JP4207843B2 - Method of using steel material for steel structure member and steel structure - Google Patents
Method of using steel material for steel structure member and steel structure Download PDFInfo
- Publication number
- JP4207843B2 JP4207843B2 JP2004148059A JP2004148059A JP4207843B2 JP 4207843 B2 JP4207843 B2 JP 4207843B2 JP 2004148059 A JP2004148059 A JP 2004148059A JP 2004148059 A JP2004148059 A JP 2004148059A JP 4207843 B2 JP4207843 B2 JP 4207843B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- steel structure
- heat treatment
- less
- structure member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 236
- 239000010959 steel Substances 0.000 title claims description 236
- 239000000463 material Substances 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 120
- 238000001816 cooling Methods 0.000 claims description 31
- 238000005204 segregation Methods 0.000 claims description 16
- 229910001563 bainite Inorganic materials 0.000 claims description 12
- 230000003749 cleanliness Effects 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 238000005336 cracking Methods 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims 1
- 230000001965 increasing effect Effects 0.000 description 23
- 239000000654 additive Substances 0.000 description 11
- 230000000996 additive effect Effects 0.000 description 11
- 229910001566 austenite Inorganic materials 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 8
- 230000003014 reinforcing effect Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 230000002787 reinforcement Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000010953 base metal Substances 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は、例えば建築物や橋梁等の鉄骨構造物を構成する鉄骨構造部材の素材として用いられる、例えば形鋼や鋼管あるいは厚板ビルドアップ材等の鉄骨構造部材用鋼材の使用方法及び鉄骨構造物に関する。より具体的に説明すると、本発明は、部分的に熱処理を行うことにより、この熱処理を行われた部分の機械特性(主に強度)を他の部分の機械特性よりも向上させた鉄骨構造部材用鋼材の使用方法及び鉄骨構造物に関する。 The present invention is, for example, buildings and steel structure such as bridges used as a material of the steel structure members constituting, for example section steel and the use of steel structural members steel materials such as steel pipes or planks buildup layers and steel structure Related to things. More specifically, the present invention is a steel structure member in which the mechanical properties (mainly strength) of the part subjected to the heat treatment are improved more than the mechanical properties of the other parts by performing a partial heat treatment. to methods and steel structure using the use steel.
例えば建築物や橋梁等といった鉄骨構造物を構成する、柱や梁等といった鉄骨構造部材には、形鋼や鋼管あるいは厚板ビルドアップ材等を所定の長さに切断した部材が用いられる。鉄骨構造物に外力が作用した場合に柱や梁をなす鉄骨構造部材に生じる応力は、通常、長手方向に均一ではない。一般的には、この応力は、鉄骨構造部材の端部で最も大きくなるとともに中央部で最も小さくなる。これまで用いられてきた鉄骨構造部材は、長手方向に均一な強度を有するため、本来、鉄骨構造部材に生じる曲げ応力が最大となる危険断面を含む近傍領域だけが有していればよい高強度を、鉄骨構造部材の全長にわたって付与しており、鉄骨構造部材の大部分の領域で過剰なスペックを与えている。 For example, a member obtained by cutting a shape steel, a steel pipe, a thick plate build-up material, or the like into a predetermined length is used as a steel structure member such as a column or a beam constituting a steel structure such as a building or a bridge. When an external force is applied to the steel structure, the stress generated in the steel structure member that forms a column or a beam is usually not uniform in the longitudinal direction. In general, this stress is greatest at the end of the steel structure member and is smallest at the center. Since steel structure members that have been used so far have uniform strength in the longitudinal direction, high strength is sufficient as long as it is inherently only included in the vicinity of the critical section where the bending stress that occurs in the steel structure member is maximum. Is provided over the entire length of the steel structure member, and an excessive specification is given in most regions of the steel structure member.
そこで、鉄骨構造部材の危険断面を含む近傍領域のみに、建築構造物の施工現場で熱処理を行うことにより、危険断面を含む近傍領域の強度を部分的に上昇させ、鉄骨構造物の安全性を無駄なく確保することが提案されている。例えば特許文献1には、施工現場で、鉄骨構造部材の所定の長さの範囲に危険断面を含む近傍領域を高周波誘導加熱により部分的に加熱した後に急冷して焼きを入れる熱処理を行って高強度化することにより鉄骨構造物の安全性を高める発明が開示されている。
Therefore, by performing heat treatment at the construction site of the building structure only in the vicinity area including the dangerous section of the steel structure member, the strength of the vicinity area including the dangerous section is partially increased, and the safety of the steel structure is increased. It has been proposed to secure without waste. For example, in
また、このような長手方向への応力の勾配を有さない通常の鉄骨構造部材であっても、ブレースの端部や柱及び梁で囲まれた部分であるパネルゾーンのように特定部分の強度を増加させた鉄骨構造部材を用いることも知られている。例えば特許文献2には、鉄骨構造部材の板厚を局部的に増加して補強することにより、部分的に熱処理されても熱処理部の靭性を低下させない最適な成分が開示されている。
特許文献1には、施工現場で焼入れ処理を行う旨開示されている。しかしながら、特許文献1には焼入れ処理を行う対象となる鋼の組成が何ら開示されていない。このため、焼入れ処理の対象である鋼の組成によっては、強度は上昇するものの靭性が著しく劣化してしまうおそれがある。例えば、溶接割れ感受性指数Pcmが高く、特に炭素量が高い鋼に焼入れ処理を行うと、マルテンサイト量が多くなり過ぎるために、強度上昇が著しく大きくなるとともに靱性も劣化する。逆に、溶接割れ感受性指数Pcmが低過ぎる鋼に焼入れ処理を行うとフェライト及びパーライト主体の混合組織となってしまい、所望の強度を得ることができない。場合によっては靱性も劣化してしまうおそれすらある。
一方、特許文献2により開示された発明を実施するには、板厚を部分的に増加させるために局部加熱装置だけではなく強力な圧縮装置が必要となる。このため、実際には、この発明は施行現場で確実に実施できるものではないとともに、また強力な圧縮装置に要する費用が嵩んでしまう。
On the other hand, in order to implement the invention disclosed in
本発明の目的は、増厚工法のような特殊な加工を必要とせず、鉄骨構造部材に部分的な熱処理を行うことにより、熱処理部の強度の上昇のみならず、熱処理部の靱性の確保をも充分に図ることができる鉄骨構造部材用鋼材の使用方法及び鉄骨構造物を提供することである。 The purpose of the present invention is not to require special processing as in the thickening method, and by performing a partial heat treatment on the steel structure member, not only the strength of the heat treatment part is increased, but also the toughness of the heat treatment part is ensured. It is another object of the present invention to provide a method of using a steel material for a steel structure member and a steel structure that can be sufficiently achieved.
本発明は、C:0.04〜0.18%(本明細書では特にことわりがない限り「%」は「質量%」を意味するものとする)、Si:0.02〜0.50%、Mn:0.5〜2.0%、sol.Al:0.06%以下、Ti:0.003〜0.030%、N:0.008%以下を含有し、2Nb+3Ti+Al:0.05%以上であり、Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5Bにより規定される溶接割れ感受性指数(Pcm)が0.12〜0.27%である鉄骨構造部材用鋼材を構成材料の少なくとも一つとして使用されてなる鉄骨構造物であって、この鉄骨構造部材用鋼材からなる鉄骨構造部材の危険断面を含む部分に対して、800℃以上に加熱してから800℃から500℃までを3℃/秒以上の平均冷却速度で冷却する熱処理を部分的に行い、該熱処理部を70J以上の0℃シャルピー吸収エネルギーを与える、微細なベイナイトを主体とする組織とすることを特徴とする鉄骨構造物である。 In the present invention, C: 0.04 to 0.18% (in this specification, “%” means “% by mass” unless otherwise specified), Si: 0.02 to 0.50% , Mn: 0.5 to 2.0%, sol. Al: 0.06% or less, Ti: 0.003 to 0.030%, N: 0.008% or less, 2Nb + 3Ti + Al: 0.05% or more, Pcm = C + (Si / 30) + ( The weld cracking sensitivity index (Pcm) defined by Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B is 0.12. a steel structure formed by using at least as one of ~0.27% der Ru steel structural members steel material constituent materials, the part including the risk section of steel structural member comprising the steel structural member for steel On the other hand, a heat treatment is performed by heating from 800 ° C. to 500 ° C. at an average cooling rate of 3 ° C./second or more after heating to 800 ° C. or more, and the heat treatment part has a 0 ° C. Charpy absorbed energy of 70 J or more. Give a fine veina It is a steel structure, characterized by a tissue bets mainly.
この本発明に係る鉄骨構造物では、熱処理を行われる部分の長手方向の長さ(Lj)が、Lj/D≧0.0308(L/D)・(σyj/σy)+0.039を満足することが望ましい。ただし、この式におけるLは鉄骨構造部材の全長の半分の長さを示し、Dはこの鉄骨構造部材の部材せいを示す。 In the steel structure according to the present invention, the length (Lj) in the longitudinal direction of the portion to be heat-treated satisfies Lj / D ≧ 0.0308 (L / D) · (σyj / σy) +0.039. It is desirable. However, L in this formula shows the length of half of the total length of the steel structure member, and D shows the member fault of this steel structure member.
これらの本発明に係る鉄骨構造物では、熱処理を行われる部分の降伏強度(σyj)が、熱処理を行われる部分以外の部分の降伏強度(σy)の1.25倍以上であることが望ましい。 In these steel structures according to the present invention, it is desirable that the yield strength (σyj) of the portion to be heat-treated is 1.25 times or more the yield strength (σy) of the portion other than the portion to be heat-treated.
これらの本発明に係る鉄骨構造物は、さらに、B:0.0003〜0.003%又はNb:0.003〜0.05%の少なくとも一つを含有することが望ましい。
これらの本発明に係る鉄骨構造物は、さらに、Cu:0.05〜1.5%、Ni:0.05〜2.0%、Cr:0.03〜1.0%、Mo:0.03〜1.0%及びV:0.005〜0.1%のうちの1種又は2種以上を含有することが望ましい。
These steel structures according to the present invention preferably further contain at least one of B: 0.0003 to 0.003% or Nb: 0.003 to 0.05%.
In these steel structures according to the present invention, Cu: 0.05 to 1.5%, Ni: 0.05 to 2.0%, Cr: 0.03 to 1.0%, Mo: 0.00. It is desirable to contain one or more of 03 to 1.0% and V: 0.005 to 0.1%.
これらの本発明に係る鉄骨構造物は、JIS G 0555により規定される清浄度が、dA60×400で0.040%以下、dB60×400で0.030%以下又はdC60×400で0.030%以下であることが望ましい。 These steel structures according to the present invention have a cleanliness degree defined by JIS G 0555 of 0.040% or less at dA60 × 400, 0.030% or less at dB60 × 400, or 0.030% at dC60 × 400. The following is desirable.
さらに、これらの本発明に係る鉄骨構造物では、厚さ方向の中心に位置する偏析部が、C:0.29%以下、P:0.30%及びMn:3.5%以下である鋼組成を有することが望ましい。 Furthermore, in these steel structures according to the present invention, the segregated portion located at the center in the thickness direction is C: 0.29% or less, P: 0.30%, and Mn: 3.5% or less. It is desirable to have a composition.
別の観点からは、本発明は、C:0.04〜0.18%、Si:0.02〜0.50%、Mn:0.5〜2.0%、sol.Al:0.06%以下、Ti:0.003〜0.030%、N:0.008%以下を含有し、2Nb+3Ti+Al:0.05%以上であり、さらに、Pcm =C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5Bにより規定される溶接割れ感受性指数(Pcm)が0.12〜0.27%である鉄骨構造部材の危険断面を含む部分に対して、800℃以上に加熱してから800℃から500℃までを3℃/秒以上の冷却速度で冷却する熱処理を部分的に行うことにより、この熱処理部を、70J以上の0℃シャルピー吸収エネルギーを与える、微細なベイナイトを主体とする組織とすることを特徴とする鉄骨構造部材用鋼材の使用方法である。 From another viewpoint, the present invention relates to C: 0.04 to 0.18%, Si: 0.02 to 0.50%, Mn: 0.5 to 2.0%, sol. Al: 0.06% or less, Ti: 0.003 to 0.030%, N: 0.008% or less, 2Nb + 3Ti + Al: 0.05% or more, and Pcm = C + (Si / 30) The weld cracking sensitivity index (Pcm) defined by + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B is 0. .A heat treatment for cooling a portion including a dangerous cross section of a steel structure member of 12 to 0.27% from 800 ° C. to 500 ° C. at a cooling rate of 3 ° C./second or more after heating to 800 ° C. This is a method of using a steel material for a steel structure member characterized in that, by performing partially, the heat treatment part has a structure mainly composed of fine bainite that gives 0 ° C. Charpy absorbed energy of 70 J or more.
この本発明に係る鉄骨構造部材用鋼材の使用方法では、熱処理を行われる部分の長手方向の長さ(Lj)が、Lj/D≧0.0308(L/D)・(σyj/σy)+0.039を満足することが望ましい。ただし、この式におけるLは鉄骨構造部材の全長の半分の長さを示し、Dはこの鉄骨構造部材の部材せいを示す。 In this method of using the steel material for steel structure members according to the present invention, the length (Lj) in the longitudinal direction of the portion to be heat-treated is Lj / D ≧ 0.0308 (L / D) · (σyj / σy) +0 It is desirable to satisfy .039. However, L in this formula shows the length of half of the total length of the steel structure member, and D shows the member fault of this steel structure member.
本発明により、増厚工法のような特殊な加工を行うことなく、鉄骨構造部材に部分的な熱処理を行うことにより、熱処理部の強度の上昇のみならず、熱処理部の靱性の向上をも図ることができる鉄骨構造部材用鋼材の使用方法と、この鉄骨構造部材用鋼材を用いた鉄骨構造物とを提供することができる。 According to the present invention, by performing a partial heat treatment on the steel structure member without performing special processing such as a thickening method, not only the strength of the heat treatment portion is increased, but also the toughness of the heat treatment portion is improved. it is possible to provide that the use of the steel for steel structural members which can, and a steel structure using the steel for the steel structural members.
以下、本発明に係る鉄骨構造部材用鋼材の使用方法及び鉄骨構造物を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。なお、以降の説明では、鉄骨構造部材用鋼材が鋼板である場合を例にとるが、本発明は鋼板に限定されるものではなく、鋼板以外に形鋼や鋼管あるいは厚板ビルドアップ材等に対しても同様に適用可能である。 Hereinafter, the best mode for carrying out a method of using a steel material for a steel structure member and a steel structure according to the present invention will be described in detail with reference to the accompanying drawings. In the following explanation, the case where the steel material for the steel structure member is a steel plate is taken as an example, but the present invention is not limited to the steel plate, and other than the steel plate, it is a shape steel, a steel pipe, a thick plate build-up material, or the like. The same applies to the same.
鉄骨構造物を構成する鉄骨構造部材に部分的な熱処理を施工現場で行うことにより、増厚工法のような特殊な加工を行わなくとも、熱処理部の強度の上昇を図りながら靱性を十分に確保するためには、この熱処理部の硬度を低減するとともに組織を微細化することが重要である。 By performing partial heat treatment on the steel structure members that make up the steel structure at the construction site, sufficient toughness is ensured while increasing the strength of the heat treatment part without special processing such as thickening. In order to achieve this, it is important to reduce the hardness of the heat treatment part and to refine the structure.
鉄骨構造部材の熱処理部は、加熱後の冷却によりベイナイト又はマルテンサイトを主体とする組織となるため、(a)C含有量を低下して組織の硬度を下げること、(b)脆弱な炭素濃縮相が形成される場合は、C含有量を低下して炭素濃縮相の硬度及び量を低減すること、及び(c)Ti等のマイクロアロイを添加して熱処理部のオーステナイト粒径とベイナイトパケットの粗大化とをいずれも防止することに着目した。 Since the heat treatment part of the steel structure member has a structure mainly composed of bainite or martensite by cooling after heating, (a) lowering the C content to lower the hardness of the structure, (b) brittle carbon concentration When the phase is formed, the C content is decreased to reduce the hardness and amount of the carbon-enriched phase, and (c) the microalloy such as Ti is added to the austenite grain size and the bainite packet of the heat treatment part. We focused on preventing any coarsening.
そして、施工現場で部分的に熱処理を行われた鉄骨構造部材において、この熱処理部の機械特性、特に強度及び靱性を確保するためには、熱処理部を微細なベイナイトを主体とする組織とするとともに、熱処理部の硬度を低減することが有効である。しかし、熱処理部の硬度を低下し過ぎると熱処理部の強度が上昇しなくなり、本来の目的を達成できない。 In a steel structure member that has been partially heat-treated at the construction site, in order to ensure the mechanical properties of this heat-treated part, particularly strength and toughness, the heat-treated part has a structure mainly composed of fine bainite. It is effective to reduce the hardness of the heat treatment part. However, if the hardness of the heat treatment part is excessively lowered, the strength of the heat treatment part does not increase, and the original purpose cannot be achieved.
本発明において、「ベイナイトを主体とする組織」とは、塊状のフェライト及びパーライトの面積率が20%以下であって残部がベイナイト、又は、ベイナイトと面積率で15%以下のマルテンサイト及び島状マルテンサイトとからなる組織を意味する。 In the present invention, “structure mainly composed of bainite” means that the area ratio of massive ferrite and pearlite is 20% or less, and the balance is bainite, or bainite and martensite and islands whose area ratio is 15% or less. An organization consisting of martensite.
このように現場で熱処理を行われた熱処理部の強度及び靱性を所望の値とするために、本実施の形態では、現場での熱処理の組織をベイナイト主体の組織とし、かつ組織の微細化を図ることが可能となるように、鉄骨構造部材の組成を調整しておく。そこで、次に、組成の限定理由を説明する。 In this embodiment, in order to obtain the desired strength and toughness of the heat-treated portion subjected to the heat treatment in the field, the structure of the heat treatment in the field is a bainite-based structure, and the structure is refined. The composition of the steel structure member is adjusted so that it can be achieved. Then, the reason for limiting the composition will be described next.
C:0.04%以上0.18%以下
Cは、熱処理部の硬度及び靱性に大きな影響を与える元素である。C含有量が0.18%を越えると熱処理部である鋼板の端部の硬度上昇が過剰となり、靱性が劣化する。同様の観点からC含有量の上限は0.15%であることが望ましく、0.12%であることがさらに望ましい。逆に、C含有量が0.04%未満であると、熱処理部の強度上昇が不十分となる。同様の観点からC含有量の下限は0.06%であることが望ましい。
C: 0.04% or more and 0.18% or less C is an element that greatly affects the hardness and toughness of the heat-treated portion. If the C content exceeds 0.18%, the hardness increase at the end of the steel sheet, which is the heat-treated portion, becomes excessive and the toughness deteriorates. From the same viewpoint, the upper limit of the C content is preferably 0.15%, and more preferably 0.12%. On the other hand, if the C content is less than 0.04%, the strength increase of the heat treatment part is insufficient. From the same viewpoint, the lower limit of the C content is preferably 0.06%.
Si:0.02%以上0.50%以下
Siは、0.02%以上含有することにより脱酸作用及び強度上昇作用をともに奏する。逆にSi含有量が0.02%未満であると、脱酸が不十分となるため、Siは0.02%以上含有する。しかし、0.50%を越えて含有すると熱処理部の靱性が劣化する。特に鉄骨構造部材である鋼板の端部の強度上昇を目的とする場合にはSi含有量の下限は0.3%とすることが望ましく、0.2%とすることがさらに望ましい。
Si: 0.02% or more and 0.50% or less Si contains 0.02% or more, and thereby exhibits both a deoxidizing action and a strength increasing action. Conversely, if the Si content is less than 0.02%, deoxidation becomes insufficient, so Si is contained by 0.02% or more. However, if it exceeds 0.50%, the toughness of the heat-treated part deteriorates. In particular, when the purpose is to increase the strength of the end portion of a steel plate that is a steel structure member, the lower limit of the Si content is preferably 0.3%, and more preferably 0.2%.
Mn:0.5%以上2.0%以下
Mnは、強度の向上のために含有する。Mnは、高い焼入性向上効果を奏するので合金元素の中でも特に有効である。Mn含有量が0.5%未満であると強度上昇効果が不十分である。同様の観点からMn含有量の下限は1.0%であることが望ましく、1.2%であることがさらに望ましい。一方、Mn含有量が2.0%を越えると熱処理部の硬度が過剰に上昇し、靱性が低下する。同様の観点からMn含有量の上限は1.6%であることが望ましい。
Mn: 0.5% or more and 2.0% or less Mn is contained for improving the strength. Mn is particularly effective among alloying elements because it has a high hardenability improving effect. If the Mn content is less than 0.5%, the effect of increasing the strength is insufficient. From the same viewpoint, the lower limit of the Mn content is desirably 1.0%, and more desirably 1.2%. On the other hand, when the Mn content exceeds 2.0%, the hardness of the heat-treated portion is excessively increased and the toughness is lowered. From the same viewpoint, the upper limit of the Mn content is preferably 1.6%.
sol.Al:0.06%以下
Alは、特に連続鋳造等により素材となるスラブを製造する場合、欠陥のない鋼片を得るために必須な元素であり、その場合sol.Alとして約0.005%を越える量が残存する。しかし、熱処理部ではsol.AlはNと結合してAlNとなり、熱処理部のオーステナイト粒径を細粒化して靱性を向上させる。このため、sol.Alを0.01%以上含有することが望ましい。一方、sol.Alの含有量が0.06%を超えると熱処理部の靱性が劣化する。sol.Alの望ましい含有量の上限は0.04%であり、0.02%であることがさらに望ましい。
sol. Al: 0.06% or less Al is an essential element for obtaining a slab having no defects, particularly when producing a slab as a raw material by continuous casting or the like. An amount exceeding about 0.005% remains as Al. However, sol. Al combines with N to become AlN, and the toughness is improved by refining the austenite grain size of the heat-treated portion. For this reason, sol. It is desirable to contain 0.01% or more of Al. On the other hand, sol. If the Al content exceeds 0.06%, the toughness of the heat-treated part deteriorates. sol. The upper limit of the desirable content of Al is 0.04%, more preferably 0.02%.
Ti:0.003%以上0.03%以下
Tiは、Nと結合してTiNを析出させ、熱処理部のオーステナイト粒径を微細にすることにより靱性の劣化を防止する。Nとの結合効果を持たせるためにTiは0.003%以上添加する。同様の観点からTi含有量の下限は0.01%であることが望ましい。しかし、Tiを0.03%を越えて含有すると、熱処理部にTi炭化物が析出するため、逆に熱処理部の靱性が劣化する。同様の観点からTi含有量の上限は0.017%であることが望ましい。
Ti: 0.003% or more and 0.03% or less Ti combines with N to precipitate TiN, and prevents the deterioration of toughness by making the austenite grain size of the heat treatment portion fine. In order to have a bonding effect with N, Ti is added by 0.003% or more. From the same viewpoint, the lower limit of the Ti content is desirably 0.01%. However, if Ti is contained in excess of 0.03%, Ti carbide precipitates in the heat treatment part, and conversely, the toughness of the heat treatment part deteriorates. From the same viewpoint, the upper limit of the Ti content is desirably 0.017%.
N:0.008%以下
Nは、不純物として鋼中に含有されるが、NはTiと結合してTiNとなり、熱処理部の組織を微細にして靱性向上に有効である。しかし、N含有量が0.008%を越えて含有すると熱処理部の靱性が劣化する。同様の観点からN含有量の上限は0.006%であることが望ましく、0.004%であることがさらに望ましい。
N: 0.008% or less N is contained in the steel as an impurity, but N is combined with Ti to become TiN, which is effective for improving the toughness by making the structure of the heat treatment portion fine. However, if the N content exceeds 0.008%, the toughness of the heat-treated part deteriorates. From the same viewpoint, the upper limit of the N content is desirably 0.006%, and more desirably 0.004%.
2Nb+3Ti+Al:0.05%以上
鉄骨構造部材である鋼板の熱処理部の組織を微細にするためには、析出する炭化物や窒化物、さらには炭窒化物によるオーステナイト粒のピン止め効果を利用することが有効である。このためには、炭化物、窒化物あるいは炭窒化物を形成する元素であるNb、Ti、Alが、2Nb+3Ti+Al:0.05%以上の関係を満足することが有効である。
2Nb + 3Ti + Al: 0.05% or more In order to refine the structure of the heat treatment part of the steel sheet that is a steel structure member, the pinning effect of austenite grains by precipitated carbides and nitrides, and carbonitrides can be used. It is valid. For this purpose, it is effective that Nb, Ti, and Al, which are elements forming carbide, nitride, or carbonitride, satisfy the relationship of 2Nb + 3Ti + Al: 0.05% or more.
溶接割れ感受性指数Pcm:0.12%以上0.27%以下
鉄骨構造部材である鋼板の熱処理部の硬度を低減するためには、Cをはじめとする添加元素の含有量を制限する必要がある。Pcm =C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5Bとして規定される溶接割れ感受性指数Pcmが0.27%を越えると熱処理部の硬度が過剰となって靱性が劣化する。同様の観点から上限は0.22%であることが望ましい。一方、溶接割れ感受性指数Pcmが0.12%未満であると熱処理部の硬度が不足し、本来の目的を達成できない。同様の観点から下限は0.16%であることが望ましい。
Weld cracking susceptibility index Pcm: 0.12% or more and 0.27% or less In order to reduce the hardness of the heat treatment part of the steel sheet which is a steel structure member, it is necessary to limit the content of additive elements including C . Welding specified as Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B If the cracking sensitivity index Pcm exceeds 0.27%, the hardness of the heat treatment part becomes excessive and the toughness deteriorates. From the same viewpoint, the upper limit is preferably 0.22%. On the other hand, if the weld crack susceptibility index Pcm is less than 0.12%, the hardness of the heat-treated portion is insufficient and the original purpose cannot be achieved. From the same viewpoint, the lower limit is preferably 0.16%.
B:0.0003%以上0.003%以下
Bは、必要に応じて添加される任意添加元素である。Bは、熱処理部の強度上昇に有効であるばかりでなく、BNとして析出することにより熱処理部の組織を微細にし、熱処理部の靱性向上に有効である。熱処理部の強度上昇のため添加する場合には0.0003%以上添加する。同様の観点から下限は0.0005%であることが望ましい。一方、B含有量が0.003%を越えても添加に見合うだけの強度上昇が得られない。同様の観点から上限は0.002%であることが望ましい。
B: 0.0003% or more and 0.003% or less B is an optional additive element added as necessary. B is not only effective for increasing the strength of the heat-treated portion, but is also effective for improving the toughness of the heat-treated portion by making the structure of the heat-treated portion fine by precipitating as BN. When added to increase the strength of the heat treatment part, 0.0003% or more is added. From the same viewpoint, the lower limit is preferably 0.0005%. On the other hand, even if the B content exceeds 0.003%, an increase in strength sufficient for the addition cannot be obtained. From the same viewpoint, the upper limit is preferably 0.002%.
Nb:0.003%以上0.05%以下
Nbは、必要に応じて添加される任意添加元素である。Nbは、0.003%以上含有することにより熱処理部の強度上昇に効果があるだけではなく、熱処理部のオーステナイト粒径を小さくすることにより熱処理部の靱性改善に有効である。しかし、0.05%超含有してもこのような効果は飽和しコストが嵩むだけとなる。同様の観点から、下限は0.01%であることが望ましく、上限は0.04%であることが望ましい。
Nb: 0.003% or more and 0.05% or less Nb is an optional additive element added as necessary. When Nb is contained in an amount of 0.003% or more, not only is there an effect in increasing the strength of the heat-treated portion, but it is effective in improving the toughness of the heat-treated portion by reducing the austenite grain size in the heat-treated portion. However, even if it contains more than 0.05%, such an effect is saturated and only the cost increases. From the same viewpoint, the lower limit is desirably 0.01%, and the upper limit is desirably 0.04%.
Cu:0.05%以上1.5%以下
Cuは、必要に応じて添加される任意添加元素である。Cuは、0.05%以上含有することにより熱処理部の焼入性向上に効果があり、熱処理部の強度が上昇する。しかし、Cu含有量が1.5%を越えると熱処理部の靱性が劣化する。同様の観点からCu含有量の上限は0.8%であることが望ましく、0.3%であることがさらに望ましい。
Cu: 0.05% or more and 1.5% or less Cu is an optional additive element added as necessary. By containing 0.05% or more, Cu is effective in improving the hardenability of the heat treatment part, and the strength of the heat treatment part is increased. However, if the Cu content exceeds 1.5%, the toughness of the heat-treated part deteriorates. From the same viewpoint, the upper limit of the Cu content is desirably 0.8%, and more desirably 0.3%.
Ni:0.05%以上2.0%以下
Niは、必要に応じて添加される任意添加元素である。Niは、0.05%以上含有することにより熱処理部の焼入性向上に効果があり、熱処理部の強度が上昇する。しかし、Ni含有量が2.0%を越えてもコスト上昇に見合うだけの強度上昇が期待できない。
Ni: 0.05% or more and 2.0% or less Ni is an optional additive element added as necessary. Ni containing 0.05% or more is effective in improving the hardenability of the heat treatment part, and the strength of the heat treatment part is increased. However, even if the Ni content exceeds 2.0%, it is not possible to expect an increase in strength to meet the cost increase.
Cu:0.05%以上1.5%以下
Cuは、必要に応じて添加される任意添加元素である。Cuは、0.05%以上含有することにより熱処理部の焼入性向上に効果があり、熱処理部の強度が上昇する。しかし、1.5%を越えて含有すると熱処理部の靱性が劣化する。同様の観点から上限は0.8%であることが望ましく、0.3%であることがさらに望ましい。
Cu: 0.05% or more and 1.5% or less Cu is an optional additive element added as necessary. By containing 0.05% or more, Cu is effective in improving the hardenability of the heat treatment part, and the strength of the heat treatment part is increased. However, if the content exceeds 1.5%, the toughness of the heat-treated part deteriorates. From the same viewpoint, the upper limit is desirably 0.8%, and more desirably 0.3%.
Cr:0.03%以上1.0%以下
Crは、必要に応じて添加される任意添加元素である。Crは、0.03%以上含有することにより熱処理部の焼入性向上に効果があり、熱処理部の強度が上昇する。しかし、1.0%を越えて添加すると熱処理部の靱性が劣化する。同様の観点から、下限は0.3%であることが望ましく、上限は0.6%であることが望ましい。
Cr: 0.03% or more and 1.0% or less Cr is an optional additive element added as necessary. When Cr is contained in an amount of 0.03% or more, it is effective in improving the hardenability of the heat treatment part, and the strength of the heat treatment part is increased. However, if added over 1.0%, the toughness of the heat-treated part deteriorates. From the same viewpoint, the lower limit is desirably 0.3%, and the upper limit is desirably 0.6%.
Mo:0.03%以上1.0%以下
Moは、必要に応じて添加される任意添加元素である。Moは、0.03%以上含有することにより熱処理部の焼入性向上に特に効果があり、熱処理部の強度が上昇する。しかし、1.0%を越えて添加すると熱処理部の靱性が劣化する。同様の観点から下限は0.2%であることが望ましく、上限は0.5%であることが望ましい。
Mo: 0.03% or more and 1.0% or less Mo is an optional additive element added as necessary. When Mo is contained in an amount of 0.03% or more, it is particularly effective in improving the hardenability of the heat treatment part, and the strength of the heat treatment part is increased. However, if added over 1.0%, the toughness of the heat-treated part deteriorates. From the same viewpoint, the lower limit is preferably 0.2%, and the upper limit is preferably 0.5%.
V:0.005%以上0.1%以下
Vは、必要に応じて添加される任意添加元素である。Vは、強度上昇の観点から0.005%添加することが有効である。しかし、0.1%を越えて添加すると熱処理部の靱性が劣化する。同様の観点から下限は0.01%であることが望ましく、上限は0.05%であることが望ましい。
V: 0.005% or more and 0.1% or less V is an optional additive element added as necessary. It is effective to add 0.005% of V from the viewpoint of increasing the strength. However, if added over 0.1%, the toughness of the heat-treated part deteriorates. From the same viewpoint, the lower limit is desirably 0.01%, and the upper limit is desirably 0.05%.
上記以外はFe及び不可避的不純物である。
鉄骨構造部材としての鋼板は、建築物や橋梁等といった鉄骨構造物の構成部材として、高い信頼性を要求されるため、鋼の清浄度や中心偏析の程度は、この信頼性を確保するために重要な管理項目となる。そこで、本実施の形態の鉄骨構造部材としての鋼板の清浄度及び中心偏析について説明する。
Other than the above are Fe and inevitable impurities.
Steel plates as steel structural members are required to have high reliability as structural members of steel structures such as buildings and bridges, so the cleanliness of steel and the degree of central segregation are to ensure this reliability. It becomes an important management item. Therefore, the cleanliness and center segregation of the steel plate as the steel structure member of the present embodiment will be described.
清浄度
本実施の形態の鉄骨構造部材としての鋼板は、例えば端部等の危険断面を含む部位を施工現場で熱処理した後に水冷後用いられる。このため、偏析による過剰な焼入性を奏する部位や過剰の介在物が存在する部位が存在すると、この鋼板の靱性が劣化する。そこで、鋼の清浄度は、JIS G 0555に規定された「鋼の非金属介在物の顕微鏡試験方法」の点算法による顕微鏡試験方法によって測定された鋼の清浄度が、dA60×400で0.040%以下、dB60×400で0.030%以下、又はdC60×400で0.030%以下であることが望ましい。
Cleanliness The steel plate as the steel structure member of the present embodiment is used after water cooling after heat-treating a part including a dangerous section such as an end portion at a construction site. For this reason, if there is a portion exhibiting excessive hardenability due to segregation or a portion where excessive inclusions exist, the toughness of the steel sheet deteriorates. Therefore, the cleanliness of the steel is 0. When the dA60 × 400, the cleanliness of the steel measured by the microscopic test method based on the point calculation method of “Microscopic test method of non-metallic inclusions in steel” defined in JIS G 0555 is set. Desirably, it is 040% or less, dB60 × 400 is 0.030% or less, or dC60 × 400 is 0.030% or less.
なお、本実施の形態では、この清浄度を求める際に用いる介在物の個数は、以下に説明する手段によって、測定した。鋼表面を縦横20本の格子線が入った接眼レンズを用いて400倍で60視野をランダムに観察し、介在物によって占めた格子点中心の数nをカウントし、清浄度d=(n/p×f)×100として算出した。ここで、p:視野内の総格子点数f:視野数n:f個の視野における介在物によって占められる格子点中心の数である。 In the present embodiment, the number of inclusions used when determining the cleanliness is measured by means described below. Using an eyepiece with 20 grid lines in the vertical and horizontal directions on the steel surface, 60 fields of view were randomly observed at 400 times, and the number n of grid point centers occupied by inclusions was counted, and the cleanliness d = (n / p × f) × 100. Here, p: the total number of lattice points in the visual field f: the number of visual fields n: the number of lattice point centers occupied by inclusions in the f visual fields.
偏析部の濃度
鉄骨構造部材の素材となる連続鋳造スラブ等の鋼片には不可避的に中心偏析を伴うが、この中心偏析は鉄骨構造部材である鋼板のフランジ及びウェブそれぞれの厚さ方向の中心に残存して、鋼板の靱性を著しく劣化させる。この偏析部におけるC濃度が0.29%超であると、熱処理後の偏析部の硬度が過剰に大きくなって靱性が劣化する。このため、偏析部のC濃度は0.29%以下であることが望ましい。同様に偏析部のP濃度が0.30%超、Mn濃度が3.5%超であると、熱処理後の偏析部の硬度が過剰に大きくなって靱性が劣化する。そこで、偏析部は、C:0.29%以下、P:0.30%以下、Mn:3.5%以下であることが望ましい。
The steel piece such as continuous cast slab, which is the material of the steel structure member with the concentration of segregation part, inevitably accompanies center segregation. This center segregation is the center in the thickness direction of each flange and web of the steel structure member To significantly deteriorate the toughness of the steel sheet. When the C concentration in the segregation part is more than 0.29%, the hardness of the segregation part after the heat treatment becomes excessively large and the toughness is deteriorated. For this reason, it is desirable that the C concentration in the segregation part is 0.29% or less. Similarly, if the P concentration in the segregation part is more than 0.30% and the Mn concentration is more than 3.5%, the hardness of the segregation part after heat treatment becomes excessively large and the toughness deteriorates. Therefore, the segregation part is desirably C: 0.29% or less, P: 0.30% or less, and Mn: 3.5% or less.
以上のような組成、清浄度及び偏析部濃度を有する鉄骨構造部材を製造するためには、例えば精錬に際し、精錬初期にAl脱酸を大部分進行させることは避けることが望ましい。Al以外の組成の調整をMn及びSi等とともに行い、さらにTi等により脱酸が進行した後、出鋼直前にAlを微量溶鋼中に投入し、得られた溶鋼を鋳造することが望ましい。 In order to manufacture a steel structure member having the above composition, cleanliness, and segregation part concentration, it is desirable to avoid that Al deoxidation mostly proceeds at the initial stage of refining, for example. It is desirable to adjust the composition other than Al together with Mn, Si, and the like, and after deoxidation proceeds with Ti and the like, Al is introduced into a small amount of molten steel immediately before the outgoing steel, and the obtained molten steel is cast.
また、鋳造に際して、連続鋳造又はインゴット鋳造を行うが、凝固速度の点から連続鋳造を行うほうが好ましい。また、インゴット鋳造の場合は、熱間圧延に先立って、分塊圧延により鋼片を製造する工程を余分に経なければならずコストが嵩むとともに、歩留まりも低下する。 In casting, continuous casting or ingot casting is performed, but it is preferable to perform continuous casting in terms of solidification speed. Further, in the case of ingot casting, prior to hot rolling, an extra step of producing a steel slab by partial rolling has to be performed, resulting in an increase in cost and a decrease in yield.
上述した組成、清浄度及び偏析部濃度を有する鋼の連続鋳造は、溶製段階において介在物を減少させることを目的として、例えば、転炉→取鍋内溶鋼への不活性ガス吹き込み処理を行うことにより、実現できる。本実施の形態における精錬条件及び連続鋳造条件を、以下に列記してまとめて示す。 Continuous casting of steel having the above-described composition, cleanliness, and segregation concentration is performed, for example, by performing an inert gas blowing process from the converter to the molten steel in the ladle for the purpose of reducing inclusions in the melting stage. This can be realized. The refining conditions and continuous casting conditions in the present embodiment are listed and summarized below.
[精錬条件]
処理方法:取鍋内溶鋼への不活性ガス吹き込み処理
プロセス:転炉→取鍋内溶鋼への不活性ガス吹き込み処理→連続鋳造
精錬処理時間:1〜15分
精錬処理雰囲気/真空度:大気圧
[連続鋳造条件]
鋳込速度:0.4〜2.0m/分
タンディッシュ内溶鋼温度:ΔT(計算液相線温度とタンディッシュ内溶鋼温度の差;2 0〜35℃)
比水量:0.2〜2.0リットル/溶鋼kg
なお、これらの条件以外に鋳込み時の吐出流量管理として連続鋳造鋳型の近傍に設けた電磁制動装置により1000〜5000ガウスで電磁ブレーキをかけたり、250〜1000ガウスで未凝固溶鋼に電磁攪拌処理を行ったり、あるいは、最終凝固部を1mm/m程度の勾配で圧下して濃厚偏析の溶鋼を最終凝固部から搾り出すこととしてもよい。
[Refining conditions]
Treatment method: Inert gas blowing treatment into molten steel in ladle Process: Inverter → Inert gas blowing treatment into molten steel in ladle → Continuous casting Refining treatment time: 1 to 15 minutes Refining treatment atmosphere / vacuum degree: atmospheric pressure [Continuous casting conditions]
Casting speed: 0.4 to 2.0 m / min Tundish molten steel temperature: ΔT (difference between calculated liquidus temperature and tundish molten steel temperature; 20 to 35 ° C.)
Specific water volume: 0.2-2.0 liters / kg of molten steel
In addition to these conditions, an electromagnetic brake is applied at 1000 to 5000 gauss by an electromagnetic braking device provided in the vicinity of the continuous casting mold as a discharge flow rate control during casting, or electromagnetic solidification treatment is applied to unsolidified molten steel at 250 to 1000 gauss. Alternatively, the final solidified portion may be squeezed with a gradient of about 1 mm / m to squeeze out the concentrated segregated molten steel from the final solidified portion.
本実施の形態では、このようにして製造された鋼片を所定の温度に加熱して、熱間圧延を行い、その後、水冷もしくは空冷を行うことにより、鋼板とする。
鋼片の加熱温度は950℃以上1200℃以下とすることが望ましく、熱間圧延の仕上げ温度は700℃以上とすることが望ましい。加熱温度が950℃未満であると、オーステナイトへの変態が十分でなく、圧延及び冷却後の強度及び靱性がともに劣化する。一方、加熱温度が1200℃を超えるとオーステナイト粒径が粗大になるために、熱処理を行われない部分の靱性が劣化する。
In the present embodiment, the steel slab thus manufactured is heated to a predetermined temperature, subjected to hot rolling, and then subjected to water cooling or air cooling to obtain a steel plate.
The heating temperature of the steel slab is desirably 950 ° C. or more and 1200 ° C. or less, and the hot rolling finishing temperature is desirably 700 ° C. or more. When the heating temperature is less than 950 ° C., the transformation to austenite is not sufficient, and both strength and toughness after rolling and cooling are deteriorated. On the other hand, when the heating temperature exceeds 1200 ° C., the austenite grain size becomes coarse, so that the toughness of the portion where heat treatment is not performed deteriorates.
また、熱間圧延の仕上げ温度が700℃未満であると、フェライトとオーステナイトの二相域での圧下量が大きくなり、製造される鋼板の特性の異方性が顕著に生じるため、熱間圧延の仕上げ温度は700℃以上とすることが望ましい。また、900℃以下での圧下量は、組織を微細化するために10%以上とすることが望ましい。 Further, if the finishing temperature of hot rolling is less than 700 ° C., the amount of reduction in the two-phase region of ferrite and austenite becomes large, and the anisotropy of the characteristics of the steel sheet to be produced is prominent. The finishing temperature is preferably 700 ° C. or higher. Further, the amount of reduction at 900 ° C. or lower is desirably 10% or more in order to refine the structure.
熱間圧延後の冷却は、空冷又は水冷とする。水冷の場合には、鋼板の表面温度で450℃以下まで水冷することが望ましい。水冷した鋼板は、場合によってAc1点以下の温度域で焼き戻すことができる。Ac1点以下で焼き戻すことにより、強度は低下するものの靱性は向上する。 Cooling after hot rolling is air cooling or water cooling. In the case of water cooling, it is desirable to cool to 450 ° C. or less at the surface temperature of the steel plate. In some cases, the water-cooled steel sheet can be tempered in a temperature range of Ac 1 point or less. By tempering at less than Ac 1 point, the toughness is improved although the strength is reduced.
本実施の形態の鉄骨構造部材用鋼板は、以上のようにして製造される。この鉄骨構造部材は、下記特性を備えるものである。
[特性]鉄骨構造部材としての危険断面を含む部分に対して、800℃以上に加熱してから800℃から500℃までを3℃/秒以上の平均冷却速度で冷却する熱処理を部分的に行った場合のこの熱処理部が、70J以上の0℃シャルピー吸収エネルギーを与える、微細なベイナイトを主体とする組織となること。
The steel sheet for steel structure members of the present embodiment is manufactured as described above. This steel structure member has the following characteristics.
[Characteristics] A part including a dangerous section as a steel structure member is partially heated by heating from 800 ° C. to 500 ° C. at an average cooling rate of 3 ° C./second or more after heating to 800 ° C. or more. In this case, the heat-treated portion has a structure mainly composed of fine bainite that gives 0 ° C. Charpy absorbed energy of 70 J or more.
ここで「平均冷却速度」とは、鋼材の表面温度で800℃から500℃まで冷却する時の冷却時間をt(秒)とした場合に300/t(℃/秒)として算出される。なお、形鋼の場合には、フランジ先端からフランジ幅の1/4の個所の表面の温度を用いる。また、角形鋼管の場合には、外側又は外側及び内側から冷却するが、この「平均冷却速度」は外側の表面部の温度を用いる。
Here, the “average cooling rate” is calculated as 300 / t (° C./second), where t (second) is the cooling time when cooling from 800 ° C. to 500 ° C. at the surface temperature of the steel material. In the case of a shape steel, the temperature at the surface at a
熱処理の条件を、強度上昇を図りたい部分を800℃以上に加熱し、その後800〜500℃間を3℃/秒以上の平均冷却速度と限定する理由を説明する。
加熱温度が800℃以下では、熱処理を加える領域における焼き入れ組織の分率が必要以下に少なくなり、熱処理による強度上昇が望めなくなる。一方、平均冷却速度が3℃/秒未満では、冷却速度が小さ過ぎて焼き入れが不十分となり、強度上昇が望めなくなる。望ましい範囲は、900℃以上の温度に2秒間以上加熱し、平均冷却速度を5℃/s以上とすることである。
The reason why the heat treatment conditions are such that the portion where the strength is desired to be increased is heated to 800 ° C. or higher, and then the temperature between 800 to 500 ° C. is limited to an average cooling rate of 3 ° C./second or higher.
When the heating temperature is 800 ° C. or lower, the fraction of the hardened structure in the region where the heat treatment is applied becomes less than necessary, and an increase in strength due to the heat treatment cannot be expected. On the other hand, if the average cooling rate is less than 3 ° C./second, the cooling rate is too low and quenching becomes insufficient, and an increase in strength cannot be expected. A desirable range is to heat at a temperature of 900 ° C. or higher for 2 seconds or more, and to set the average cooling rate to 5 ° C./s or higher.
次に、この鉄骨構造部材を鉄骨構造物に適用する場合を、添付図面を参照しながら説明する。
図1(a)〜図1(c)は、いずれも、鉄骨構造物0に適用された本実施の形態の鉄骨構造部材1を示す説明図である。
Next, the case where this steel structure member is applied to a steel structure will be described with reference to the accompanying drawings.
FIG. 1A to FIG. 1C are explanatory views showing a
図1(a)及び図1(c)では、梁である本実施の形態の鉄骨構造部材1と、柱である鉄骨構造部材2とを溶接部3により溶接した状態であって、鉄骨構造部材1の端部を含む熱処理領域4を加熱及び水冷する熱処理を施した状況を示す。また、図1(b)では、梁である鉄骨構造部材5と、柱である鉄骨構造部材2と、ブレースである本実施の形態の鉄骨構造部材1とを溶接部3により溶接した状態であって、鉄骨構造部材1の端部を含む熱処理部4を加熱及び水冷する熱処理を施した状況を示す。なお、図1(a)〜図1(c)における符号6は通しダイアフラムを示し、符号7は内ダイアフラムを示し、符号8はパネルゾーンを示す。
In Fig.1 (a) and FIG.1 (c), it is the state which welded the
鉄骨構造部材1には、鉄骨構造物0に外力が作用した際に、材軸方向(長手方向)へモーメント勾配(応力勾配)を生じる。その応力は一般に、端部において最大となるので、図1(a)〜図1(c)に示す例では、鉄骨構造部材1の端部を含む領域を熱処理部4として、この部分を熱処理により強度を高めて補強する。
In the
ところで、図1(b)に示す、鉄骨構造部材1であるブレースでは、鉄骨構造物0に外力が作用した際に発生する応力は基本的に材軸方向に一定である。しかし、ブレースが降伏した際に発生する塑性化領域を熱処理部4以外の領域とすることにより、端部の早期破壊(溶接部)を防止することができる。
By the way, in the brace which is the
また、図1(c)に示す、本発明をパネルゾーン8に適用した場合、鉄骨構造物0に外力が作用すると、柱や梁よりも先行してパネルゾーン8が破壊することを防止するために、部位に補強がなされる場合がある。図1(a)及び図1(b)に示すように、パネルゾーン8が溶接接合で構成される通しダイアフラム形式の柱である場合には、パネルゾーン8のみを高強度鋼材、又は板厚を増加した鋼材にすることにより、比較的容易に熱処理を行うことが可能である。しかし、図1(c)に示すように、内ダイアフラム形式の柱7である場合には、本工法によるパネルゾーン補強が合理的である。
In addition, when the present invention shown in FIG. 1C is applied to the
すなわち、鉄骨構造部材1の耐力特性及び塑性変形能力を向上させるには、長手方向の端部(溶接部)に存在する危険断面を含む領域における早期の破壊を防ぐことが重要であり、このためには(i)危険断面を含む領域及びこれ以外の領域の靭性を確保し、脆性的な破断現象の発生を防止することが必要である。さらに、これに加えて、(ii)危険断面を含む領域よりも先にこれ以外の領域を降伏させることによって危険断面を含まない領域を主体に塑性化領域を進展させることが、望ましい。
That is, in order to improve the yield strength characteristics and plastic deformation capacity of the
本実施の形態では、この鉄骨構造部材1としての危険断面を含む端部を含む熱処理部4に対して、800℃以上に加熱してから800℃から500℃までを3℃/秒の平均冷却速度で放冷する熱処理を部分的に行うことにより、この熱処理部4を、70J以上の0℃シャルピー吸収エネルギーを与える、微細なベイナイトを主体とする組織とする。これにより上記(i)項を達成される。
In this Embodiment, with respect to the
次に、上記(ii)項を達成するために手段を説明する。
図2は、鋼板部材又は角形鋼管部材の鉄骨構造部材1を全長(2L)の半分をキャンチレバー(全長L)に単純化して、熱処理を施した熱処理部4の降伏強度σyjと、熱処理部4を除いた非熱処理部9の降伏強度σyとの比(σyj/σy、以下「降伏強度比」という)と、熱処理部4の長さLjの関係を検討するための説明図である。
Next, means for achieving the above item (ii) will be described.
FIG. 2 shows a
非熱処理部9が熱処理部4よりも先に全塑性モーメントに到達する条件は、(1)式により与えられる。
hMp/cMp>ν ・・・・・・・(1)
ここで、hMpは熱処理部4の全塑性モーメント(=σyj・Zp)を示し、cMpは非熱処理部9の全塑性モーメント(bMp=σy・Zp)を梁端モーメントに換算したもので、
cMyp=φ・bMp、φ=L/(L−Lj) ・・・・・・・(2)
として与えられる。(2)式においてLjは熱処理部4の長さを示し、Zpは塑性断面係数を示し、符号σyjは熱処理部4の降伏強度を示し、符号σyは非熱処理部9の降伏強度を示し、さらに、符号νは安全率であって1.0以上の値である。
The condition for the non-heat treated
hMp / cMp> ν (1)
Here, hMp represents the total plastic moment (= σyj · Zp) of the heat-treated
cMyp = φ · bMp, φ = L / (L−Lj) (2)
As given. In the equation (2), Lj represents the length of the heat treated
ここで、(1)式及び(2)式により(3)式が得られる。
hMp/bMp(1−Lj/L)>ν ・・・・・・・(3)
図3(a)は鋼板部材及び角形鋼管部材等の鉄骨構造部材1の全部の断面領域に熱処理を行う場合を示し、図3(b)は鋼板部材及び角形鋼管部材等の鉄骨構造部材の一部の断面領域に熱処理を行う場合を示す。
Here, equation (3) is obtained from equations (1) and (2).
hMp / bMp (1-Lj / L)> ν (3)
FIG. 3A shows a case where heat treatment is performed on the entire cross-sectional area of the
図3(a)に示すように、熱処理部4の断面全体に熱処理が施されるために全断面が均一に強度上昇するため、hMp/bMp=σyj/σyであるから、(3)式より、
σyj/σy(1−Lj/L)>ν ・・・・・・・(4)
となる。
As shown in FIG. 3A, since heat treatment is performed on the entire cross section of the
σyj / σy (1-Lj / L)> ν (4)
It becomes.
しかし、図3(b)に示すように、熱処理部4の一部の断面に熱処理が施される場合には、hMp/bMp<σyj/σyとなるので、確実に非熱処理部9を先行して降伏させるには、図3(a)に示す場合よりも安全率νを大きく設定する必要がある。例えば、H900×B250×tw19×tf25の寸法を有する鋼板部材の端部に、σyj/σy=1.40となる熱処理部4を設ける場合には、図3(a)に示すように全部の断面領域に対して行うときには
hMp/bMp=σyj/σy=1.40 ・・・・・・・(A)
となり、図3(b)に示すように一部の断面領域に対して行うときには
hMp/bMp=1.26 ・・・・・・・(B)
となる。図3(b)に示す場合に非熱処理部9を先行して降伏させるには、(4)式の安全率νを上記の(B)と(A)の比率(A/B、上記のケースでは1.40/1.26=1.11)以上の値に設定する必要がある。
However, as shown in FIG. 3B, when heat treatment is performed on a part of the cross section of the
Thus, as shown in FIG. 3 (b), hMp / bMp = 1.26 (B)
It becomes. In order to yield the non-heat treated
また、(4)式が成立している条件下で、端部の溶接部の先行破壊を防止するには、最大耐力の比率hMu/bMuを全塑性耐力の比率(hMp/bMp)以上とする必要がある。最大耐力の比率(hMu/bMu)は断面素材の引張強度(σuj/σu)の比率に概ね対応する。したがって、σuj/σu<σyj/σyの場合には、(4)式における安全率νを(σyj/σy)/(σuj/σu)を上回る値に設定することが望ましい。 Further, in order to prevent the preceding fracture of the welded portion at the end under the condition that the expression (4) is established, the maximum yield strength ratio hMu / bMu is set to be equal to or greater than the total plastic yield strength ratio (hMp / bMp). There is a need. The ratio of maximum proof stress (hMu / bMu) generally corresponds to the ratio of tensile strength (σuj / σu) of the cross-sectional material. Therefore, in the case of σuj / σu <σyj / σy, it is desirable to set the safety factor ν in the equation (4) to a value exceeding (σyj / σy) / (σuj / σu).
以上の観点から、安全率νは、
σyj/σy(1−Lj/L)>1.2 ・・・・・・・(5)
と設定することが望ましく、(5)式によれば、熱処理部4の長さLjが小さいほど、降伏強度比(σyj/σy)は小さくてよいこととなる。
From the above viewpoint, the safety factor ν is
σyj / σy (1-Lj / L)> 1.2 (5)
According to the equation (5), the yield strength ratio (σyj / σy) may be smaller as the length Lj of the
ところが、熱処理部4が小さいと、鉄骨構造部材1の端部に有害な歪集中が発生し、鉄骨構造部材1の端部の早期破壊を招いてしまう。
そこで、鋼板梁及びボックス柱を対象とした図2及び図3に示すモデルについて、合計178ケースの3次元有限要素解析(FEM解析)を行い、端部の歪値が最小となる最適な熱処理部4の長さLjoptを調べた。
However, if the
Therefore, the model shown in Figs. 2 and 3 for steel beams and box columns is subjected to a total of 178 cases of three-dimensional finite element analysis (FEM analysis), and the optimum heat treatment part that minimizes the end strain value. The length Ljopt of 4 was examined.
図4(a)〜図4(d)は、いずれも、FEM解析により求めた最大耐力時の端部の材軸方向歪(hε,図4では降伏歪εyで基準化したhε/εyを縦軸にプロットした)と熱処理部4の長さLj(部材の高さDで基準化したLj/Dを横軸にプロットした)との関係例を示すグラフである。なお、特記されていない場合は、σyj/σy=1.26である。図4(a)〜図4(d)に示すグラフから、いずれのケースにおいても、端部の歪みが最小となる最適な補強長さLjoptが存在することが判る。 4 (a) to 4 (d) all show the material axial strain (hε at the maximum strength) obtained by FEM analysis, hε / εy normalized by the yield strain εy in FIG. It is a graph which shows the example of a relationship between length Lj of the heat processing part 4 (Lj / D normalized by the height D of the member was plotted on the horizontal axis). Note that σyj / σy = 1.26 unless otherwise specified. From the graphs shown in FIGS. 4A to 4D, it can be seen that in any case, there exists an optimum reinforcing length Ljopt that minimizes distortion at the end.
また、図4(e)は、図4(a)〜図4(d)に示す図から得られた最適な熱処理部4の長さLjoptと鉄骨構造部材1の長さと降伏強度比との積((L/D)*(σyj/σy))との関係を示すグラフである。これらの相関関係を回帰して(6)式が得られる。その誤差は±0.1D以内であることから、最小の熱処理部4の長さLjminとして(7)式が求められる。熱処理部4の長さLjは、(7)式により求められる最小補強長さLjmin以上となるよう設定することが望ましい。
FIG. 4E shows the product of the optimum length Ljopt of the
Ljopt/D=0.0308(L/D)・(σyj/σy)+0.139 [中央値] ・・・・・・・・(6)
Ljmin/D=0.0308(L/D)・(σyj/σy)+0.039 [下限値] ・・・・・・・・(7)
熱処理部4が最小長さLjminであるときに必要となる降伏強度比(σyj/σy)を求める。(7)式のLjminを(5)式のLjに代入して(8)式を得る。
L/D>0.039/[1−0.0308(σyj/σy)−1.2(σy/σyj)] ・・・・・・・(8)
(8)式を図示すると、図5のグラフが得られる。この図5に示すグラフから、降伏強度比(σyj/σy)は1.25以上とすることが望ましいことがわかる。なお、一般にL/Dの値は2以上である。
Ljopt / D = 0.0308 (L / D) · (σyj / σy) +0.139 [median value] (6)
Ljmin / D = 0.0308 (L / D) · (σyj / σy) +0.039 [Lower limit value] (7)
The yield strength ratio (σyj / σy) required when the
L / D> 0.039 / [1-0.0308 (σyj / σy) −1.2 (σy / σyj)] (8)
When the equation (8) is illustrated, the graph of FIG. 5 is obtained. From the graph shown in FIG. 5, it is understood that the yield strength ratio (σyj / σy) is preferably 1.25 or more. In general, the value of L / D is 2 or more.
このように、本実施の形態では、上述した鋼組成を有する鉄骨構造部材1を鉄骨構造物0に適用する場合には、(i)降伏強度比(σyj/σy):1.25以上、及び(ii)強長さLj:Ljmin/D=0.0308(L/D)・(σyj/σy)+0.039により計算される最小補強長さLjmin以上を満足することが、十分な補強効果を維持し、従来と同様に鉄骨構造部材1の端部に補強材を溶接する必要が生じたり、また鉄骨構造部材1の端部が早期に破壊することを、確実に防ぐことができる。
Thus, in the present embodiment, when the
以上のように、本実施の形態によれば、増厚工法のような特殊な加工を行うことなく、鉄骨構造部材に部分的な熱処理を行うことにより、熱処理部の強度の上昇のみならず、熱処理部の靱性をも図ることができる鉄骨構造部材用鋼材と、この鉄骨構造部材用鋼材の使用方法と、この鉄骨構造部材用鋼材を用いた鉄骨構造物とを提供することができる。 As described above, according to the present embodiment, by performing a partial heat treatment on the steel structure member without performing special processing such as a thickening method, not only an increase in strength of the heat treatment portion, The steel material for steel structure members which can also aim at the toughness of a heat processing part, the usage method of this steel material for steel structure members, and the steel structure using this steel material for steel structure members can be provided.
さらに本発明を実施例を参照しながら詳細に説明する。
表1には本実施例で用いた試料の組成(質量%)、Pcm値及び板厚(mm)を示す。
Further, the present invention will be described in detail with reference to examples.
Table 1 shows the composition (mass%), Pcm value, and plate thickness (mm) of the sample used in this example.
これらの試料1〜X13はいずれも試作試験用の鋼板として溶解したものであり、試料1〜14についてはいずれも本発明が規定する範囲を満足するものである。これに対して、試料X1〜X13については、化学成分のうち少なくとも1つ以上が本発明の範囲ではないものである。
These
溶解は、実験溶製装置を用い、原料鉄を装入し、溶け落ち後15分間脱ガスを行った。この際、初装入炭素は存在していてもいなくともどちらでもよい。C、Si、Mn等の添加元素を添加し、さらに追加添加により添加成分量を微調整した後、攪拌及び均一化を行った。このあと、AlとTiを添加し、最終状態の溶鋼とした。溶鋼は鋳型に鋳込まれて鋳造された。 For dissolution, an experimental melting apparatus was used, raw iron was charged, and degassing was performed for 15 minutes after melting. At this time, the initial charge carbon may or may not exist. Additive elements such as C, Si, and Mn were added, and the amount of the additive component was finely adjusted by additional addition, and then stirring and homogenization were performed. Thereafter, Al and Ti were added to obtain a molten steel in a final state. Molten steel was cast in a mold.
これらを、1150℃に加熱した後に900℃で仕上げる熱間圧延を行って、表1に示す板厚まで圧延した後、空冷して鋼板とした。この鋼板の偏析部のC、P、Mn濃度(%)及び介在物の個数を表2に示す。 These were heated to 1150 ° C. and then hot rolled to finish at 900 ° C., rolled to the plate thickness shown in Table 1, and then air-cooled to obtain steel plates. Table 2 shows the C, P, Mn concentration (%) and the number of inclusions in the segregated portion of the steel sheet.
こうして得られた鋼板に対して局部的に熱処理を行う強化試験を行った。各鋼材を、高周波加熱装置で1000℃まで加熱し、30秒間保持した後、室温まで10℃〜15℃/秒の冷却速度で冷却した。熱処理した部分から試験片を採取し、引張試験及びシャルピー衝撃試験を行った。引張試験の結果(YS、TS(MPa))、及びシャルピー衝撃試験の結果(J、0℃)を表3に示す。なお、表2、3における熱処理条件A〜Eにおける加熱温度(℃)及び冷却速度(℃/s)を表4に示す。 The steel sheet thus obtained was subjected to a strengthening test in which heat treatment was locally performed. Each steel material was heated to 1000 ° C. with a high-frequency heating device, held for 30 seconds, and then cooled to room temperature at a cooling rate of 10 ° C. to 15 ° C./second. Test specimens were collected from the heat-treated parts and subjected to a tensile test and a Charpy impact test. Table 3 shows the tensile test results (YS, TS (MPa)) and the Charpy impact test results (J, 0 ° C.). Table 4 shows the heating temperature (° C.) and the cooling rate (° C./s) under the heat treatment conditions A to E in Tables 2 and 3.
表3に示すように、試料番号1〜14については、本発明例の鋼板を熱処理した場合の結果を示す。熱処理部以外の部分(母材部)でYS:350MPa以上、TS:450MPa以上、0℃でのシャルピー吸収エネルギー:70J以上の特性が得られている。
As shown in Table 3, the
さらに、熱処理部(TQ部)では、YS:450MPa以上、TS:550MPa以上に強化されている上、0℃でのシャルピー吸収エネルギー:70J以上が付与されている。 Furthermore, in the heat treatment part (TQ part), it is strengthened to YS: 450 MPa or more, TS: 550 MPa or more, and Charpy absorbed energy at 0 ° C .: 70 J or more is given.
これらに対し、比較例のX1〜X13では、強度又は靱性のいずれかを満足できていない。C量、Mn量が過少であるX1、X4では熱処理部以外の部分及び熱処理部の強度が不足する。逆に、それ以外の例では、成分量が不適切であったり、偏析や介在物量が過剰であるために母材や熱処理部の靱性が不足する。 On the other hand, in Comparative Examples X1 to X13, either strength or toughness cannot be satisfied. In X1 and X4 where the amount of C and the amount of Mn are too small, the portions other than the heat treatment portion and the strength of the heat treatment portion are insufficient. On the other hand, in other examples, the amount of components is inappropriate, or the amount of segregation and inclusions is excessive, so that the toughness of the base material and the heat treatment part is insufficient.
なお、本例では、例えば表3のMark4(σy=449MPa、σu=518MPa、σyj=601MPa、σuj=606MPa)では、σuj/σu=1.17、σyj/σy=1.34となり、端部を母材部より先に破壊させないためには安全率νを(σyj/σy)/(σuj/σu)=1.14以上の値に設定する必要がある。 In this example, for example, in Mark 4 (σy = 449 MPa, σu = 518 MPa, σyj = 601 MPa, σuj = 606 MPa) in Table 3, σuj / σu = 1.17, σyj / σy = 1.34, In order to prevent destruction before the base metal part, it is necessary to set the safety factor ν to a value of (σyj / σy) / (σuj / σu) = 1.14 or more.
図1(a)に示すようにして使用される鉄骨構造部材1を想定し、3点曲げ試験を行った。試験体の形状を図6に、また、実験パラメターである補強部の詳細を図7に示す。
図6の試験体は、全長4000mmの3点曲げH形断面梁で、両端を支点とし中央部の板厚25mmの仕切り板を載荷点とする。試験体には、横座屈を防止する目的で座屈止めが4箇所設置されている。本実験は、中央の仕切り板を挟んで右側部分(試験梁)を破壊させる実験である。左側部分のH形鋼断面梁(加力梁)は、断面を右側の梁よりも大きくするとともに、仕切り板近傍の梁フランジにはカバープレートが溶接され、左側部分が破壊しないように設計されている。右側の仕切り板からLjの範囲が実験パラメターとなる梁端補強部で、図7及び表5に示すような補強が施される。試験体には合計8個の変位計(δ1〜δ8)を取り付け、各部の鉛直方向の変位を測定した。
A three-point bending test was performed assuming the
The test body of FIG. 6 is a three-point bending H-shaped cross section beam having a total length of 4000 mm, and a partition plate having a plate thickness of 25 mm in the center with both ends as fulcrums is used as a loading point. The test body is provided with four buckling stops for the purpose of preventing lateral buckling. This experiment is an experiment in which the right portion (test beam) is broken across the central partition plate. The H-section steel cross section beam (force beam) on the left side is designed so that the cross section is larger than the beam on the right side, and the cover plate is welded to the beam flange near the partition plate so that the left side portion does not break. Yes. In the beam end reinforcement portion where the range of Lj from the right partition plate is an experimental parameter, reinforcement as shown in FIG. 7 and Table 5 is performed. A total of eight displacement meters (δ1 to δ8) were attached to the test body, and the vertical displacement of each part was measured.
試験体への載荷は、試験体中央部への繰り返し載荷とし、試験梁側の部材角(R=δc/L、δcは試験体中央部の鉛直変位、Lは1987.5mm)で制御した。その制御は、R=±1/400で1回繰り返した後、R=±1/60(約1.67δp)、R=±2/60(3.33δp)、R=±3/60(約5δp)、R=±4/60(約6.67δp)をそれぞれ2回ずつ繰り返した。 Loading on the test body was repeated loading on the center part of the test body, and was controlled by the member angle on the test beam side (R = δc / L, δc is the vertical displacement of the center part of the test body, L is 1987.5 mm). The control is repeated once at R = ± 1/400, then R = ± 1/60 (about 1.67 δp), R = ± 2/60 (3.33 δp), R = ± 3/60 (about 5δp) and R = ± 4/60 (about 6.67δp) were repeated twice.
また、使用した鋼材及び断面寸法は表5に、使用した鋼材の機械的性質を表6に示す。 Table 5 shows the steel materials used and the cross-sectional dimensions, and Table 6 shows the mechanical properties of the steel materials used.
図7及び表5におけるBHH試験体が本発明例に対応する試験体であり、非熱処理に相当する部分(以下、「母材部」という)をSM490A鋼板のビルトHとし、熱処理部に相当する部分(以下、「補強部」という)についてはSA440鋼板のビルトHを母材部に溶接接合することにより熱処理による強度上昇を模擬した。 The BHH test body in FIG. 7 and Table 5 is a test body corresponding to the example of the present invention, and a part corresponding to non-heat treatment (hereinafter referred to as “base metal part”) is a built-in H of SM490A steel plate and corresponds to a heat treatment part. For the portion (hereinafter referred to as “reinforcement portion”), the strength increase due to the heat treatment was simulated by welding the built-in H of the SA440 steel plate to the base metal portion.
SA440鋼板は、母材部と同厚の鋼板を用い、組立て前の平板の段階で母材部であるSM490A材と溶接接合し、その後、表面を平滑に仕上げている。BHH1からBHH3は、図3(a)に対応する試験体で、Ljの値を125mm(BHH3)〜275mm(BHH1)まで変化させている。BHH4試験体は、図3(b)に対応する試験体で、補強部の梁フランジのみにSA440鋼板を溶接接合したものである(Ljは275mm)。一方、表5におけるSPH試験体は、比較のために行ったサイドプレート試験体であり、端部のフランジ幅を166mmから254mmに拡幅することにより端部を補強するものである。いずれの試験体も梁端と仕切り板との接合は、ノンスカラップ仕様とし、梁フランジ端部はR10で滑らかに仕上げた。 The SA440 steel plate uses a steel plate having the same thickness as the base material portion, and is welded and joined to the SM490A material that is the base material portion at the stage of the flat plate before assembly, and then the surface is finished smooth. BHH1 to BHH3 are test bodies corresponding to FIG. 3A, and the value of Lj is changed from 125 mm (BHH3) to 275 mm (BHH1). The BHH4 specimen is a specimen corresponding to FIG. 3 (b), in which an SA440 steel plate is welded and joined only to the beam flange of the reinforcing portion (Lj is 275 mm). On the other hand, the SPH test body in Table 5 is a side plate test body for comparison, and the end portion is reinforced by widening the flange width of the end portion from 166 mm to 254 mm. In all the test bodies, the beam end and the partition plate were joined with a non-scalloped specification, and the end of the beam flange was smoothly finished with R10.
BHH試験体の降伏強度比(σyj/σy)は、フランジ部の強度で評価すると1.395であった。一方、BHH試験体の最適な補強部(熱処理部に相当)の長さLjopt及び最小の補強部(熱処理部に相当)の長さLjminは、以下のようであり、BHH試験体のLjはいずれもLjmin以上の値に設定されている。 The yield strength ratio (σyj / σy) of the BHH specimen was 1.395 when evaluated by the strength of the flange portion. On the other hand, the length Ljopt of the optimum reinforcing part (corresponding to the heat treatment part) and the length Ljmin of the minimum reinforcing part (corresponding to the heat treatment part) of the BHH specimen are as follows. Is also set to a value equal to or greater than Ljmin.
L=1987.5mm及びD=440mmとして、Ljopt=(0.0308×(L/D)×(σyj/σy)+0.139)×440=(0.0308×(1987.5/440)×1.395+0.139)×440=147mm、Ljmin=(0.0308×(L/D)×(σyj/σy)+0.039)×440=(0.0308×1987.5×(1987.5/440)×1.395+0.039)×440=103mm
試験結果を表7にまとめて示す。なお、表7におけるeMpはgeneral yield法による全塑性耐力を示し、eMuは最大耐力(正負のいずれか大きいほう)を示し、Σθは破壊までの累積塑性回転角(正負の合計値)を示し、θは試験体中央部でのたわみを材長Lで除して得られる値であり、Σθは破壊時に耐力が最大耐力から5%低下した点をもって評価した。
Ljopt = (0.0308 × (L / D) × (σyj / σy) +0.139) × 440 = (0.0308 × (1987.5 / 440) × 1 where L = 1987.5 mm and D = 440 mm .395 + 0.139) × 440 = 147 mm, Ljmin = (0.0308 × (L / D) × (σyj / σy) +0.039) × 440 = (0.0308 × 1987.5 × (1987.5 / 440) ) × 1.395 + 0.039) × 440 = 103 mm
The test results are summarized in Table 7. In Table 7, eMp represents the total plastic yield strength according to the general yield method, eMu represents the maximum yield strength (positive or negative, whichever is greater), Σθ represents the cumulative plastic rotation angle (positive or negative total value) until fracture, θ is a value obtained by dividing the deflection at the center of the specimen by the material length L, and Σθ was evaluated based on the point that the yield strength decreased by 5% from the maximum yield strength at the time of fracture.
本発明例(BHH)では、試験体の端部はいずれも健全で、補強部近傍の母材部の破壊で最大耐力が決定した。BHH試験体は、いずれも母材部に局部座屈が発生して最大耐力に到達し、最大耐力以降も穏やかな荷重低下を起こしながら、依然エネルギー吸収能力を保持している。母材部の性能をフルに発揮した破壊モードといえる。 In the present invention example (BHH), the end portions of the test specimens were all healthy, and the maximum yield strength was determined by the destruction of the base material portion in the vicinity of the reinforcing portion. All of the BHH specimens are locally buckled in the base material portion to reach the maximum proof stress, and still retain the energy absorbing ability while causing a gentle load decrease after the maximum proof stress. It can be said that this is a failure mode that fully demonstrates the performance of the base metal part.
一方、比較例であるSPH試験体ではサイドプレートの起点部に延性亀裂が発生し急激な耐力低下を引き起こした。 On the other hand, in the SPH specimen as a comparative example, a ductile crack was generated at the starting portion of the side plate, causing a sudden decrease in yield strength.
1 鉄骨構造部材
2 鉄骨構造部材
3 溶接部
4 熱処理部
5 鉄骨構造部材
6 通しダイアフラム
7 内ダイアフラム形式の柱
8 パネルゾーン
9 非熱処理部
DESCRIPTION OF
Claims (9)
前記鉄骨構造部材用鋼材からなる鉄骨構造部材の危険断面を含む部分に対して、800℃以上に加熱してから800℃から500℃までを3℃/秒以上の平均冷却速度で冷却する熱処理を部分的に行い、該熱処理部を70J以上の0℃シャルピー吸収エネルギーを与える、微細なベイナイトを主体とする組織とすることを特徴とする鉄骨構造物。
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)
+(Cr/20)+(Mo/15)+(V/10)+5B ・・・・・・・(1) In mass%, C: 0.04 to 0.18%, Si: 0.02 to 0.50%, Mn: 0.5 to 2.0%, sol. Al: 0.06% or less, Ti: 0.003-0.030%, N: 0.008% or less, 2Nb + 3Ti + Al: 0.05% or more, welding defined by the following formula (1) crack sensitivity index (Pcm) is a steel structure comprising been used at least as one of the constituent material of the steel product for 0.12 to 0.27% der Ru steel structural members,
Heat treatment for cooling a portion including a dangerous cross section of a steel structure member made of steel for the steel structure member from 800 ° C. to 500 ° C. at an average cooling rate of 3 ° C./second or more after heating to 800 ° C. A steel structure characterized in that the heat treatment part is made into a structure mainly composed of fine bainite that gives 0 ° C. Charpy absorbed energy of 70 J or more.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60)
+ (Cr / 20) + (Mo / 15) + (V / 10) + 5B (1)
Lj/D≧0.0308(L/D)・(σyj/σy)+0.039
・・・・・・・(2)
ただし、(2)式におけるLは前記鉄骨構造部材の全長の半分の長さを示し、Dはこの鉄骨構造部材の部材せいを示す。 The length (Lj) of the longitudinal direction of the part to which the said heat processing is performed is a steel structure described in Claim 1 which satisfies the following (2) Formula.
Lj / D ≧ 0.0308 (L / D) · (σyj / σy) +0.039
(2)
However, L in Formula (2) shows the length of the half of the full length of the said steel structure member, and D shows the member fault of this steel structure member.
Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)
+(Cr/20)+(Mo/15)+(V/10)+5B
・・・・・・・(1) In mass%, C: 0.04 to 0.18%, Si: 0.02 to 0.50%, Mn: 0.5 to 2.0%, sol. Al: 0.06% or less, Ti: 0.003 to 0.030%, N: 0.008% or less, 2Nb + 3Ti + Al: 0.05% or more, and further defined by the following formula (1) Weld cracking susceptibility index (Pcm) is 0.12 to 0.27%. The part including the dangerous cross section of the steel structure member is heated to 800 ° C or higher and then from 800 ° C to 500 ° C, 3 ° C / second. By partially performing the heat treatment for cooling at the above average cooling rate, the heat treatment part has a microstructure mainly composed of fine bainite capable of giving 0 ° C. Charpy absorbed energy of 70 J or more. How to use steel materials for steel structure members.
Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60)
+ (Cr / 20) + (Mo / 15) + (V / 10) + 5B
・ ・ ・ ・ ・ ・ ・ (1)
Lj/D≧0.0308(L/D)・(σyj/σy)+0.039
・・・・・・・(2)
ただし、(2)式におけるLは前記鉄骨構造部材の全長の半分の長さを示し、Dはこの鉄骨構造部材の部材せいを示す。 The method for using a steel material for a steel structure member according to claim 8, wherein a length (Lj) in a longitudinal direction of a portion to be subjected to the heat treatment satisfies the following expression (2).
Lj / D ≧ 0.0308 (L / D) · (σyj / σy) +0.039
(2)
However, L in Formula (2) shows the length of the half of the full length of the said steel structure member, and D shows the member fault of this steel structure member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004148059A JP4207843B2 (en) | 2004-05-18 | 2004-05-18 | Method of using steel material for steel structure member and steel structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004148059A JP4207843B2 (en) | 2004-05-18 | 2004-05-18 | Method of using steel material for steel structure member and steel structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005330513A JP2005330513A (en) | 2005-12-02 |
JP4207843B2 true JP4207843B2 (en) | 2009-01-14 |
Family
ID=35485381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004148059A Expired - Fee Related JP4207843B2 (en) | 2004-05-18 | 2004-05-18 | Method of using steel material for steel structure member and steel structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4207843B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4506985B2 (en) * | 2006-04-06 | 2010-07-21 | 住友金属工業株式会社 | Extra heavy steel material and method for manufacturing the same |
WO2008007737A1 (en) * | 2006-07-13 | 2008-01-17 | Sumitomo Metal Industries, Ltd. | Bend pipe and process for producing the same |
JP2008095133A (en) * | 2006-10-06 | 2008-04-24 | Shikoku Res Inst Inc | Method for recovering strength in strength-deteriorated part and high-frequency induction heating apparatus used to method for recovering strength |
US7707788B2 (en) * | 2007-03-19 | 2010-05-04 | Kazak Composites, Incorporated | Buckling restrained brace for structural reinforcement and seismic energy dissipation and method of producing same |
KR100985766B1 (en) * | 2008-03-28 | 2010-10-06 | 이희만 | Steel Pallet |
JP6493284B2 (en) * | 2016-04-19 | 2019-04-03 | Jfeスチール株式会社 | Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet |
JP2023164778A (en) * | 2022-11-28 | 2023-11-14 | 日鉄エンジニアリング株式会社 | Jacket structure and offshore wind system |
CN116254756B (en) * | 2023-05-16 | 2023-08-01 | 山西一建集团有限公司 | Assembled steel structure bridge connecting device |
-
2004
- 2004-05-18 JP JP2004148059A patent/JP4207843B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005330513A (en) | 2005-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8177925B2 (en) | High-tensile steel plate, welded steel pipe or tube, and methods of manufacturing thereof | |
JP5842358B2 (en) | Non-tempered low yield ratio high tensile steel plate and method | |
JP3888333B2 (en) | High-strength steel and manufacturing method thereof | |
JP4855553B2 (en) | High-strength ultra-thick H-section steel and its manufacturing method | |
JP3718348B2 (en) | High-strength and high-toughness rolled section steel and its manufacturing method | |
US20070193666A1 (en) | High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability | |
JP5928374B2 (en) | Non-tempered low-yield ratio high-tensile steel plate and method for producing the same | |
WO2014080818A1 (en) | H-shaped steel and process for producing same | |
JP5910400B2 (en) | Non-tempered low-yield ratio high-tensile steel plate and method for producing the same | |
CA2353407C (en) | Method of making an as-rolled multi-purpose weathering steel plate and product therefrom | |
KR102604058B1 (en) | hot stamp molding body | |
MX2015007274A (en) | Hot-rolled steel sheet and production method therefor. | |
WO2013089089A1 (en) | High-strength extra-thick steel h-beam | |
WO2015159793A1 (en) | Steel h-beam and method for manufacturing same | |
US6238493B1 (en) | Method of making a weathering grade plate and product thereform | |
JP4464486B2 (en) | High-strength and high-toughness rolled section steel and its manufacturing method | |
JP4207843B2 (en) | Method of using steel material for steel structure member and steel structure | |
JP5842359B2 (en) | Non-tempered low yield ratio high tensile steel sheet and method for producing the same | |
JP2012224884A (en) | High strength steel material having excellent strength, ductility and energy absorption power, and method for producing the same | |
JP6421907B1 (en) | Rolled H-section steel and its manufacturing method | |
JP3507258B2 (en) | 590 MPa class rolled section steel and method for producing the same | |
JP4506985B2 (en) | Extra heavy steel material and method for manufacturing the same | |
JP2003129180A (en) | Pearlitic rail superior in toughness and ductility, and manufacturing method therefor | |
JP7206907B2 (en) | Rolled H-section steel and its manufacturing method | |
JP3509634B2 (en) | Low alloy cast steel and its heat treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081013 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4207843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121031 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |