[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4290532B2 - プロトン伝導体組成物およびプロトン伝導膜 - Google Patents

プロトン伝導体組成物およびプロトン伝導膜 Download PDF

Info

Publication number
JP4290532B2
JP4290532B2 JP2003388776A JP2003388776A JP4290532B2 JP 4290532 B2 JP4290532 B2 JP 4290532B2 JP 2003388776 A JP2003388776 A JP 2003388776A JP 2003388776 A JP2003388776 A JP 2003388776A JP 4290532 B2 JP4290532 B2 JP 4290532B2
Authority
JP
Japan
Prior art keywords
group
oxide hydrate
sulfonic acid
proton
polyarylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003388776A
Other languages
English (en)
Other versions
JP2005146189A (ja
Inventor
淳司 川井
敏敬 大月
長之 金岡
洋一 浅野
亮一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
JSR Corp
Original Assignee
Honda Motor Co Ltd
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, JSR Corp filed Critical Honda Motor Co Ltd
Priority to JP2003388776A priority Critical patent/JP4290532B2/ja
Priority to US10/990,879 priority patent/US20050106469A1/en
Publication of JP2005146189A publication Critical patent/JP2005146189A/ja
Application granted granted Critical
Publication of JP4290532B2 publication Critical patent/JP4290532B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池の固体高分子電解質膜として用いられるプロトン伝導膜およびその組成物に関する。
燃料電池は基本的に2つの触媒電極と、電極に挟まれた固体電解質膜から構成される。燃料である水素は一方の電極でイオン化され、この水素イオンは固体電解質膜中を拡散した後に他方の電極で酸素と結合する。このとき2つの電極を外部回路で接続していると、電流が流れ、外部回路に電力を供給する。ここで固体電解質膜は、水素イオンを拡散させると同時に、燃料ガスの水素と酸素を物理的に隔離し、かつ電子の流れを遮断する機能を担っている。
固体高分子電解質膜として、DuPont社、Dow社、旭化成社、旭硝子社などから提案されているパーフルオロカーボンスルホン酸膜に代表されるフッ素系電解質膜がある。これは化学安定性に優れていることから、過酷な条件下で使用される燃料電池や水分解のための電解質膜として使用されている。
しかしながら、フッ素系電解質膜に代表される多くの電解質膜は、ガラス転移点が比較的低く、スルホン酸基がイオンサイトであることから水和力が比較的弱く、水の沸点以上の温度環境下かつ飽和水蒸気圧以下では電解質膜の乾燥が起こり、プロトン伝導度が低下する。そのため、このような電解質膜を用いた燃料電池の作動温度は100℃以下、好ましくは80℃以下に限定される。
したがって、フッ素系電解質膜などの電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池などの特殊な用途に限られ、自動車用の低公害動力源、民生用小型分散電源、携帯用電源などに応用する場合には、原燃料である低分子の炭化水素から水素ガスを主成分とする改質ガスを製造し、得られた改質ガスを冷却したり、改質ガス中の一酸化炭素を除去する必要があるなどシステムが複雑になるという問題がある。
また、燃料電池は、高い温度で作動させるほうが電極触媒が高活性になって電極過電圧が低下し、電極の一酸化炭素による被毒も少なくなることからも、高温下(100℃以上)で十分なプロトン伝導度を示す固体高分子電解質膜の開発が望まれている。
本発明の課題は、100℃以上の高温領域でも十分に高いプロトン伝導性を有するプロトン伝導膜が得られるプロトン伝導体組成物および該組成物からなるプロトン伝導膜を提供することにある。
本発明者らは、このような従来技術における問題点に鑑み鋭意検討した結果、無機プロトン伝導体である金属酸化物水和物微粒子をプロトン伝導膜中に混合・分散させて膜と複合化させることで、高温下(100℃以上)でも十分な強度およびプロトン伝導性を有するプロトン伝導体膜およびその組成物を見出して本発明を完成するに至った。
本発明によれば、以下のプロトン伝導体組成物およびプロトン伝導膜が提供されることにより、上記課題を解決することができる。
(1)(a)金属酸化物水和物およびフィロケイ酸塩から選ばれる少なくとも1種と、
(b)スルホン酸基を有するポリアリーレンとを含有することを特徴とするプロトン伝導体組成物。
(2) 上記金属酸化物水和物が、酸化タングステン水和物、ニオブをドープした酸化タングステン水和物、スズ酸化物水和物、酸化ケイ素水和物、酸化リン水和物、酸化ジルコニア水和物をドープした酸化ケイ素水和物、リン酸ウラニルおよび酸化モリブデン水和物からなる群より選択される少なくとも1種の化合物であることを特徴とする(1)に記載のプロトン伝導体組成物。
(3) 上記フィロケイ酸塩がモンモリロナイト、サポナイト、ヘクトライト、スチーブンサイト、バーミキュライト、フッ素4ケイ素雲母、テニオライトからなる群より選択される少なくとも1種の化合物であることを特徴とする(1)に記載のプロトン伝導体組成物。
(4) 上記金属酸化物水和物が、上記スルホン酸基を有するポリアリーレン100重量部に対して0.5〜80重量部の割合で含有されていることを特徴とする(1)〜(3)のいずれかに記載のプロトン伝導体組成物。
(5) 上記スルホン酸基を有するポリアリーレンが、下記一般式(A)で表される構成単位および下記一般式(B)で表される構成単位を含むことを特徴とする(1)〜(4)のいずれかに記載のプロトン伝導体組成物。
Figure 0004290532
(式中、Yは2価の電子吸引性基を示し、Zは2価の電子供与性基または直接結合を示し、Arは−SO3Hで表される置換基を有する芳香族基を示し、mは0〜10の整数を示
し、nは0〜10の整数を示し、kは1〜4の整数を示す。)
Figure 0004290532
(式中、R1〜R8は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、フッ素置換アルキル基、アリル基、アリール基およびシアノ基からなる群より選ばれる少なくとも1種の原子または基を示し、Wは2価の電子吸引性基または単結合を示し、Tは2価の有機基または単結合を示し、pは0または正の整数を示す。)
(6) (1)〜(5)のいずれかに記載のプロトン伝導体組成物からなることを特徴とするプロトン伝導膜。
本発明のプロトン伝導体組成物を用いれば、100℃以上の高温領域においても高いプロトン伝導性を有するプロトン伝導膜が得られる。
以下、本発明に係る金属酸化物水和物および/またはフィロケイ酸塩と、スルホン酸基を有するポリアリーレンとからなることを特徴とするプロトン伝導体組成物およびプロトン伝導膜について詳細に説明する。
(金属酸化物水和物)
本発明において、100℃以上で用いられる金属酸化物水和物としては、酸化タングステン水和物、ニオブをドープした酸化タングステン水和物、スズ酸化物水和物、酸化ケイ素水和物、酸化リン水和物、酸化ジルコニア水和物をドープした酸化ケイ素水和物、リン酸ウラニルおよび酸化モリブデン水和物からなる群より選択することができ、これらの化合物を単独で用いても、2種以上を混合して用いてもよい。
本発明で用いられる金属酸化物水和物のプロトン伝導率は10-5S/cm以上、好まし
くは10-3S/cm以上であることが望ましい。プロトン伝導率が10-5S/cm未満であると、100℃以上で十分なプロトン伝導度を得られないことがある。
また、金属酸化物水和物の平均粒子径は、100nm以下、好ましくは80nm以下であることが望ましい。平均粒子径が100nmを超えると、プロトン伝導膜中に均一に分散することが困難となるからである。
(フィロケイ酸塩)
本発明に用いられるフィロケイ酸塩としては、モンモリロナイト、サポナイト、ヘクトライト、スチーブンサイト、バーミキュライト、フッ素4ケイ素雲母、テニオライトなどを挙げることができる。
(スルホン酸基を有するポリアリーレン)
本発明に用いられるスルホン酸基を有するポリアリーレンは、下記一般式(A)で表される構成単位と、下記一般式(B)で表される構成単位とを含む下記一般式(C)で表される重合体である。
Figure 0004290532
式(A)中、Yは2価の電子吸引性基を示し、具体的には−CO−、−SO2−、
−SO−、−CONH−、−COO−、−(CF2)l−(ここで、lは1〜10の整数である)、−C(CF32−などが挙げられる。
Zは2価の電子供与性基または直接結合を示し、電子供与性基の具体例としては、
−(CH2)−、−C(CH32−、−O−、−S−、−CH=CH−、−C≡C―およ
Figure 0004290532
などが挙げられる。なお、電子吸引性基とは、ハメット(Hammett)置換基常数がフェニ
ル基のm位の場合、0.06以上、p位の場合、0.01以上の値となる基をいう。
Arは−SO3Hで表される置換基を有する芳香族基を示し、芳香族基として具体的に
はフェニル基、ナフチル基、アントラセニル基、フェナンチル基などが挙げられる。これらの基のうち、フェニル基、ナフチル基が好ましい。
mは0〜10、好ましくは0〜2の整数、nは0〜10、好ましくは0〜2の整数を示し、kは1〜4の整数を示す。
Figure 0004290532
式(B)中、R1〜R8は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、フッ素置換アルキル基、アリル基、アリール基およびシアノ基からなる群より選ばれる少なくとも1種の原子または基を示す。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基などが挙げられ、メチル基、エチル基などが好ましい。
フッ素置換アルキル基としては、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられ、トリフルオロメチル基、ペンタフルオロエチル基などが好ましい。
アリル基としては、プロペニル基などが挙げられ、アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
Wは2価の電子吸引性基または単結合を示し、Tは2価の有機基または単結合を示す。pは0または正の整数であり、上限は通常100、好ましくは10〜80である。
Figure 0004290532
式(C)中、W、T、Y、Z、Ar、m、n、k、pおよびR1〜R8は、それぞれ上記一般式(A)および(B)中のW、T、Y、Z、Ar、m、n、k、pおよびR1〜R8と同義である。
本発明で用いられるスルホン酸基を有するポリアリーレンは、式(A)で表される構成単位を0.5〜100モル%、好ましくは10〜99.999モル%の割合で、式(B)で表される構成単位を99.5〜0モル%、好ましくは90〜0.001モル%の割合で含有している。
(スルホン酸基を有するポリアリーレンの製造方法)
スルホン酸基を有するポリアリーレンは、上記一般式(A)で表される構造単位となりうるスルホン酸エステル基を有するモノマーと、上記一般式(B)で表される構造単位となりうるオリゴマーとを共重合させ、スルホン酸エステル基を有するポリアリーレンを製造し、このスルホン酸エステル基を有するポリアリーレンを加水分解して、スルホン酸エステル基をスルホン酸基に変換することにより合成することができる。
また、スルホン酸基を有するポリアリーレンは、上記一般式(A)においてスルホン酸基およびスルホン酸エステル基を有しない構造単位と、上記一般式(B)の構造単位とからなるポリアリーレンを予め合成し、この重合体をスルホン化することにより合成することもできる。
上記一般式(A)の構造単位となりうるモノマーとしては、例えば下記一般式(D)で表されるスルホン酸エステル(以下、モノマー(D)ともいう。)が挙げられる。
Figure 0004290532
式(D)中、Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2G(
ここで、Gはアルキル基、フッ素置換アルキル基またはアリール基を示す。)から選ばれる原子または基を示し、Y、Z、Ar、m、nおよびkは、それぞれ上記一般式(A)中のY、Z、Ar、m、nおよびkと同義である。
aは炭素原子数1〜20、好ましくは4〜20の炭化水素基を示し、具体的には、メ
チル基、エチル基、n−プロピル基、iso−プロピル基、tert-ブチル基、iso-ブチル
基、n−ブチル基、sec−ブチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、アダマンチル基、アダマンタンメチル基、2−エチルヘキシル基、ビシクロ[2.2.1]へプチル基、ビシクロ[2.2.1]へプチルメチル基、テトラヒドロフルフリル基、2−メチルブチル基、3,3−ジメチル−2,4−ジオキソランメチル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基などの直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、5員の複素環を有する炭化水素基などが挙げられる。これらの中では、n−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、特にネオペンチル基が好ましい。
Arは−SO3bで表わされる置換基を有する芳香族基を示し、芳香族基として具体的にはフェニル基、ナフチル基、アントラセニル基、フェナンチル基などが挙げられる。これらの基のうち、フェニル基、ナフチル基が好ましい。
置換基−SO3bは、芳香族基に1個または2個以上置換しており、置換基−SO3bが2個以上置換している場合には、これらの置換基は互いに同一でも異なっていてもよい。
ここで、Rbは炭素原子数1〜20、好ましくは4〜20の炭化水素基を示し、具体的
には上記炭素原子数1〜20の炭化水素基などが挙げられる。これらの中では、n−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、特にネオペンチル基が好ましい。
mは0〜10、好ましくは0〜2の整数、nは0〜10、好ましくは0〜2の整数を示し、kは1〜4の整数を示す。
式(D)で表されるスルホン酸エステルの具体例としては、以下の様な化合物が挙げられる。
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
また、上記一般式(A)で表される本発明に係る芳香族スルホン酸エステル誘導体として、上記化合物において塩素原子が臭素原子に置き換わった化合物、上記化合物において−CO−が−SO2−に置き換わった化合物、上記化合物において塩素原子が臭素原子に
置き換わり、かつ−CO−が−SO2−に置き換わった化合物なども挙げられる。
一般式(D)中のRb基は1級のアルコール由来で、β炭素が3級または4級炭素であ
ることが、重合工程中の安定性に優れ、脱エステル化によるスルホン酸の生成に起因する重合阻害や架橋を引き起こさない点で好ましく、さらには、これらのエステル基は1級アルコール由来でβ位が4級炭素であることが好ましい。
また、上記一般式(D)において、スルホン酸基およびスルホン酸エステル基を有しない化合物の具体例としては、下記の様な化合物が挙げられる。
Figure 0004290532
Figure 0004290532
上記化合物において塩素原子が臭素原子に置き換わった化合物、上記化合物において−CO−が−SO2−に置き換わった化合物、上記化合物において塩素原子が臭素原子に置
き換わり、かつ−CO−が−SO2−に置き換わった化合物なども挙げられる。
上記一般式(B)の構造単位となりうるオリゴマーとしては、例えば下記一般式(E)で表されるオリゴマー(以下、オリゴマー(E)ともいう。)が挙げられる。
Figure 0004290532
式(E)中、R'およびR''は互いに同一でも異なっていてもよく、フッ素原子を除く
ハロゲン原子または−OSO2G(ここで、Gはアルキル基、フッ素置換アルキル基また
はアリール基を示す。)で表される基を示す。Gが示すアルキル基としてはメチル基、エチル基などが挙げられ、フッ素置換アルキル基としてはトリフルオロメチル基などが挙げられ、アリール基としてはフェニル基、p−トリル基などが挙げられる。
1〜R8は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、フッ素置換アルキル基、アリル基、アリール基およびシアノ基からなる群より選ばれる少なくとも1種の原子または基を示す。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基などが挙げられ、メチル基、エチル基などが好ましい。
フッ素置換アルキル基としては、トリフルオロメチル基、パーフルオロエチル基、
パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられ、トリフルオロメチル基、ペンタフルオロエチル基などが好ましい。
アリル基としては、プロペニル基などが挙げられ、
アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
Wは2価の電子吸引性基または単結合を示し、電子吸引性基としては、上述したものと同様のものが挙げられる。
Tは2価の有機基または単結合であって、電子吸引性基であっても電子供与性基であってもよい。電子吸引性基および電子供与性基としては、上述したものと同様のものが挙げられる。
pは0または正の整数であり、上限は通常100、好ましくは10〜80である。
上記一般式(E)で表される化合物として具体的には、p=0の場合、例えば4,4'−ジクロロベンゾフェノン、4,4'−ジクロロベンズアニリド、ビス(クロロフェニル)ジフルオロメタン、2,2−ビス(4−クロロフェニル)ヘキサフルオロプロパン、4−ク
ロロ安息香酸−4−クロロフェニル、ビス(4−クロロフェニル)スルホキシド、ビス(4−クロロフェニル)スルホン、2,6−ジクロロベンゾニトリル、9,9−ビス(4−ヒドロキシフェニル)フルオレンが挙げられる。これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物、さらにこれらの化合物において4位に置換したハロゲン原子の少なくとも1つ以上が3位に置換した化合物などが挙げられる。
またp=1の場合、上記一般式(E)で表される具体的な化合物としては、例えば4,
4'−ビス(4−クロロベンゾイル)ジフェニルエーテル、4,4'−ビス(4−クロロベ
ンゾイルアミノ)ジフェニルエーテル、4,4'−ビス(4−クロロフェニルスルホニル)ジフェニルエーテル、4,4'−ビス(4−クロロフェニル)ジフェニルエーテルジカルボ
キシレート、4,4'−ビス〔(4−クロロフェニル)−1,1,1,3,3,3−ヘキサフル
オロプロピル〕ジフェニルエーテル、4,4'−ビス〔(4−クロロフェニル)テトラフルオロエチル〕ジフェニルエーテル、これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物、さらにこれらの化合物において4位に置換したハロゲン原子が3位に置換した化合物、さらにこれらの化合物においてジフェニルエーテルの4位に置換した基の少なくとも1つが3位に置換した化合物などが挙げられる。
さらに上記一般式(E)で表される化合物としては、2,2−ビス[4−{4−(4−
クロロベンゾイル)フェノキシ}フェニル]−1,1,1,3,3,3−ヘキサフルオロプロ
パン、ビス[4−{4−(4−クロロベンゾイル)フェノキシ}フェニル]スルホン、および下記式で表される化合物などが挙げられる。
Figure 0004290532
Figure 0004290532
Figure 0004290532
上記一般式(E)で表される化合物は、例えば以下に示す方法で合成することができる。
まず電子吸引性基で連結されたビスフェノールを、対応するビスフェノールのアルカリ金属塩とするために、N−メチル−2−ピロリドン、N,N-ジメチルアセトアミド、スルホラン、ジフェニルスルホン、ジメチルスルホキサイドなどの誘電率の高い極性溶媒中でリチウム、ナトリウム、カリウムなどのアルカリ金属、水素化アルカリ金属、水酸化アルカリ金属、アルカリ金属炭酸塩などを加える。
アルカリ金属はフェノールの水酸基に対して過剰気味で反応させ、通常、1.1〜2倍当量、好ましくは1.2〜1.5倍当量で用いる。この際、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、クロロベンゼン、ジオキサン、テトラヒドロフラン、アニソール、フェネトールなどの水と共沸する溶媒を共存させて、電子吸引性基で活性化されたフッ素、塩素等のハロゲン原子で置換された芳香族ジハライド化合物、例えば、4,4'−ジフルオロベンゾフェノン、4,4'−ジクロロベンゾフェノン、4,4'−クロロフルオロベンゾフェノン、ビス(4−クロロフェニル)スルホン、ビス(4−フルオロフェニル)スルホン、4−フルオロフェニル−4'−クロロフェニルスルホン、ビス
(3−ニトロ−4−クロロフェニル)スルホン、2,6−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、ヘキサフルオロベンゼン、デカフルオロビフェニル、2,
5−ジフルオロベンゾフェノン、1,3−ビス(4−クロロベンゾイル)ベンゼンなどを
反応させる。反応性から言えば、フッ素化合物が好ましいが、次の芳香族カップリング反応を考慮した場合、末端が塩素原子となるように芳香族求核置換反応を組み立てる必要がある。
活性芳香族ジハライドはビスフェノールに対し、2〜4倍モル、好ましくは2.2〜
2.8倍モルの使用である。芳香族求核置換反応の前に予め、ビスフェノールのアルカリ金属塩としていてもよい。反応温度は60℃〜300℃で、好ましくは80℃〜250℃の範囲である。反応時間は15分〜100時間、好ましくは1時間〜24時間の範囲である。最も好ましい方法としては、下記式で示される活性芳香族ジハライドとして反応性の異なるハロゲン原子を一個ずつ有するクロロフルオロ体を用いることであり、フッ素原子が優先してフェノキシドと求核置換反応が起きるので、目的の活性化された末端クロロ体を得るのに好都合である。
Figure 0004290532
式中、Wは一般式(E)に関して定義した通りである。
また、特開平2−159号公報に記載のように求核置換反応と親電子置換反応を組み合わせて、目的の電子吸引性基および電子供与性基からなる屈曲性化合物を合成してもよい。
具体的には、電子吸引性基で活性化された芳香族ビスハライド、例えばビス(4−クロロフェニル)スルホンをフェノールで求核置換反応させてビスフェノキシ化合物とし、次いで、このビスフェノキシ化合物と4−クロロ安息香酸クロライドとのフリーデルクラフト反応から目的の化合物を得ることができる。
ここで用いる電子吸引性基で活性化された芳香族ビスハライドとしては、上記で例示した化合物が挙げられる。フェノール化合物は置換されていてもよいが、耐熱性や屈曲性の観点から無置換化合物が好ましい。なお、フェノールの置換反応にはアルカリ金属塩とすることが好ましく、使用可能なアルカリ金属化合物としては、上記で例示した化合物が挙げられる。使用量はフェノール1モルに対し、1.2〜2倍モルである。反応に際し、上述した極性溶媒や水との共沸溶媒を用いることができる。
クロロ安息香酸クロライドは、ビスフェノキシ化合物に対し2〜4倍モル、好ましくは2.2〜3倍モルで用いられる。また、ビスフェノキシ化合物と、アシル化剤であるクロロ安息香酸クロライドとのフリーデルクラフト反応は、塩化アルミニウム、三フッ化ホウ素、塩化亜鉛などのフリーデルクラフト活性化剤の存在下で行うことが好ましい。フリーデルクラフト活性化剤は、アシル化剤のクロロ安息香酸などの活性ハライド化合物1モルに対し、1.1〜2倍当量使用する。反応時間は15分〜10時間の範囲で、反応温度は−20℃から80℃の範囲である。使用溶媒は、フリーデルクラフト反応に不活性な、クロロベンゼンやニトロベンゼンなどを用いることができる。
また、一般式(E)において、pが2以上である化合物は、例えば、一般式(E)において電子供与性基Tであるエーテル性酸素の供給源となるビスフェノールと、電子吸引性基Wである、>C=O、−SO2−および>C(CF32から選ばれる少なくとも1種の
基とを組み合わせた化合物、具体的には2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−ヒドロキシフェニル)ケト
ン、2,2−ビス(4−ヒドロキシフェニル)スルホンなどのビスフェノールのアルカリ
金属塩と、過剰の4,4−ジクロロベンゾフェノン、ビス(4−クロロフェニル)スルホンなどの活性芳香族ハロゲン化合物との置換反応を、N−メチル−2−ピロリドン、N,N
−ジメチルアセトアミド、スルホランなどの極性溶媒の存在下で前記単量体の合成手法に順次重合して得られる。
このような化合物の例示としては、下記式で表される化合物などを挙げることができる。
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
Figure 0004290532
上記において、pは0または正の整数であり、上限は通常100、好ましくは10〜80である。
本発明に係るポリアリーレン中の上記一般式(A)で表される構成単位の含有割合は、特に限定されないが、好ましくは0.5〜100モル%、より好ましくは10〜99.999モル%である。また、本発明に係るポリアリーレン中の上記一般式(B)で表される構成単位の含有割合は、好ましくは0〜99.5モル%、より好ましくは0.001〜90モル%である。
スルホン酸エステル基を有するポリアリーレン(C)は、モノマー(D)とオリゴマー(E)とを触媒の存在下に反応させることにより合成されるが、この際使用される触媒は、遷移金属化合物を含む触媒系であり、この触媒系としては、(1)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体(銅塩を含む)、および(2)還元剤を必須成分とし、さらに、重合速度を上げるために、「塩」を添加してもよい。
ここで、遷移金属塩としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセチルアセトナートなどのニッケル化合物;塩化パラジウム、臭化パラジウム、ヨウ化パラジウムなどのパラジウム化合物;塩化鉄、臭化鉄、ヨウ化鉄などの鉄化合物;塩化コバルト、臭化コバルト、ヨウ化コバルトなどのコバルト化合物などが挙げられる。これらのうち特に、塩化ニッケル、臭化ニッケルなどが好ましい。
また、配位子成分としては、トリフェニルホスフィン、2,2'−ビピリジン、1,5−
シクロオクタジエン、1,3−ビス(ジフェニルホスフィノ)プロパンなどが挙げられる
。これらのうち、トリフェニルホスフィン、2,2'−ビピリジンが好ましい。上記配位子成分である化合物は、1種単独で用いてもよく、2種以上を混合して用いてもよい。
さらに、配位子が配位された遷移金属錯体としては、例えば、塩化ニッケルビス(トリフェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)、硝酸ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2'−ビピリジン)、臭化ニッケル(2,2'−ビピリジン)、ヨウ化ニッケル(2,2'−ビピリジン)、硝酸ニッケル(2,2'−ビピリジン)、ビス(1,5−シク
ロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、テトラキス(トリフェニルホスファイト)ニッケル、テトラキス(トリフェニルホスフィン)パラジウムなどが挙げられる。これらのうち、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2'−ビピリジン)が好ましい。
上記触媒系に使用することができる還元剤としては、例えば、鉄、亜鉛、マンガン、アルミニウム、マグネシウム、ナトリウム、カルシウムなどが挙げられる。これらのうち、亜鉛、マグネシウム、マンガンが好ましい。これらの還元剤は、有機酸などの酸に接触させることにより、より活性化して用いることができる。
また、上記触媒系において使用することのできる「塩」としては、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硫酸ナトリウムなどのナトリウム化合物;フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硫酸カリウムなどのカリウム化合物;フッ化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、硫酸テトラエチルアンモニウムなどのアンモニウム化合物などが挙げられる。これらのうち、臭化ナトリウム、ヨウ化ナトリウム、臭化カリウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウムが好ましい。
各成分の使用割合は、遷移金属塩または遷移金属錯体が、上記モノマーの総計((D)+(E)、以下同じ)1モルに対し、通常、0.0001〜10モル、好ましくは0.01〜0.5モルである。0.0001モル未満では、重合反応が十分に進行しないことがあり、一方、10モルを超えると、分子量が低下することがある。
触媒系において、遷移金属塩および配位子成分を用いる場合、この配位子成分の使用割合は、遷移金属塩1モルに対し、通常、0.1〜100モル、好ましくは1〜10モルである。0.1モル未満では、触媒活性が不十分となることがあり、一方、100モルを超えると、分子量が低下することがある。
また、還元剤の使用割合は、上記モノマーの総計1モルに対し、通常、0.1〜100モル、好ましくは1〜10モルである。0.1モル未満では、重合が十分進行しないことがあり、100モルを超えると、得られる重合体の精製が困難になることがある。
さらに、「塩」を使用する場合、その使用割合は、上記モノマーの総計1モルに対し、通常、0.001〜100モル、好ましくは0.01〜1モルである。0.001モル未満では、重合速度を上げる効果が不十分であることがあり、100モルを超えると、得られる重合体の精製が困難となることがある。
モノマー(D)とオリゴマー(E)とを反応させる際に使用することのできる重合溶媒としては、例えばテトラヒドロフラン、シクロヘキサノン、ジメチルスルホキシド、N,
N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリド
ン、γ−ブチロラクトン、N,N'−ジメチルイミダゾリジノンなどが挙げられる。これらのうち、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N'−ジメチルイミダゾリジノンが好ましい。これらの重合溶媒は、十分に乾燥してから用いることが好ましい。
重合溶媒中における上記モノマーの総計の濃度は、通常、1〜90重量%、好ましくは5〜40重量%である。
重合する際の重合温度は、通常、0〜200℃、好ましくは50〜120℃である。また、重合時間は、通常、0.5〜100時間、好ましくは1〜40時間である。
モノマー(D)を用いて得られたスルホン酸エステル基を有するポリアリーレンは、スルホン酸エステル基を加水分解して、スルホン酸基に変換することによりスルホン酸基を有するポリアリーレンとすることができる。
加水分解の方法としては、
(1)少量の塩酸を含む過剰量の水またはアルコールに、上記スルホン酸エステル基を有するポリアリーレンを投入し、5分間以上撹拌する方法
(2)トリフルオロ酢酸中で、上記スルホン酸エステル基を有するポリアリーレンを80〜120℃程度の温度で5〜10時間程度反応させる方法
(3)スルホン酸エステル基を有するポリアリーレン中のスルホン酸エステル基(−SO3R)1モルに対して1〜3倍モルのリチウムブロマイドを含む溶液、例えばN−メチル
ピロリドンなどの溶液中で、上記ポリアリーレンを80〜150℃程度の温度で3〜10時間程度反応させた後、塩酸を添加する方法
などを挙げることができる。
スルホン酸基を有するポリアリーレンは、上記一般式(D)で表されるモノマー(D)においてスルホン酸エステル基を有しないモノマーと、上記一般式(E)で表されるオリゴマー(E)とを共重合させることによりポリアリーレン系共重合体を予め合成し、このポリアリーレン系共重合体をスルホン化することにより合成することもできる。この場合、上記合成方法に準じた方法によりスルホン酸基を有しないポリアリーレンを製造した後、スルホン化剤を用い、スルホン酸基を有しないポリアリーレンにスルホン酸基を導入することにより、スルホン酸基を有するポリアリーレンを得ることができる。
このスルホン化の反応条件としては、スルホン酸基を有しないポリアリーレンを、無溶剤下または溶剤存在下でスルホン化剤を用い、常法によりスルホン酸基を導入することにより得ることが出来る。
スルホン酸基を導入する方法としては、例えば、上記スルホン酸基を有しないポリアリーレンを、無水硫酸、発煙硫酸、クロルスルホン酸、硫酸、亜硫酸水素ナトリウムなどの公知のスルホン化剤を用いて、公知の条件でスルホン化することができる〔Polymer Preprints, Japan, Vol.42, No.3, p.730 (1993);Polymer Preprints, Japan, Vol.43, No.3, p.736 (1994);Polymer Preprints, Japan, Vol.42, No.7, p.2490〜2492 (1993)〕。
すなわち、このスルホン化の反応条件としては、上記スルホン酸基を有しないポリアリーレンを、無溶剤下または溶剤存在下で、上記スルホン化剤と反応させる。用いられる溶剤としては、例えば、n−ヘキサンなどの炭化水素溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドのような非プロトン系極性溶剤、テトラクロロエタン、ジクロロエタン、クロロ
ホルム、塩化メチレンなどのハロゲン化炭化水素などが挙げられる。反応温度は特に制限はないが、通常、−50〜200℃、好ましくは−10〜100℃である。また、反応時間は、通常、0.5〜1,000時間、好ましくは1〜200時間である。
上記のような方法により製造されるスルホン酸基を有するポリアリーレン(C)中の、スルホン酸基量は通常0.3〜5meq/g、好ましくは0.5〜3meq/g、さらに好ましくは0.8〜2.8meq/gである。0.3meq/g未満では、プロトン伝導度が低く実用的ではない。一方、5meq/gを超えると、耐水性が大幅に低下してしまうことがあるため好ましくない。
上記のスルホン酸基量は、例えばモノマー(D)およびオリゴマー(E)の種類、使用割合、組み合わせを変えることにより、調整することができる。
このようにして得られるスルホン酸基を有するポリアリーレンの分子量は、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量で、1万〜100万、好ましくは2万〜80万である。
スルホン酸基を有するポリアリーレンには、老化防止剤、好ましくは分子量500以上のヒンダードフェノール系化合物を含有させて使用してもよく、老化防止剤を含有することで電解質としての耐久性をより向上させることができる。
本発明で使用することのできるヒンダードフェノール系化合物としては、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 245)、1,6−ヘキサンジオール−ビス[3−(3,5
−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 259
)、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−3,5−トリアジン(商品名:IRGANOX 565)、ペンタエリスリチルーテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 1010)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4
−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 1035)、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)(商品名:IRGANOX
1076)、N,N−ヘキサメチレンビス(3,5−ジ−t−ブチルー4−ヒドロキシ−ヒドロシンナマミド)(IRGAONOX 1098)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(商品名:IRGANOX 1330)、トリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト(商品名:IRGANOX 3114)、3,9−ビス[2−〔3−(3−t−ブチル−4−ヒドロキシ−5−メチ
ルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン(商品名:Sumilizer GA-80)などを挙げることができる。
本発明において、スルホン酸基を有するポリアリーレン100重量部に対してヒンダードフェノール系化合物は0.01〜10重量部の量で使用することが好ましい。
(プロトン伝導体組成物)
本発明に係るプロトン伝導体組成物は、上述したような(a)金属酸化物水和物およびフィロケイ酸塩から選ばれる少なくとも1種と、(b)プロトン伝導能を有するスルホン酸基を有するポリアリーレンとからなる。なお、上記金属酸化物水和物、フィロケイ酸塩およびスルホン酸基を有するポリアリーレン以外に、硫酸、リン酸などの無機酸、カルボン酸を含む有機酸、適量の水などが含まれても良い。
本発明のプロトン伝導体組成物における(a)成分の含有量は、(b)成分100重量部に対して0.5〜80重量部、より好ましくは3〜30重量部であることが望ましい。上記(a)成分の含有量が上記範囲未満であると、高温下で十分なプロトン伝導度が得られないことがあり、上記範囲を超えると、プロトン伝導膜の柔軟性および膜と電極との接着性が低下し、接合体を作製することが困難になることがある。
本発明のプロトン伝導体組成物からなる成形体は、例えば、上記各成分を所定の割合で混合し、従来公知の方法、具体的にはホモジナイザー、ディスパーサー、ペイントコンディショナー、ボールミルなどの高シェアのかかる混合機を用いて混合することにより調製することができる。この際には、溶剤を用いても良い。また、金属酸化物水和物を高分子固体電解質に含有させるときには、高分子固体電解質のイオン交換基に近接した状態で含有されやすくなると考えられることから、親水性の溶剤に懸濁または溶解させた状態で混合することが好ましい。
(プロトン伝導膜)
本発明に係るプロトン伝導膜は上記のプロトン伝導体組成物からなる。なお、本発明のプロトン伝導膜には、上記金属酸化物水和物、フィロケイ酸塩およびスルホン酸基を有するポリアリーレン以外に、硫酸、リン酸などの無機酸、カルボン酸を含む有機酸、適量の水などが含まれても良い。
本発明の組成物を用いてフィルムを製造する方法としては、キャスティングにより基体上に流延し、フィルム状に成形するキャスティング法などにより、フィルムを製造する方法が挙げられる。
上記基体としては、ポリエチレンテレフタレート(PET)フィルムなどが挙げられるが、これに限定されるものではなく、通常の溶液キャスティング法に用いられる基体であれば、如何なる素材でもよく、例えばプラスチック製でも、金属製でも特に制限されるものではない。
この際のポリマー濃度は、スルホン酸を有するポリアリーレンの分子量にもよるが、通常、5〜40重量%、好ましくは7〜25重量%である。5重量%未満では、厚膜化し難く、また、ピンホールが生成しやすい。一方、40重量%を超えると、溶液粘度が高すぎてフィルム化し難く、また、表面平滑性に欠けることがある。
なお、本発明の組成物の溶液粘度は、ポリマーの分子量や、固形分濃度にもよるが、通常、2,000〜100,000mPa・s、好ましくは3,000〜50,000mPa・sである。2,000mPa・s未満では、加工中の溶液の滞留性が悪く、基体から流れてしまうことがある。一方、100,000mPa・sを超えると、高粘度過ぎて、ダイからの押し出しができず、流延法によるフィルム化が困難となる。
上記キャスティング法による製膜後、30〜160℃、好ましくは50〜150℃で、3〜180分、好ましくは5〜120分間乾燥することにより、フィルムを得ることができる。その乾燥膜厚は、通常、10〜100μm、好ましくは20〜80μmである。
金属酸化物水和物がプロトン伝導膜中に含有されると、それらの存在によりプロトン伝導膜の厚さが最低限確保されることにより、電極―膜接合時または燃料電池使用中における電極の膜への貫通による電極の短絡が防止される傾向にあるため、プロトン伝導膜を薄膜化しやすくなる。そのため、金属酸化物水和物添加による保水量の向上以外に、プロトン伝導膜の薄膜化による膜抵抗の低下によっても、出力特性が向上されることが期待される。
キャスティング法に用いられる溶剤としては、特に限定されないが、γーブチロラクトン、シメチルアセトアミド、ジメチルホルムアミド、N−メチルー2−ピロリドン、ジメチルスルホキシド、ジメチル尿素などの非プロトン系極性溶剤などが挙げられる。これらの溶剤には、さらにメタノール、エタノール、Nープロピルアルコール、iso−プロピルアルコール、1−メトキシ−2−プロパノールなどのアルコール系溶剤が混合されていても良い。
本発明のプロトン伝導体組成物およびそれからキャストされたフィルムは、例えば一次電池用電解質、二次電池用電解質、表示素子、各種センサー、信号伝達媒体、固体コンデンサー、イオン交換膜などに利用可能なプロトン伝導性の伝導膜に利用可能である。
〔実施例〕
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
実施例において、スルホン酸当量、分子量およびプロトン伝導度は以下のようにして求めた。
1.スルホン酸当量
得られたスルホン酸基を有する重合体の水洗水が中性になるまで洗浄し、フリーに残存している酸を除いて充分に水洗し、乾燥後、所定量を秤量し、THF/水の混合溶剤に溶解したフェノールフタレインを指示薬とし、NaOHの標準液を用いて滴定を行い、中和点からスルホン酸当量を求めた。
2.分子量の測定
スルホン酸基を有しないポリアリーレンの重量平均分子量は、溶剤としてテトラヒドロフラン(THF)を用い、GPCによって、ポリスチレン換算の分子量を求めた。スルホン酸基を有するポリアリーレンの分子量は、溶剤として臭化リチウムと燐酸を添加したN−メチル−2−ピロリドン(NMP)を溶離液として用い、GPCによって、ポリスチレン換算の分子量を求めた。
3.プロトン伝導度の測定
交流抵抗は、5mm幅の短冊状のプロトン伝導膜試料の表面に、白金線(φ=0.5mm)を押し当て、恒温恒湿装置中に試料を保持し、白金線間の交流インピーダンス測定から求めた。すなわち、100℃、120℃、150℃、飽和水蒸気圧の環境下で交流10kHzにおけるインピーダンスを測定した。抵抗測定装置として、(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ヤマト科学製のJW241を使用した。白金線は、5mm間隔に5本押し当てて、線間距離を5〜20mmに変化させ、交流抵抗を測定した。線間距離と抵抗の勾配から、膜の比抵抗を算出し、比抵抗の逆数から交流インピーダンスを算出し、このインピーダンスから、プロトン伝導度を算出した。
比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
[合成例1]オリゴマーの調製
撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(ビスフェノールAF)67.3g(0.20モル)、4,4'−ジクロロベンゾフェノン(4,4'−DCBP)60.3g(0.24モル)、炭酸カリウム71.9g(0.52モル)、N,N−ジメチルアセトアミド(DMAc)300mL、ト
ルエン150mLをとり、オイルバス中、窒素雰囲気下で加熱し撹拌下130℃で反応さ
せた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。その後、反応温度を130℃から徐々に150℃まで上げながら大部分のトルエンを除去し、150℃で10時間反応を続けた後、4,4'−DCBP10.0g(0.040モル)を加え、さらに5時間反応させた。得られた反応液を放冷後、副生した無機化合物の沈殿物を濾過除去し、濾液を4Lのメタノール中に投入した。沈殿した生成物を濾別、回収して乾燥後、テトラヒドロフラン300mLに溶解した。これをメタノール4Lに投入して再沈殿させ、目的の化合物95g(収率85%)を得た。
得られた化合物のGPC(THF溶媒)で求めたポリスチレン換算の重量平均分子量(Mw)は11,200であった。また、得られた化合物は、THF、NMP、DMAc、
スルホランなどに可溶で、Tg(ガラス転移温度)が110℃、熱分解温度が498℃であり、式(I)で表されるオリゴマー(以下、「BCPAFオリゴマー」という。)であった。
Figure 0004290532
[合成例2]ネオペンチル基を保護基としたポリアリーレン共重合体(PolyAB−SO3 neo-Pe)の調製
撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、4−[4−(2,5−ジクロロベンゾイル)フェノキシ]ベンゼンス
ルホン酸neo-ペンチル(A−SO3 neo-Pe)39.58g(98.64ミリモル)と合成例1で得られたBCPAFオリゴマー(Mw=11,200)15.23g(1.36
ミリモル)、Ni(PPh32Cl2 1.67g(2.55ミリモル)、PPh3 10.49g(40ミリモル)、NaI 0.45g(3ミリモル)、亜鉛末 15.69g(240ミリモル)、乾燥NMP 390mLを窒素下で加えた。反応系を攪拌下に加熱し(
最終的には75℃まで加温)、3時間反応させた。重合反応液をTHF 250mLで希
釈し、30分攪拌し、セライトを濾過助剤に用いて濾過し、濾液を大過剰のメタノール1500mLに注いで凝固させた。凝固物を濾集、風乾し、さらにTHF/NMP(それぞれ200/300mL)に再溶解し、大過剰のメタノール1500mLで凝固析出させた。風乾後、加熱乾燥により目的の黄色繊維状のネオペンチル基で保護されたスルホン酸誘導体からなる共重合体(PolyAB-SO3neo-Pe)47.0g(収率99%)を得た。GPCによる分子量は、数平均分子量(Mn)が47,600、Mwが159,000であった。
得られたPolyAB-SO3neo-Pe 5.1gをNMP60mLに溶解し、90℃に加温
した。反応系に、メタノール50mLと濃塩酸8mLとの混合物を一時に加えた。懸濁状態となりながら、温和の還流条件で10時間反応させた。蒸留装置を設置し、過剰のメタノールを溜去させ、淡緑色の透明溶液を得た。この溶液を大量の水/メタノール(1:1重量比)中に注いで、ポリマーを凝固させた後、洗浄水のpHが6以上となるまで、イオン交換水でポリマーを洗浄した。こうして得られたポリマーのIRスペクトルおよびイオン交換容量の定量分析から、スルホン酸エステル基(−SO3a)は定量的にスルホン酸基(−SO3H)に転換していることがわかった。
得られたスルホン酸基を有するポリアリーレン共重合体のGPCによる分子量は、Mnが53,200、Mwが185,000であり、スルホン酸当量は1.9meq/gであった。
(実施例1)
合成例2で得られたスルホン酸を有するポリアリーレン60gを1000ccのポリ瓶にとり、γーブチロラクトン340gを加え溶解させた。これにタングステン酸化物水和物6g(10重量%複合化量)を加え、ディスパーサーにより20分混合し、均一分散させた。
上記の溶液をPETフィルム上にバーコーダー法によりキャストし、80℃で30分間、次いで140℃で60分間乾燥することで、膜厚40μmの均一な固体電解質フィルム1を得た。結果を表1に示す。
(実施例2)
合成例2で得られたスルホン酸を有するポリアリーレン60gを1000ccのポリ瓶にとり、γーブチロラクトン340gを加え溶解させた。これに酸化モリブデン水和物12g(20重量%複合化量)を加え、ディスパーサーにより20分混合し、均一分散させた。
上記の溶液をPETフィルム上にバーコーダー法によりキャストし、80℃で30分間、次いで140℃で60分間乾燥することで、膜厚42μmの均一な固体電解質フィルム2を得た。結果を表1に示す。
(比較例1)
合成例2で得られたスルホン酸を有するポリアリーレン60gを1000ccのポリ瓶にとり、γーブチロラクトン340gを加え溶解させた。
上記の溶液をPETフィルム上にバーコーダー法によりキャストし、80℃で30分間、次いで140℃で60分間乾燥することで、膜厚41μmの均一な固体電解質フィルム3を得た。結果を表1に示す。
(比較例2)
Nafion溶液(商品名、Dupont社製)の20.6%水−アルコール溶液(水:アルコール=20:60)291.3gを1000ccのポリ瓶にとり、N−プロピルアルコール108.7gを加え溶解させた。これに酸化モリブデン水和物12g(20重量%複合化量)を加え、ディスパーサーにより20分混合し、均一分散させた。
上記の溶液をPETフィルム上にバーコーダー法によりキャストし、80℃で60分間乾燥することで、膜厚43μmの均一な固体電解質フィルム4を得た。結果を表1に示す。
Figure 0004290532

Claims (4)

  1. (a)金属酸化物水和物と、
    (b)スルホン酸基を有するポリアリーレンと
    を含有し、前記スルホン酸基を有するポリアリーレンが、下記一般式(A)で表される構成単位および下記一般式(B)で表される構成単位を含むことを特徴とするプロトン伝導体組成物。
    Figure 0004290532
    (式中、Yは−CO−、−SO 2 −、−SO−、−CONH−、−COO−、−(CF 2 ) l
    −(lは1〜10の整数である)または−C(CF 3 2 を示し、Zは−(CH 2 )−、
    −C(CH 3 2 −、−O−、−S−、−CH=CH−、−C≡C―、
    Figure 0004290532
    または直接結合を示し、Arは−SO3Hで表される置換基を有する芳香族基を示し、m
    は0〜10の整数を示し、nは0を示し、kは1〜4の整数を示す。)
    Figure 0004290532
    (式中、R 1 〜R 8 は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキ
    ル基、フッ素置換アルキル基、アリル基、アリール基およびシアノ基からなる群より選ばれる少なくとも1種の原子または基を示し、
    Wは−CO−、−SO 2 −、−SO−、−CONH−、−COO−、−(CF 2 ) l −(lは
    1〜10の整数である)、−C(CF 3 2 −または単結合を示し、
    Tは−CO−、−SO 2 −、−SO−、−CONH−、−COO−、−(CF 2 ) l −(lは
    1〜10の整数である)、−C(CF 3 2 −、−(CH 2 )−、−C(CH 3 2 −、−O
    −、−S−、−CH=CH−、−C≡C―、
    Figure 0004290532
    または単結合を示し、pは0または正の整数を示す。)。
  2. 上記金属酸化物水和物が、酸化タングステン水和物、ニオブをドープした酸化タングステン水和物、スズ酸化物水和物、酸化ケイ素水和物、酸化リン水和物、酸化ジルコニア水和物をドープした酸化ケイ素水和物、リン酸ウラニルおよび酸化モリブデン水和物からなる群より選択される少なくとも1種の化合物であることを特徴とする請求項1に記載のプロトン伝導体組成物。
  3. 上記(a)成分が、上記(b)成分100重量部に対して0.5〜80重量部の割合で含有されていることを特徴とする請求項1または2に記載のプロトン伝導体組成物。
  4. 請求項1〜のいずれかに記載のプロトン伝導体組成物からなることを特徴とするプロトン伝導膜。
JP2003388776A 2003-11-19 2003-11-19 プロトン伝導体組成物およびプロトン伝導膜 Expired - Fee Related JP4290532B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003388776A JP4290532B2 (ja) 2003-11-19 2003-11-19 プロトン伝導体組成物およびプロトン伝導膜
US10/990,879 US20050106469A1 (en) 2003-11-19 2004-11-18 Proton conductive composition and proton conductive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388776A JP4290532B2 (ja) 2003-11-19 2003-11-19 プロトン伝導体組成物およびプロトン伝導膜

Publications (2)

Publication Number Publication Date
JP2005146189A JP2005146189A (ja) 2005-06-09
JP4290532B2 true JP4290532B2 (ja) 2009-07-08

Family

ID=34695712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388776A Expired - Fee Related JP4290532B2 (ja) 2003-11-19 2003-11-19 プロトン伝導体組成物およびプロトン伝導膜

Country Status (1)

Country Link
JP (1) JP4290532B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091187A (ja) * 2006-10-02 2008-04-17 Hitachi Ltd 燃料電池用電解質膜および、膜電極接合体,燃料電池

Also Published As

Publication number Publication date
JP2005146189A (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4294457B2 (ja) プロトン伝導体組成物およびプロトン伝導膜
JP4788136B2 (ja) プロトン伝導膜およびその製造方法
JP2005162772A (ja) プロトン伝導体組成物およびプロトン伝導膜
JP2005166557A (ja) 高分子電解質複合膜およびその製造法、ならびにそれを用いた固体高分子型燃料電池
JP5076273B2 (ja) プロトン伝導膜
JP2004345997A (ja) 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP3939244B2 (ja) 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2006032181A (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP2006032180A (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP4665396B2 (ja) ミクロ相分離構造によりメタノール透過抑制が改良されたプロトン伝導膜
US20050106469A1 (en) Proton conductive composition and proton conductive membrane
JP2006096871A (ja) プロトン伝導体組成物およびプロトン伝導性複合膜
JP2005197236A (ja) 固体高分子型燃料電池およびそれに用いる膜・電極構造体
JP4290532B2 (ja) プロトン伝導体組成物およびプロトン伝導膜
JP2005220193A (ja) 重合体組成物およびプロトン伝導膜
JP2005190675A (ja) 固体高分子電解質膜および固体高分子電解質型燃料電池
JP4077395B2 (ja) プロトン伝導体組成物およびプロトン伝導膜
JP2006032213A (ja) プロトン伝導体組成物およびプロトン伝導膜
JP2006172861A (ja) 燃料電池用膜−電極接合体
JP2005239833A (ja) スルホン酸基を有するポリアリーレンおよびそれからなるプロトン伝導膜ならびにスルホン酸基を有するポリアリーレンの製造方法
JP2005336310A (ja) プロトン酸基を有する重合体、高分子固体電解質およびプロトン伝導膜
JP2005248128A (ja) ポリアリーレン組成物およびプロトン伝導膜
JP2005171027A (ja) プロトン伝導膜の製造方法
JP2005232315A (ja) 高分子電解質およびプロトン伝導膜
JP2006032214A (ja) 直接メタノール型燃料電池用プロトン伝導膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Ref document number: 4290532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees