JP4209224B2 - Method for producing calcium sulfide heavy metal fixing agent - Google Patents
Method for producing calcium sulfide heavy metal fixing agent Download PDFInfo
- Publication number
- JP4209224B2 JP4209224B2 JP2003066259A JP2003066259A JP4209224B2 JP 4209224 B2 JP4209224 B2 JP 4209224B2 JP 2003066259 A JP2003066259 A JP 2003066259A JP 2003066259 A JP2003066259 A JP 2003066259A JP 4209224 B2 JP4209224 B2 JP 4209224B2
- Authority
- JP
- Japan
- Prior art keywords
- heavy metal
- calcium sulfide
- gypsum
- waste
- fixing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/78—Recycling of wood or furniture waste
Landscapes
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、石膏廃材を利用し、硫化カルシウムを作用主成分とする硫化カルシウム系重金属固定化剤の製造方法に関するものである。更に詳しくは、汚染土壌、排水、地下水、都市ゴミ焼却灰、産業廃棄物等に含まれる重金属の不溶化に使用可能な、さらに、セメントや固化材に添加してそれらの固形化による封じ込めに使用する重金属固定化剤として機能する、硫化カルシウムを主成分とする重金属固定化剤を、石膏廃材を焼成して製造する方法に関するものである。
【0002】
【従来の技術】
石膏は極めて短時間で硬化する水硬性材料であり、成形・加工性に優れ、寸法安定性が高く、防火性・耐火性に優れる等の特性を有し、また安価な材料であることから、石膏ボードや原型もしくは成型用の型材等として広く使用されているが、その生産量が増大するにつれて、その廃材の処理が大きな問題となってきている。例えば、代表的な石膏製品である石膏ボードは、建物の解体工事等で年間に100万トン程度排出されている。しかし、石膏ボード廃材は、建物の内装材として使用されたものであることから、表面に左官材料(石膏プラスター、土塗り仕上材、砂壁仕上材等)や、壁紙、塗料等の表面化粧材が施され、また木材や鋼製の下地材等が付着したものも多く含まれており、これらの夾雑物を除去・分離することが技術的に困難なことから、其のほとんどが有効利用されずに、埋立処理されているが、埋立可能な処分地の減少に伴い、埋立に変わる方法の開発は避けて通れないものとなっている。
【0003】
当然のことながら、従来から石膏ボード廃材の有効利用方法について種々の提案がなされて来た。石膏ボードは、石膏を主体とする芯材を紙で被覆した板状の構造であるため、その多くは破砕処理や加熱処理により石膏と紙を分離し、さらには石膏中に含まれる混和材を加熱分解する事により、石膏ボード用の原料やセメント添加用の石膏として利用するものである(例えば、特許文献1及び2、非特許文献1)。
しかしながら、これらの方法は、石膏ボード廃材から単に元の石膏を回収するためだけの有効利用方法にすぎないものである。バージン材の石膏が安価に入手できるのに対し、廃石膏は、夾雑物の存在と発生個所が集中していないことにより、回収処理に必要な設備投資やランニングコストが高くなり、経済性の面からバージン材には太刀打ちできないのが現状である。
そのため、視点を変えた、実用的な有効利用法の開発が急務となっていた。
【0004】
一方、重金属等汚染土壌に対する対応も現代社会の抱える大きな問題の一つである。その恒久対策の一つとして、セメントあるいは固化材による固形化封じ込めがあるが、この方法は土壌の物理化学的固化によるものであって、その効果は土壌の性状(粒度、含水比、有機物量)の影響を大きく受けやすく、結果として、重金属の固定化には限界があった。また、土質よっては、セメントに由来する六価クロムが土壌環境基準を超えて溶出するといった問題があった。
セメント系固化材による固化処理土からの六価クロム溶出抑制対策としては、各種の還元剤の添加が知られている。還元剤としては、硫酸第一鉄、亜硫酸塩、チオ硫酸塩、硫黄、硫化物、高炉スラグ、水素化物(硫化水素)、金属粉(Na、K、Mg、Fe、Zn)等が使用される。しかし、固化処理土における中・長期的な還元作用の持続性、セメント系固化材と還元剤との均一混合性の確保の困難さ、さらには固化処理土の強度発現性の低下等に問題があった。
【0005】
また、無機系物質による重金属の固定化剤には、上述の還元剤の他に、対象とする重金属の種類により、大別して酸化剤及び沈殿剤がある。酸化剤は、汚染土や排水中のCODやBOD低減、脱色、除鉄、除マンガン、シアン及び有機水銀の酸化分解、重金属の沈殿の前処理を目的として添加されるものであり、酸素、オゾン、金属酸化物・過酸化物、塩素酸塩、ハロゲン化物等が使用される。
【0006】
一方、沈殿剤は、カドミウム、鉛、砒素、水銀、等の有害重金属等を難溶性の硫化物、カルシウム塩、水酸化物として沈殿させる目的で添加されるものであり、硫化物、アルカリ、石灰等が使用されている。
しかし、汚染土壌、汚泥、排水、地下水、都市ゴミ焼却灰、産業廃棄物中の可溶性重金属の固定化は、対象とする重金属の許容濃度限界をクリア出来なかったり、複数の重金属種が共存する複合汚染の場合には性能低下が生じることがあり、上記した従来用いられてきた還元剤や沈殿剤の性能には自ずと限界があった。
【0007】
本発明者は、これらの中にあって硫化カルシウムが固化処理土からの六価クロム溶出抑制剤や重金属不溶化剤として優れた効果を示すものであることを見出した。
しかしながら、硫化カルシウムは、現在、高純度の試薬が市場に流通しているだけであり、コストが高く、上記の用途への適用は困難であり、実用的な製造方法の開発が望まれていたものである。
【0008】
【特許文献1】
特開平6−142638号公報(2ページ)
【特許文献2】
特開平10−36149号公報(2ページ)
【非特許文献1】
環境省編「廃石膏ボードのリサイクルの推進に関する検討調査(平成14年12月)」(23ページ)
【0009】
【発明が解決しようとする課題】
本発明の目的は、年々排出量が増加し、その有効利用方法の開発が望まれている石膏廃材を原料に用いて、汚染土壌、排水、地下水、都市ゴミ焼却灰、産業廃棄物中の重金属の無害化性能に優れた、硫化カルシウム系重金属固定化剤の実用的な製造方法を提供することに在る。
【0010】
【課題を解決するための手段】
発明者は、紙を分離していない石膏ボード廃材を粉砕する工程と、粉砕した紙を分離していない石膏ボード廃材と廃木材とを混合し混合物を得る工程と、混合物を還元雰囲気中600〜1100℃で加熱処理し硫化カルシウムを22.6〜76.43質量%含む焼成物を得る工程と、焼成物を粉砕し重金属固定化剤を得る工程とを含む事により優れた重金属固定化性能を持つ硫化カルシウム系固定化剤が製造できる事を見出し、本発明を完成した。
すなわち、本発明は、紙を分離していない石膏ボード廃材を粉砕する工程と、粉砕した紙を分離していない石膏ボード廃材と廃木材とを混合し混合物を得る工程と、混合物を還元雰囲気で600〜1100℃で加熱処理し硫化カルシウムを22.6〜76.43質量%含む焼成物を得る工程と、焼成物を粉砕し重金属固定化剤を得る工程とを含む事を特徴とする、重金属固定化剤用途の硫化カルシウム系固定化剤の製造方法に関する。
【0011】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明における石膏廃材は、石膏ボードが使用できる。この内、現在、石膏廃材として量的に最も多く排出されている石膏ボードには約7質量%の紙が付着しているが、石膏廃材を還元雰囲気で焼成する本発明においては、紙を分離する必要は無く、石膏廃材に添加する還元剤の一部として有効に機能する。
また、本発明で使用する石膏廃材は、粉砕されて使用されるが、石膏の還元反応を効率良く進めるためには、5mm以下に粉砕することが望ましい。粉砕方法は、特に限定されない。
【0012】
金属類は、粉砕処理後、磁選機、篩を用いて大きなものを除去することになるが、小さなものの残留は構わない。
【0013】
石膏廃材の粉砕物を還元雰囲気で焼成するための手段としては、石膏廃材に還元剤となる廃木材を混合して焼成する。
【0014】
石膏廃材に対する還元剤の添加量は、計算された還元等量値以上の還元剤を添加するのが好ましい。炭化して生成したカーボン以外に、炭化水素、H2、CO等の乾留ガスによる還元も考慮して還元等量を計算し、その値以上の還元剤を存在させることが好ましい。
【0015】
本発明において、全石膏が硫化カルシウムに変換されることは必ずしも必要ではないが、全石膏の20質量%以上が、硫化カルシウムに変換されることが好ましい。
【0016】
石膏廃材の粉砕物を焼成する温度は、600〜1100℃とする。焼成温度が600℃よりも低いと、石膏の還元に時間が掛かり過ぎ生産効率が低下するので好ましくない。また、1100℃よりも高いと、生成した硫化カルシウムの分解が激しくなり、収率が低下するだけでなく、SOxガスの発生による環境対策が必要となる。
【0017】
廃石膏を焼成するための加熱炉は、内燃バーナー式ロータリーキルン、外熱式ロータリーキルン、二重筒ロータリーキルン式炭化炉、バッチ式炭化炉等、所定の温度に加熱できるものであれば特に限定されない。
なお、セメントや軽量骨材の焼成に使用される内燃バーナー式ロータリーキルンの様に、構造上内部を完全に還元雰囲気にすることが出来ない加熱炉を使用する場合には、バーナーの焼点部からキルン落ち口部にかけて、焼成物が高温で、かつ酸素濃度の高い大気と接触するために、硫化カルシウムの分解が起こりやすくなる。硫化カルシウムの分解を最小限に抑えるためには、予め原料を10〜30mm程度に造粒して、焼成することが望ましい。
【0018】
この造粒に用いる造粒方法としては、例えば、押出し造粒、ブリケット造粒、撹拌造粒等、いずれの方法でも良く、特に限定されない。
なお、炭化炉の様に、内部を還元雰囲気に保持できる構造の焼成炉を使用すれば、この造粒工程は当然省略できる。
【0019】
得られた焼成物は、ボールミル、竪型ローラーミル、振動ミル、ピンミル等公知の方法により粉砕し、硫化カルシウム系重金属固定化剤を得ることができる。なお、重金属固定化剤用途として使うことから、平均粒径100μm以下に粉砕するのが好ましい。
【0020】
得られた硫化カルシウム系重金属固定化剤は、単に、重金属の固定化に使用するのであれば、粉体のみを処理対象物に添加することになるが、処理対象物の固化処理も必要であれば、セメントまたは固化材と併用使用することになる。
【0021】
【実施例】
以下に具体例を示し、本発明を更に詳しく説明する。
建物の解体工事現場から回収した石膏ボード廃材(厚さ9.5mmの石膏ボード、石膏量約94質量%、紙約6質量%)を、ジョークラッシャーおよびアトマイザーを用いて、紙ごと3mm篩を全通する粒度に粉砕した。また、建設現場から回収した廃木材を、チッパーシュレッダーで一次破砕後、竪型ローラーミルを用いて3mm篩を全通する粒度に粉砕し、廃石膏ボード粉砕物と廃木材粉砕物を質量比で6:4になるように混合した。さらに、混合物20gを船形るつぼ入れ、ガス流通式の管状電気炉(径60mm×高さ1000mm)内で、窒素ガスを0.5L/分で流しながら、500℃〜1200℃で4時間加熱した。焼成中に発生したガス中のSOx濃度を、ガス検知管を用いて測定した。
【0022】
得られた焼成物は、JIS R 5202により硫化物形態の硫黄及び三酸化硫黄量を測定した。硫化カルシウム量及び硫酸カルシウム量は次式より算出し、石膏から硫化カルシウムへの反応率を求めた。
硫化カルシウム量=硫化物形態硫黄量×(72.14/32.06)
硫酸カルシウム量=三酸化硫黄量×(136.14/80.06)
反応率=(硫化カルシウム量/72.14)/((硫化カルシウム量/72.14)+(硫酸カルシウム量/136.14))
【0023】
さらに、得られた焼成物を、ボールミルを用いて平均粒径10μmに粉砕し、セメント系固化材との併用または単独で使用して重金属の固定化効果を確認した。なお、固化材を併用する場合、一般軟弱土用セメント系固化材を使用した。
焼成物の特性を表1に示す。
【0024】
得られた焼成物の重金属の固定化効果の評価は、次のように行った。
重金属の固定化処理対象物としては、次の3種を選択した。
(イ)火山灰質粘性土(自然含水比 104.6%) 非汚染土
(ロ)砂質土(自然含水比 18.5%) 六価クロム汚染土:環境庁告示第46号による六価クロム溶出量:1.02 mg/L
(ハ)都市ゴミ焼却灰 複合汚染物:調湿前の有姿の環境庁告示第13号による溶出試験での溶出量:カドミウム20.1mg/L、砒素0.26mg/L、鉛0.81mg/L、六価クロム0.98mg/L
都市ゴミ焼却灰は、含水比が18質量%になるように予め水を噴霧、攪拌して調湿した。
【0025】
重金属固定化剤及び固化材による、含重金属処理対象物の処理は次の様に行った。
すなわち、重金属固定化剤及び固化材を処理対象物に添加、攪拌混合し、型枠(径5cm×高さ10cm)に充填した後締固め、20℃、湿度60%の恒温室で密封養生した。7日経過後、脱型して供試体を得た。
【0026】
脱型後の供試体については、次の評価試験を行った。
・圧縮強度:JIS A 1216により一軸圧縮強度を測定した。
・重金属の溶出量:非汚染土(火山灰質粘性土)は、固化材による固化改良土からのセメントに由来する六価クロムの溶出量を環境庁告示46号法により測定。汚染土壌については環境庁告示第46号、都市ゴミ焼却灰については環境庁告示第13号に則り、重金属の溶出量を測定した。
評価結果を、表2に示す。なお、重金属溶出量については、重金属濃度が検出限界以下のものは「<(検出限界値)」と記載した。
【0027】
表1に示す様に、焼成温度1200℃では二酸化硫黄ガスの濃度が著しく増加することが分かる。
また、表2のNo.1〜9は、500〜1200℃で焼成して得られた硫化カルシウムA〜Hと一般軟弱土用セメント系固化材を使用して固化処理した火山灰質粘性土からの六価クロム溶出試験結果であるが、焼成温度500℃の重金属固定化剤Aを使用した場合は、硫化カルシウムの生成量が少ないため、セメント等からの六価クロム溶出抑制効果は充分でない。
【0028】
No.10〜13は、700℃で焼成して得られた硫化カルシウムCと一般軟弱土用セメント系固化材を使用して重金属の固定化処理をした六価クロム汚染土からの溶出試験結果であり、汚染土への添加量1.0kg/m3でも、汚染土からの六価クロム溶出抑制効果が認められた。
【0029】
No.14〜16は、カドミウム、砒素、鉛、六価クロムを含む複合汚染物である都市ゴミ焼却灰に、800℃で焼成して得られた硫化カルシウムDを単独添加した場合の溶質試験結果であり、処理対象物に対し2.0kg/m3以上の添加で種々の重金属に対して複合的、かつ十分な封じ込めが可能となる。
【0030】
【表1】
【0031】
【0032】
【発明の効果】
本発明は、石膏廃材を原料にして、重金属固定化剤として使用可能な硫化カルシウム系重金属固定化剤を製造する方法を提供するものである。廃棄物の有効利用と重金属による土壌汚染防止の両面から環境負荷の低減に寄与できるため、本発明の効果は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a calcium sulfide-based heavy metal immobilizing agent that uses gypsum waste and contains calcium sulfide as a main component. More specifically, it can be used to insolubilize heavy metals contained in contaminated soil, drainage, groundwater, municipal waste incineration ash, industrial waste, etc., and it can be added to cement and solidification materials to contain them by solidification. The present invention relates to a method for producing a heavy metal fixing agent mainly composed of calcium sulfide, which functions as a heavy metal fixing agent, by firing gypsum waste.
[0002]
[Prior art]
Gypsum is a hydraulic material that cures in a very short time, has excellent properties such as molding and processability, high dimensional stability, fire resistance and fire resistance, and is an inexpensive material. Although it is widely used as a gypsum board, a prototype or a molding material, the disposal of the waste material has become a big problem as the production amount increases. For example, gypsum board, which is a typical gypsum product, is discharged about 1 million tons per year due to building demolition work and the like. However, since gypsum board waste is used as an interior material for buildings, plasterboard materials (such as plaster plaster, earthen finish, sand wall finish), surface decorative materials such as wallpaper and paint are used on the surface. Many of them are also attached to the base material made of wood or steel, and since it is technically difficult to remove and separate these impurities, most of them are not used effectively. In addition, although landfill processing has been carried out, development of a method for changing to landfill is inevitable due to a decrease in landfillable disposal sites.
[0003]
As a matter of course, various proposals have been made for effective utilization of gypsum board waste. Since gypsum board has a plate-like structure in which a core mainly composed of gypsum is covered with paper, most of the gypsum board is separated from gypsum and paper by crushing or heat treatment, and the admixture contained in gypsum By thermally decomposing, it is used as a raw material for gypsum board or gypsum for cement addition (for example, Patent Documents 1 and 2, Non-Patent Document 1).
However, these methods are merely effective utilization methods only for recovering the original gypsum from the gypsum board waste. While virgin gypsum is available at low cost, waste gypsum is not concentrated in the presence of contaminants and the locations where it is generated, which increases the capital investment and running costs required for the recovery process, resulting in an economical aspect. Therefore, it is currently impossible to beat virgin materials.
Therefore, the development of a practical effective utilization method that changed the viewpoint has become an urgent task.
[0004]
On the other hand, dealing with contaminated soil such as heavy metals is one of the major problems of modern society. One of the permanent countermeasures is solidification containment with cement or solidification material, but this method is based on physicochemical solidification of the soil, and the effect is the properties of the soil (particle size, water content, organic matter content). As a result, there was a limit to immobilization of heavy metals. Further, depending on the soil quality, there has been a problem that hexavalent chromium derived from cement is eluted exceeding the soil environmental standards.
Addition of various reducing agents is known as a measure to suppress elution of hexavalent chromium from solidified soil with cement-based solidifying material. As the reducing agent, ferrous sulfate, sulfite, thiosulfate, sulfur, sulfide, blast furnace slag, hydride (hydrogen sulfide), metal powder (Na, K, Mg, Fe, Zn), etc. are used. . However, there are problems with the sustainability of the medium- and long-term reduction action in the solidified soil, the difficulty in ensuring uniform mixing of the cementitious solidifier and the reducing agent, and the decrease in strength development of the solidified soil. there were.
[0005]
In addition to the reducing agent described above, the heavy metal immobilizing agent by the inorganic substance is roughly classified into an oxidizing agent and a precipitating agent depending on the type of heavy metal to be processed. Oxidizing agents are added for the purpose of pretreatment of COD and BOD reduction in contaminated soil and wastewater, decolorization, iron removal, manganese removal, cyanide and organic mercury oxidation, and heavy metal precipitation. Metal oxides / peroxides, chlorates, halides, etc. are used.
[0006]
On the other hand, a precipitant is added for the purpose of precipitating toxic heavy metals such as cadmium, lead, arsenic, mercury, etc. as sparingly soluble sulfides, calcium salts, hydroxides, sulfides, alkalis, limes. Etc. are used.
However, immobilization of soluble heavy metals in contaminated soil, sludge, drainage, groundwater, municipal waste incineration ash, and industrial waste fails to clear the permissible concentration limit of the target heavy metal, or a complex in which multiple heavy metal species coexist. In the case of contamination, performance degradation may occur, and the performance of the above-described conventionally used reducing agents and precipitants is naturally limited.
[0007]
The present inventor has found that among these, calcium sulfide exhibits an excellent effect as a hexavalent chromium elution inhibitor and a heavy metal insolubilizing agent from the solidified soil.
However, calcium sulfide is currently only a high-purity reagent on the market, is expensive, difficult to be applied to the above-mentioned uses, and development of a practical manufacturing method has been desired. Is.
[0008]
[Patent Document 1]
JP-A-6-142638 (2 pages)
[Patent Document 2]
JP 10-36149 A (2 pages)
[Non-Patent Document 1]
Ministry of the Environment, “Survey on Recycling Waste Gypsum Board (December 2002)” (page 23)
[0009]
[Problems to be solved by the invention]
The purpose of the present invention is to use gypsum waste materials whose emissions are increasing year by year and for which development of effective utilization methods is desired as raw materials, contaminated soil, drainage, groundwater, municipal waste incineration ash, heavy metals in industrial waste It is in providing the practical manufacturing method of the calcium sulfide type | system | group heavy metal fixing agent which was excellent in the detoxification performance.
[0010]
[Means for Solving the Problems]
Inventor includes the steps of obtaining a step of milling the gypsum board waste material not separated paper, mixing the mixture of gypsum board waste material not separated was pulverized paper and the waste timber, the mixture in a reducing atmosphere 600 Excellent heavy metal immobilization performance by including a step of obtaining a calcined product containing 22.6 to 76.43% by mass of calcium sulfide by heat treatment at 1100 ° C and a step of obtaining a heavy metal fixing agent by crushing the calcined product. The present inventors have found that a calcium sulfide-based fixing agent possessed can be produced.
That is, the present invention includes the steps of grinding the gypsum board waste material not separated paper, and a step of obtaining a mixture the mixture of gypsum board waste material not separated was pulverized paper and the waste timber, the mixture in a reducing atmosphere A heavy metal comprising a step of obtaining a fired product containing 22.6 to 76.43% by mass of calcium sulfide by heat treatment at 600 to 1100 ° C., and a step of obtaining a heavy metal fixing agent by pulverizing the fired product. The present invention relates to a method for producing a calcium sulfide-based fixing agent for use as a fixing agent.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
Gypsum waste in the present invention, the gypsum board can be used. Of these, about 7% by mass of paper is currently attached to the gypsum board that is discharged most in quantity as gypsum waste. However, in the present invention in which gypsum waste is fired in a reducing atmosphere, the paper is separated. It does not need to be performed and functions effectively as a part of the reducing agent added to the gypsum waste material.
Further, the gypsum waste material used in the present invention is used after being pulverized, but it is desirable to pulverize it to 5 mm or less in order to promote the reduction reaction of gypsum efficiently. The pulverization method is not particularly limited.
[0012]
After the pulverization process, large metals are removed using a magnetic separator and a sieve, but small metals may remain.
[0013]
It means for firing pulverized gypsum waste in a reducing atmosphere, you firing a mixture of waste wood as a reducing agent to gypsum waste.
[0014]
The addition amount of the reducing agent to the gypsum waste is preferably added calculated by reducing equivalent value or more reducing agents. Besides carbon generated turned into coal, hydrocarbons, H2, reduction by carbonization gas such as CO even in consideration to calculate the reduction equivalent, it is preferable to present its value or more reducing agents.
[0015]
In the present invention, it is not always necessary that all gypsum is converted to calcium sulfide, but it is preferable that 20% by mass or more of all gypsum is converted to calcium sulfide.
[0016]
The temperature for firing the pulverized gypsum waste material is set to 600 to 1100 ° C. If the calcination temperature is lower than 600 ° C, it takes too much time to reduce the gypsum, which is not preferable because the production efficiency is lowered. On the other hand, when the temperature is higher than 1100 ° C., the generated calcium sulfide is severely decomposed and not only the yield is lowered, but also environmental measures are required due to generation of SOx gas.
[0017]
The heating furnace for firing the waste gypsum is not particularly limited as long as it can be heated to a predetermined temperature, such as an internal combustion burner type rotary kiln, an external heating type rotary kiln, a double cylinder rotary kiln type carbonization furnace, a batch type carbonization furnace or the like.
In addition, when using a heating furnace such as an internal combustion burner type rotary kiln that is used for firing cement and lightweight aggregates, the inside cannot be completely reduced in terms of structure. Since the fired product comes into contact with the atmosphere having a high temperature and a high oxygen concentration over the kiln opening, the decomposition of calcium sulfide is likely to occur. In order to minimize the decomposition of calcium sulfide, it is desirable to granulate the raw material in advance to about 10 to 30 mm and to fire it.
[0018]
As a granulation method used for this granulation, for example, any method such as extrusion granulation, briquette granulation, stirring granulation and the like may be used, and there is no particular limitation.
If a firing furnace having a structure capable of maintaining the inside in a reducing atmosphere, such as a carbonization furnace, is used, this granulation step can be omitted.
[0019]
The obtained fired product can be pulverized by a known method such as a ball mill, vertical roller mill, vibration mill, pin mill, etc., to obtain a calcium sulfide heavy metal fixing agent. In addition, since it uses as a heavy metal fixing agent use, it is preferable to grind | pulverize to an average particle diameter of 100 micrometers or less.
[0020]
If the obtained calcium sulfide-based heavy metal immobilizing agent is simply used for immobilizing heavy metals, only the powder is added to the object to be treated, but it is necessary to solidify the object to be treated. For example, it is used in combination with cement or a solidifying material.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
Gypsum board waste material (9.5 mm thick gypsum board, about 94 mass% of gypsum, about 6 mass% of paper) collected from the building demolition work site, using a jaw crusher and an atomizer, all the 3 mm sieves with paper It grind | pulverized to the particle size to pass. Waste wood recovered from the construction site is first crushed with a chipper shredder, and then pulverized to a particle size that passes through a 3 mm sieve using a vertical roller mill. 6: 4 was mixed. Furthermore, 20 g of the mixture was put into a ship-shaped crucible, and heated at 500 ° C. to 1200 ° C. for 4 hours while flowing nitrogen gas at 0.5 L / min in a gas flow type tubular electric furnace (diameter 60 mm × height 1000 mm). The SOx concentration in the gas generated during firing was measured using a gas detector tube.
[0022]
The obtained fired product was measured for sulfur and sulfur trioxide content in sulfide form according to JIS R5202. The amount of calcium sulfide and the amount of calcium sulfate were calculated from the following equations, and the reaction rate from gypsum to calcium sulfide was determined.
Calcium sulfide amount = sulfide form sulfur amount × (72.14 / 32.06)
Calcium sulfate amount = sulfur trioxide amount × (136.14 / 80.06)
Reaction rate = (calcium sulfide amount / 72.14) / ((calcium sulfide amount / 72.14) + (calcium sulfate amount / 136.14))
[0023]
Furthermore, the obtained fired product was pulverized to an average particle size of 10 μm using a ball mill, and used in combination with a cement-based solidified material or used alone to confirm the effect of immobilizing heavy metals. In addition, when using a solidifying material together, a general soft soil cement-based solidifying material was used.
The properties of the fired product are shown in Table 1.
[0024]
Evaluation of the effect of immobilizing heavy metals in the fired product was performed as follows.
The following three kinds of heavy metal immobilization treatment objects were selected.
(I) Volcanic ash cohesive soil (natural water content ratio 104.6%) Non-contaminated soil (b) Sandy soil (natural water content ratio 18.5%) Hexavalent chromium contaminated soil: Hexavalent chromium according to Notification 46 of the Environment Agency Elution amount: 1.02 mg / L
(C) Municipal waste incineration ash Complex pollutants: Dissolution amount in the dissolution test by the Environmental Agency Notification No. 13 before humidity control: Cadmium 20.1 mg / L, Arsenic 0.26 mg / L, Lead 0.81 mg / L, hexavalent chromium 0.98mg / L
The municipal waste incineration ash was conditioned by spraying water and stirring in advance so that the water content was 18% by mass.
[0025]
The heavy metal treatment object was treated with the heavy metal fixing agent and the solidifying material as follows.
That is, a heavy metal fixing agent and a solidifying material were added to the object to be treated, mixed with stirring, filled into a mold (diameter 5 cm × height 10 cm), compacted, and sealed and cured in a temperature-controlled room at 20 ° C. and humidity 60%. . After 7 days, the mold was removed to obtain a specimen.
[0026]
For the specimen after demolding, the following evaluation test was performed.
Compressive strength: uniaxial compressive strength was measured according to JIS A 1216.
・ Elution amount of heavy metal: For non-contaminated soil (volcanic ash clay), the elution amount of hexavalent chromium derived from cement from solidified soil with solidification material was measured by the Environmental Agency Notification No. 46 method. The amount of elution of heavy metals was measured in accordance with Environment Agency Notification No. 46 for contaminated soil and in accordance with Environment Agency Notification No. 13 for municipal waste incineration ash.
The evaluation results are shown in Table 2. Regarding the amount of heavy metal elution, “<(detection limit value)” is described when the heavy metal concentration is below the detection limit.
[0027]
As shown in Table 1, it can be seen that the concentration of sulfur dioxide gas significantly increases at a firing temperature of 1200 ° C.
In Table 2, No. 1-9 are hexavalent chromium elution test results from volcanic ash cohesive soil solidified using calcium sulfide AH obtained by firing at 500-1200 ° C. and a general soft soil cement-based solidifying material. However, when the heavy metal fixing agent A having a firing temperature of 500 ° C. is used, the effect of suppressing the elution of hexavalent chromium from cement or the like is not sufficient because the amount of calcium sulfide produced is small.
[0028]
No. 10-13 are the dissolution test results from the hexavalent chromium-contaminated soil in which heavy metal was fixed using calcium sulfide C obtained by firing at 700 ° C. and a general soft soil cement-based solidifying material, Even when the amount added to the contaminated soil was 1.0 kg / m 3 , the hexavalent chromium elution suppression effect from the contaminated soil was observed.
[0029]
No. 14 to 16 are solute test results when calcium sulfide D obtained by firing at 800 ° C. is added alone to municipal waste incineration ash which is a composite pollutant containing cadmium, arsenic, lead and hexavalent chromium. By adding 2.0 kg / m 3 or more to the object to be treated, complex and sufficient containment with respect to various heavy metals becomes possible.
[0030]
[Table 1]
[0031]
[0032]
【The invention's effect】
The present invention provides a method for producing a calcium sulfide-based heavy metal immobilizing agent that can be used as a heavy metal immobilizing agent using gypsum waste as a raw material. The effect of the present invention is extremely great because it can contribute to the reduction of environmental burden from both the viewpoint of effective use of waste and prevention of soil contamination by heavy metals.
Claims (1)
前記粉砕した紙を分離していない石膏ボード廃材と廃木材とを混合し混合物を得る工程と、
前記混合物を還元雰囲気下600〜1100℃で加熱処理し硫化カルシウムを22.6〜76.43質量%含む焼成物を得る工程と、
前記焼成物を粉砕し重金属固定化剤を得る工程と
を含むことを特徴とする、硫化カルシウム系重金属固定化剤の製造方法。 Crushing gypsum board waste that has not been separated from paper ;
Mixing the waste paper and gypsum board waste material that has not separated the crushed paper to obtain a mixture;
Heat-treating the mixture at 600 to 1100 ° C. in a reducing atmosphere to obtain a fired product containing 22.6 to 76.43% by mass of calcium sulfide;
Crushing the fired product to obtain a heavy metal fixing agent;
A method for producing a calcium sulfide-based heavy metal immobilizing agent, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003066259A JP4209224B2 (en) | 2003-03-12 | 2003-03-12 | Method for producing calcium sulfide heavy metal fixing agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003066259A JP4209224B2 (en) | 2003-03-12 | 2003-03-12 | Method for producing calcium sulfide heavy metal fixing agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004269822A JP2004269822A (en) | 2004-09-30 |
JP4209224B2 true JP4209224B2 (en) | 2009-01-14 |
Family
ID=33127031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003066259A Expired - Lifetime JP4209224B2 (en) | 2003-03-12 | 2003-03-12 | Method for producing calcium sulfide heavy metal fixing agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4209224B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4516780B2 (en) * | 2004-04-16 | 2010-08-04 | 三菱マテリアル株式会社 | Heavy metal fixing material, cement-based solidifying material, manufacturing method of heavy metal fixing material, manufacturing method of ground improvement material, and processing method of soil to be processed |
JP2006102643A (en) * | 2004-10-05 | 2006-04-20 | Ube Ind Ltd | Calcium sulfide heavy metal solidifying agent, its production method, method for producing soil modification material and method for treating object to be treated |
JP5561921B2 (en) * | 2008-09-11 | 2014-07-30 | 新日鐵住金ステンレス株式会社 | Earth solidified material |
CA2848712C (en) * | 2011-03-29 | 2019-09-24 | Heritage Environmental Services, Llc | Stabilizing hazardous wastes using waste byproducts |
US20130060076A1 (en) * | 2011-09-01 | 2013-03-07 | Keith E. Forrester | Method to reduce pcb content and/or lead tclp solubility |
CN115595157B (en) * | 2022-08-15 | 2024-08-16 | 浙江省地质院 | Cadmium mercury contaminated soil passivating agent and application thereof |
CN115678562A (en) * | 2022-11-05 | 2023-02-03 | 昆明理工大学 | Method for preparing soil heavy metal passivator by using phosphogypsum |
-
2003
- 2003-03-12 JP JP2003066259A patent/JP4209224B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004269822A (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dhoble et al. | Review on the innovative uses of steel slag for waste minimization | |
Roslan et al. | Properties of concrete containing electric arc furnace steel slag and steel sludge | |
Li et al. | Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus | |
Bertos et al. | Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO 2 | |
Lim et al. | Recycling dredged harbor sediment to construction materials by sintering with steel slag and waste glass: Characteristics, alkali-silica reactivity and metals stability | |
KR100860017B1 (en) | Soil aggregate composition for civil engineering and construction materials using process sludge and manufacturing method thereof | |
Wang et al. | Sustainable and efficient stabilization/solidification of Pb, Cr, and Cd in lead-zinc tailings by using highly reactive pozzolanic solid waste | |
Lv et al. | Performance of ultra-high-performance concrete incorporating municipal solid waste incineration fly ash | |
He et al. | Electrolytic manganese residue disposal based on basic burning raw material: Heavy metals solidification/stabilization and long-term stability | |
Komaei et al. | Stabilization and solidification of arsenic contaminated silty sand using alkaline activated slag | |
Zmemla et al. | A phosphogypsum‐based road material with enhanced mechanical properties for sustainable environmental remediation | |
JP3706618B2 (en) | Solidification / insolubilizer and solidification / insolubilization method for soil, incineration ash, coal ash, and gypsum board waste | |
WO2016108245A1 (en) | Process for complete conversion of multiple industrial wastes to sustainable alternatives and usable products | |
JPH11171628A (en) | Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition | |
Tian et al. | Environmental standards and beneficial uses of waste-to-energy (WTE) residues in civil engineering applications | |
JP4209224B2 (en) | Method for producing calcium sulfide heavy metal fixing agent | |
Tay et al. | Concrete aggregates made from sludge-marine clay mixes | |
Chen et al. | Submicron tourmaline enhanced the solidification of municipal solid waste incineration fly ash by chemical structure reorganization and stabilized heavy metals | |
Zou et al. | Properties and mechanisms of steel slag strengthening microbial cementation of cyanide tailings | |
Hamood et al. | Sustainability of sewage sludge in construction | |
JP2017145294A (en) | Agent and method for inhibiting the elution of harmful material | |
JPH10137716A (en) | Waste treating material and treatment of waste | |
WO2002049780A1 (en) | Method and apparatus for treatment of decomposing atoms in incineration ash by diffusion to detoxify them | |
JP2583729B2 (en) | Detoxification and stabilization of waste containing hazardous heavy metals | |
JP4874880B2 (en) | Manufacturing method for earthwork materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081022 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4209224 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121031 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121031 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |