JP4296680B2 - Laminate production method - Google Patents
Laminate production method Download PDFInfo
- Publication number
- JP4296680B2 JP4296680B2 JP2000085834A JP2000085834A JP4296680B2 JP 4296680 B2 JP4296680 B2 JP 4296680B2 JP 2000085834 A JP2000085834 A JP 2000085834A JP 2000085834 A JP2000085834 A JP 2000085834A JP 4296680 B2 JP4296680 B2 JP 4296680B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- prepreg
- laminate
- thickness
- laminated board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、積層板の製造方法に関し、特に電気機器、電子機器、通信機器等に使用される印刷回路板用として好適な積層板の連続的製造方法に関する。
【0002】
【従来の技術】
プリント回路板については小型化、高機能化の要求が強くなる反面、価格競争が激しく、特にプリント回路板に用いられる多層回路基板やガラス布基材エポキシ樹脂積層板、あるいはガラス不織布を中間層基材としガラス織布を表面層基材とした積層板(コンポジット積層板)は、いずれも価格の低減が大きな課題となっている。
また、近年電気機器、電子機器、通信機器等においては、デジタル化が進みプリント回路基板での安定したインピーダンスが要求されるようになり、これに伴いプリント回路板の原料である銅張積層板では板厚精度が要求されるようになってきた。
上記のようなプリント回路板に用いられる多層回路基板やガラス布基材エポキシ樹脂積層板、あるいはコンポジット積層板を積層成形する場合には、熱盤間に銅箔、プリプレグ、内層用プリント回路板、鏡面板等を何枚も重ねて加熱加圧成形する多段型のバッチプレスが一般的である。しかしこのような多段のバッチプレスでは、各積層板の熱盤内での位置により積層成形時に各積層板にかかる熱履歴が異なるため、成形性、反り、寸法変化率等の品質に於いて差が生じ、品質のバラツキの少ない製品を供給することは困難であった。さらに、20〜100kg/cm2 の高圧により積層板を成形するため樹脂フローにより板み精度が出ない問題があった。
また、多段型バッチプレスでは、熱盤、あて板、クッション材等の積層板を成形するに必要な治具を加熱冷却するための膨大な熱量が必要であり、そのため近年の地球温暖化等の地球環境に対する省エネルギー化が困難な設備であった。
【0003】
従来前記品質バラツキの少ない積層板や省エネルギー化ができる設備として横型の連続ベルトプレス等が開発されている。連続ロールプレスによる積層板の成形は、図2に一例を示すように、プリプレグ11を巻きだし、必要に応じて加熱装置12にて予備加熱し、プリプレグの上下両側から金属箔又はフィルム13を供給し、1対(又は複数対)の加熱ロール14にて重ね合わせ、加熱加圧して積層板15を成形する。その後、裁断機16にて裁断するかあるいは巻き取り機17に巻き取る。積層板15は、通常、裁断前又は後にアフターベーキングされる。しかしながら、これらのいずれの方法でも、重力による上下方向の差や材料の進入角の違いにより成形性や銅箔接着力等で表裏に差が生じる問題、銅箔や基材のテンションの違いによる反りや寸法変化が大きい問題、あるいはベルトプレスではベルトに挟んだ時の圧力むらや温度むらが発生しやすい問題があった。
特に、プリプレグの表裏の樹脂厚みが異なると、ベルトやロール間に挟んだとき樹脂溜まりの出来方が異なりこれによる液圧差により、液溜まりのない側にボイドが発生する問題があった。また、このプリプレグでの表裏の樹脂厚み差が積層板にした時にもそのまま表裏の樹脂厚み差になっており、これが反りの問題になっていた。
【0004】
【発明が解決しようとする課題】
以上のように、従来の多段型プレスでは多数枚加熱による成形性、反り、寸法変化率、板厚等の品質のバラツキや積層板を成形するに必要な治具を加熱冷却するための膨大な熱量が必要の問題があった。また、横型の連続プレスでは、重力による圧力差、温度のばらつき、材料へのテンションのばらつきなどにより、銅箔接着力の低下、寸法安定性の低下、反り等の問題があった。また、プリプレグの表裏の樹脂厚み差により、ボイドの原因や反りが大きくなる問題があった。
本発明は、従来の積層板成形方法の問題点を解消し、積層成形における内部残存応力をなくし、積層板の反り、寸法安定性を向上させ、さらに気泡がなく成形性が良好で、かつ省エネルギー型の安価な積層板の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、シート状繊維基材に樹脂を付着させたプリプレグの1枚又は複数枚を垂直方向に上方から下方へ移動させ、その片面又は両面に金属箔又はフィルムを重ね合わせ、加熱したロール間に上方から挿入し連続的に積層成形する積層板の製造方法において、プリプレグの表裏における樹脂厚みの差を20μm以下にして加熱ロールでの樹脂溜まり量が表裏で略同一にしたことを特徴とする積層板の製造方法に関するものである。
更には、プリプレグをロール間に挿入する前に予備加熱する行程を有する積層板の製造方法に関し、金属箔が両面にある積層板において、シート状繊維基材の両面と金属箔との間にある樹脂層厚みの差を10μm以下とする積層板の製造方法に関するものである。
【0006】
本発明において、シート状繊維基材としては、ガラスクロス、ガラス不繊布、ガラスペーパー等のガラス繊維基材の他、紙、合成繊維等からなる織布や不織布、金属繊維、カーボン繊維、鉱物繊維等からなる織布、不織布、マット類等が挙げられ、これらの基材の原料は単独又は混合して使用してもよい。
プリプレグを製造するためにこれらのシート状繊維基材に付着される樹脂としては、一般的に、熱硬化性樹脂であり、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂あるいはこれらの変性樹脂が好ましく使用されるが、その他、熱可塑性樹脂、天然樹脂等の樹脂も使用され、それらに限定されるものではない。前記基材へ樹脂を付着させるときの樹脂の形態としては、通常液状、とりわけ溶剤に溶解したワニスであるが、粉末状の樹脂、あるいは固形樹脂を加熱溶融した状態であってもよい。熱硬化性樹脂の場合、必要に応じて硬化剤、硬化促進剤を配合する。
また、樹脂中に充填材、着色剤、補強材を配合することができる。充填材として無機充填材を加えると耐トラッキング性、耐熱性、熱膨張率の低下等の特性を付与することが出来る。かかる無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、タルク、ウォラストナイト、アルミナ、シリカ、未焼成クレー、焼成クレー、硫酸バリウム等がある。
【0007】
次に、得られた樹脂は、シート状繊維基材上に均一に塗布する。この時の樹脂付着量は、シート状繊維基材の繊維材質、性状、重量(単位面積当たり)により異なるが、通常、シート状繊維基材の重量の40〜60%程度である。ただし、基材の両面に表裏における樹脂厚みの差が20μm以下になるように付着させる。表裏の樹脂厚み差が20μmより大きくなると、樹脂の硬化収縮や熱膨張により厚い方に反る現象が発生する。厚み差は小さいほど好ましく、10μm以下で反りがより効果的に防止される。
樹脂をシート状繊維基材に付着させる方法は、基材を樹脂ワニスに浸漬する方法、各種コーターによる塗布方法、スプレーによる吹き付け法等、樹脂が良好に付着する方法であれば特に限定されない。表裏の樹脂量のコントロールは、各種コーターの場合はコーターと基材との間隙で行う。スプレーの場合では表裏の樹脂の吹きつけ量でコントロールをする。また、特に樹脂が無溶剤である場合、シート状繊維基材は予め加熱されていてもよく、この場合、シート状繊維基材に樹脂を付着させるとき、この基材は、水平であっても垂直であってもよい。従って、シート状繊維基材の上面又は下面、あるいは垂直面に塗布により付着させることができる。その後の加熱によりプリプレグが得られる。
【0008】
以上によりに得られたプリプレグは、通常一旦巻き取り機等により巻き取られる。その後巻き出され、1枚又は複数枚重ねられる。プリプレグは、巻き取られることなく、直接1枚又は複数枚重ねられることもある。続いて、その片面又は両面に銅箔等の金属箔あるいはフィルムを重ね合わせ、加熱ロール間を上下方向に通すことにより積層板に成形される。この場合は、1対あるいは複数対のロール間を通して成形する。ロールの材質は、通常金属、ゴム、セラミック等があるが、後述する点から摩擦係数の少ないものが好ましい。プリプレグは、裁断されたものを使用することも可能であるが、切断せず連続的に成形する方が好ましい。
ロールの温度については、適用可能な範囲は110〜280℃であり、たとえばエポキシ樹脂の場合110〜190℃、ポリイミド樹脂の場合、210〜280℃の範囲が好ましい。
また、プリプレグは加熱ロール間を通す前に遠赤外線等により加熱し溶融させることにより、加熱ロールによる成形時に熱量の不足による成形不良を防止することができるので、好ましい。
【0009】
以下、本発明の積層板の製造方法に関し、積層成形工程を代表的な例について各工程毎に図面に基づいて順次説明する。
(プリプレグ供給)
巻き取られたプリプレグ1を巻き出して、加熱ロール4間へ供給するために上方から下方へ移送する。必要により、プリプレグ1を巻き出して後、遠赤外線等の加熱装置2により予め加熱する。
(金属箔供給)
巻き取られた金属箔3を巻き出してプリプレグ1の両面(又は片面)に供給する。
(加熱ロール)
金属箔3を、加熱ロール4の表面の所定位置に接触させその表面をロールの回転とともに移動させ、プリプレグ1と重ね合わせ、上方から一対又は複数対の加熱ロール3間を通し積層成形する。
(裁断又は巻き取り工程)
成形された積層板5を、裁断機6により必要な長さに裁断するか、又は巻き取り機7に巻き取る。積層板5は通常裁断の前又は後でアフターベーキングされる。
【0010】
【実施例】
以下、本発明について、実施例及び比較例により説明する。
【0011】
(実施例1)
エポキシ樹脂(油化シェルエポキシ(株)製臭素化エポキシ樹脂Ep5048,エポキシ当量675)100重量部、硬化剤(ジシアンジアミド)5重量部、硬化促進剤(2−エチル−4−メチルイミダゾール)1重量部及びメチルセルソルブ100重量部を混合しワニスを得た。
得られたワニスを100g/m2 のガラスクロスにコンマナイフコーターで塗布し、全体の樹脂固形分が100g/m2 であり、ガラスクロスの表裏面に固形分樹脂層厚みが各々20μmになるように含浸した。次いで、170℃の乾燥機で3分間乾燥し、得られたプリプレグを巻き取り機に巻き取った。
この巻き取ったプリプレグを図1に示す様に上方から下方にほぼ垂直に移送し、その両側に厚さ18μmの銅箔を供給し、180℃に加熱された一対の加熱ロール(間隙0.1mm)間にて加熱加圧成形した。その後180℃で60分アフターキュアすることにより厚さ0.1mmの両面銅張積層板を作製した。
【0012】
(実施例2)
実施例と同様にしてワニスを得た。得られたワニスを100g/m2 のガラスクロスにコンマナイフコーターで塗布し、全体の樹脂固形分が100g/m2 であり、固形分樹脂層厚みが表面で25μm、裏面で15μmになるように含浸した後、170℃の乾燥機で3分間乾燥し、得られたプリプレグを巻き取り機に巻き取った。
以下、実施例1と同様にして厚さ0.1mmの両面銅張積層板を作製した。
【0013】
(比較例1)
実施例と同様にしてワニスを得た。得られたワニスを100g/m2 のガラスクロスにコンマナイフコーターで塗布し、全体の樹脂固形分が100g/m2 であり、固形分樹脂層厚みが表面で40μm、裏面で10μmになるように含浸した後、170℃の乾燥機で3分間乾燥し、得られたプリプレグを巻き取り機に巻き取った。
以下、実施例1と同様にして厚さ0.1mmの両面銅張積層板を作製した。
【0014】
(比較例2)
実施例1と同様にして作製したプリプレグを、図2に示すように(但し、予熱はしない)、水平に移送し、その上下両側から厚さ18μmの銅箔を供給し、180℃に加熱された一対の加熱ロール(間隙0.1mm)間にて加熱加圧成形した。その後180℃で60分アフターキュアすることにより厚さ0.1mmの両面銅張積層板を作製した。
【0015】
(比較例3)
比較例1で得られたプリプレグを一定の長さに裁断して、その上下面に厚さ18μmの銅箔を重ね合わせ鏡面板間に配置し、これを10組重ね合わせ、温度165℃、圧力8kg/cm2 で90分間加熱加圧成形して両面銅張積層板を作製した。
【0016】
以上のようにして得られた各銅張積層板について、特性を測定した。さらに、成形に要するエネルギーコストを求めた。これらの結果を表1に示す。
【表1】
【0017】
(測定方法)
1.エネルギーコスト:積層成形時の使用燃料量を比較例2に対して比率で求めた。
2.成形性:銅張積層板の銅箔をエッチングして、目視により外観を観察した。
3.反り:250mm角の銅張積層板のテストピースを170℃、30分間加熱した後の最大反り量を測定した。
4.寸法変化率:穴間隔が250mmの銅張積層板のテストピースを170℃、30分間加熱した後の穴間隔の寸法変化率を測定した。
5.引張り強さ:銅張積層板の銅箔をエッチングして、10×100mmに切断後テンシロンにて引張り強度を測定した。
6.銅箔引剥し強さ:JIS C 6481により測定した。
7.半田耐熱性:50×50mm角の積層板を、260℃の半田浴に3分間フロートさせ、ふくれの有無を測定した。
8.絶縁抵抗:JIS C 6481により測定した。
【0018】
【発明の効果】
本発明の方法は、プリプレグの表裏の樹脂厚み差を20μm以下にして加熱ロールでの樹脂溜まり量が表裏で均一にしたことを特徴とする。従って積層板の表裏の樹脂層厚みが均一となるので、反りが極めて少ない等、積層板品質が良好となる。さらにこのプリプレグを上方から加熱ロール間に供給し、この加熱ロールにより積層成形することによって、設備が小型化し、このことにより使用燃料が削減されるので、エネルギコストの削減、熱源設備からの排出ガスによる大気汚染の減少、及び省資源化を達成することができる。また、積層板製造時において、従来の横方向の移動による連続成形に比べ重力の影響が無くプリプレグ等のテンションが均一になるので、反りが極めて少ない等、積層板品質が良好となる。さらにロールプレスにより積層板を任意の長さに裁断できるため、従来発生していた耳等の端材部分が減り歩留まりが向上する。このように、原材料及び設備、工程の低コスト化の点で優れており、工業的な積層板の製造方法として好適である。
【図面の簡単な説明】
【図1】 本発明における積層板の製造工程を示す概略図。
【図2】 従来の連続法による積層板の製造工程を示す概略図。
【符号の説明】
1,11 プリプレグ
2,12 加熱装置
3,13 金属箔又はフィルム
4,14 加熱ロール
5,15 積層板
6,16 裁断機
7,17 巻き取り機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a laminate, and more particularly to a continuous method for producing a laminate suitable for a printed circuit board used in electrical equipment, electronic equipment, communication equipment, and the like.
[0002]
[Prior art]
There is a strong demand for miniaturization and higher functionality for printed circuit boards, but price competition is fierce. In particular, multilayer circuit boards, glass cloth base epoxy resin laminates, or glass nonwoven fabrics used for printed circuit boards are used as intermediate layers. As for the laminated board (composite laminated board) which used the woven fabric and the surface layer base material as a material, reduction of a price has become a big subject.
In recent years, electrical devices, electronic devices, communication devices, etc. have been digitized and require stable impedance in printed circuit boards. With this, copper-clad laminates that are the raw materials for printed circuit boards Thickness accuracy has been required.
In the case of laminating and forming a multilayer circuit board or a glass cloth base epoxy resin laminate or a composite laminate used for a printed circuit board as described above, a copper foil, a prepreg, a printed circuit board for an inner layer between hot plates, A multi-stage batch press in which a number of mirror plates or the like are stacked and heated and pressed is generally used. However, in such a multi-stage batch press, the heat history applied to each laminated plate during lamination molding differs depending on the position of each laminated plate in the hot platen, so there is a difference in quality such as formability, warpage, and dimensional change rate. Therefore, it was difficult to supply a product with less quality variation. Further, since the laminated plate is molded at a high pressure of 20 to 100 kg / cm 2 , there is a problem that the platen accuracy is not obtained by the resin flow.
Also, multi-stage batch presses require a huge amount of heat to heat and cool jigs required to form laminated plates such as hot plates, cover plates, cushion materials, etc. It was difficult to save energy for the global environment.
[0003]
Conventionally, a horizontal continuous belt press or the like has been developed as a laminated plate with little quality variation and equipment capable of energy saving. As shown in an example in FIG. 2, the
In particular, when the resin thicknesses on the front and back sides of the prepreg are different, there is a problem in that when the resin is sandwiched between belts and rolls, a resin pool is formed and a void is generated on the side where there is no liquid pool due to a difference in hydraulic pressure. Further, even when the difference in resin thickness between the front and back surfaces of the prepreg is made into a laminate, the difference in resin thickness between the front and back surfaces is directly caused, which is a problem of warpage.
[0004]
[Problems to be solved by the invention]
As described above, the conventional multi-stage press has a large quantity for heating and cooling jigs necessary for forming moldability, warpage, dimensional change rate, plate thickness, and other variations in quality due to heating of a large number of sheets. There was a problem of needing heat. Further, the horizontal continuous press has problems such as a decrease in adhesive strength of copper foil, a decrease in dimensional stability, and a warp due to a pressure difference due to gravity, a variation in temperature, a variation in tension on a material, and the like. In addition, there is a problem that the cause of warp and warpage increase due to the difference in resin thickness between the front and back surfaces of the prepreg.
The present invention eliminates the problems of conventional laminate forming methods, eliminates the internal residual stress in laminate forming, improves the warpage of the laminate, dimensional stability, has no bubbles, has good formability, and saves energy. An object of the present invention is to provide a method for manufacturing an inexpensive laminate of a mold.
[0005]
[Means for Solving the Problems]
In the present invention, one or a plurality of prepregs each having a resin attached to a sheet-like fiber base material are moved vertically from top to bottom, and a metal foil or film is superposed on one or both sides and heated between rolls. In the manufacturing method of a laminated board that is inserted from above into a continuous laminated molding, the difference in resin thickness between the front and back of the prepreg is set to 20 μm or less, and the amount of the resin pool in the heating roll is made substantially the same on the front and back. The present invention relates to a method for manufacturing a laminated board.
Furthermore, the present invention relates to a method of manufacturing a laminated board having a process of preheating before inserting a prepreg between rolls, in a laminated board having a metal foil on both sides, and between the both sides of the sheet-like fiber substrate and the metal foil. The present invention relates to a method for manufacturing a laminated board in which the difference in resin layer thickness is 10 μm or less.
[0006]
In the present invention, as the sheet-like fiber base material, in addition to glass fiber base materials such as glass cloth, glass non-woven cloth, and glass paper, woven or non-woven fabric made of paper, synthetic fiber, etc., metal fiber, carbon fiber, mineral fiber Woven fabrics, non-woven fabrics, mats, and the like, and the raw materials for these substrates may be used alone or in combination.
The resin attached to these sheet-like fiber base materials for producing a prepreg is generally a thermosetting resin, preferably an epoxy resin, a polyimide resin, a phenol resin, a melamine resin, or a modified resin thereof. In addition, resins such as thermoplastic resins and natural resins are also used, but are not limited thereto. The form of the resin when the resin is adhered to the substrate is usually a varnish dissolved in a liquid, particularly a solvent, but may be a powdered resin or a state in which a solid resin is heated and melted. In the case of a thermosetting resin, a curing agent and a curing accelerator are blended as necessary.
Moreover, a filler, a coloring agent, and a reinforcing material can be mix | blended in resin. When an inorganic filler is added as a filler, characteristics such as tracking resistance, heat resistance, and a decrease in coefficient of thermal expansion can be imparted. Such inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, barium sulfate and the like.
[0007]
Next, the obtained resin is uniformly applied onto the sheet-like fiber base material. The resin adhesion amount at this time varies depending on the fiber material, properties, and weight (per unit area) of the sheet-like fiber substrate, but is usually about 40 to 60% of the weight of the sheet-like fiber substrate. However, it is made to adhere so that the difference of the resin thickness in the front and back may become 20 micrometers or less on both surfaces of a base material. If the difference in resin thickness between the front and back surfaces is greater than 20 μm, a phenomenon of warping in the thicker direction occurs due to curing shrinkage or thermal expansion of the resin. The thickness difference is preferably as small as possible, and warpage is more effectively prevented at 10 μm or less.
The method for adhering the resin to the sheet-like fiber substrate is not particularly limited as long as the resin adheres satisfactorily, such as a method of immersing the substrate in a resin varnish, a coating method using various coaters, or a spraying method using a spray. The amount of resin on the front and back sides is controlled by the gap between the coater and the substrate in the case of various coaters. In the case of spraying, the amount of resin sprayed on the front and back is controlled. In particular, when the resin is solvent-free, the sheet-like fiber base material may be preheated. In this case, when the resin is attached to the sheet-like fiber base material, the base material may be horizontal. It may be vertical. Therefore, it can be made to adhere to the upper surface or lower surface or vertical surface of the sheet-like fiber substrate by coating. A prepreg is obtained by subsequent heating.
[0008]
The prepreg obtained as described above is usually once wound by a winder or the like. Thereafter, it is unwound and one or more sheets are stacked. One or a plurality of prepregs may be directly stacked without being wound up. Subsequently, a metal foil such as a copper foil or a film is superposed on one side or both sides thereof and passed between heating rolls in the vertical direction to form a laminate. In this case, it shape | molds through between a pair or several pairs of rolls. The material of the roll is usually a metal, rubber, ceramic or the like, but a material having a small coefficient of friction is preferable from the point described later. Although it is possible to use a cut prepreg, it is preferable that the prepreg is continuously formed without being cut.
About the temperature of a roll, the applicable range is 110-280 degreeC, for example, the range of 110-190 degreeC in the case of an epoxy resin and 210-280 degreeC in the case of a polyimide resin is preferable.
Further, the prepreg is preferably heated and melted by far infrared rays before passing between the heating rolls, so that molding defects due to insufficient heat amount can be prevented when molding with the heating roll.
[0009]
Hereinafter, regarding the manufacturing method of the laminated board of this invention, a lamination | stacking formation process is sequentially demonstrated based on drawing for each process about a typical example.
(Supply prepreg)
The
(Metal foil supply)
The
(Heating roll)
The
(Cutting or winding process)
The molded laminated
[0010]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[0011]
Example 1
100 parts by weight of epoxy resin (brominated epoxy resin Ep5048, epoxy equivalent 675 manufactured by Yuka Shell Epoxy Co., Ltd.), 5 parts by weight of curing agent (dicyandiamide), 1 part by weight of curing accelerator (2-ethyl-4-methylimidazole) And 100 parts by weight of methyl cellosolve was mixed to obtain a varnish.
The obtained varnish is applied to a glass cloth of 100 g / m 2 with a comma knife coater so that the total resin solid content is 100 g / m 2 and the thickness of the solid resin layer on the front and back surfaces of the glass cloth is 20 μm. Impregnated. Subsequently, it dried for 3 minutes with 170 degreeC dryer, and obtained prepreg was wound up by the winder.
As shown in FIG. 1, the wound prepreg is transported almost vertically from above to below, and a copper foil having a thickness of 18 μm is supplied to both sides thereof, and a pair of heating rolls (gap 0.1 mm) are heated to 180 ° C. ) Heat-press molding in between. Thereafter, after-curing at 180 ° C. for 60 minutes, a double-sided copper-clad laminate having a thickness of 0.1 mm was produced.
[0012]
(Example 2)
Varnishes were obtained in the same manner as in the examples. The obtained varnish is applied to a glass cloth of 100 g / m 2 with a comma knife coater so that the total resin solid content is 100 g / m 2 and the solid resin layer thickness is 25 μm on the front surface and 15 μm on the back surface. After impregnation, it was dried for 3 minutes with a dryer at 170 ° C., and the obtained prepreg was wound on a winder.
Thereafter, a double-sided copper clad laminate having a thickness of 0.1 mm was produced in the same manner as in Example 1.
[0013]
(Comparative Example 1)
Varnishes were obtained in the same manner as in the examples. The obtained varnish is applied to a glass cloth of 100 g / m 2 with a comma knife coater so that the total resin solid content is 100 g / m 2 and the solid resin layer thickness is 40 μm on the front surface and 10 μm on the back surface. After impregnation, it was dried for 3 minutes with a dryer at 170 ° C., and the obtained prepreg was wound on a winder.
Thereafter, a double-sided copper clad laminate having a thickness of 0.1 mm was produced in the same manner as in Example 1.
[0014]
(Comparative Example 2)
The prepreg produced in the same manner as in Example 1 was transported horizontally as shown in FIG. 2 (but not preheated), and 18 μm thick copper foil was supplied from both the upper and lower sides and heated to 180 ° C. Heat pressing was performed between a pair of heated rolls (gap 0.1 mm). Thereafter, after-curing at 180 ° C. for 60 minutes, a double-sided copper-clad laminate having a thickness of 0.1 mm was produced.
[0015]
(Comparative Example 3)
The prepreg obtained in Comparative Example 1 was cut into a certain length, and 18 μm thick copper foils were placed on the upper and lower surfaces thereof and placed between mirror mirror plates, and 10 sets of these were stacked, at a temperature of 165 ° C., pressure A double-sided copper-clad laminate was produced by heating and pressing at 8 kg / cm 2 for 90 minutes.
[0016]
The characteristics of each copper clad laminate obtained as described above were measured. Furthermore, the energy cost required for molding was determined. These results are shown in Table 1.
[Table 1]
[0017]
(Measuring method)
1. Energy cost: The amount of fuel used at the time of laminate molding was determined as a ratio relative to Comparative Example 2.
2. Formability: The copper foil of the copper clad laminate was etched, and the appearance was visually observed.
3. Warpage: The maximum amount of warpage after a test piece of a copper-clad laminate of 250 mm square was heated at 170 ° C. for 30 minutes was measured.
4). Dimensional change rate: The dimensional change rate of the hole interval after heating a test piece of a copper clad laminate having a hole interval of 250 mm at 170 ° C. for 30 minutes was measured.
5. Tensile strength: The copper foil of the copper clad laminate was etched, cut to 10 × 100 mm, and the tensile strength was measured with Tensilon.
6). Copper foil peel strength: Measured according to JIS C 6481.
7). Solder heat resistance: A 50 × 50 mm square laminate was floated in a 260 ° C. solder bath for 3 minutes, and the presence or absence of blistering was measured.
8). Insulation resistance: Measured according to JIS C 6481.
[0018]
【The invention's effect】
The method of the present invention is characterized in that the resin thickness difference between the front and back surfaces of the prepreg is set to 20 μm or less so that the amount of the resin pool on the heating roll is uniform between the front and back surfaces. Therefore, since the resin layer thickness on the front and back of the laminated board becomes uniform, the quality of the laminated board is improved such that the warpage is extremely small. Further, the prepreg is supplied between the heating rolls from above and laminated with the heating rolls, thereby reducing the size of the equipment and thereby reducing the fuel used. Therefore, the energy cost is reduced and the exhaust gas from the heat source equipment is reduced. Air pollution can be reduced and resources can be saved. In addition, when manufacturing a laminate, the tension of the prepreg and the like is uniform and there is no influence of gravity compared to the conventional continuous forming by lateral movement, so that the laminate quality is improved, for example, the warpage is extremely small. Furthermore, since the laminated plate can be cut into an arbitrary length by a roll press, the end material portions such as ears which have been conventionally generated are reduced, and the yield is improved. Thus, it is excellent in terms of cost reduction of raw materials, equipment, and processes, and is suitable as an industrial laminate production method.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a production process of a laminated board according to the present invention.
FIG. 2 is a schematic view showing a manufacturing process of a laminate by a conventional continuous method.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000085834A JP4296680B2 (en) | 2000-03-27 | 2000-03-27 | Laminate production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000085834A JP4296680B2 (en) | 2000-03-27 | 2000-03-27 | Laminate production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001269954A JP2001269954A (en) | 2001-10-02 |
JP4296680B2 true JP4296680B2 (en) | 2009-07-15 |
Family
ID=18602095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000085834A Expired - Fee Related JP4296680B2 (en) | 2000-03-27 | 2000-03-27 | Laminate production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4296680B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5849205B2 (en) | 2011-11-22 | 2016-01-27 | パナソニックIpマネジメント株式会社 | Metal-clad laminate and printed wiring board |
JP6940875B2 (en) * | 2017-12-04 | 2021-09-29 | ユニチカ株式会社 | Manufacturing method of transparent sheet and transparent sheet |
JP6357272B1 (en) * | 2017-12-04 | 2018-07-11 | ユニチカ株式会社 | Method for producing transparent sheet and transparent sheet |
JP6883827B2 (en) * | 2019-05-10 | 2021-06-09 | 株式会社Ihiエアロスペース | Prepreg continuous manufacturing equipment and its method |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63267524A (en) * | 1987-04-24 | 1988-11-04 | Toray Ind Inc | Method and apparatus for manufacturing metal clad laminated sheet |
DE3834993A1 (en) * | 1988-10-14 | 1990-04-19 | Held Kurt | METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF LAMINATES |
AT395432B (en) * | 1990-06-13 | 1992-12-28 | Isovolta | MAT IMPREGNATED WITH PLASTIC AND METHOD FOR THE PRODUCTION THEREOF AND THEIR USE |
JPH0491910A (en) * | 1990-08-06 | 1992-03-25 | Kanegafuchi Chem Ind Co Ltd | Continuous manufacture of electric laminated board |
JPH06143271A (en) * | 1992-11-11 | 1994-05-24 | Hitachi Chem Co Ltd | Manufacture of glass non-woven cloth base prepreg |
JPH07266435A (en) * | 1994-03-29 | 1995-10-17 | Matsushita Electric Works Ltd | Manufacture of laminated sheet |
JPH1034649A (en) * | 1996-07-24 | 1998-02-10 | Toutoku Toryo Kk | Manufacture of prepreg in circuit board |
JPH11268037A (en) * | 1998-03-25 | 1999-10-05 | Matsushita Electric Works Ltd | Manufacture of prepreg |
-
2000
- 2000-03-27 JP JP2000085834A patent/JP4296680B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001269954A (en) | 2001-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110086510A (en) | Method for laminating prepreg, method for producing printed wiring board and prepreg roll | |
JP3029487B2 (en) | Manufacturing method of copper clad laminate | |
JP4296680B2 (en) | Laminate production method | |
JP3611506B2 (en) | Laminate manufacturing method | |
JP2001260241A (en) | Method for manufacturing laminate sheet | |
JP2001138437A (en) | Method for manufacturing laminate | |
JP2001150623A (en) | Method of manufacturing laminated sheet | |
JP2004216784A (en) | Method for manufacturing prepreg, prepreg, laminate with built-in inner layer circuit and metal foil-clad laminate | |
JP2001179877A (en) | Method for manufacturing laminated sheet | |
JP2001170953A (en) | Method for manufacturing laminated sheet | |
JP2002052558A (en) | Method for producing laminated plate | |
JP2001047587A (en) | Manufacture of laminate | |
JP2001334542A (en) | Method for manufacturing laminated sheet | |
JP2004249641A (en) | Manufacturing method for laminate | |
JP2001138436A (en) | Method for manufacturing laminate | |
JP2001179919A (en) | Method for manufacturing laminated plate | |
JP2001162639A (en) | Method for manufacturing laminated sheet | |
JP2001334543A (en) | Method for manufacturing laminated sheet | |
JP2001334544A (en) | Method for manufacturing laminated sheet | |
JPH01215516A (en) | Manufacture of metallic foil plated laminated sheet | |
JPS6042567B2 (en) | Manufacturing method for electrical laminates | |
JP3565737B2 (en) | Manufacturing method of laminated board | |
JP2004098493A (en) | Method for manufacturing laminated sheet | |
JP2004291580A (en) | Method for production of laminate sheet | |
JP3178163B2 (en) | Manufacturing method of laminated board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4296680 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |