[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4201890B2 - Regeneration method of hydrogenation catalyst - Google Patents

Regeneration method of hydrogenation catalyst Download PDF

Info

Publication number
JP4201890B2
JP4201890B2 JP26776898A JP26776898A JP4201890B2 JP 4201890 B2 JP4201890 B2 JP 4201890B2 JP 26776898 A JP26776898 A JP 26776898A JP 26776898 A JP26776898 A JP 26776898A JP 4201890 B2 JP4201890 B2 JP 4201890B2
Authority
JP
Japan
Prior art keywords
catalyst
solvent
temperature
hours
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26776898A
Other languages
Japanese (ja)
Other versions
JP2000093800A (en
Inventor
祥志 長谷川
秀晃 植岡
修 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP26776898A priority Critical patent/JP4201890B2/en
Publication of JP2000093800A publication Critical patent/JP2000093800A/en
Application granted granted Critical
Publication of JP4201890B2 publication Critical patent/JP4201890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銅を含有する失活した水素化触媒の再生法、及びそれを用いたアルコールの製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
水素化触媒の再生法としては、特開平6−63406 号公報に開示されている方法がある。この方法では、20〜300 ℃の温度で水素又は不活性ガスやそれらの混合ガス気流中で劣化触媒を前処理した後、酸化処理し、その後還元活性化を行っている。
しかしこの再生法では、前処理時に油分の除去が十分でなく、酸化工程で触媒が燃焼熱の影響を受け、さらに油分自体が酸化され生成した脂肪酸による銅の溶出等、触媒の変質が懸念される。
【0003】
従って、本発明の課題は、従来以上に触媒の活性が回復する水素化触媒の再生法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、下記工程(a) 、(b) 、(c) を有し、工程(a)、(b)及び(c) を固定床反応器で行う、銅を含有する失活した水素化触媒の再生法、及びこの再生法により再生された触媒を用い、固定床連続反応方式により、カルボン酸又はそのエステルを水素で接触還元するアルコールの製造法である。
(a) 失活した触媒の油分を溶剤により、液空間速度 0.5 5.0 h -1 で、5〜 36 時間洗浄し、更にこの溶剤洗浄を行う前あるいは溶剤洗浄と同時に、水素、不活性ガス又はこれらの混合ガスを供給して触媒中の油分を除去し、ついで触媒に残った溶剤を除去する工程。
(b) 工程(a) で得られた触媒を、昇温速度 0.5 40 ℃/ h で昇温して150〜400 ℃の温度範囲内で酸素含有ガスで酸化する工程。
(c) 工程(b) で得られた触媒を還元活性化する工程。
【0005】
【発明の実施の形態】
本発明における銅を含有する失活した水素化触媒は、例えば銅含有水素化触媒前駆体を不活性な溶媒中で水素にて還元活性化したものを、アルコール製造等に用いて失活した触媒である。ここで失活とは、新触媒に比べ活性が低下し、目的の反応に対して生産性やコスト等の面から再生処理を行うことが望ましい状態のことをいう。
【0006】
銅含有水素化触媒前駆体としては、銅−クロム系酸化物触媒、銅−亜鉛系酸化物触媒、銅−鉄系酸化物触媒、銅−アルミ系酸化物触媒あるいは銅−シリカ系酸化物触媒等の前駆体が挙げられ、酸化銅含有量は全触媒前駆体重量に対し、5〜98重量%が好ましく、20〜80重量%が更に好ましい。尚、これらの触媒前駆体をシリカ、アルミナ、酸化ジルコニア、酸化チタン、シリカ−アルミナ等の担体に担持させたものでもよく、ここでいう全触媒前駆体重量とはこれらの担体を含めた重量を言う。
【0007】
成形されるべき触媒前駆体の形状は、固定床反応器の運転に支障のないものが良く、円柱状に打錠又は押し出し成形された触媒前駆体、又は1〜20mmの球状粒子に成形された触媒前駆体が、容易にかつ安価に製造できる点で好ましい。
【0008】
本発明における上記工程(a) 〜(c) は、固定床反応器で行うことが、触媒の反応器からの抜出し及び再充填する作業の手間が省け、低コストで且つ効率よく再生でき好ましい。さらには該再生触媒を再利用することで、製品に占める触媒コストを大幅に低減できる。
以下、各工程について説明する。
【0009】
〔工程(a) 〕
本工程は、工程(b) の酸化時に油分の燃焼による発熱を抑制し、特に活性点である銅あるいはその酸化物のシンタリングを軽減することのみならず、触媒に残存する油分自体が酸化されて生成した脂肪酸による銅の溶出等、触媒の変質を抑制する点から重要な工程である。
【0010】
本工程で用いられる溶剤は、油分(反応原料、生成物等)が溶解できる溶剤であれば何れでもよいが、比較的安価で乾燥除去しやすい溶剤がよい。例えばメタノール、エタノール、アセトン等が好ましい。固定床反応器を用いる場合、溶剤の液供給は触媒層容積に対して1時間当り 0.5〜5.0 倍、即ち液空間速度 0.5〜5.0 h-1が好ましい。溶剤の供給時間は3〜48時間が好ましく、5〜36時間がより好ましい。また溶剤洗浄時の触媒層温度は40〜80℃が好ましく、溶剤洗浄は、溶剤が液化している状態で行う事が望ましい。
【0011】
また、溶剤洗浄を行う前あるいは溶剤洗浄と同時に、アルコール等を製造する際に使用していた水素や不活性ガス又はこれらの混合ガスを供給して、触媒中の油分をある程度除去すると、溶剤洗浄時の溶剤使用量が低減でき好ましい。この時の触媒層温度は60〜250 ℃が好ましく、ガス供給は、油分の除去効率、設備面、コスト面から、触媒層容量に対して1時間当たり 100〜16000 倍、即ちガス空間速度 100〜16000 h-1が好ましく、より好ましくは1000〜8000 h-1 である。また供給時間は3〜24時間、より好ましくは5〜12時間である。圧力は、反応時の圧力〜0MPaG(ゲージ圧)で行うことが望ましい。
【0012】
続いて、溶剤洗浄後に触媒に残った溶剤の除去を行う。触媒に残った溶剤の除去が不十分であると次の工程(b) で触媒の変質が懸念され、また高温下に酸素を供給することから、安全面から溶剤を十分に除去する必要がある。
【0013】
溶剤の除去は、溶剤がガス化する条件の圧力であればよいが、設備負荷の観点から常圧が好ましく、除去効率の観点から、窒素、ヘリウム、アルゴン等の不活性ガスを供給しながら行うことが好ましい。この時の触媒層温度は、60〜120 ℃が好ましく、70〜110 ℃がより好ましい。またガス供給は、溶剤の除去効率及びコスト面から、ガス空間速度で10〜10000 h-1が好ましく、100〜5000 h-1がより好ましい。
本工程で触媒の油分を十分に除去することで、工程(b) の酸化時の触媒層温度制御が容易になり、触媒への熱負荷及び触媒の変質を抑制できる。
【0014】
〔工程(b) 〕
本工程では、触媒を150 〜400 ℃に昇温して、酸素含有ガスで酸化処理を行う。昇温速度は、時間の短縮化、急激な酸化温度上昇の抑制、酸化温度の制御の面から 0.5〜40℃/h が好ましく、1〜30℃/h がより好ましく、5〜20℃/h が更に好ましい。酸化は昇温中に行っても、昇温後に行ってもよい。
【0015】
酸素含有ガス(空気も可)の触媒層入口での酸素濃度は不活性ガスで希釈して 0.3〜10vol %とすることが好ましく、酸素濃度とガスの流量をコントロールすることで、触媒層温度を150 〜400 ℃、好ましくは 200〜350 ℃に調節する。温度が150 ℃より低い場合、酸化が不十分となり、 400℃を越えると熱の影響を受け、還元活性化後の活性が低下する。ここで用いる不活性ガスとしては、窒素、ヘリウム、アルゴン等が挙げられ、酸素含有ガスとしてはコスト面から空気を窒素で希釈したものが望ましい。酸化時の圧力は0〜1.0 MPaGが好ましい。酸化時間は、十分な酸化を行うために2時間以上が好ましく、5〜200 時間が更に好ましい。
【0016】
酸素含有ガスの供給は酸化熱の除熱効果や、酸化温度の制御、設備的な面から、ガス空間速度として50〜16000 h-1が好ましく、 100〜10000 h-1がより好ましい。酸化終了の判断は、触媒層中の温度から発熱の終了を確認するか、及び/又は触媒層入口と出口の酸素濃度を測定し、入口と出口の酸素濃度が等しいことを確認して行う。
尚、銅の酸化は完全に酸化銅(CuO )にする必要はなく一部亜酸化銅(Cu2O)が残っていてもよく、酸化による発熱も低減でき好ましい。この再生法によれば、活性向上の観点から、酸化銅/亜酸化銅=100/0〜60/40(X線回折強度比)の範囲で酸化することが好ましい。
【0017】
[工程(c) ]
本工程は、工程(b) により酸化された銅含有水素化触媒前駆体を水素により還元活性化する工程であり、特に20〜250 ℃の温度範囲内で不活性な溶媒中、水素で液相還元することが好ましい。
【0018】
不活性な溶媒は、酸化銅あるいは金属銅の溶出や不可逆的な吸着及び銅との化合物形成を起こさず、触媒前駆体の還元活性化処理条件下で液状を呈するものであり、グリセリド油、エステル、アルコール、炭化水素等が好ましい。最も好ましいものは、アルコール製造において、生成アルコールの品質に関して悪影響を与えないグリセリド油、脂肪酸エステル類、脂肪族アルコール類、炭化水素類等であり、これらは単独でも2種以上を併用してよい。具体的にはグリセリド油は、炭素数が6〜22の脂肪酸から構成されるモノグリセリド、ジグリセリド及びトリグリセリドであり、例えばココナッツ油、パーム核油、パーム油、牛脂、豚脂等に由来する、植物又は動物起源の天然脂肪酸のグリセリドである。また脂肪酸エステル類は、炭素数が2〜22の少なくとも1個のカルボキシル基を有する脂肪酸と炭素数が1〜22の脂肪族アルコールとのエステルである。また脂肪族アルコール類としては、炭素数2〜22の少なくとも1個の水酸基を有するとともに、触媒還元活性化条件下では液状を呈するアルコールである。また、炭化水素類としては、流動パラフィンや、シクロヘキサン、シクロオクタン、デカリン、ベンゼン、トルエン、キシレン、ナフタレン等の環状炭化水素等である。また、エーテル、アルデヒド、ケトン類等の他の不活性溶媒も使用できる。
不活性な溶媒の通液は、溶媒による触媒前駆体の濡れ状態の均一化や経済的な面から液空間速度で0.1〜5.0 h-1が好ましく、0.1〜3.0 h-1がより好ましい。
【0019】
本工程における還元は、水素ガスもしくは水素と不活性ガスとの混合ガスを触媒前駆体に接触・供給しながら行う。不活性ガスとしては、窒素、ヘリウム、アルゴン、メタン等が用いられる。混合ガス中の水素濃度は0.1vol%以上100vol%未満が好ましいが、活性化に要する時間を考慮した場合、水素分圧として1気圧以上になるような水素濃度に設定するのが望ましい。
ガスの供給は、経済的な観点から溶媒の流通下、常圧ないし30MPaGの圧力条件下で行うのがよい。またガスの供給は、除熱効果及び還元生成水の効率的な除去、設備的な面から、ガス空間速度50〜10000 h-1で行うのが好ましく、100〜5000
h-1 がより好ましい。
【0020】
液相還元における温度は20〜250℃が好ましく、40〜200℃がより好ましく、特に50〜140 ℃が好ましい。また還元時間は、活性化の進行及び経済的な面から、1.5 時間以上が好ましく、6〜100 時間がより好ましい。昇温速度は、時間の短縮化、還元反応の制御の面から 0.5〜40℃/h が好ましく、1〜30℃/h がより好ましく、5〜20℃/h が最も好ましい。
【0021】
本発明の方法により再生された銅含有水素化触媒は、固定床連続反応方式により主にアルコールの製造に用いられる他、アルデヒド基或いはケトン基の水素化、オレフィン類の水素化、ニトロ基の水素化等の各種水素化反応に用いることができる。従って、本発明の再生法を固定床連続反応用の反応器内で行えば、得られる活性化触媒をそのままアルコール等の製造に使用することができる。
【0022】
本発明のアルコールの製造法は、固定床連続反応方式にてカルボン酸又はそのエステルを水素で接触還元する際に、前記のような方法により再生された銅含有水素化触媒を用いる。
【0023】
原料となるカルボン酸としては、ヤシ油、パーム核油、パーム油、牛脂、豚脂等から得られる動植物系の天然の脂肪酸の他に合成系脂肪酸等が挙げられ、そのエステルとしては、油脂又は脂肪酸エステルが望ましい。油脂としては、炭素数が6〜22の飽和あるいは不飽和脂肪酸から構成されるモノグリセリド、ジグリセリド及びトリグリセリドが、また脂肪酸エステルとしては炭素数が1以上でかつエステル基を1以上含む直鎖、分岐鎖あるいは不飽和の脂肪酸エステルが挙げられる。このような脂肪酸エステルとしては、例えば蟻酸エステル、酢酸エステル、カプロン酸エステル、カプリル酸エステル、カプリン酸エステル、ウンデセン酸エステル、ラウリン酸エステル、ミリスチン酸エステル、パルミチン酸エステル、ステアリン酸エステル、イソステアリン酸エステル、オレイン酸エステル、アラキン酸エステル、ベヘン酸エステル、シュウ酸エステル、マレイン酸エステル、アジピン酸エステル、セバシン酸エステル等が挙げられる。脂肪酸エステルを構成するアルコールは炭素数1〜22の脂肪族アルコールが好ましい。また本発明において水素化に供されるエステルは、脂肪酸エステルに限定されるものではなく、シクロヘキサンカルボン酸エステル等の脂環式カルボン酸エステル、安息香酸エステル、フタル酸エステル等の芳香族カルボン酸エステル及びその誘導体であってもよい。
【0024】
本発明では、カルボン酸又はそのエステルを水素化するに際し、固定床連続反応方式が採用される。ここで、本発明の再生法により固定床連続反応器で触媒を再生した後、次いで同じ反応器中で、カルボン酸又はそのエステルを水素化してアルコールを製造することが好ましく、工業的に有利である。水素化反応は溶媒を使用することも可能であるが、生産性を考慮した場合には無溶媒で反応を行うのが望ましい。溶媒を用いる場合、アルコール、ジオキサンあるいはパラフィン等の反応に悪影響を与えないものが選ばれる。反応温度は 130〜300 ℃が好ましく、 160〜250 ℃がより好ましい。反応圧力は0.0098〜30MPaGが好ましい。また、原料供給の液空間速度は反応条件に応じて任意に決定されるが、生産性あるいは反応性を考慮した場合、 0.2〜5.0 h-1が好ましい。
【0025】
【実施例】
参考例1
特開平5−177140号公報の実施例5記載の方法に従って、TiO2上にCuO 、ZnO 、BaO を担持させた触媒前駆体を得た。得られた前駆体粉末を円柱状に打錠成形した後、 450℃で2時間焼成することにより、下記に示す重量組成を有する直径3mm、高さ3mmの成形触媒前駆体を得た。
【0026】
CuO:ZnO:BaO:TiO2=43.5%:2.4%:4.1%:50.0%
得られた成形触媒前駆体 500mLを固定床流通反応器(35.5mmID×800mmH)に充填した後、触媒層60℃の温度下で触媒を充分溶媒で濡らすため、窒素を4.0NL/h (ガス空間速度 8.0 h-1)で流しながら、ラウリルアルコール(純度=99.8%)を 600mL/hの流量(液空間速度 1.2 h-1)で6時間(常圧(0MPaG))通液を行った。次いで、1.96MPaGに昇圧し、50vol%に希釈した水素ガス(水素50vol%、窒素 50vol%)を78.6NL/h(ガス空間速度 157.2 h-1)の流量で供給し、ラウリルアルコール(純度=99.8%)を250mL/hの流量(液空間速度 0.5 h-1)で通液を行った。液及びガスの流量が安定した後、10℃/hの速度で触媒層を130 ℃まで昇温し、昇温後は 130℃で23時間保持した。還元時間は、昇温から合わせて計30時間であった。
【0027】
触媒前駆体の還元活性化終了後、ラウリルアルコールから炭素数が8〜18の鎖長分布を有する脂肪酸メチルエステル(ケン化価=243)に切り換え、220℃、4.9MPaG、500mL/h(液空間速度 1.0 h-1)、脂肪酸メチルエステルに対して100モル倍の水素流通条件下で水素化反応を行った。ここで、分析によりケン化価(SV)(JIS K0070 参考)を求め、触媒の活性kvを以下の算出式により求めた。
【0028】
kv=ln ((243−SVe)/(SV−SVe))
(SVeは平衡値、lnは自然対数)
また、反応の選択性はガスクロマトグラフにより求めた炭化水素及びエーテル化合物等の副生成物量で評価した。この新触媒の活性及び選択性を基準とし以下の実施例及び比較例と相対評価する。結果を表1に示す。
【0029】
実施例1
まず参考例1と同じ触媒で通液量[kg−原料/kg−触媒]を1420倍通液した後の失活触媒の再生前の活性を確認するため、参考例1と同じ反応器(触媒充填量500mL)及び条件で水素化反応を行ない、ケン化価から活性kvを算出した。
【0030】
次に、この失活触媒の再生を行うため、再生前活性評価のあと、まず水素の供給及び圧力を維持した状態で、触媒層を60℃まで冷却した。冷却時間も含め、計6時間油分の除去を行った。
続いて、その状態でメタノールを 250mL/h(液空間速度 0.5 h-1)、24時間供給し、触媒を溶剤洗浄した(反応器出口の反応物を取り、ガスクロマトグラフにより油分が充分除去できていることを確認し終了とした)。
次いで、常圧にもどし、系内を窒素置換した後、触媒層を80℃とし、窒素を80NL/h(ガス空間速度 160 h-1)の流量で24時間供給し、触媒の残存溶剤を除去した。尚、NLは標準状態でのガス体積を示す。
【0031】
次に、系内酸素濃度0%を確認後、窒素を300NL/h(ガス空間速度 600 h-1)の流量で反応器上部より供給しながら、触媒層を 200℃まで20℃/hで昇温した。続いて、供給ガスの酸素濃度が1 vol%になるように空気からの流量を調整して、酸化を開始した。酸化は触媒層中心軸方向に備えた温度計で、温度を確認しながら、反応器へのガス供給量を300NL/h(ガス空間速度600h-1)、圧力は0.29MPaG、循環形式の条件で行った。
触媒層最下部の温度計指示が 200℃に落ち着いた後、反応器入り口及び出口の酸素濃度を測定し、濃度が等しいことを確認し終了とした(酸素濃度1.2vol%)。 酸化終了後反応器を室温まで冷却した後、触媒数グラムをサンプリングし、X線回折法(XRD) により分析を行った。その結果、銅は全て酸化されており酸化銅/亜酸化銅の強度比は73/27であった。
【0032】
上記の酸化で得た触媒前駆体を参考例1と同条件で液相還元により活性化した。参考例1と同条件で水素化反応を行い活性の評価を行った。また、反応の選択性はガスクロマトグラフにより求めた炭化水素及びエーテル化合物等の副生成物量で評価した。
【0033】
ここで、再生後の活性及び選択性について、新触媒を基準として相対比較を行った。尚、相対比較では、活性は大きいほど良い活性を意味し、選択性は小さいほど良い選択性を意味している。結果を表1に示す。
【0034】
実施例2
まず、参考例1と同じ触媒で通液量[kg−原料/kg−触媒]を5590倍通液した後の失活触媒の再生前の活性の確認を行うため、参考例1と同じ反応器(触媒充填量500mL)及び条件で水素化反応を行った。反応後、分析よりケン化価を求め、活性kvを算出した。
【0035】
続いて、実施例1と同条件で触媒の油分の洗浄並びに溶剤除去を行った。次いで、酸化工程では、 200℃までの条件は実施例1と同じとし、触媒層最下部の温度計指示が 200℃に落ち着いた後、反応器入り口及び出口の酸素濃度を測定し、濃度が等しい(酸素濃度1.0vol%)ことを確認した。続いて、このまま酸素を供給した状態で20℃/hの速度で触媒層内温度を確認しながら触媒層を 250℃まで昇温し、更に同速度で 300℃まで昇温した。
反応器入り口及び出口の酸素濃度を測定し、濃度が等しいことを確認し、終了とした(酸素濃度8.4vol%)。X線回折法による分析の結果、銅は全て酸化されており酸化銅/亜酸化銅の強度比は79/21であった。
【0036】
以下、還元活性化ならびに水素化反応条件は参考例1と同じとし、再生後の活性及び選択性を評価した。実施例1と同様、再生後の活性及び選択性について、新触媒を基準として相対比較を行った。結果を表1に示す。
【0037】
比較例1
参考例1と同じ反応器を用い、通液量[kg−原料/kg−触媒]を1420倍通液した後の実施例1と同じ失活触媒の再生処理を行った。
この再生処理では、触媒の油分の洗浄及び溶剤除去を行わず、それ以外は実施例1と同じ条件で行い、再生後の活性及び選択性を評価した。実施例1と同様、再生後の活性及び選択性について、新触媒を基準として相対比較を行った。結果を表1に示す。
【0038】
比較例2
参考例1と同じ反応器を用い、通液量[kg−原料/kg−触媒]を5590倍通液した後の実施例2と同じ失活触媒の再生処理を行った。
この再生処理では、酸化温度を 100℃とした以外は実施例2と同じ条件で行い、再生後の活性及び選択性を評価した。実施例1と同様、再生後の活性及び選択性について、新触媒を基準として相対比較を行った。結果を表1に示す。
【0039】
【表1】

Figure 0004201890
【0040】
【発明の効果】
本発明の再生法により得られた触媒は、従来以上に著しく活性が回復し、この失活触媒の再生を固定床反応器で行うことにより、反応器からの抜出し及び再充填する作業の手間が省け、低コストで且つ効率よく再生できる。さらには該再生触媒を再利用することで、製品に占める触媒コストを大幅に低減できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a deactivated hydrogenation catalyst containing copper, and a method for producing an alcohol using the same.
[0002]
[Prior art and problems to be solved by the invention]
As a method for regenerating the hydrogenation catalyst, there is a method disclosed in JP-A-6-63406. In this method, the deterioration catalyst is pretreated at a temperature of 20 to 300 ° C. in a stream of hydrogen, an inert gas, or a mixed gas thereof, then oxidized, and then reduced and activated.
However, in this regeneration method, oil removal is not sufficient during pretreatment, the catalyst is affected by combustion heat in the oxidation step, and there is a concern about catalyst alteration such as elution of copper by fatty acids generated by oxidation of the oil itself. The
[0003]
Accordingly, an object of the present invention is to provide a method for regenerating a hydrogenation catalyst that recovers the activity of the catalyst more than ever.
[0004]
[Means for Solving the Problems]
The present invention comprises the following steps (a), (b) and (c), wherein steps (a), (b) and (c) are carried out in a fixed bed reactor, containing copper and deactivated hydrogenation This is a method for producing a catalyst and a method for producing an alcohol by catalytic reduction of a carboxylic acid or its ester with hydrogen by a fixed bed continuous reaction system using a catalyst regenerated by this regeneration method.
(a) The deactivated oil of the catalyst is washed with a solvent at a liquid space velocity of 0.5 to 5.0 h −1 for 5 to 36 hours , and before or simultaneously with the solvent washing, hydrogen, inert gas or Supplying these mixed gases to remove oil in the catalyst, and then removing the solvent remaining in the catalyst.
(b) step resulting catalyst in (a), the step of oxidizing with oxygen-containing gas within a temperature range of elevating the temperature 150 to 400 ° C. at a heating rate of 0.5 ~ 40 ℃ / h.
(c) A step of reducing and activating the catalyst obtained in step (b).
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The deactivated hydrogenation catalyst containing copper in the present invention is, for example, a catalyst deactivated by reducing and activating a copper-containing hydrogenation catalyst precursor with hydrogen in an inert solvent for alcohol production or the like. It is. Here, deactivation means a state in which the activity is lower than that of the new catalyst, and it is desirable to perform a regeneration treatment from the viewpoint of productivity, cost, etc. for the target reaction.
[0006]
Examples of the copper-containing hydrogenation catalyst precursor include a copper-chromium oxide catalyst, a copper-zinc oxide catalyst, a copper-iron oxide catalyst, a copper-aluminum oxide catalyst, or a copper-silica oxide catalyst. The copper oxide content is preferably 5 to 98% by weight, more preferably 20 to 80% by weight, based on the total catalyst precursor weight. These catalyst precursors may be supported on a support such as silica, alumina, zirconia oxide, titanium oxide, silica-alumina, etc. The total catalyst precursor weight here is the weight including these supports. To tell.
[0007]
The shape of the catalyst precursor to be molded should be no problem in the operation of the fixed bed reactor, and was molded into a cylindrically shaped catalyst precursor or 1-20 mm spherical particles. The catalyst precursor is preferable because it can be easily and inexpensively produced.
[0008]
The above steps (a) to (c) in the present invention are preferably carried out in a fixed bed reactor, which saves labor for extracting and refilling the catalyst from the reactor, and can be efficiently regenerated at low cost. Furthermore, by reusing the regenerated catalyst, the catalyst cost in the product can be greatly reduced.
Hereinafter, each step will be described.
[0009]
[Step (a)]
This step suppresses heat generation due to the combustion of oil during the oxidation in step (b), and not only reduces the sintering of copper or its oxide, which is the active site, but also the oil remaining in the catalyst itself is oxidized. This is an important process from the viewpoint of suppressing the alteration of the catalyst such as elution of copper by the fatty acid produced in this way.
[0010]
The solvent used in this step may be any solvent as long as it can dissolve oil (reaction raw materials, products, etc.), but is preferably a solvent that is relatively inexpensive and easy to dry and remove. For example, methanol, ethanol, acetone and the like are preferable. When a fixed bed reactor is used, the liquid supply of the solvent is preferably 0.5 to 5.0 times per hour with respect to the catalyst bed volume, that is, the liquid space velocity is 0.5 to 5.0 h- 1 . The supply time of the solvent is preferably 3 to 48 hours, more preferably 5 to 36 hours. Further, the catalyst layer temperature at the time of solvent washing is preferably 40 to 80 ° C., and the solvent washing is desirably performed in a state where the solvent is liquefied.
[0011]
Also, before or simultaneously with solvent cleaning, supply hydrogen, inert gas or mixed gas used in the production of alcohol, etc. The amount of solvent used at the time can be reduced, which is preferable. The catalyst layer temperature at this time is preferably 60 to 250 ° C., and the gas supply is 100 to 16000 times per hour with respect to the capacity of the catalyst layer, that is, the gas space velocity is 100 to 16000 h −1 is preferred, more preferably 1000 to 8000 h −1 . The supply time is 3 to 24 hours, more preferably 5 to 12 hours. The pressure is desirably set to a pressure at the time of reaction to 0 MPaG (gauge pressure).
[0012]
Subsequently, the solvent remaining on the catalyst after the solvent washing is removed. Insufficient removal of the solvent remaining in the catalyst may cause catalyst deterioration in the next step (b), and oxygen is supplied at a high temperature, so it is necessary to remove the solvent sufficiently for safety reasons. .
[0013]
The solvent may be removed under any conditions that allow the solvent to gasify, but normal pressure is preferable from the viewpoint of equipment load, and is performed while supplying an inert gas such as nitrogen, helium, and argon from the viewpoint of removal efficiency. It is preferable. The catalyst layer temperature at this time is preferably 60 to 120 ° C, more preferably 70 to 110 ° C. The gas supply from the removal efficiency and cost of the solvent, preferably from 10 to 10000 h -1 at a gas hourly space velocity, and more preferably 100 to 5000 h -1.
By sufficiently removing the oil content of the catalyst in this step, it becomes easy to control the temperature of the catalyst layer during the oxidation in step (b), and the heat load on the catalyst and the alteration of the catalyst can be suppressed.
[0014]
[Step (b)]
In this step, the temperature of the catalyst is raised to 150 to 400 ° C. and oxidation treatment is performed with an oxygen-containing gas. The rate of temperature increase is preferably 0.5 to 40 ° C / h, more preferably 1 to 30 ° C / h, more preferably 5 to 20 ° C / h from the viewpoints of shortening the time, suppressing the rapid increase in the oxidation temperature, and controlling the oxidation temperature. Is more preferable. The oxidation may be performed during the temperature rise or after the temperature rise.
[0015]
The oxygen concentration at the catalyst layer inlet of the oxygen-containing gas (air is acceptable) is preferably diluted with an inert gas to 0.3 to 10 vol%, and the catalyst layer temperature is controlled by controlling the oxygen concentration and the gas flow rate. The temperature is adjusted to 150 to 400 ° C, preferably 200 to 350 ° C. If the temperature is lower than 150 ° C, the oxidation will be insufficient, and if it exceeds 400 ° C, it will be affected by heat and the activity after reduction activation will decrease. Examples of the inert gas used here include nitrogen, helium, and argon. As the oxygen-containing gas, air diluted with nitrogen is desirable from the viewpoint of cost. The pressure during oxidation is preferably 0 to 1.0 MPaG. The oxidation time is preferably 2 hours or more, and more preferably 5 to 200 hours in order to perform sufficient oxidation.
[0016]
Supply of oxygen-containing gas and heat removal effect of the heat of oxidation, control of the oxidation temperature, the capital of view, from 50 to 16000 h -1 is preferred as the gas space velocity, and more preferably ranging from 100 to 10000 h -1. The end of oxidation is determined by confirming the end of heat generation from the temperature in the catalyst layer and / or measuring the oxygen concentrations at the inlet and outlet of the catalyst layer and confirming that the oxygen concentrations at the inlet and outlet are equal.
It is not necessary to completely oxidize copper to copper oxide (CuO), and cuprous oxide (Cu 2 O) may partially remain, which is preferable because heat generation due to oxidation can be reduced. According to this regeneration method, it is preferable to oxidize in the range of copper oxide / cuprous oxide = 100/0 to 60/40 (X-ray diffraction intensity ratio) from the viewpoint of improving the activity.
[0017]
[Step (c)]
This step is a step of reducing and activating the copper-containing hydrogenation catalyst precursor oxidized in step (b) with hydrogen, particularly in a liquid phase with hydrogen in an inert solvent within a temperature range of 20 to 250 ° C. It is preferable to reduce.
[0018]
The inert solvent does not cause elution or irreversible adsorption of copper oxide or metallic copper and compound formation with copper, and exhibits a liquid state under the reduction activation treatment conditions of the catalyst precursor. Alcohol, hydrocarbon and the like are preferable. Most preferred are glyceride oil, fatty acid esters, aliphatic alcohols, hydrocarbons and the like that do not adversely affect the quality of the produced alcohol in alcohol production, and these may be used alone or in combination of two or more. Specifically, the glyceride oil is a monoglyceride, diglyceride and triglyceride composed of fatty acids having 6 to 22 carbon atoms, such as plants derived from coconut oil, palm kernel oil, palm oil, beef tallow, lard, etc. It is a natural fatty acid glyceride of animal origin. The fatty acid esters are esters of a fatty acid having at least one carboxyl group having 2 to 22 carbon atoms and an aliphatic alcohol having 1 to 22 carbon atoms. Aliphatic alcohols are alcohols having at least one hydroxyl group having 2 to 22 carbon atoms and exhibiting a liquid state under catalytic reduction activation conditions. Examples of hydrocarbons include liquid paraffin, and cyclic hydrocarbons such as cyclohexane, cyclooctane, decalin, benzene, toluene, xylene, and naphthalene. Other inert solvents such as ethers, aldehydes and ketones can also be used.
Inert liquid passing of the solvent is preferably from 0.1 to 5.0 h -1 from the uniform and economic aspects of the wetting state of the catalyst precursor at a liquid hourly space velocity with a solvent, and more preferably 0.1 to 3.0 h -1.
[0019]
The reduction in this step is performed while contacting and supplying hydrogen gas or a mixed gas of hydrogen and an inert gas to the catalyst precursor. Nitrogen, helium, argon, methane or the like is used as the inert gas. The hydrogen concentration in the mixed gas is preferably 0.1 vol% or more and less than 100 vol%, but considering the time required for activation, it is desirable to set the hydrogen concentration so that the hydrogen partial pressure is 1 atm or more.
The gas supply is preferably carried out under normal pressure or 30 MPaG under the circulation of a solvent from an economical viewpoint. In addition, the gas is preferably supplied at a gas space velocity of 50 to 10,000 h −1 from the viewpoint of heat removal effect, efficient removal of reduced product water, and equipment.
h- 1 is more preferred.
[0020]
The temperature in the liquid phase reduction is preferably 20 to 250 ° C, more preferably 40 to 200 ° C, and particularly preferably 50 to 140 ° C. Further, the reduction time is preferably 1.5 hours or more, more preferably 6 to 100 hours, from the viewpoint of the progress of activation and the economical aspect. The rate of temperature increase is preferably 0.5 to 40 ° C./h, more preferably 1 to 30 ° C./h, and most preferably 5 to 20 ° C./h in terms of shortening the time and controlling the reduction reaction.
[0021]
The copper-containing hydrogenation catalyst regenerated by the method of the present invention is mainly used for the production of alcohol by a fixed bed continuous reaction system, hydrogenation of aldehyde groups or ketone groups, hydrogenation of olefins, hydrogenation of nitro groups. It can be used for various hydrogenation reactions such as hydrogenation. Therefore, when the regeneration method of the present invention is carried out in a reactor for continuous fixed bed reaction, the resulting activated catalyst can be used as it is for the production of alcohol or the like.
[0022]
The alcohol production method of the present invention uses a copper-containing hydrogenation catalyst regenerated by the above-described method when the carboxylic acid or its ester is catalytically reduced with hydrogen in a fixed bed continuous reaction system.
[0023]
Examples of the carboxylic acid used as the raw material include synthetic fatty acids in addition to animal and plant natural fatty acids obtained from palm oil, palm kernel oil, palm oil, beef tallow, lard, and the like. Fatty acid esters are desirable. As fats and oils, monoglycerides, diglycerides and triglycerides composed of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, and as fatty acid esters, linear or branched chains having 1 or more carbon atoms and containing one or more ester groups Or unsaturated fatty acid ester is mentioned. Examples of such fatty acid esters include formic acid esters, acetic acid esters, caproic acid esters, caprylic acid esters, capric acid esters, undecenoic acid esters, lauric acid esters, myristic acid esters, palmitic acid esters, stearic acid esters, isostearic acid esters. Oleic acid ester, arachidic acid ester, behenic acid ester, oxalic acid ester, maleic acid ester, adipic acid ester, sebacic acid ester and the like. The alcohol constituting the fatty acid ester is preferably an aliphatic alcohol having 1 to 22 carbon atoms. The ester used for hydrogenation in the present invention is not limited to a fatty acid ester, but is an alicyclic carboxylic acid ester such as cyclohexanecarboxylic acid ester, an aromatic carboxylic acid ester such as benzoic acid ester, or phthalic acid ester. And derivatives thereof.
[0024]
In the present invention, when the carboxylic acid or ester thereof is hydrogenated, a fixed bed continuous reaction system is adopted. Here, after regenerating the catalyst in a fixed bed continuous reactor by the regeneration method of the present invention, it is preferable to hydrogenate the carboxylic acid or its ester in the same reactor to produce an alcohol, which is industrially advantageous. is there. Although it is possible to use a solvent for the hydrogenation reaction, it is desirable to carry out the reaction without a solvent in consideration of productivity. When a solvent is used, one that does not adversely influence the reaction such as alcohol, dioxane, or paraffin is selected. The reaction temperature is preferably 130 to 300 ° C, more preferably 160 to 250 ° C. The reaction pressure is preferably 0.0098-30 MPaG. Further, the liquid space velocity of the raw material supply is arbitrarily determined according to the reaction conditions, but is preferably 0.2 to 5.0 h -1 in consideration of productivity or reactivity.
[0025]
【Example】
Reference example 1
According to the method described in Example 5 of JP-A-5-177140, a catalyst precursor having CuO 2 , ZnO 2 , BaO 3 supported on TiO 2 was obtained. The obtained precursor powder was tableted into a cylindrical shape, and then calcined at 450 ° C. for 2 hours to obtain a molded catalyst precursor having a weight composition shown below and a diameter of 3 mm and a height of 3 mm.
[0026]
CuO: ZnO: BaO: TiO 2 = 43.5%: 2.4%: 4.1%: 50.0%
After charging 500 mL of the obtained shaped catalyst precursor into a fixed bed flow reactor (35.5 mm ID x 800 mm H), nitrogen is 4.0 NL / h (gas space to wet the catalyst sufficiently with the solvent at a catalyst layer temperature of 60 ° C. While flowing at a rate of 8.0 h −1 ), lauryl alcohol (purity = 99.8%) was passed for 6 hours (normal pressure (0 MPaG)) at a flow rate of 600 mL / h (liquid space velocity 1.2 h −1 ). Next, the pressure was increased to 1.96 MPaG, hydrogen gas diluted to 50 vol% (hydrogen 50 vol%, nitrogen 50 vol%) was supplied at a flow rate of 78.6 NL / h (gas space velocity 157.2 h −1 ), and lauryl alcohol (purity = 99.8). %) At a flow rate of 250 mL / h (liquid hourly space velocity 0.5 h −1 ). After the liquid and gas flow rates were stabilized, the catalyst layer was heated to 130 ° C. at a rate of 10 ° C./h, and then maintained at 130 ° C. for 23 hours. The reduction time was 30 hours in total from the temperature rise.
[0027]
After the reduction activation of the catalyst precursor, switch from lauryl alcohol to fatty acid methyl ester having a chain length distribution of 8 to 18 carbon atoms (saponification number = 243), 220 ° C, 4.9 MPaG, 500 mL / h (liquid space The hydrogenation reaction was carried out under a flow rate of hydrogen of 100 mole times that of fatty acid methyl ester at a rate of 1.0 h -1 ). Here, the saponification value (SV) (see JIS K0070) was determined by analysis, and the activity kv of the catalyst was determined by the following calculation formula.
[0028]
kv = ln ((243−SVe) / (SV−SVe))
(SVe is the equilibrium value, ln is the natural logarithm)
The selectivity of the reaction was evaluated by the amount of by-products such as hydrocarbons and ether compounds determined by gas chromatography. Based on the activity and selectivity of the new catalyst, relative evaluation is made with the following examples and comparative examples. The results are shown in Table 1.
[0029]
Example 1
First, the same reactor (catalyst as in Reference Example 1) was used to confirm the activity before regeneration of the deactivated catalyst after 1420 times the flow rate [kg-raw material / kg-catalyst] with the same catalyst as in Reference Example 1. The hydrogenation reaction was carried out under the conditions of a filling amount of 500 mL) and the activity kv was calculated from the saponification value.
[0030]
Next, in order to regenerate the deactivated catalyst, after the activity evaluation before regeneration, the catalyst layer was first cooled to 60 ° C. while maintaining the hydrogen supply and pressure. The oil was removed for a total of 6 hours including the cooling time.
Subsequently, the methanol in the state 250 mL / h (liquid hourly space velocity 0.5 h -1), fed for 24 hours, the catalyst was taken was solvent washed (reactant at the reactor outlet, and be sufficiently removed oil by gas chromatography And confirmed that it was finished.)
Next, after returning to normal pressure and replacing the system with nitrogen, the catalyst layer was brought to 80 ° C. and nitrogen was supplied at a flow rate of 80 NL / h (gas space velocity 160 h −1 ) for 24 hours to remove the residual solvent of the catalyst. did. In addition, NL shows the gas volume in a standard state.
[0031]
Next, after confirming that the oxygen concentration in the system was 0%, the catalyst layer was raised to 200 ° C at 20 ° C / h while supplying nitrogen from the top of the reactor at a flow rate of 300 NL / h (gas space velocity 600 h -1 ). Warm up. Subsequently, the flow rate from the air was adjusted so that the oxygen concentration of the supply gas was 1 vol%, and oxidation was started. Oxidation is a thermometer provided in the direction of the central axis of the catalyst layer. While checking the temperature, the gas supply rate to the reactor is 300 NL / h (gas space velocity 600 h -1 ), the pressure is 0.29 MPaG, and the circulation conditions went.
After the thermometer instruction at the bottom of the catalyst layer settled down to 200 ° C., the oxygen concentration at the reactor inlet and outlet was measured, and it was confirmed that the concentrations were equal (the oxygen concentration was 1.2 vol%). After the oxidation was completed, the reactor was cooled to room temperature, and a few grams of catalyst was sampled and analyzed by X-ray diffraction (XRD). As a result, all the copper was oxidized, and the strength ratio of copper oxide / cuprous oxide was 73/27.
[0032]
The catalyst precursor obtained by the above oxidation was activated by liquid phase reduction under the same conditions as in Reference Example 1. The hydrogenation reaction was performed under the same conditions as in Reference Example 1 to evaluate the activity. The selectivity of the reaction was evaluated by the amount of by-products such as hydrocarbons and ether compounds determined by gas chromatography.
[0033]
Here, relative activity and selectivity after regeneration were compared based on the new catalyst. In a relative comparison, the larger the activity, the better the activity, and the lower the selectivity, the better the selectivity. The results are shown in Table 1.
[0034]
Example 2
First, in order to check the activity before regeneration of the deactivated catalyst after passing 5590 times the flow rate [kg-raw material / kg-catalyst] with the same catalyst as in Reference Example 1, the same reactor as in Reference Example 1 The hydrogenation reaction was performed under the conditions (catalyst filling amount 500 mL) and conditions. After the reaction, the saponification value was determined by analysis, and the activity kv was calculated.
[0035]
Subsequently, the catalyst oil was washed and the solvent was removed under the same conditions as in Example 1. Next, in the oxidation step, the conditions up to 200 ° C. are the same as in Example 1. After the thermometer instruction at the bottom of the catalyst layer has settled to 200 ° C., the oxygen concentration at the reactor inlet and outlet is measured, and the concentrations are equal. (Oxygen concentration 1.0 vol%) was confirmed. Subsequently, with the oxygen supplied as it was, the temperature of the catalyst layer was increased to 250 ° C. while checking the temperature in the catalyst layer at a rate of 20 ° C./h, and further increased to 300 ° C. at the same rate.
The oxygen concentration at the inlet and outlet of the reactor was measured, and it was confirmed that the concentrations were equal, and the process was terminated (oxygen concentration 8.4 vol%). As a result of analysis by the X-ray diffraction method, all copper was oxidized, and the strength ratio of copper oxide / cuprous oxide was 79/21.
[0036]
Hereinafter, the reduction activation and hydrogenation reaction conditions were the same as in Reference Example 1, and the activity and selectivity after regeneration were evaluated. As in Example 1, the relative activity and selectivity after regeneration were compared based on the new catalyst. The results are shown in Table 1.
[0037]
Comparative Example 1
Using the same reactor as in Reference Example 1, the same deactivated catalyst was regenerated as in Example 1 after passing through the amount [kg-raw material / kg-catalyst] 1420 times.
In this regeneration treatment, the catalyst oil was not washed and the solvent was not removed, and the rest was performed under the same conditions as in Example 1 to evaluate the activity and selectivity after regeneration. As in Example 1, the relative activity and selectivity after regeneration were compared based on the new catalyst. The results are shown in Table 1.
[0038]
Comparative Example 2
Using the same reactor as in Reference Example 1, the same deactivated catalyst was regenerated as in Example 2 after passing through the amount [kg-raw material / kg-catalyst] 5590 times.
This regeneration treatment was performed under the same conditions as in Example 2 except that the oxidation temperature was 100 ° C., and the activity and selectivity after regeneration were evaluated. As in Example 1, the relative activity and selectivity after regeneration were compared based on the new catalyst. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0004201890
[0040]
【The invention's effect】
The activity of the catalyst obtained by the regeneration method of the present invention is remarkably recovered more than before, and the regeneration of this deactivated catalyst is performed in a fixed bed reactor, so that the work of extracting and refilling the reactor is reduced. It can be saved at low cost and efficiently. Furthermore, by reusing the regenerated catalyst, the catalyst cost in the product can be greatly reduced.

Claims (4)

下記工程(a)、(b)、(c)を有し、工程(a)、(b)及び(c)を固定床反応器で行う、銅を含有する失活した水素化触媒の再生法。
(a) 失活した触媒の油分を溶剤により、液空間速度 0.5 5.0h -1 で、5〜 36 時間洗浄し、ついで触媒に残った溶剤を除去する工程。
(b) 工程(a)で得られた触媒を、昇温速度 0.5 30 ℃/hで昇温して、150〜400℃の温度範囲内で酸素含有ガスで50 200 時間酸化する工程。
(c) 工程(b)で得られた触媒を還元活性化する工程。
A method for regenerating a deactivated hydrogenation catalyst containing copper, comprising the following steps (a), (b), (c), and performing steps (a), (b) and (c) in a fixed bed reactor: .
(a) A step of washing the oil content of the deactivated catalyst with a solvent at a liquid space velocity of 0.5 to 5.0 h −1 for 5 to 36 hours , and then removing the solvent remaining on the catalyst.
The (b) catalyst obtained in step (a), the temperature was raised at a heating rate of 0.5 ~ 30 ℃ / h, in the temperature range of 150 to 400 ° C., the step of oxidizing 50 to 200 hours in an oxygen-containing gas .
(c) A step of reducing and activating the catalyst obtained in step (b).
工程(b)における酸化温度が 150 350 ℃の温度範囲内で、酸化時間が 50 200 時間である請求項1記載の再生法。The regeneration method according to claim 1 , wherein the oxidation temperature in step (b) is within a temperature range of 150 to 350 ° C and the oxidation time is 50 to 200 hours . 工程(c)が、20〜250℃の温度範囲内で不活性な溶媒中、水素で液相還元する工程である請求項1又は2記載の再生法。  The regeneration method according to claim 1 or 2, wherein step (c) is a step of performing liquid phase reduction with hydrogen in an inert solvent within a temperature range of 20 to 250 ° C. 請求項1〜3のいずれか一項に記載の再生法により再生された触媒を用い、固定床連続反応方式により、カルボン酸又はそのエステルを水素で接触還元するアルコールの製造法。  A process for producing an alcohol in which a carboxylic acid or an ester thereof is catalytically reduced with hydrogen by a fixed bed continuous reaction system using the catalyst regenerated by the regeneration method according to any one of claims 1 to 3.
JP26776898A 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst Expired - Fee Related JP4201890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26776898A JP4201890B2 (en) 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26776898A JP4201890B2 (en) 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2000093800A JP2000093800A (en) 2000-04-04
JP4201890B2 true JP4201890B2 (en) 2008-12-24

Family

ID=17449327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26776898A Expired - Fee Related JP4201890B2 (en) 1998-09-22 1998-09-22 Regeneration method of hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP4201890B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562541B2 (en) * 2008-09-11 2014-07-30 花王株式会社 Catalyst preparation method
JP5562542B2 (en) 2008-09-11 2014-07-30 花王株式会社 Catalyst preparation method
JP5225026B2 (en) * 2008-10-31 2013-07-03 株式会社ダイセル Copper catalyst regeneration method
JP5342218B2 (en) * 2008-11-28 2013-11-13 花王株式会社 Oil and fat manufacturing method
CN116689043A (en) * 2023-03-23 2023-09-05 华烁科技股份有限公司 Method for removing cokes of dimethyl oxalate hydrogenation catalyst
CN117324046A (en) * 2023-09-25 2024-01-02 青岛金牛油脂科技有限公司 Regeneration method of nickel catalyst for grease hydrogenation

Also Published As

Publication number Publication date
JP2000093800A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
EP0198682B1 (en) Alcohols production by hydrogenation of carboxylic acids
US5488024A (en) Selective acetylene hydrogenation
JP5065255B2 (en) Catalyst production method
JP3195357B2 (en) Method for preparing copper-containing hydrogenation catalyst and method for producing alcohol
JPH0699337B2 (en) Alcohol production method
JP2990568B2 (en) Method for preparing copper-containing hydrogenation catalyst and method for producing alcohol
JP2012514035A (en) Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
CA2778771A1 (en) Catalysts for making ethyl acetate from acetic acid
US20110196181A1 (en) Process for reacting an aromatic hydrocarbon in the presence of hydrogen
JP4201890B2 (en) Regeneration method of hydrogenation catalyst
CA2076324C (en) Process for the activation of a catalyst
JP2002508342A (en) Catalytic hydrogenation method of converting carboxylic acids or their anhydrides or esters into alcohols
US10208271B2 (en) Process for the selective hydrogenation of vegetable oils
JP5562541B2 (en) Catalyst preparation method
JP2010104938A (en) Method for regenerating copper catalyst
JP5562542B2 (en) Catalyst preparation method
JP3662063B2 (en) Method for producing alcohol
CN109312257B (en) Method for selectively hydrogenating vegetable oils using egg-shell catalysts
WO2010018405A1 (en) Chemical process and catalyst
Stepacheva et al. Polymeric Ru-containing catalysts in fatty acid hydrogenation
JPH0912491A (en) Production of alcohol
JP3117406B2 (en) Method for producing alcohol
JP2010254617A (en) METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050928

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees