JP4210193B2 - Manufacturing method of metal parts - Google Patents
Manufacturing method of metal parts Download PDFInfo
- Publication number
- JP4210193B2 JP4210193B2 JP2003353542A JP2003353542A JP4210193B2 JP 4210193 B2 JP4210193 B2 JP 4210193B2 JP 2003353542 A JP2003353542 A JP 2003353542A JP 2003353542 A JP2003353542 A JP 2003353542A JP 4210193 B2 JP4210193 B2 JP 4210193B2
- Authority
- JP
- Japan
- Prior art keywords
- electroforming
- film
- mold
- release agent
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemically Coating (AREA)
Description
本発明は、金属部品の製造方法に係り、特に鋳型の成形面上に金属材を電鋳させ、その後、金属材を剥離することにより、ナノメートルオーダーの微細形状部位を有する金属部品を製造することができる金属部品の製造方法に関する。 The present invention relates to a method of manufacturing a metal part, and in particular, manufactures a metal part having a finely shaped part on the order of nanometers by electroforming a metal material on a molding surface of a mold and then peeling the metal material. The present invention relates to a method for manufacturing a metal part.
従来、金属製鋳型を用いて電鋳により金属材を析出させて金属部品を製造する方法では、金属鋳型からの金属材の剥離を容易なものとするために、酸化剤型の離型剤を用いて酸化被膜もしくは不動態化被膜を鋳型に形成していた。また、離型剤としてペイント、ワックス、金属微粒子を用いて離型剤膜を形成する方法も知られている(非特許文献1)。
一方、シランカップリング剤は、無電解めっき析出の均一化(特許文献1)や、無電解めっき密着性の向上(特許文献2)を目的として用いられてきた。
On the other hand, silane coupling agents have been used for the purpose of homogenizing electroless plating deposition (Patent Document 1) and improving electroless plating adhesion (Patent Document 2).
しかし、従来の離型剤により形成される酸化被膜や不動態化被膜は、厚みが数百nm以上の離型剤膜となり、超微細なナノメートルオーダーでの加工では良好な型再現性が得られず、電鋳による高精細な金属部品の製造が困難であった。
また、無電解めっき被膜の均一化、密着性向上を可能とする公知のシランカップリング剤は、良好な離型性が得られないものであった。
本発明は、上述のような実情に鑑みてなされたものであり、良好な型再現性によりナノメートルオーダーの微細形状部位を有する金属部品の製造が可能な方法を提供することを目的とする。
However, oxide films and passivating films formed with conventional mold release agents become release agent films with a thickness of several hundreds of nanometers or more, and good mold reproducibility can be obtained by processing in the ultra-fine nanometer order. However, it was difficult to manufacture high-definition metal parts by electroforming.
Moreover, the well-known silane coupling agent which can make the electroless-plating film uniform and improve the adhesion cannot provide a good release property.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of manufacturing a metal part having a finely shaped portion of nanometer order with good mold reproducibility.
このような目的を達成するために、本発明は鋳型の成形面上に金属材を電鋳させることにより金属部品を製造する方法において、ナノメートルオーダーの微細形状部位を有する鋳型の成形面上に離型剤としてγ−アミノプロピルトリエトキシシランを0.1〜100g/Lの範囲で含有する離型剤水溶液を用いて離型剤膜を成膜し、該離型剤膜に無電解めっき用触媒を付与し、無電解めっきにより電鋳用通電膜を成膜する型形成工程と、該電鋳用通電膜に通電することにより電鋳用通電膜上に金属材を析出させる電鋳工程と、金属材を鋳型から剥離して金属部品とする剥離工程と、を有するような構成とした。 In order to achieve such an object, the present invention provides a method for manufacturing a metal part by electroforming a metal material on a molding surface of a mold, on a molding surface of a mold having a fine-shaped portion of nanometer order. A release agent film is formed using an aqueous release agent solution containing γ-aminopropyltriethoxysilane in the range of 0.1 to 100 g / L as a release agent , and the release agent film is used for electroless plating. A mold forming step of applying a catalyst and forming an electroforming electroconductive film by electroless plating; and an electroforming step of depositing a metal material on the electroforming electroconductive film by energizing the electroforming electroconductive film; And a peeling step in which the metal material is peeled from the mold to form a metal part.
本発明の好ましい態様として、前記鋳型の材質は、金属、ガラス、無機酸化物、有機樹脂のいずれかであるような構成とした。
本発明の好ましい態様として、前記金属部品は、配線、電極、あるいは、撮像デバイスに使用されるものであるような構成とした。
As a preferred aspect of the present invention, the mold is made of a metal, glass, inorganic oxide, or organic resin.
As a preferred aspect of the present invention, the metal component is configured to be used for wiring, electrodes, or an imaging device .
本発明によれば、離型剤としてアミノ系シランカップリング剤を用いて成膜した離型剤膜が良好な触媒吸着性を発現するので、無電解めっきによる離型剤膜上への電鋳用通電膜の形成が可能であり、電鋳用通電膜の形成のために真空成膜法等の特別の膜形成方法を必要とせず、工程が簡便なものとなり、また、離型剤膜が単分子層膜あるいはこれに近い数百〜数千ピコメートルの薄膜であり、鋳型の成形面形状に対する追随性が高く、かつ、良好な離型性を発現するので、ナノメートルオーダーの微細形状部位を有する金属部品を高い再現性で製造することが可能である。 According to the present invention, since a release agent film formed using an amino-based silane coupling agent as a release agent exhibits good catalyst adsorptivity, electroforming on the release agent film by electroless plating It is possible to form a conductive film for electroforming, a special film forming method such as a vacuum film forming method is not required for forming a conductive film for electroforming, the process is simple, and a release agent film is provided. It is a monomolecular layer film or a thin film of several hundred to several thousand picometers close to it, and has high followability to the molding surface shape of the mold and exhibits good releasability. It is possible to manufacture a metal part having a high reproducibility.
次に、本発明の最良な実施形態について説明する。
本発明の金属部品の製造方法は、鋳型の成形面上に金属材を電鋳させることにより金属部品を製造する方法であり、型形成工程と、電鋳工程と、剥離工程と、を有するものである。
型形成工程では、まず、鋳型の成形面上に離型剤としてアミノ系シランカップリング剤を用いて離型剤膜を成膜し、この離型剤膜に無電解めっき用触媒を付与し、その後、無電解めっきにより電鋳用通電膜を成膜する。
上記の離型剤膜の成膜は離型剤水溶液を使用して行うことができ、浸漬法、塗布法、スプレー法等、公知のいずれの方法を用いてもよい。形成された離型剤膜は、単分子層膜あるいはこれに近い薄膜であり、膜厚は数百〜数千ピコメートル程度である。このため、鋳型の成形面形状に対する追随性が極めて高いものとなる。
Next, the best embodiment of the present invention will be described.
The metal part manufacturing method of the present invention is a method of manufacturing a metal part by electroforming a metal material on a molding surface of a mold, and includes a mold forming step, an electroforming step, and a peeling step. It is.
In the mold forming step, first, a release agent film is formed on the molding surface of the mold using an amino-based silane coupling agent as a release agent, and a catalyst for electroless plating is applied to the release agent film. Thereafter, an electroforming conductive film is formed by electroless plating.
The release agent film can be formed using an aqueous release agent solution, and any known method such as a dipping method, a coating method, or a spray method may be used. The formed release agent film is a monomolecular layer film or a thin film close thereto, and the film thickness is about several hundred to several thousand picometers. For this reason, the followability with respect to the shaping | molding surface shape of a casting_mold | template becomes a very high thing.
離型剤水溶液の離型剤濃度は、使用するアミノ系シランカップリング剤の種類に応じて適宜設定することができ、例えば、0.1〜100g/L、好ましくは0.1〜10g/Lの範囲で濃度を設定することができる。アミノ系シランカップリング剤の濃度が0.1g/L未満であると、無電解めっき用触媒の付与が不充分なものとなり、また、100g/Lを超えると、無電解めっきにより成膜した電鋳用通電膜にフクレが生じることがあり好ましくない。
離型剤として使用するアミノ系シランカップリング剤は、下記の一般式(1)で表されるものを挙げることができ、具体的には、γ−アミノプロピルトリエトキシシラン、3−アミノプロピルメトキシシラン、3−アミノエチルエトキシシラン、3−アミノエチルメトキシシラン等を挙げることができる。
NH2−R1−Si−(O−R2)3 … 一般式(1)
(ただし、R1は炭素数2〜3のアルキル基、R2は炭素数1〜2のアルキル基)
The mold release agent concentration of the mold release agent aqueous solution can be appropriately set according to the type of amino-based silane coupling agent to be used, and is, for example, 0.1 to 100 g / L, preferably 0.1 to 10 g / L. The density can be set within the range. When the concentration of the amino-based silane coupling agent is less than 0.1 g / L, the application of the electroless plating catalyst is insufficient, and when it exceeds 100 g / L, the electrode formed by electroless plating is formed. This is not preferable because a bulge may occur in the electroconductive film for casting.
Examples of the amino silane coupling agent used as the mold release agent include those represented by the following general formula (1). Specifically, γ-aminopropyltriethoxysilane, 3-aminopropylmethoxy Examples include silane, 3-aminoethylethoxysilane, 3-aminoethylmethoxysilane, and the like.
NH 2 —R 1 —Si— (O—R 2) 3 ... General formula (1)
(However, R1 is an alkyl group having 2 to 3 carbon atoms, R2 is an alkyl group having 1 to 2 carbon atoms)
離型剤膜への無電解めっき用触媒付与と、その後の、無電解めっきによる電鋳用通電膜の成膜は、従来公知の触媒付与液、無電解めっき浴を用いて行うことができる。触媒付与は、浸漬法、塗布法、スプレー法等、公知の方法により所望の触媒(Pd、Ag、Cu、Ni等)を付与する。本発明では、上記の離型剤膜が良好な触媒吸着性を具備するので、触媒付与を確実に行うことができ、無電解めっきによる電鋳用通電膜の形成が可能となる。このため、電鋳用通電膜の形成工程において真空成膜等の特別の膜形成方法を必要とせず、工程が簡便なものとなる。形成する電鋳用通電膜の厚みは0.05〜0.5μmの範囲内で設定することが好ましい。電鋳用通電膜の厚みが0.05μm未満であると、電鋳時に断線するおそれがあり、また、0.5μmを超えると、応力による密着不良を生じることがあり好ましくない。 Application of a catalyst for electroless plating to the release agent film and subsequent film formation of an electroforming film for electroforming by electroless plating can be performed using a conventionally known catalyst application liquid and electroless plating bath. For catalyst application, a desired catalyst (Pd, Ag, Cu, Ni, etc.) is applied by a known method such as dipping, coating, or spraying. In the present invention, since the release agent film has good catalyst adsorptivity, it is possible to reliably apply the catalyst and to form an electroforming electroconductive film by electroless plating. For this reason, a special film formation method such as vacuum film formation is not required in the electroforming electroforming film forming process, and the process becomes simple. The thickness of the electroforming film to be formed is preferably set within the range of 0.05 to 0.5 μm. If the thickness of the electroforming film for electroforming is less than 0.05 μm, there is a risk of disconnection during electroforming, and if it exceeds 0.5 μm, adhesion failure due to stress may occur, which is not preferable.
次いで、電鋳工程では、電鋳用通電膜に通電して金属材を電鋳用通電膜上に析出させる。金属材の析出に用いる電鋳液や、液温、pH、電流密度、通電時間等の電鋳条件は、特に制限はなく、従来公知の電鋳液を適宜選択し、製造する金属部品に応じて適宜条件を設定することができる。また、金属材の材質は、例えば、Ni、Cr、Cu、Ni−Cr合金、Ni−Fe合金、Ni−W合金等を挙げることができる。金属材の厚みは10μm以上であることが好ましく、厚みが10μm未満であると、次の剥離工程で金属部品が破損してしまうことがあり好ましくない。
剥離工程では、金属材を鋳型から剥離して金属部品を得る。本発明では、離型剤膜が単分子層膜あるいはこれに近い数百〜数千ピコメートルの薄膜であり、かつ、良好な離型性を発現するので、ナノメートルオーダーの微細形状部位を有する金属部品を高い再現性で製造することができる。また、剥離時に離型剤膜を溶解除去する工程等が不要であり、製造工程が簡便である。尚、剥離工程では、金属材を単体で直接剥離してもよいが、金属材上に補強部材を接着した後に剥離し、補強部材に担持された状態で金属部品を得ることもできる。
Next, in the electroforming process, the electroforming electroconductive film is energized to deposit a metal material on the electroforming electroconductive film. There are no particular restrictions on the electroforming liquid used for depositing the metal material, and the electroforming conditions such as the liquid temperature, pH, current density, energization time, etc., and a conventionally known electroforming liquid is appropriately selected according to the metal part to be manufactured. The conditions can be set appropriately. Examples of the material of the metal material include Ni, Cr, Cu, Ni—Cr alloy, Ni—Fe alloy, Ni—W alloy, and the like. The thickness of the metal material is preferably 10 μm or more. If the thickness is less than 10 μm, the metal part may be damaged in the next peeling step, which is not preferable.
In the peeling step, the metal material is peeled from the mold to obtain a metal part. In the present invention, the release agent film is a monomolecular layer film or a thin film of several hundred to several thousand picometers close to it, and exhibits a good release property, so that it has a fine-shaped part on the order of nanometers. Metal parts can be manufactured with high reproducibility. Moreover, the process of dissolving and removing the release agent film at the time of peeling is unnecessary, and the manufacturing process is simple. In the peeling step, the metal material may be directly peeled off alone, but it is also possible to peel the metal member after adhering it to the metal material and to obtain a metal part supported on the reinforcing member.
本発明で使用する鋳型は、その材質に制限はなく、例えば、Ni、Ni−P、Ni−B、Ti、W等の金属、酸化珪素等の無機酸化物、ガラス、アクリル樹脂、スチレン樹脂等の有機樹脂のいずれであってもよい。
また、本発明により製造可能な金属部品は特に制限はなく、例えば、配線、電極、撮像デバイス等、ナノメートルオーダーの微細形状部位を有するような金属部品を対象として含むものである。
The mold used in the present invention is not limited in its material, for example, metals such as Ni, Ni-P, Ni-B, Ti, W, inorganic oxides such as silicon oxide, glass, acrylic resin, styrene resin, etc. Any of these organic resins may be used.
In addition, the metal parts that can be manufactured by the present invention are not particularly limited, and include, for example, metal parts having fine-shaped parts on the order of nanometers such as wirings, electrodes, and imaging devices.
次に、実施例を示して本発明を更に詳細に説明する。
[実施例1]
アミノ系シランカップリング剤としてγ−アミノプロピルトリエトキシシラン(日本ユニカー(株)製 A−1100)を準備し、このγ−アミノプロピルトリエトキシシランを下記表1に示される濃度で含有する6種の離型剤水溶液(試料1〜6)を調製した。
次いで、酸化珪素板を市販の脱脂液(メルテックス(株)製 メルプレートITO−170)に70℃で5分間超音波をあてながら浸漬した。水洗後、この酸化珪素板を45g/Lの水酸化カリウム水溶液に70℃で5分間超音波をあてながら浸漬した。その後、酸化珪素板を水洗し、市販の表面調整剤(メルテックス(株)製 メルプレートコンディショナー480)に室温にて5分間浸漬し、次いで、水洗後、上記の離型剤水溶液(試料1〜6)に2分間浸漬して離型剤膜を形成した。水洗後、酸化珪素板を市販の触媒液(メルテックス(株)製 メルプレートアクチベータ440)に2分間浸漬して触媒を付与した。その後、水洗し、市販の無電解ニッケルめっき液(メルテックス(株)製 メルプレートNI−867)に5分間浸漬(浴温70℃)し、Niを析出させた。
Next, an Example is shown and this invention is demonstrated further in detail.
[Example 1]
Six types containing γ-aminopropyltriethoxysilane (A-1100 manufactured by Nihon Unicar Co., Ltd.) as amino-based silane coupling agents and containing the γ-aminopropyltriethoxysilane at concentrations shown in Table 1 below. A release agent aqueous solution (Samples 1 to 6) was prepared.
Next, the silicon oxide plate was immersed in a commercially available degreasing solution (Melplate ITO-170 manufactured by Meltex Co., Ltd.) at 70 ° C. for 5 minutes while applying ultrasonic waves. After washing with water, the silicon oxide plate was immersed in a 45 g / L potassium hydroxide aqueous solution at 70 ° C. for 5 minutes while applying ultrasonic waves. Thereafter, the silicon oxide plate was washed with water, immersed in a commercially available surface conditioner (Melplate Conditioner 480 manufactured by Meltex Co., Ltd.) at room temperature for 5 minutes, then washed with water, and then the above aqueous release agent solution (Samples 1 to 2). 6) for 2 minutes to form a release agent film. After washing with water, the silicon oxide plate was immersed in a commercially available catalyst solution (Melplate Activator 440 manufactured by Meltex Co., Ltd.) for 2 minutes to give the catalyst. Thereafter, it was washed with water and immersed in a commercially available electroless nickel plating solution (Melplate NI-867 manufactured by Meltex Co., Ltd.) for 5 minutes (bath temperature 70 ° C.) to precipitate Ni.
上記の工程のおけるγ−アミノプロピルトリエトキシシランの溶解性、Niの析出性、析出させたNiの表面性を下記の基準で評価して、結果を表1に示した。
(評価基準)
・γ−アミノプロピルトリエトキシシランの溶解性
○:不溶残渣がない
×:不溶残渣がみられる
・Niの析出性
○:析出あり
×:析出せず
・Niの表面性
○:平坦でフクレは存在しない
×:フクレがみられる
The solubility of γ-aminopropyltriethoxysilane, the precipitation of Ni, and the surface property of the deposited Ni in the above steps were evaluated according to the following criteria, and the results are shown in Table 1.
(Evaluation criteria)
・ Solubility of γ-aminopropyltriethoxysilane
○: No insoluble residue
×: Insoluble residue is observed.
○: Precipitation
×: No precipitation ・ Ni surface properties
○: Flat and no swelling
×: Dandruff is seen
また、比較として、アミノ系シランカップリング剤ではない下記3種のシランカップリング剤を使用し、濃度が10g/Lである3種の離型剤水溶液(試料7〜9)を調製した。
・試料7のシランカップリング剤 : 信越化学工業(株)製 KBM−303
(2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン)
・試料8のシランカップリング剤 : 信越化学工業(株)製 KBM−802
(3−メルカプトプロピルメチルジメトキシシラン)
・試料9のシランカップリング剤 : 信越化学工業(株)製 KBE−9007
(3−イソシアネートプロピルトリエトキシシラン)
上記の3種の離型剤水溶液(試料7〜9)を使用し、上記と同様に、酸化珪素板に無電解ニッケルめっき工程までを行い、上記と同様に、シランカップリング剤の溶解性、Niの析出性、析出させたNiの表面性を評価して、結果を表1に示した。
For comparison, three types of release agent aqueous solutions (samples 7 to 9) having a concentration of 10 g / L were prepared using the following three types of silane coupling agents that are not amino-based silane coupling agents.
-Silane coupling agent of sample 7: Shin-Etsu Chemical Co., Ltd. KBM-303
(2- (3,4 Epoxycyclohexyl) ethyltrimethoxysilane)
-Silane coupling agent of Sample 8: Shin-Etsu Chemical Co., Ltd. KBM-802
(3-mercaptopropylmethyldimethoxysilane)
-Sample 9 silane coupling agent: Shin-Etsu Chemical Co., Ltd. KBE-9007
(3-isocyanatopropyltriethoxysilane)
Using the above three types of release agent aqueous solutions (samples 7 to 9), the silicon oxide plate was subjected to the electroless nickel plating process in the same manner as described above, and the solubility of the silane coupling agent in the same manner as described above. The precipitation properties of Ni and the surface properties of the deposited Ni were evaluated, and the results are shown in Table 1.
表1に示されるように、離型剤として、アミノ系シランカップリング剤は、他の3種のシランカップリング剤に比べ、優れた触媒吸着性を有し、無電解ニッケルめっきによる電鋳用通電膜の形成が可能であることが確認された。また、アミノ系シランカップリング剤としてγ−アミノプロピルトリエトキシシランを用いた場合の離型剤水溶液の濃度は、0.1〜100g/Lの範囲が好ましいことが確認された。 As shown in Table 1, as a mold release agent, amino-based silane coupling agents have superior catalyst adsorptivity compared to the other three silane coupling agents, and for electroforming by electroless nickel plating It was confirmed that a current-carrying film can be formed. It was also confirmed that the concentration of the aqueous release agent solution when γ-aminopropyltriethoxysilane was used as the amino silane coupling agent was preferably in the range of 0.1 to 100 g / L.
[実施例2]
まず、型形成工程として、異方性エッチング等により超微細加工を施したシリコンウエハーを鋳型として準備し、このシリコンウエハーを市販の脱脂液(メルテックス(株)製 メルプレートITO−170)に70℃で5分間超音波をあてながら浸漬した。水洗後、このシリコンウエハーを45g/Lの水酸化カリウム水溶液に70℃で5分間超音波をあてながら浸漬した。その後、シリコンウエハーを水洗し、市販の表面調整剤(メルテックス(株)製 メルプレートコンディショナー480)に室温にて5分間浸漬し、水洗した。
次いで、離型剤としてアミノ系シランカップリング剤であるγ−アミノプロピルトリエトキシシラン(日本ユニカー(株)製 A−1100)を10g/L溶解した離型剤水溶液にシリコンウエハーを室温で2分間浸漬して離型剤膜を形成した。水洗後、シリコンウエハーを市販の触媒液(メルテックス(株)製 メルプレートアクチベータ440)に2分間浸漬し水洗して触媒を付与した。その後、市販の無電解ニッケルめっき液(メルテックス(株)製 メルプレートNI−867)に5分間浸漬(浴温70℃)し、Niを析出させて電鋳用通電膜を成膜した。
[Example 2]
First, as a mold forming process, a silicon wafer subjected to ultrafine processing by anisotropic etching or the like is prepared as a mold, and this silicon wafer is put into a commercially available degreasing solution (Melplate ITO-170 manufactured by Meltex Co., Ltd.). It was immersed while applying ultrasonic waves at 5 ° C. for 5 minutes. After washing with water, the silicon wafer was immersed in a 45 g / L potassium hydroxide aqueous solution at 70 ° C. for 5 minutes while applying ultrasonic waves. Thereafter, the silicon wafer was washed with water, immersed in a commercially available surface conditioner (Melplate Conditioner 480 manufactured by Meltex Co., Ltd.) for 5 minutes at room temperature, and washed with water.
Next, the silicon wafer is placed in a release agent aqueous solution in which 10 g / L of γ-aminopropyltriethoxysilane (A-1100, manufactured by Nihon Unicar Co., Ltd.), which is an amino silane coupling agent, is dissolved as a release agent at room temperature for 2 minutes. A release agent film was formed by dipping. After washing with water, the silicon wafer was immersed in a commercially available catalyst solution (Melplate Activator 440 manufactured by Meltex Co., Ltd.) for 2 minutes and washed with water to give the catalyst. Thereafter, it was immersed in a commercially available electroless nickel plating solution (Melplate NI-867 manufactured by Meltex Co., Ltd.) for 5 minutes (bath temperature 70 ° C.) to precipitate Ni, thereby forming an electroforming film for electroforming.
次に、電鋳工程として、電鋳用通電膜を成膜したシリコンウエハーを水洗し、その後、ニッケル電鋳液(メルテックス(株)製 メルプレートEF−2201)を使用し、電鋳用通電膜に電流密度10A/dm2、通電時間20分間の通電を行って、電鋳によりニッケルを析出させ、電鋳被膜(厚み40μm)を形成した。
次いで、剥離工程にて、上記のニッケル電鋳被膜を剥離して金属部品を得た。この金属部品は微細形状部位を有し、その先端精度をFE−SEMを用いて測定した結果、3nmの精度が確保されていることが確認された。
Next, as an electroforming process, the silicon wafer on which the electroforming film for electroforming was formed was washed with water, and then a nickel electroforming solution (Melplate EF-2201 manufactured by Meltex Co., Ltd.) was used. The film was energized with a current density of 10 A / dm 2 and an energization time of 20 minutes, and nickel was deposited by electroforming to form an electroformed film (thickness 40 μm).
Next, in the peeling step, the nickel electroformed film was peeled off to obtain a metal part. This metal part has a finely shaped portion, and the tip accuracy was measured using FE-SEM. As a result, it was confirmed that the accuracy of 3 nm was secured.
[実施例3]
まず、型形成工程として、エッチング等により超微細加工を施したニッケル鋳型を鋳型として準備した。次いで、離型剤としてアミノ系シランカップリング剤であるγ−アミノプロピルトリエトキシシラン(日本ユニカー(株)製 A−1100)を10g/L溶解した離型剤水溶液に、上記のニッケル鋳型を室温で2分間浸漬して離型剤膜を形成した。水洗後、ニッケル鋳型を市販の触媒液(メルテックス(株)製 メルプレートアクチベータ440)に2分間浸漬し水洗して触媒を付与した。その後、市販の無電解ニッケルめっき液(メルテックス(株)製 メルプレートNI−867)に5分間浸漬(浴温70℃)し、Niを析出させて電鋳用通電膜を成膜した。
[Example 3]
First, as a mold forming process, a nickel mold subjected to ultrafine processing by etching or the like was prepared as a mold. Next, the above-mentioned nickel mold was placed at room temperature in a release agent aqueous solution in which 10 g / L of γ-aminopropyltriethoxysilane (A-1100, manufactured by Nihon Unicar Co., Ltd.), which is an amino silane coupling agent, was dissolved as a release agent. Was immersed for 2 minutes to form a release agent film. After washing with water, the nickel mold was immersed in a commercially available catalyst solution (Melplate Activator 440 manufactured by Meltex Co., Ltd.) for 2 minutes and washed with water to give the catalyst. Thereafter, it was immersed in a commercially available electroless nickel plating solution (Melplate NI-867 manufactured by Meltex Co., Ltd.) for 5 minutes (bath temperature 70 ° C.) to precipitate Ni, thereby forming an electroforming film for electroforming.
次に、電鋳工程として、電鋳用通電膜を成膜したニッケル鋳型を水洗し、その後、ニッケル電鋳液(メルテックス(株)製 メルプレートEF−2201)を使用し、電鋳用通電膜に電流密度10A/dm2、通電時間20分間の通電を行って、電鋳によりニッケルを析出させ、電鋳被膜(厚み40μm)を形成した。
次いで、剥離工程にて、上記のニッケル電鋳被膜を剥離して金属部品を得た。この金属部品は微細形状部位を有し、その先端精度をFE−SEMを用いて測定した結果、3nmの精度が確保されていることが確認された。
Next, as an electroforming process, the nickel mold on which the electroforming film for electroforming was formed was washed with water, and then a nickel electroforming solution (Melplate EF-2201 manufactured by Meltex Co., Ltd.) was used. The film was energized with a current density of 10 A / dm 2 and an energization time of 20 minutes, and nickel was deposited by electroforming to form an electroformed film (thickness 40 μm).
Next, in the peeling step, the nickel electroformed film was peeled off to obtain a metal part. This metal part has a finely shaped portion, and the tip accuracy was measured using FE-SEM. As a result, it was confirmed that the accuracy of 3 nm was secured.
[実施例4]
鋳型として、エッチング等により超微細加工を施したアクリル樹脂製の鋳型を使用した他は、実施例3と同様の型形成工程、電鋳工程、剥離工程にて金属部品を得た。この金属部品は微細形状部位を有し、微細形状部位の凹凸は、トンネル電子顕微鏡を用いて測定した結果、3nmの範囲内であることが確認された。
[Example 4]
A metal part was obtained in the same mold forming process, electroforming process and peeling process as in Example 3 except that an acrylic resin mold subjected to ultrafine processing by etching or the like was used as the mold. This metal part has a finely shaped portion, and the unevenness of the finely shaped portion was measured using a tunneling electron microscope, and as a result, was confirmed to be within a range of 3 nm.
[比較例1]
鋳型として超微細化工を施したニッケル箔を用意した。このニッケル箔を用いて、実施例3と同様の電鋳工程、剥離工程にて金属部品の製造を行った。
しかし、電鋳により形成したニッケル電鋳被膜は剥離することができず、金属部品を得ることはできなかった。
[Comparative Example 1]
A nickel foil subjected to ultrafine processing was prepared as a mold. Using this nickel foil, metal parts were produced in the same electroforming process and peeling process as in Example 3.
However, the nickel electroformed film formed by electroforming could not be peeled off and metal parts could not be obtained.
[比較例2]
まず、型形成工程として、異方性エッチング等により超微細加工を施したシリコンウエハーを鋳型として準備し、このシリコンウエハーにTiをスパッタリング法により離型層として形成した。その後、実施例3と同様の電鋳工程、剥離工程にて金属部品の製造を行った。
しかし、電鋳により形成したニッケル電鋳被膜は剥離することができず、金属部品を得ることはできなかった。
[Comparative Example 2]
First, as a mold forming process, a silicon wafer subjected to ultrafine processing by anisotropic etching or the like was prepared as a mold, and Ti was formed as a release layer on this silicon wafer by a sputtering method. Thereafter, metal parts were manufactured in the same electroforming process and peeling process as in Example 3.
However, the nickel electroformed film formed by electroforming could not be peeled off and metal parts could not be obtained.
[比較例3]
まず、型形成工程として、超微細化工を施したニッケル箔を用意し、これを350℃、30分間加熱することによりニッケル酸化物の離型層を形成した。その後、実施例3と同様の電鋳工程、剥離工程にて金属部品の製造を行った。
しかし、この金属部品の微細形状部位の先端精度をFE−SEMを用いて測定した結果、先端精度は100nm以上であり、微細形状の再現性が悪いことが確認された。
[Comparative Example 3]
First, as a mold forming step, a nickel foil subjected to ultrafine processing was prepared, and this was heated at 350 ° C. for 30 minutes to form a release layer of nickel oxide. Thereafter, metal parts were manufactured in the same electroforming process and peeling process as in Example 3.
However, as a result of measuring the tip accuracy of the finely shaped portion of this metal part using FE-SEM, the tip accuracy was 100 nm or more, and it was confirmed that the reproducibility of the fine shape was poor.
本発明は超微細形状部位を有する鋳型から電鋳により超微細な形状を有する金属部品の製造を可能とするものであり、例えば、配線、電極、撮像デバイス等の製造に有用である。 The present invention enables the production of a metal part having an ultrafine shape by electroforming from a mold having an ultrafine shape part, and is useful for the production of, for example, wirings, electrodes, imaging devices and the like.
Claims (3)
ナノメートルオーダーの微細形状部位を有する鋳型の成形面上に離型剤としてγ−アミノプロピルトリエトキシシランを0.1〜100g/Lの範囲で含有する離型剤水溶液を用いて離型剤膜を成膜し、該離型剤膜に無電解めっき用触媒を付与し、無電解めっきにより電鋳用通電膜を成膜する型形成工程と、
該電鋳用通電膜に通電することにより電鋳用通電膜上に金属材を析出させる電鋳工程と、
金属材を鋳型から剥離して金属部品とする剥離工程と、を有することを特徴とする金属部品の製造方法。 In a method of manufacturing a metal part by electroforming a metal material on a molding surface of a mold,
A release agent film using an aqueous release agent solution containing γ-aminopropyltriethoxysilane in the range of 0.1 to 100 g / L as a release agent on the molding surface of a mold having a fine-shaped portion of nanometer order Forming a film, applying a catalyst for electroless plating to the release agent film, and forming a current-carrying film for electroforming by electroless plating; and
An electroforming step of depositing a metal material on the electroforming electroconductive film by energizing the electroforming electroconductive film;
And a peeling step for peeling the metal material from the mold to form a metal part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003353542A JP4210193B2 (en) | 2003-10-14 | 2003-10-14 | Manufacturing method of metal parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003353542A JP4210193B2 (en) | 2003-10-14 | 2003-10-14 | Manufacturing method of metal parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005120392A JP2005120392A (en) | 2005-05-12 |
JP4210193B2 true JP4210193B2 (en) | 2009-01-14 |
Family
ID=34611800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003353542A Expired - Fee Related JP4210193B2 (en) | 2003-10-14 | 2003-10-14 | Manufacturing method of metal parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4210193B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4836522B2 (en) * | 2005-09-06 | 2011-12-14 | セイコーインスツル株式会社 | Electroforming mold, electroforming mold manufacturing method, and electroformed component manufacturing method |
JP6066484B2 (en) * | 2013-03-28 | 2017-01-25 | 富士フイルム株式会社 | Metal part manufacturing method and mold and release film used therefor |
CN107955954B (en) * | 2018-01-16 | 2019-11-12 | 北京中钞钞券设计制版有限公司 | A kind of polymeric release agent applied and its preparation, film forming and application method in electroformed nickel production |
-
2003
- 2003-10-14 JP JP2003353542A patent/JP4210193B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005120392A (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5190796A (en) | Method of applying metal coatings on diamond and articles made therefrom | |
CN103597118B (en) | The hard films utilizing hard films to be coated to is coated to component and manufacture method thereof | |
JPS646275B2 (en) | ||
JP6444860B2 (en) | Method for making a metal coating | |
WO2004067804A2 (en) | Coating method | |
US20110151211A1 (en) | Method for making a desired pattern of a metallic nanostructure of a metal | |
JP4210193B2 (en) | Manufacturing method of metal parts | |
US20120028073A1 (en) | Process for electroplating of copper | |
CN100505159C (en) | Method for minute graphic representation of metal with non-plane surface | |
Kołczyk et al. | Investigation of two-step metallization process of plastic 3D prints fabricated by SLA method | |
JP2013540205A (en) | Electroless metal deposition using highly alkaline plating bath | |
JP6066484B2 (en) | Metal part manufacturing method and mold and release film used therefor | |
JP2003082469A (en) | Metallic film pattern forming method | |
JP2013087324A (en) | Localized surface plasmon resonance sensor unit and method for producing the same | |
JP2006523774A (en) | Use of articles as molding tools | |
KR101507155B1 (en) | Method of Preparing Ag Seed Layer for copper electroless ow Resistance Metal Line | |
US7147896B2 (en) | Electroless nickel plating method for the preparation of zirconia ceramic | |
JP3906019B2 (en) | Metal oxide film removal liquid and removal method using the same | |
JPH05156456A (en) | Electroless plating pretreating agent for aluminum base material and electroless plating method using the same | |
JP4192069B2 (en) | Method for forming metal thin film pattern with ultrafine shape on the surface | |
KR20030094350A (en) | Method for electroless deposition and patterning of a metal on a substrate | |
KR100717336B1 (en) | A plating method of metal layer by a galvanic displacement | |
CN101024550A (en) | Glass molding die | |
JP3808679B2 (en) | Plating method for CVT pulley | |
JP2009068046A (en) | Metal porous structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081024 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |