[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4201924B2 - Surveyor autofocus mechanism - Google Patents

Surveyor autofocus mechanism Download PDF

Info

Publication number
JP4201924B2
JP4201924B2 JP18196199A JP18196199A JP4201924B2 JP 4201924 B2 JP4201924 B2 JP 4201924B2 JP 18196199 A JP18196199 A JP 18196199A JP 18196199 A JP18196199 A JP 18196199A JP 4201924 B2 JP4201924 B2 JP 4201924B2
Authority
JP
Japan
Prior art keywords
focusing lens
pitch
focusing
telescope
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18196199A
Other languages
Japanese (ja)
Other versions
JP2001012949A (en
Inventor
豊 中村
Original Assignee
株式会社 ソキア・トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ソキア・トプコン filed Critical 株式会社 ソキア・トプコン
Priority to JP18196199A priority Critical patent/JP4201924B2/en
Priority to DE10037699A priority patent/DE10037699B4/en
Publication of JP2001012949A publication Critical patent/JP2001012949A/en
Application granted granted Critical
Publication of JP4201924B2 publication Critical patent/JP4201924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、標尺を視準する望遠鏡を備えた電子レベル等の測量機に設けられ、該望遠鏡の焦点を自動で合わす測量機の自動焦点機構に関する。
【0002】
【従来の技術】
従来のこの種の測量機として、例えば特公平5−184042号公報により、望遠鏡を備えた測量機であるレベルが記載されている。該レベルはバーコードが表示された標尺を望遠鏡で視準し、予め記憶されているバーコードパターンと視準されたバーコードとを比較して視準位置を求めるものである。レベル内には視準した画像を電気信号に変換する光電素子を備えており、該光電素子上に視準画像を結像するため合焦レンズをマニュアル操作により前後方向に移動させ得るように構成されている。
【0003】
【発明が解決しようとする課題】
上記従来の測量機では合焦をマニュアル操作にて行わなければならないため、合焦操作に時間を有し、かつ合焦操作を行う作業者の熟練度によって合焦までに要する時間が大きく相違するという不具合がある。尚、カメラ等の分野において複数の自動焦点機構が知られているが、いずれの自動焦点機構も専用のセンサやミラー等の光学機構を必要とし、従来の測量機にこれら従来の自動焦点機構を付加するためには大幅な増加を必要とし且つコストが高くなる。
【0004】
そこで本発明は、上記の問題点に鑑み、従来の測量機を大幅に改造することなく標尺に対する合焦を自動で行い得る自動焦点機構を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために第1の本発明は、等間隔のパターンが表示された標尺を視準する望遠鏡を備え、該望遠鏡で視準した画像を電気信号に変換する光電素子を備えた測量機に搭載され、上記標尺に対する焦点を自動で合わす自動焦点機構において、上記望遠鏡の合焦レンズを駆動する駆動手段を設け、該合焦レンズを合焦レンズの駆動範囲の一方の端から他方の端に向かって駆動させ、光電素子の出力信号の振幅が予め定められた値を超えたことを判別して、標尺に合焦する前の位置であってかつ光電素子上での標尺のパターンのピッチを求め得る位置を検出して該ピッチを求めるピッチ演算手段と、該ピッチ演算手段で求められたピッチから標尺までの距離を求め、該距離に対応する位置に合焦レンズを移動させる精調節手段とを備えたことを特徴とする。
【0006】
合焦レンズを駆動範囲の一方の端から他方の端に向かって駆動させると、標尺に対して徐々に合焦していく。ある程度合焦が進むと完全に標尺に合焦していなくても標尺のパターンのピッチを求めることができる。標尺のピッチは一定であり予め判っているので、求められたピッチから標尺までの距離を演算することができる。即ち標尺までの距離が長いとピッチは小さく、標尺までの距離が短いとピッチは大きくなる。このようにして標尺までの距離が求められると、その距離に対応する合焦レンズの位置が決定されるので、標尺までの距離に対応する位置に合焦レンズを移動させれば標尺に対して正確に合焦させることができる。
【0007】
合焦レンズは駆動範囲の駆動範囲の一方の端に一旦移動させ、該一方の端から駆動するが、一般に標尺は測量機から比較的遠い位置に配設される、また、望遠鏡で近くを視準する状態では望遠鏡の焦点深度は浅く、逆に遠くを視準する場合には焦点深度は深くなる。従って、上記合焦レンズの駆動範囲の一方の端は無限遠に対応する位置で、合焦位置が望遠鏡に近づく方向に合焦レンズを駆動して上記ピッチ演算手段によりピッチを求めるようにすれば、焦点深度の深い状態から合焦レンズを移動させることになり、近距離に対応する他方の端から合焦レンズを移動させる場合より短い時間で標尺に合焦させることができる。
【0008】
また、第2の本発明は、等間隔のパターンが表示された標尺を視準する望遠鏡を備え、該望遠鏡で視準した画像を電気信号に変換する光電素子を備えた測量機に搭載され、上記標尺に対する焦点を自動で合わす自動焦点機構において、上記望遠鏡の合焦レンズを駆動する駆動手段を設け、該合焦レンズを合焦レンズの駆動範囲内であって前回の合焦位置に相当する位置または複数回の測量毎の距離を平均した平均距離に相当する位置に移動させ光電素子上での標尺のパターンのピッチを求めるピッチ演算手段と、該ピッチ演算手段で求められたピッチから標尺までの距離を求め、該距離に対応する位置に合焦レンズを移動させる精調節手段とを備えたことを特徴とする。
【0009】
標尺と測量機との距離が比較的中距離以上に設定される場合には特に、合焦レンズの位置を比較的よく設定される距離をカバーする所定位置、すなわち前回の合焦位置に相当する位置または複数回の測量毎の距離を平均した平均距離に相当する位置に移動させれば焦点深度が比較的深いため、第1の発明のように合焦レンズを一方の端から移動させなくても標尺に表示されたパターンのピッチを求めることができる。
【0010】
【発明の実施の形態】
図1を参照して、1は標尺であり、望遠鏡を備えた電子レベル2で視準され、視準位置の高さhを測定するためのものである。標尺1には白地の表面に黒色の複数個のマーク11が標尺1の上下方向に等ピッチで表示されている。該標尺1は通常、正立状態でセットされるが、図示のように天井面Cを基準にして、標尺1を上下方向に反転させた倒立状態でセットする場合がある。この場合には天井面Cから視準位置までの距離h(以下、正立状態の場合と同様に視準位置の高さhという)を測定する。ところで、標尺1の裏面には図示しないが、作業者が目視により視準する場合に該標尺1を使用し得るように数字が印字されており、従って、標尺1の天地方向を誤るおそれはない。尚、後述するようにマーク11の上下方向の幅寸法は全て同じ寸法ではなく複数種類の寸法のものが所定の順序で配列されている。
【0011】
図2を参照して、電子レベル2の内部には、望遠鏡20が内蔵されている。該望遠鏡20内には対物レンズ21a及び合焦レンズ21bからなる光学系21及び傾斜自動補償機構(コンペンセータ)22が設けられており、受光された標尺1の画像はビームスプリッタ23によってラインセンサ24に分岐される。ビームスプリッタ23を通過するものが視準光学系であり、ラインセンサ24へと分岐されたものが映像光学系となる。視準光学系は上記光学系21と傾斜自動補償機構22とビームスプリッタ23と焦点板20aと接眼レンズ20bとで構成されている。映像光学系は光学系21と傾斜自動補償機構22とビームスプリッタ23とラインセンサ24とで構成されている。該ラインセンサ24は受光された標尺1の画像を電気信号に変換しアンプ25に出力する。アンプ25で増幅された信号はクロックドライバ26のクロック信号に同期してサンプルホールドされ、そのホールドされた信号はデジタル信号に変換される(A/D)。デジタル信号に変換された信号はRAM28に記憶される。マイコン3は該RAM28に記憶されている信号を基に各マーク11の幅寸法を求める。そして、マーク11の幅寸法とROM31内に予め格納されたテーブル値とから視準位置の高さhを求める。尚、駆動回路29はラインセンサ24の作動を制御する回路である。また、上記視準光学系の光軸と映像光学系の光軸とは互いに一致させているので、標尺1上の視準点と映像光学系の視準点とは互いに一致する。また、測量結果は表示部32に表示される。
【0012】
ところで、標尺1を視準する場合には合焦レンズ21bを光軸方向に移動させて標尺1に合焦させる必要がある。そこで、本発明では合焦レンズ21bにステッピングモータ41を取り付け、ラックアンドピニオン等の機構を介してステッピングモータ41と合焦レンズ21bとを機械的に連結し、ステッピングモータ41を作動させることにより合焦レンズ21bが光軸方向に自動的に移動するように構成した。尚4はそのステッピングモータ41の駆動回路であり、マイコン3によってステッピングモータ41の作動制御が行われる。マイコン3には図外の自動焦点ボタンが接続されており、該自動焦点ボタンが押されるとマイコン3は合焦レンズ21bを、該合焦レンズ21bの移動可能範囲の内の接眼レンズ20b側の端まで一旦移動させる。その状態では該望遠鏡20は無限遠の位置に合焦している状態になる。この時のラインセンサ24に投影される画像は標尺1を特定できるほど鮮明ではなく全体に混然としており、ラインセンサ24の出力信号は図3(a)に示すように平坦なものとなっている。マイコン3はラインセンサ24の出力信号のピークから範囲αを設定し、信号がα以上になるまで合焦レンズ21bを対物レンズ21a側に移動させる。図3(b)に示すように、ラインセンサ24の出力信号がα以上になると合焦レンズ21bを一旦停止させ、α内にある部分の長さβを求めると共に該βの中心位置であるセンタラインCLを求める。ラインセンサ24の出力信号がα内にある部分は複数箇所生じるので各箇所毎にセンタラインCLの位置を求める。各センタラインCLの間隔を平均するとその平均値がラインセンサ24上の画像における標尺1のマーク11のピッチに相当する。該ピッチは標尺1間での距離が長いと小さくなり、逆に標尺1が近くにセットされていると長くなる。従って該センタラインCL相互間の平均値から、電子レベルと標尺1との距離が求められる。このように標尺1までの距離が求められるとマイコン3は合焦レンズ21bを該距離に対応する位置まで移動させて標尺1に対して正確に合焦させる。このように標尺1に対して正確に合焦されるとラインセンサ24の出力信号は図3(c)に示すようなものになる。そしてその後は例えば特願平9−350620号に示す手順に従って視準位置の高さを求める。また、上記α値を設定した例を挙げたがこれを標尺のバーコードの濃淡のレベル差γを設定し、γより大きい場合としてもよい。更に別の実施の形態として、フーリエ変換を施し周期を求めて距離を求めてもよい。
【0013】
ところで、上記実施の形態では自動焦点ボタンが押されると合焦レンズ21bを一旦移動範囲の端まで移動させ、該端から合焦レンズ21bを移動させるようにしたが、測量点毎に標尺1を移動させる際に電子レベル2と標尺1との距離がそれほど変化しない場合には直前の標尺までの位置を記憶しておき、次の測量点にセットした標尺を視準する際、自動焦点ボタンが押されると合焦レンズ21bを移動範囲の端に移動させず前回の合焦位置に移動させるようにしてもよい。そしてその位置でセンタラインCLの相互間の平均値を求め、今回の標尺1に合焦させる。あるいは、標尺までの距離を複数回の測量毎に記憶しておき、それら複数の距離を平均して次回の測量時に合焦レンズ21bを一旦その平均距離に相当する位置まで移動させるようにしてもよい。
【0014】
【発明の効果】
以上の説明から明らかなように、本発明は、新たにセンサを追加することなく測量機の望遠鏡の焦点を自動的に合わせるようにすることができる。
【図面の簡単な説明】
【図1】電子レベルの使用形態を示す図
【図2】電子レベルの構成を示すブロック図
【図3】合焦レンズの移動に伴うラインセンサの出力信号の変化を示す図
【符号の説明】
1 標尺
2 電子レベル
21b 合焦レンズ
24 ラインセンサ
41 ステッピングモータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic focusing mechanism of a surveying instrument that is provided in a surveying instrument such as an electronic level equipped with a telescope that collimates a scale and automatically focuses the telescope.
[0002]
[Prior art]
As a conventional surveying instrument of this type, for example, Japanese Patent Publication No. 5-184042 describes a level that is a surveying instrument equipped with a telescope. The level is obtained by collimating a scale on which a barcode is displayed with a telescope and comparing a previously stored barcode pattern with a collimated barcode to obtain a collimation position. A photoelectric element that converts a collimated image into an electrical signal is provided in the level, and the focusing lens can be moved in the front-rear direction by manual operation to form a collimated image on the photoelectric element. Has been.
[0003]
[Problems to be solved by the invention]
In the conventional surveying instrument, since focusing must be performed manually, the focusing operation takes time, and the time required for focusing varies greatly depending on the skill level of the operator who performs the focusing operation. There is a problem that. A plurality of autofocus mechanisms are known in the field of cameras and the like, but each autofocus mechanism requires an optical mechanism such as a dedicated sensor or mirror, and these conventional autofocus mechanisms are added to conventional surveying instruments. To add, it requires a significant increase and the cost is high.
[0004]
In view of the above problems, an object of the present invention is to provide an automatic focusing mechanism that can automatically perform focusing on a scale without significantly modifying a conventional surveying instrument.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the first present invention includes a telescope that collimates a scale on which patterns of equal intervals are displayed, and a surveying instrument that includes a photoelectric element that converts an image collimated by the telescope into an electric signal. In the automatic focusing mechanism that is mounted on the machine and automatically focuses on the scale, driving means for driving the focusing lens of the telescope is provided, and the focusing lens is moved from one end of the driving range of the focusing lens to the other. Drive toward the end, determine that the amplitude of the output signal of the photoelectric element has exceeded a predetermined value, and position the focus pattern on the photoelectric element at the position before focusing on the scale. A pitch calculation means for detecting the position where the pitch can be obtained and obtaining the pitch, and a fine adjustment for obtaining the distance from the pitch obtained by the pitch calculation means to the measuring scale and moving the focusing lens to a position corresponding to the distance Means and equipment Characterized in that was.
[0006]
When the focusing lens is driven from one end of the driving range toward the other end, the focusing scale is gradually focused. When the focus is advanced to some extent, the pitch of the scale pattern can be obtained even if the focus is not completely focused. Since the pitch of the standard is constant and known in advance, the distance from the obtained pitch to the standard can be calculated. That is, the pitch is small when the distance to the standard is long, and the pitch is large when the distance to the standard is short. When the distance to the standard is obtained in this way, the position of the focusing lens corresponding to the distance is determined. Therefore, if the focusing lens is moved to a position corresponding to the distance to the standard, the distance to the standard is determined. It can be accurately focused.
[0007]
The focusing lens is temporarily moved to one end of the driving range of the driving range and driven from the one end. Generally, the measuring rod is disposed at a relatively far position from the surveying instrument, and a telescope is used to view the vicinity. In the same state, the depth of focus of the telescope is shallow, and conversely, when collimating far away, the depth of focus becomes deep. Therefore, if one end of the driving range of the focusing lens is a position corresponding to infinity, the focusing lens is driven in the direction in which the focusing position approaches the telescope, and the pitch is calculated by the pitch calculation means. The focusing lens is moved from a state where the depth of focus is deep, and it is possible to focus on the scale in a shorter time than when the focusing lens is moved from the other end corresponding to a short distance.
[0008]
The second aspect of the present invention includes a telescope that collimates a scale on which patterns of equal intervals are displayed, and is mounted on a surveying instrument that includes a photoelectric element that converts an image collimated with the telescope into an electrical signal. In the automatic focusing mechanism for automatically focusing on the scale, driving means for driving the focusing lens of the telescope is provided, and the focusing lens is within the driving range of the focusing lens and corresponds to the previous focusing position. is moved to the position or multiple positions corresponding to the average distance distance averaged for each survey, the pitch calculation means for calculating a pitch of the pattern of the staff on the photoelectric device, staffs from the pitch determined by the pitch calculation means And a fine adjustment means for moving the focusing lens to a position corresponding to the distance.
[0009]
Especially when the distance between the measuring scale and the surveying instrument is set to a relatively medium distance or more, it corresponds to a predetermined position that covers a relatively well-set distance of the focusing lens, that is, the previous focusing position. Since the depth of focus is relatively deep if moved to a position corresponding to an average distance obtained by averaging the positions or distances of a plurality of surveys, it is not necessary to move the focusing lens from one end as in the first invention. Also, the pitch of the pattern displayed on the scale can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a scale, which is collimated at an electronic level 2 equipped with a telescope and is used to measure the height h of the collimation position. On the scale 1, a plurality of black marks 11 are displayed on the surface of a white background at an equal pitch in the vertical direction of the scale 1. The staff 1 is normally set in an upright state, but may be set in an inverted state in which the staff 1 is inverted up and down with respect to the ceiling surface C as shown. In this case, the distance h from the ceiling surface C to the collimation position (hereinafter referred to as the collimation position height h as in the upright state) is measured. By the way, although not shown in the figure on the back surface of the staff 1, numbers are printed so that the staff 1 can be used when the operator collimates by visual observation. . As will be described later, the vertical widths of the marks 11 are not all the same, but a plurality of types of dimensions are arranged in a predetermined order.
[0011]
Referring to FIG. 2, a telescope 20 is built in the electronic level 2. The telescope 20 is provided with an optical system 21 including an objective lens 21a and a focusing lens 21b, and an automatic tilt compensation mechanism (compensator) 22. The received image of the staff 1 is transmitted to a line sensor 24 by a beam splitter 23. Branch off. What passes through the beam splitter 23 is a collimating optical system, and what is branched to the line sensor 24 is an image optical system. The collimating optical system includes the optical system 21, the automatic tilt compensation mechanism 22, the beam splitter 23, the focusing screen 20a, and the eyepiece 20b. The image optical system includes an optical system 21, an automatic tilt compensation mechanism 22, a beam splitter 23, and a line sensor 24. The line sensor 24 converts the received image of the staff 1 into an electrical signal and outputs it to the amplifier 25. The signal amplified by the amplifier 25 is sampled and held in synchronization with the clock signal of the clock driver 26, and the held signal is converted into a digital signal (A / D). The signal converted into the digital signal is stored in the RAM 28. The microcomputer 3 obtains the width dimension of each mark 11 based on the signal stored in the RAM 28. Then, the height h of the collimation position is obtained from the width dimension of the mark 11 and the table value stored in advance in the ROM 31. The drive circuit 29 is a circuit that controls the operation of the line sensor 24. Further, since the optical axis of the collimation optical system and the optical axis of the image optical system are matched with each other, the collimation point on the scale 1 and the collimation point of the image optical system are coincident with each other. The survey result is displayed on the display unit 32.
[0012]
By the way, when collimating the scale 1, it is necessary to move the focusing lens 21b in the optical axis direction so that the scale 1 is focused. Therefore, in the present invention, the stepping motor 41 is attached to the focusing lens 21b, the stepping motor 41 and the focusing lens 21b are mechanically connected via a mechanism such as a rack and pinion, and the stepping motor 41 is operated. The focal lens 21b is configured to automatically move in the optical axis direction. Reference numeral 4 denotes a drive circuit for the stepping motor 41, and the microcomputer 3 controls the operation of the stepping motor 41. The microcomputer 3 is connected to an autofocus button (not shown). When the autofocus button is pressed, the microcomputer 3 moves the focusing lens 21b to the eyepiece 20b side within the movable range of the focusing lens 21b. Move once to the end. In this state, the telescope 20 is in a focused state at an infinite position. The image projected on the line sensor 24 at this time is not clear enough to specify the scale 1 and is congested as a whole, and the output signal of the line sensor 24 is flat as shown in FIG. Yes. The microcomputer 3 sets a range α from the peak of the output signal of the line sensor 24, and moves the focusing lens 21b to the objective lens 21a side until the signal becomes α or more. As shown in FIG. 3B, when the output signal of the line sensor 24 becomes equal to or larger than α, the focusing lens 21b is temporarily stopped to obtain the length β of the portion within α and the center that is the center position of β. The line CL is obtained. Since there are a plurality of portions where the output signal of the line sensor 24 is within α, the position of the center line CL is obtained for each portion. When the intervals between the center lines CL are averaged, the average value corresponds to the pitch of the marks 11 of the scale 1 in the image on the line sensor 24. The pitch becomes smaller when the distance between the gauges 1 is longer, and becomes longer when the gauge 1 is set nearby. Therefore, the distance between the electronic level and the staff 1 is obtained from the average value between the center lines CL. When the distance to the staff 1 is obtained in this way, the microcomputer 3 moves the focusing lens 21b to a position corresponding to the distance so as to accurately focus on the staff 1. Thus, when the focus 1 is accurately focused, the output signal of the line sensor 24 is as shown in FIG. After that, the collimated position height is obtained, for example, according to the procedure shown in Japanese Patent Application No. 9-350620. In addition, although the example in which the α value is set has been given, this may be set to a case where the level difference γ of the shading bar code is set and larger than γ. As yet another embodiment, the distance may be obtained by performing a Fourier transform to obtain the period.
[0013]
By the way, in the above embodiment, when the auto-focus button is pressed, the focusing lens 21b is once moved to the end of the moving range, and the focusing lens 21b is moved from the end. When the distance between the electronic level 2 and the staff 1 does not change much when moving, the position to the previous staff is memorized, and when collimating the staff set at the next survey point, the autofocus button When pressed, the focusing lens 21b may be moved to the previous focusing position without moving to the end of the moving range. Then, an average value between the center lines CL is obtained at that position, and the current measuring stick 1 is focused. Alternatively, the distance to the gauge is stored for each of a plurality of surveys, and the plurality of distances are averaged and the focusing lens 21b is once moved to a position corresponding to the average distance at the next surveying. Good.
[0014]
【The invention's effect】
As is clear from the above description, the present invention can automatically focus the telescope of the surveying instrument without adding a new sensor.
[Brief description of the drawings]
FIG. 1 is a diagram showing a usage form of an electronic level. FIG. 2 is a block diagram showing a configuration of an electronic level. FIG. 3 is a diagram showing a change in an output signal of a line sensor accompanying movement of a focusing lens.
1 Standard 2 Electronic Level 21b Focusing Lens 24 Line Sensor 41 Stepping Motor

Claims (3)

等間隔のパターンが表示された標尺を視準する望遠鏡を備え、該望遠鏡で視準した画像を電気信号に変換する光電素子を備えた測量機に搭載され、上記標尺に対する焦点を自動で合わす自動焦点機構において、上記望遠鏡の合焦レンズを駆動する駆動手段を設け、該合焦レンズを合焦レンズの駆動範囲の一方の端から他方の端に向かって駆動させ、光電素子の出力信号の振幅が予め定められた値を超えたことを判別して、標尺に合焦する前の位置であってかつ光電素子上での標尺のパターンのピッチを求め得る位置を検出して該ピッチを求めるピッチ演算手段と、該ピッチ演算手段で求められたピッチから標尺までの距離を求め、該距離に対応する位置に合焦レンズを移動させる精調節手段とを備えたことを特徴とする測量機の自動焦点機構。Automatic equipped with a telescope that collimates a standard on which patterns of equal intervals are displayed, and equipped with a photoelectric device that converts an image collimated with the telescope into an electrical signal, and automatically focuses on the standard In the focusing mechanism, driving means for driving the focusing lens of the telescope is provided, and the focusing lens is driven from one end to the other end of the driving range of the focusing lens, and the amplitude of the output signal of the photoelectric element Is a position where it is determined that has exceeded a predetermined value, and the position before focusing on the scale and the position where the pitch of the scale pattern on the photoelectric element can be obtained is detected to obtain the pitch An automatic surveying instrument comprising: calculating means; and fine adjusting means for obtaining a distance from the pitch obtained by the pitch calculating means to the staff and moving the focusing lens to a position corresponding to the distance. Focus mechanism 上記合焦レンズの駆動範囲の一方の端は無限遠に対応する位置で、合焦位置が望遠鏡に近づく方向に合焦レンズを駆動して上記ピッチ演算手段によりピッチを求めるようにしたことを特徴とする請求項1記載の測量機の自動焦点機構。  One end of the driving range of the focusing lens is a position corresponding to infinity, and the focusing lens is driven in a direction in which the focusing position approaches the telescope, and the pitch is calculated by the pitch calculating means. An automatic focusing mechanism for a surveying instrument according to claim 1. 等間隔のパターンが表示された標尺を視準する望遠鏡を備え、該望遠鏡で視準した画像を電気信号に変換する光電素子を備えた測量機に搭載され、上記標尺に対する焦点を自動で合わす自動焦点機構において、上記望遠鏡の合焦レンズを駆動する駆動手段を設け、該合焦レンズを合焦レンズの駆動範囲内であって前回の合焦位置に相当する位置または複数回の測量毎の距離を平均した平均距離に相当する位置に移動させ光電素子上での標尺のパターンのピッチを求めるピッチ演算手段と、該ピッチ演算手段で求められたピッチから標尺までの距離を求め、該距離に対応する位置に合焦レンズを移動させる精調節手段とを備えたことを特徴とする測量機の自動焦点機構。Automatic equipped with a telescope that collimates a standard on which patterns of equal intervals are displayed, and equipped with a photoelectric device that converts an image collimated with the telescope into an electrical signal, and automatically focuses on the standard In the focusing mechanism, driving means for driving the focusing lens of the telescope is provided, and the focusing lens is within the driving range of the focusing lens and corresponds to the previous focusing position, or a distance for each of a plurality of surveys. are moved to a position corresponding to the average distance obtained by averaging, the pitch calculation means for calculating a pitch of the pattern of the staff on the photoelectric device, determine the distance to the leveling rod from the pitch determined by the pitch calculation means, to the distance An automatic focusing mechanism for a surveying instrument, comprising fine adjustment means for moving a focusing lens to a corresponding position.
JP18196199A 1999-06-28 1999-06-28 Surveyor autofocus mechanism Expired - Fee Related JP4201924B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18196199A JP4201924B2 (en) 1999-06-28 1999-06-28 Surveyor autofocus mechanism
DE10037699A DE10037699B4 (en) 1999-06-28 2000-08-02 Automatic focusing device for installation in a measuring device and for determining the focal distance between the measuring device and a leveling staff on the basis of the division of the pattern marks of the leveling staff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18196199A JP4201924B2 (en) 1999-06-28 1999-06-28 Surveyor autofocus mechanism
DE10037699A DE10037699B4 (en) 1999-06-28 2000-08-02 Automatic focusing device for installation in a measuring device and for determining the focal distance between the measuring device and a leveling staff on the basis of the division of the pattern marks of the leveling staff

Publications (2)

Publication Number Publication Date
JP2001012949A JP2001012949A (en) 2001-01-19
JP4201924B2 true JP4201924B2 (en) 2008-12-24

Family

ID=26006593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18196199A Expired - Fee Related JP4201924B2 (en) 1999-06-28 1999-06-28 Surveyor autofocus mechanism

Country Status (2)

Country Link
JP (1) JP4201924B2 (en)
DE (1) DE10037699B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522754B2 (en) * 2004-06-14 2010-08-11 株式会社トプコン Surveying instrument
JP4648033B2 (en) 2005-02-25 2011-03-09 株式会社 ソキア・トプコン Surveyor autofocus mechanism
US9486839B2 (en) 2011-01-07 2016-11-08 Huron Valley Steel Corporation Scrap metal sorting system
CN103257442B (en) * 2013-05-06 2016-09-21 深圳市中视典数字科技有限公司 A kind of electronic telescope system based on image recognition and image processing method thereof
CN117824584B (en) * 2024-03-04 2024-06-07 山东省地质科学研究院 Leveling device for land engineering

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69320708T3 (en) * 1992-06-24 2005-07-28 Kabushiki Kaisha Topcon Electronic altimeter with height gauge
JP3683350B2 (en) * 1996-07-24 2005-08-17 株式会社ソキア Electronic level gauge and electronic level
CN1090755C (en) * 1997-02-03 2002-09-11 株式会社索佳 Electronic level
DE10033483C1 (en) * 2000-07-10 2002-01-03 Zsp Geodaetische Sys Gmbh Auto-focusing method for telescopes of surveying equipment

Also Published As

Publication number Publication date
DE10037699B4 (en) 2013-07-18
JP2001012949A (en) 2001-01-19
DE10037699A1 (en) 2002-02-14

Similar Documents

Publication Publication Date Title
US7969586B2 (en) Electronic leveling apparatus and method
EP1037014B1 (en) Electric level
EP0790484B1 (en) Horizontal position error correction mechanism for electronic level
EP2653831A2 (en) Electronic level
WO2009109202A1 (en) Geodetic apparatus and method for controlling it
EP2543959A1 (en) Surveying staff for electronic levelling instrument
JP4465671B2 (en) Electronic surveying instrument
JP4201924B2 (en) Surveyor autofocus mechanism
JP5313595B2 (en) Electronic level
US6081327A (en) Leveling instrument
JP4648033B2 (en) Surveyor autofocus mechanism
JP2521047B2 (en) Surveying equipment
JP5645311B2 (en) Light wave distance meter
US6960749B1 (en) Automatic focusing mechanism for mounting on measuring device
JP5031652B2 (en) Automatic focus control device for surveying instrument
JP4358952B2 (en) Surveying instrument and surveying method
CN1316279C (en) Automatic focus mechanism on measuring device
JP3207822B2 (en) Lens meter
CN116892915A (en) Measuring device
JP3396676B2 (en) Lens meter
JPS6097208A (en) Device for measuring height, particularly for surveying level
LT5333B (en) Calibration device for hubs
CN116892914A (en) Measuring device
JP5541799B2 (en) Autofocus surveying instrument
JP2001153655A (en) Automatic focusing device of surveying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees