection surface 5 is formed in the element body 4 in the vicinity of the emission end face 3 so as to be inclined by a predetermined angle θ2 (for example, 28 to 40 °) with respect to the longitudinal direction of the element body 4. Yes. The incident end face 2, the outgoing end face 3 and the total reflection face 5 of the wavelength conversion element 1 are all polished with a surface accuracy of λ / 4 (1/4 of the wavelength of the laser beam) or more. At this time, the converted light B2 and the unconverted light B1 are respectively P-polarized light and S-polarized light with respect to the emission end face 3.
[0019]
Since the wavelength conversion element 1 has the above-described configuration, the second harmonic (visible light having a wavelength of 532 nm) of the laser beam with a wavelength of 1064 nm oscillated by the YAG laser is converted by the wavelength conversion element 1 to the fourth harmonic. When generating a wave (ultraviolet light having a wavelength of 266 nm), the laser beam is applied to the wavelength conversion element 1. At this time, the longitudinal direction of the element body 4 of the wavelength conversion element 1 is made to coincide with the irradiation direction of the laser beam. Then, as shown in FIG. 1 (b), the laser beam first enters the incident end face 2 of the wavelength conversion element 1, where there are two unconverted light and converted light, that is, the second harmonic (green having a wavelength of 532 nm). Light) B1 and fourth harmonic B2. Then, after the second harmonic B1 advances in the element body 4 in the longitudinal direction (arrow M direction), a part of the second harmonic wave B1 is refracted at the emission end face 3 and is transmitted to the outside of the element body 4, and the remaining part Is reflected by the emission end face 3 and further totally reflected by the total reflection face 5, then retreats in the longitudinal direction of the element body 4 (arrow N direction), and exits from the entry end face 2 to the outside of the element body 4. On the other hand, the fourth harmonic B2 advances in the element body 4 in a direction inclined by a predetermined walk-off angle from the longitudinal direction (direction of arrow M), and then refracts at the emission end face 3 and goes out of the element body 4. Go.
[0020]
As described above, the second harmonic B1 can be safely processed by returning the reflected light at the emission end face 3 of the wavelength conversion element 1 to the incident end face 2, and thus the reliability at the time of wavelength conversion can be improved. Further, since the fourth harmonic B2 is obliquely incident on the emission end face 3 of the wavelength conversion element 1, the cross-sectional area of the emission end face 3 is enlarged, and the power density is reduced in inverse proportion thereto, so that the laser output is large. However, damage to the wavelength conversion element 1 can be prevented. Further, although a part of the second harmonic B1 is reflected obliquely, the reflected light is totally reflected by the total reflection surface 5 and returns to the incident end face 2 side, so that the wavelength conversion element 1 is locally heated. Thus, the output stability of the wavelength conversion element 1 can be improved. Furthermore, since the angle at which the fourth harmonic B2 is incident on the output end face 3 is a polarization angle, the ratio of the transmitted light is the maximum (the ratio of the reflected light is the minimum). The output of the obtained fourth harmonic B2 can be increased to the maximum.
[0021]
In the above-described embodiment, the wavelength conversion element 1 having the element body 4 made of lithium tetraborate (Li 2 B 4 O 7 ) single crystal has been described. However, as the material of the element body 4, lithium tetraborate ( Non-linear optical crystals (for example, β-barium borate single crystal) other than Li 2 B 4 O 7 ) single crystal may be adopted.
[0022]
In the above-described embodiment, the wavelength conversion element 1 having one total reflection surface 5 formed on the element body 4 has been described. However, the number of the total reflection surfaces 5 is not limited to one, and as shown in FIG. Two total reflection surfaces 5 and 6 may be formed, or three or more total reflection surfaces (not shown) may be formed.
[0023]
Moreover, although the above-mentioned embodiment demonstrated the case where 2nd harmonic B1 totally reflected by the total reflection surface 5 was returned in parallel with the longitudinal direction (arrow N direction) of the element main body 4, this 2nd harmonic B1 is It is not always necessary to return the element body 4 in parallel with the longitudinal direction, and as long as the element can be returned to the incident end face 2, it may be returned with an inclination with respect to the longitudinal direction of the element body 4, as shown in FIG. .
[0024]
Furthermore, in the above-described embodiment, a case has been described in which a part of the second harmonic B1 (reflected light at the emission end face 3) is returned to the incident end face 2 side, but the emission is made according to the walk-off angle of the fourth harmonic B2. Similar processing can be performed on the fourth harmonic B2 by appropriately changing the angles θ1 and θ2 of the end surface 3 and the total reflection surface 5.
[0025]
【Example】
Examples of the present invention will be described below.
A wavelength conversion element having an element body (θm = 68.8 °, θ1 = 59.3 °, θ2 = 30.7 °) made of a lithium tetraborate (Li 2 B 4 O 7 ) single crystal according to the present invention ( A conventional wavelength conversion element (conventional product) in which the normal of the emission end face of the element body made of lithium tetraborate (Li 2 B 4 O 7 ) single crystal matches the traveling direction of the laser beam ) Was produced. Using these two types of wavelength conversion elements (the product of the present invention and the conventional product), the laser beam having a wavelength of 1064 nm oscillated by the YAG laser is wavelength converted from the second harmonic (green light having a wavelength of 532 nm) to the fourth. Harmonics (ultraviolet light having a wavelength of 266 nm) were generated, and the damage resistance and output stability at that time were compared. As a result, the conventional product was damaged about 20 hours after the start of wavelength conversion, and the output became unstable, while the product of the present invention was about twice as long, that is, 40 hours passed. However, no damage occurred and the output remained stable.
[0026]
【The invention's effect】
As described above, according to the first and second aspects of the present invention, when the wavelength of the laser beam is converted, the cross-sectional area of the laser beam by the emission end face of the wavelength conversion element is enlarged, and the converted light is inversely proportional to it. At the same time as the power density decreases, local heating of the wavelength conversion element due to the reflected light at the output end face is avoided, causing problems in damage resistance and output stability even when used for wavelength conversion of high-power lasers It is possible to provide a wavelength conversion element that does not occur.
[0027]
Further, when the converted light Le Zabimu is incident on the emission end face of the wavelength conversion element, since the ratio of the transmitted light is maximized, to increase the maximum output of the resulting harmonic wavelength conversion by the wavelength conversion element Can do.
[0028]
On the other hand, according to the third or fourth aspect of the present invention, since the reflected light at the emission end face of the wavelength conversion element can be returned to the incident end face and processed safely, the fundamental wave processing with high reliability at the time of wavelength conversion is achieved. A method can be provided.
[0029]
Further, when the converted light Le Zabimu is incident on the emission end face of the wavelength conversion element, since the ratio of the transmitted light is maximized, to increase the maximum output of the resulting harmonic wavelength conversion by the wavelength conversion element Can do.
[Brief description of the drawings]
1A and 1B are views showing a first embodiment of a wavelength conversion element according to the present invention, wherein FIG. 1A is a perspective view thereof, and FIG. 1B is a front view thereof.
FIG. 2 is a front view showing a second embodiment of a wavelength conversion element according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wavelength conversion element 2 ... Incidence end face 3 ... Output end face 4 ... Element main body 5 ... Total reflection surface B1 ... Second harmonic (unconverted light)
B2 ... Fourth harmonic (converted light)
θ1 …… Angle

Claims (4)

非線形光学結晶からなるブロック状の素子本体(4)を有し、
この素子本体の前記長手方向の一端部に、入射端面(2)を当該素子本体の長手方向に直交させて形成し、
前記素子本体の前記長手方向の他端部に、当該素子本体の長手方向に対して前記レーザービームの変換光B2に対する偏光角となる角度θ1だけ傾斜させた出射端面(3)と、前記長手方向に対して前記出射端面で反射した前記レーザービームの未変換光B1を全反射して前記入射端面に戻す角度θ2だけ傾斜する全反射面(5)を形成したことを特徴とする波長変換素子。
It has a block-shaped element body (4) made of a nonlinear optical crystal,
At one end of the element body in the longitudinal direction, an incident end face (2) is formed orthogonal to the longitudinal direction of the element body,
An emission end face (3) inclined at an angle θ1 that is a polarization angle with respect to the converted light B2 of the laser beam with respect to the longitudinal direction of the element body at the other end portion in the longitudinal direction of the element body, and the longitudinal direction wavelength conversion element characterized by forming a total reflection surface (5) for tilting the unconverted light B1 of the laser beam reflected by the outgoing end face by an angle θ2 that total reflection to return to the incident end face against .
前記素子本体(4)を構成する非線形光学結晶として上記長手方向がC軸方向に対して位相整合角度θmだけ傾斜した四ホウ酸リチウム(Li24)単結晶を採用するとともに、前記角度θmを65〜70°の範囲に、前記θ1を50〜70°の範囲に、前記θ2を28〜40°の範囲に設定したことを特徴とする請求項1に記載の波長変換素子。 With the longitudinal direction as the nonlinear optical crystal to adopt the phase matching angle θm only inclined by lithium tetraborate (Li 2 B 4 O 7) single crystal with respect to the C-axis direction constituting the element body (4), wherein The wavelength conversion element according to claim 1 , wherein the angle θm is set in a range of 65 to 70 °, the θ1 is set in a range of 50 to 70 °, and the θ2 is set in a range of 28 to 40 ° . 請求項1または2に記載の波長変換素子(1)を用いてレーザービームを波長変換する際に、前記波長変換素子内にその入射端面(2)からレーザービームを入射させ、その未変換光B1を当該波長変換素子の出射端面(3)で変換光B2に対する偏光角で反射させ、この反射光を当該波長変換素子の全反射面(5)で全反射させて当該波長変換素子の入射端面(2)に戻すことを特徴とする基本波処理方法。When converting the wavelength of a laser beam using the wavelength conversion element (1) according to claim 1 or 2, the laser beam is incident from the incident end face (2) into the wavelength conversion element, and the unconverted light B1 Is reflected at the emission end face (3) of the wavelength conversion element at a polarization angle with respect to the converted light B2, and the reflected light is totally reflected by the total reflection face (5) of the wavelength conversion element, so that the incident end face ( 2. A fundamental wave processing method characterized by returning to 2). 請求項1または2に記載の波長変換素子(1)を用いて固体レーザーの発振するレーザービームの第2高調波を波長変換して第4高調波を発生させる際に、
前記波長変換素子内にその入射端面(2)からレーザービームを入射させ、その未変換光B1を当該波長変換素子の出射端面(3)で変換光B2に対する偏光角で反射させ、この反射光を当該波長変換素子の全反射面(5)で全反射させて当該波長変換素子の入射端面(2)に戻すことを特徴とする基本波処理方法。
When the wavelength conversion element (1) according to claim 1 or 2 is used to generate a fourth harmonic by converting the wavelength of the second harmonic of the laser beam oscillated by the solid-state laser,
A laser beam is incident on the wavelength conversion element from its incident end face (2), and the unconverted light B1 is reflected at the exit end face (3) of the wavelength conversion element at a polarization angle with respect to the converted light B2, and this reflected light is reflected. A fundamental wave processing method, comprising: totally reflecting the total reflection surface (5) of the wavelength conversion element and returning the light to the incident end face (2) of the wavelength conversion element.
JP2003004190A 2003-01-10 2003-01-10 Wavelength conversion element and fundamental wave processing method Expired - Fee Related JP4211399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004190A JP4211399B2 (en) 2003-01-10 2003-01-10 Wavelength conversion element and fundamental wave processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004190A JP4211399B2 (en) 2003-01-10 2003-01-10 Wavelength conversion element and fundamental wave processing method

Publications (2)

Publication Number Publication Date
JP2004219530A JP2004219530A (en) 2004-08-05
JP4211399B2 true JP4211399B2 (en) 2009-01-21

Family

ID=32895243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004190A Expired - Fee Related JP4211399B2 (en) 2003-01-10 2003-01-10 Wavelength conversion element and fundamental wave processing method

Country Status (1)

Country Link
JP (1) JP4211399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883503B2 (en) * 2005-06-21 2012-02-22 独立行政法人情報通信研究機構 Laser device using multi-path solid slab laser rod or nonlinear optical crystal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289447A (en) * 1993-03-30 1994-10-18 Asahi Glass Co Ltd Higher harmonic generator
JPH09160086A (en) * 1995-12-05 1997-06-20 Nec Corp Wavelength conversion element
JPH1130792A (en) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp Wavelength conversion element for ar laser
JPH1164902A (en) * 1997-08-20 1999-03-05 Sony Corp Wavelength converting device
JP2002055369A (en) * 2000-08-09 2002-02-20 Sony Corp Laser beam generating device
JP4474756B2 (en) * 2000-08-17 2010-06-09 ソニー株式会社 Laser light generator

Also Published As

Publication number Publication date
JP2004219530A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US6587487B2 (en) Harmonic laser
US5850407A (en) Third-harmonic generator with uncoated brewster-cut dispersive output facet
US5638388A (en) Diode pumped, multi axial mode intracavity doubled laser
US6697391B2 (en) Intracavity resonantly enhanced fourth-harmonic generation using uncoated brewster surfaces
US5835513A (en) Q-switched laser system providing UV light
US20070263693A1 (en) Compact efficient and robust ultraviolet
KR102344775B1 (en) High Efficiency Laser System for Third Harmonic Generation
US6327281B1 (en) Laser with harmonic cavity
JP2013524276A (en) Nonlinear crystal with wedge-shaped facets for harmonic generation
US6931037B2 (en) Diode pumped, multi axial mode intracavity doubled laser
JP4231829B2 (en) Internal cavity sum frequency mixing laser
US6816519B2 (en) Solid-state laser device
US5274650A (en) Solid state laser
US20040052286A1 (en) Semiconductor laser device
JPH06283794A (en) Laser-diode-pumped solid laser
US20050058165A1 (en) Laser having <100>-oriented crystal gain medium
US8369366B2 (en) Semiconductor laser excited solid-state laser device
US6870862B2 (en) Solid-state laser device
US6813306B2 (en) Solid-state laser device
JP4211399B2 (en) Wavelength conversion element and fundamental wave processing method
US6807200B2 (en) Apparatus for generating laser radiation
US20230335969A1 (en) Intracavity harmonic generation with layered nonlinear optic
KR101156637B1 (en) Compact solid-state laser with nonlinear frequency conversion using periodically poled materials
JP7535669B2 (en) Frequency conversion laser device
JP2005317743A (en) Laser apparatus and laser processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees