[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4276184B2 - Dissolving heat pump hot water production system - Google Patents

Dissolving heat pump hot water production system Download PDF

Info

Publication number
JP4276184B2
JP4276184B2 JP2005007518A JP2005007518A JP4276184B2 JP 4276184 B2 JP4276184 B2 JP 4276184B2 JP 2005007518 A JP2005007518 A JP 2005007518A JP 2005007518 A JP2005007518 A JP 2005007518A JP 4276184 B2 JP4276184 B2 JP 4276184B2
Authority
JP
Japan
Prior art keywords
regenerator
solution
heat
solvent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005007518A
Other languages
Japanese (ja)
Other versions
JP2006207836A (en
Inventor
俊典 金光
Original Assignee
俊典 金光
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊典 金光 filed Critical 俊典 金光
Priority to JP2005007518A priority Critical patent/JP4276184B2/en
Publication of JP2006207836A publication Critical patent/JP2006207836A/en
Application granted granted Critical
Publication of JP4276184B2 publication Critical patent/JP4276184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、温熱源を主駆動エネルギーとする特定の溶質が特定の溶媒に溶解するときに発生する吸熱現象により得られる冷熱を利用して大気熱等の回収を行い、投入する一次エネルギーと当該回収熱の総和を温水として出力させることによる高効率な温水製造装置であるヒートポンプ温水製造装置に関するものである。   The present invention recovers atmospheric heat or the like using cold heat obtained by an endothermic phenomenon that occurs when a specific solute having a heat source as a main driving energy dissolves in a specific solvent, The present invention relates to a heat pump hot water manufacturing apparatus that is a highly efficient hot water manufacturing apparatus by outputting the sum of recovered heat as hot water.

温熱源を主駆動エネルギーとするヒートポンプ温水製造装置はアンモニアまたは臭化リチュウムを利用した吸収式冷凍サイクルを利用したものが考えられるが、アンモニアは可燃性ガスであると共に人体にとって有害な物質でありその使用には多くの制約があり一般家庭用途における実用化されたものはない。 Heat pump hot water production equipment that uses a heat source as the main driving energy may be one that uses an absorption refrigeration cycle that uses ammonia or lithium bromide, but ammonia is a flammable gas and a hazardous substance for the human body. There are many restrictions on use, and none has been put to practical use in general household applications.

また臭化リチュウムを利用した吸収式ヒートポンプは発生する冷熱温度が比較的高く産業用分野で一部実用化されているが一般家庭用途では実用化されたものはない。 Absorption heat pumps using lithium bromide have a relatively high cooling temperature and are partly put into practical use in industrial fields, but none have been put into practical use in general household use.

また、溶解熱を利用した冷凍サイクルを利用する方法が提案されているが、当該溶解式温水製造装置で温水の製造を連続的に行うためには、当該溶液と溶媒の分離再生のための再生工程及び溶媒蒸気を凝縮させるための凝縮工程、溶質を再結晶させるための晶析工程、当該溶質の結晶を溶媒中に溶解させる溶解工程、等が必要であるが、装置の緊急停止等の通常外の停止時に当該各工程間の管路等に溶質結晶が析出沈積して当該流路の閉塞が発生し再起動に結晶溶解作業が必要となり、いまだ実用化に到っていない。
特公平1−26462号公報
In addition, although a method using a refrigeration cycle using heat of dissolution has been proposed, in order to continuously produce hot water with the dissolution type hot water production apparatus, regeneration for separation and regeneration of the solution and solvent is performed. Condensation process to condense the process and solvent vapor, crystallization process to recrystallize the solute, dissolution process to dissolve the solute crystals in the solvent, etc. Solute crystals are deposited and deposited in the pipes between the processes at the time of the outside stop and the flow path is blocked, and a crystal dissolution work is required for restarting, which has not yet been put into practical use.
Japanese Patent Publication No. 1-26462

以上に述べた従来の溶解式温水製造装置の実用化を阻害している主な問題点は、当該溶解式温水製造方法における各工程間の溶質結晶及び溶質結晶と溶液からなる結晶スラリーの安定的な輸送の確保と、異常停止時、等に当該各工程間の管路を溶質結晶が閉塞する問題であり、本発明は上記の問題点を解決し一般家庭用規模における小形の溶解熱を利用した高効率のヒートポンプ温水製造装置を実用化することを目的とする。   The main problems hindering the practical use of the conventional dissolving hot water production apparatus described above are the stability of the solute crystals and the crystal slurry comprising the solute crystals and the solution between the steps in the melting hot water production method. This is a problem that the solute crystals block the pipe line between the processes when ensuring proper transportation and abnormal stoppage, etc., and the present invention solves the above problems and utilizes small heat of dissolution on a general household scale. The purpose is to put the high-efficiency heat pump hot water production apparatus into practical use.

本発明は、溶解式ヒートポンプ温水製造装置を構成する、再生器部の一部または全部、晶析器部、溶解器部を順次鉛直方向下方に向かって連続的かつ一体的に配置しこれにより狭小な流路部分を最小限化しあわせて、中心部回転軸に取り付けたかき落し機、かき寄せ機及び圧搾押出し機により溶質結晶を機械的に円滑に輸送させることにより上記目的を達成するものである。また高効率化を図るためにエジェクター33,及びまたは多重効用缶エジェクター32a,32b,32cを利用することにより再生器における蒸発促進を図り再生エネルギーの利用効率を高める。 In the present invention, a part or all of the regenerator part, the crystallizer part, and the dissolver part constituting the melting type heat pump hot water production apparatus are sequentially and integrally arranged downward in the vertical direction, thereby narrowing The above-mentioned object is achieved by minimizing a simple flow path portion and transporting solute crystals mechanically and smoothly with a scraper, a scraper, and a press extruder attached to a central rotating shaft. In order to increase efficiency, the use of the ejector 33 and / or the multi-effect can ejectors 32a, 32b, and 32c promotes evaporation in the regenerator and increases the utilization efficiency of the regenerated energy.

本発明は、以上のように構成配置されているので、以下に記載されるような効果を奏する。
本発明の装置の主要な構成部である再生器部の一部または全部と晶析器部と溶解器部を鉛直方向に順次上から一体的に配置することにより各器部内及び各器部間の所要流路を最短且つ縦方向に構成させることにより析出した溶質結晶を自由沈降排除させると共に、起動時に高温にする再生器部に近接させて配置することによる内部熱伝導を利用して析出した溶質結晶を昇温再溶解せしめ排除する。
Since the present invention is configured and arranged as described above, the following effects can be obtained.
By arranging a part or all of the regenerator unit, which is a main component of the apparatus of the present invention, a crystallizer unit and a dissolver unit in order from the top in the vertical direction, each unit unit and between each unit unit The required flow path is configured in the shortest and vertical direction so that the precipitated solute crystals are freely settled and deposited using the internal heat conduction by placing it close to the regenerator part that is heated to a high temperature during startup. Solute crystals are dissolved again at an elevated temperature and eliminated.

即ち、本発明の装置が異常停止したときに溶質結晶が沈積し流路閉塞などの問題を起こしやすいのは再生器部または当該一部構成部分から晶析器部にかけての流路内と当該器部内である。再生器部または当該一部構成部分と晶析器部を上下に一体的に配置することにより、当該再生器部または当該一部構成部分から晶析器部間の流路を縦方向に且つ最小限の長さに構成できる。これにより異常停止時における流路内で析出する溶質結晶群は晶析器部底部方向に沈降、移動し管路内での閉塞を支障ない程度までに軽減できる。また本発明の装置の起動時に外部熱源により加熱する再生器部の温度が上昇するにつれて、再生器部と隣接している各部に沈積している溶質結晶も伝熱により温度が上昇し当該溶質結晶の再溶解が起きるため溶質結晶による流路閉塞トラブルが起こらない。   That is, when the apparatus of the present invention is abnormally stopped, solute crystals are deposited and problems such as channel blockage are likely to occur in the regenerator unit or in the channel from the partial component to the crystallizer unit and in the unit. Within the club. By arranging the regenerator part or the partial component part and the crystallizer part integrally in the vertical direction, the flow path between the regenerator part or the partial component part and the crystallizer part is minimized in the vertical direction. Can be configured to a limited length. As a result, the solute crystal group that precipitates in the flow path at the time of an abnormal stop settles and moves in the direction of the bottom of the crystallizer section, and can be reduced to a level that does not hinder blockage in the pipe line. Further, as the temperature of the regenerator unit heated by the external heat source rises at the time of starting the apparatus of the present invention, the temperature of the solute crystal deposited in each part adjacent to the regenerator unit also increases due to heat transfer. As a result of re-dissolution of the solution, troubles of blockage of the channel due to solute crystals do not occur.

また、晶析器部と溶解器部間は回転軸68に取り付けたかき落し板69または螺旋形状かき落し機131、かき寄せ板70、圧搾押出し機73により順次移動させることができ、溶質結晶の異常析出に伴う本件装置の機能停止を起こすことなく運転ができる。
エジェクター33,及びまたは多重効用缶エジェクター32a,32b,32cを利用することにより低温再生器における溶媒蒸気の発生が促進でき熱効率の向上が図れる。
In addition, the crystallizer part and the dissolver part can be sequentially moved by a scraper plate 69 or a spiral scraper 131, a scraper plate 70, and a press extruder 73 attached to the rotary shaft 68, and abnormal precipitation of solute crystals. Operation is possible without causing the system to stop functioning.
By using the ejector 33 and / or the multi-effect can ejectors 32a, 32b, 32c, the generation of solvent vapor in the low-temperature regenerator can be promoted, and the thermal efficiency can be improved.

溶解熱を利用したヒートポンプ温水製造装置を構成する、再生器部の一部または全部、晶析器部、溶解器部を順次鉛直方向下方に向かって連続的かつ一体的に配置し、また中心部に配置する回転軸68により駆動させるかき落とし板69または螺旋形状かき落し機131、かき寄せ板70、及び圧搾押出し機73により溶媒結晶を機械的に移動させることにより溶媒結晶の移動輸送を円滑にさせ、装置の安定的な運転を実現できる。 A part of the regenerator part, the crystallizer part, and the dissolver part constituting the heat pump hot water production apparatus using the heat of dissolution are sequentially and integrally arranged downward in the vertical direction, and the center part. The solvent crystal is moved mechanically by the scraper plate 69 or the spiral scraper 131, the scraper plate 70, and the squeezing extruder 73 driven by the rotating shaft 68 disposed in Stable operation of the device can be realized.

溶解器において生成する低温溶液を冷熱媒体として大気熱や温排熱を装置内に取り込むヒートポンプ運転により高効率の温水製造を行う。このために装置内を通水する上水の流れを結晶析出熱が最も利用できる順序で流すよう装置を構成する。
またエジェクターを利用して低温再生器部での溶媒蒸気の蒸発を促進し熱効率の向上を図る。
更に圧搾押出し機により溶質結晶に付随する母液の溶解器への移行を最小限化する。
High-efficiency hot water production is performed by a heat pump operation in which atmospheric heat and warm exhaust heat are taken into the apparatus using a low-temperature solution generated in the dissolver as a cooling medium. For this purpose, the apparatus is configured so that the flow of clean water flowing through the apparatus flows in the order in which the heat of crystal precipitation is most utilized.
The ejector is also used to promote the evaporation of the solvent vapor in the low temperature regenerator and improve the thermal efficiency.
In addition, the press extruder minimizes the transfer of mother liquor associated with the solute crystals to the dissolver.

以下、本発明の実施の形態として一実施例を図1に基づいて説明する。なお溶質としてチオシアン酸カリウム、溶媒として水を用いるものとし、説明の便宜上、簡単に溶質、溶媒と表現することもある。また単に溶媒と呼ぶ場合は液状の溶媒とするが、管路や容器内では気液混相の場合も溶媒と総称することがある。溶質は固体結晶の状態と溶解した場合には溶液の中の一成分としての場合がある。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. Note that potassium thiocyanate is used as a solute and water is used as a solvent, and for the sake of convenience of explanation, it may be simply expressed as a solute or a solvent. In addition, when it is simply referred to as a solvent, it is a liquid solvent, but in the case of a gas-liquid mixed phase in a pipe or a container, it may be collectively referred to as a solvent. When dissolved, the solute may be a component in the solution in the form of solid crystals.

図1は本発明の装置の一実施例として全体として円柱形状に一体的に構成された、上から再生器部、晶析器部、溶解器部、及び上部外周部に一体的に配置した低温再生器部の垂直断面と、別に配置し連絡管,等で連絡接続した凝縮器44、補充溶媒貯槽26、再生器部の外部加熱源の供給装置としての燃焼ガス発生装置11、と燃焼ガスと戻り溶液の熱交換による加熱をするための燃焼ガス流路12、外部熱交換装置64、低温溶液循環ポンプ63、凝縮器44の下部空間15dに貯留された溶媒を溶解器部内に移送させるための溶媒移送ポンプ62、エジェクター33、気体だけを通過させて液体は遮断する気液分離器52a、再生器内の圧力が、設定圧力を超えた場合には大気開放とするための過圧蒸気放散弁14、溶解器部からの戻り溶液の晶析器部への上昇浸入を遮るための上昇流遮断板75、連結用フランジ外周部19a,19b, 19c等の垂直断面図ならびに付随機器、装置の配置と連絡管路を示している。 FIG. 1 shows an embodiment of the apparatus of the present invention, which is integrally formed as a whole in a cylindrical shape, and is integrally arranged from above at a regenerator part, a crystallizer part, a dissolver part, and an upper outer peripheral part. A vertical section of the regenerator part, a condenser 44 arranged separately and connected by a connecting pipe, etc., a supplementary solvent storage tank 26, a combustion gas generator 11 as a supply device for an external heating source of the regenerator part, and a combustion gas Combustion gas flow path 12 for heating the return solution by heat exchange, external heat exchange device 64, low temperature solution circulation pump 63, solvent for transferring the solvent stored in the lower space 15d of the condenser 44 into the dissolver section Solvent transfer pump 62, ejector 33, gas-liquid separator 52a that allows only gas to pass through and shuts off the liquid, and overpressure vapor diffusion valve to open the atmosphere when the pressure in the regenerator exceeds the set pressure 14. To prevent the return solution from the dissolver from entering the crystallizer A vertical sectional view of the upflow blocking plate 75, the connecting flange outer peripheral portions 19a, 19b, 19c and the like, as well as the arrangement and connecting pipes of the associated devices and devices are shown.

2は再生器部上蓋、3は再生器部外周壁、4は再生器部内周壁、5は再生器部底部仕切板であり、これらによって囲まれた中空円柱状の空間が再生器部の主要部である。 2 is an upper lid of the regenerator unit, 3 is an outer peripheral wall of the regenerator unit, 4 is an inner peripheral wall of the regenerator unit, and 5 is a partition plate at the bottom of the regenerator unit, and a hollow cylindrical space surrounded by these is the main part of the regenerator unit It is.

再生器部底部仕切板5と再生器部外周壁3の下部は部分的または全部において隙間31 を有しており当該溶液の移動が可能である。また、再生器部内周壁4の上部は上部に配置する再生器部上蓋2との間に部分的または全部において空間15 aを有しており、当該空間15aを越えて再生器部内の高温濃厚溶液が溢流溶液下降管6に溢流し下部に一体的に配置した晶析器部に流下させる。また当該空間15aは再生器部内の通常液面9から発生する高温溶媒蒸気が自由に移動できるだけの空間であるよう構成する。 The regenerator part bottom partition plate 5 and the lower part of the regenerator part outer peripheral wall 3 have gaps 31 partially or entirely, and the solution can be moved. In addition, the upper part of the inner peripheral wall 4 of the regenerator part has a space 15a partially or entirely between the upper part of the regenerator part upper cover 2 disposed at the upper part, and the high-temperature concentrated solution in the regenerator part exceeds the space 15a. Overflows to the overflow solution downcomer 6 and flows down to the crystallizer part integrally disposed at the bottom. Further, the space 15a is configured to be a space where the high-temperature solvent vapor generated from the normal liquid level 9 in the regenerator part can freely move.

再生器部上蓋2と低温再生器部上蓋18は一体的に接合配置し低温再生器部外周壁17にフランジ接合により接合し、着脱が容易な構造としている。当該上蓋2,18には熱源用の燃焼ガスを発生するための燃焼ガス発生装置11と当該溶液温度を制御するための再生器部溶液温度調節装置10を配置し燃焼ガス発生装置11の出力調節を行う。当該燃焼ガスを燃焼ガス流路12の中を通して燃焼ガス排出管13から排気させる。これにより再生器部内溶液を加熱し当該溶液温度を最適に保つ。また異常温度上昇を検知することにより空焚きを防止できる。   The regenerator unit top cover 2 and the low temperature regenerator unit top cover 18 are integrally joined and joined to the low temperature regenerator unit outer peripheral wall 17 by flange joining, so that it can be easily attached and detached. A combustion gas generator 11 for generating combustion gas for a heat source and a regenerator part solution temperature controller 10 for controlling the solution temperature are arranged on the upper lids 2 and 18, and the output of the combustion gas generator 11 is adjusted. I do. The combustion gas is exhausted from the combustion gas discharge pipe 13 through the combustion gas passage 12. Thereby, the solution in the regenerator part is heated to keep the solution temperature optimal. Further, by detecting an abnormal temperature rise, it is possible to prevent idling.

また、再生器部から発生した高温溶媒蒸気を高温溶媒蒸気取出口7から取り出し、管路を経由してエジェクター33の駆動蒸気入口34に注入し低温再生器部溶媒蒸気出口25から出るやや温度の低い溶媒蒸気を気液分離器52aを介してエジェクター33の吸入蒸気口35から吸引し低温再生器内溶媒蒸気の蒸発を促進する。 Further, the high temperature solvent vapor generated from the regenerator part is taken out from the high temperature solvent vapor outlet 7 and injected into the drive vapor inlet 34 of the ejector 33 via the pipe line, and the temperature of the solvent slightly out of the low temperature regenerator part solvent vapor outlet 25 is increased. The low solvent vapor is sucked from the suction vapor port 35 of the ejector 33 through the gas-liquid separator 52a to promote the evaporation of the solvent vapor in the low temperature regenerator.

エジェクター33の蒸気吐出口36から吐出したやや低温の溶媒蒸気を高温水製造用熱交換器38のセル側に注入し、当該高温水製造用熱交換器38の熱交換用管路45b内を流れる上水を加熱昇温した後、付属して配置した管路を経由して螺旋状流路熱交換器20の上端の内部流路22に注入し、螺旋状流路熱交換器20の下端部の内部流路22より排出させ、更に連絡管路88bを経由して溶媒入口51より凝縮器44内に流入させる。
低温再生器部外周壁17と低温再生器上蓋18と螺旋状流路熱交換器20によって構成される中空円柱状空間を低温再生器部と呼ぶ。低温再生器上蓋18と螺旋状流路熱交換器20は一部分または全部において空間15b を有し低温再生器部内の通常液面23から発生した溶媒蒸気が移動可能であるよう構成する。
Slightly low-temperature solvent vapor discharged from the vapor discharge port 36 of the ejector 33 is injected into the cell side of the high-temperature water production heat exchanger 38 and flows through the heat exchange pipe 45b of the high-temperature water production heat exchanger 38. After heating and heating the clean water, it is injected into the internal flow path 22 at the upper end of the spiral flow path heat exchanger 20 via the attached pipe line, and the lower end of the spiral flow path heat exchanger 20 The liquid is discharged from the internal flow path 22 and further flows into the condenser 44 from the solvent inlet 51 via the connecting pipe 88b.
A hollow cylindrical space constituted by the outer wall 17 of the low temperature regenerator part, the upper cover 18 of the low temperature regenerator, and the spiral flow path heat exchanger 20 is referred to as a low temperature regenerator part. The low temperature regenerator top cover 18 and the spiral flow path heat exchanger 20 have a space 15b in part or in whole so that the solvent vapor generated from the normal liquid level 23 in the low temperature regenerator part can move.

また、再生器部上蓋2には当該溶質を補充するための溶質投入口8を配置し通常は蓋で密閉する。また低温再生器部上蓋18には低温再生器部内の通常液面23を適正に保持するための液面調節装置24を配置する。当該低温再生器部内の通常液面23が異常に低下した場合には、電極を利用した液面センサー等により検知し、補充溶媒貯槽26の電動弁27を開いて凝縮器44と溶媒移送ポンプ62を介して溶媒を補充し低温再生器部内の液面を低温再生器部内の通常液面23付近まで上昇させる。   Further, the regenerator unit upper lid 2 is provided with a solute inlet 8 for replenishing the solute, and is usually sealed with a lid. In addition, a liquid level adjusting device 24 for properly holding the normal liquid level 23 in the low temperature regenerator unit is disposed on the low temperature regenerator unit upper lid 18. When the normal liquid level 23 in the low-temperature regenerator part is abnormally lowered, it is detected by a liquid level sensor using an electrode or the like, and the electric valve 27 of the replenishing solvent storage tank 26 is opened to open the condenser 44 and the solvent transfer pump 62. Then, the solvent is replenished to raise the liquid level in the low-temperature regenerator part to the vicinity of the normal liquid level 23 in the low-temperature regenerator part.

再生器部内の圧力を適正に保つために過圧蒸気放散弁14を設け再生器部内の圧力が設定圧力を超えた場合には溶媒蒸気を高温溶媒蒸気出口7から過圧蒸気放散弁14と凝縮器44を経由して大気開放管49より大気中に放散する。   In order to keep the pressure in the regenerator part properly, an overpressure steam diffusion valve 14 is provided, and when the pressure in the regenerator part exceeds the set pressure, the solvent vapor is condensed with the overpressure vapor diffusion valve 14 from the high temperature solvent vapor outlet 7. It dissipates into the atmosphere via the open air pipe 49 via the vessel 44.

回転軸68と回転軸68を駆動する回転軸駆動装置67を再生器上蓋2に固定して取り付ける。その直近周囲には円筒形状上水下降管路77が、また円筒形状上水下降管路77の外周部には円筒形状上水上昇管80を一体的に配置し再生器上蓋2と密着して接続する。   A rotating shaft 68 and a rotating shaft driving device 67 for driving the rotating shaft 68 are fixedly attached to the regenerator upper lid 2. A cylindrical water discharge pipe 77 is disposed in the immediate vicinity, and a cylindrical water discharge pipe 80 is integrally disposed on the outer periphery of the cylindrical water discharge pipe 77 and is in close contact with the regenerator top cover 2. Connecting.

円筒形状上水下降管77と円筒形状上水上昇管80の下部および晶析器部外周部螺旋形状管路86の上端部にそれぞれ接して水平に配置され中央部を回転軸68が貫通した円盤状の晶析器部上蓋87と中空円筒壁体状に構成された晶析器部外周部螺旋形状管路86によって構成される空間を晶析器部と呼ぶ。晶析器部内の中心部側に同じく円筒形状に構成された晶析器部中央部螺旋形状管路85を配置し、回転軸68により回転する溶質結晶のかき落とし板69を晶析器部中央部螺旋形状管路85の内周部に接近して配置し晶析器部中央部螺旋形状管路85の内周部表面に付着した溶質結晶をかき落す。 A disk in which a rotating shaft 68 passes through a central portion disposed horizontally in contact with the lower end of the cylindrical water-falling pipe 77 and the cylindrical water-rising pipe 80 and the upper end portion of the outer peripheral portion of the crystallizer spiral-shaped pipe 86. The space constituted by the crystallizer part upper lid 87 and the crystallizer part outer peripheral part helical pipe 86 configured in the shape of a hollow cylindrical wall is called a crystallizer part. The central part of the crystallizer part is also provided with a spiral pipe 85 in the central part of the crystallizer part, which is also configured in a cylindrical shape, and a solute crystal scraping plate 69 rotated by a rotary shaft 68 is placed in the central part of the crystallizer part. The solute crystals arranged near the inner peripheral portion of the spiral pipe 85 and attached to the inner peripheral surface of the spiral pipe 85 in the center of the crystallizer part are scraped off.

凝縮器44の上水入口60aから給水した上水は凝縮器内熱交換用管路45aを経由して上水出口61a、連絡管88cを経由して円筒形状上水下降管77に入り連絡管88fを経由して晶析器部中央部螺旋状管路85内を旋回しながら下方に流れ、連絡管88gを経由して晶析器部外周部螺旋状管路86内を旋回しながら上方に流れ 、連絡管88h、円筒形状上水上昇管80を順次経由して高温水製造用熱交換器38に流入し高温水となり高温上水出口40より取り出して利用される。
The water supplied from the water inlet 60a of the condenser 44 enters the cylindrical water downcomer pipe 77 via the water outlet 61a and the connecting pipe 88c via the condenser heat exchange pipe 45a and enters the connecting pipe. It flows downward while swirling in the spiral pipe 85 in the central part of the crystallizer part via 88f, and upward while swirling in the spiral pipe 86 in the outer periphery of the crystallizer part via the connecting pipe 88g. The flow passes through the connecting pipe 88h and the cylindrical water riser pipe 80 in this order to flow into the heat exchanger 38 for producing high temperature water to become high temperature water, which is taken out from the high temperature water outlet 40 and used.

溶解器部上部円錐形状仕切り板93、溶解器部外周部壁95と溶解器部底板94により構成される空間を溶解器部と呼ぶ。溶解器部の底部には余剰溶質結晶が滞留する余剰溶質結晶貯留部96を配置する。また低温溶液循環ポンプ63と外部熱交換装置64により通常大気熱を系内に取り入れる構成とする。 A space constituted by the dissolver part upper conical partition plate 93, the dissolver part outer peripheral wall 95 and the dissolver part bottom plate 94 is referred to as a dissolver part. A surplus solute crystal storage part 96 in which surplus solute crystals stay is disposed at the bottom of the dissolver part. Further, a configuration is adopted in which normal atmospheric heat is taken into the system by the low-temperature solution circulation pump 63 and the external heat exchange device 64.

回転軸68の下端部に取り付けた圧搾押出し機73と戻り溶液の上昇流を遮蔽するための上昇流遮蔽盤75を配置させる。
また必要に応じて溶解器部上部円錐形状仕切り板93を固定させるために支柱98e,98fを配置してもよい。どうように円錐形状受け皿71、円錐形状下降管74、をそれぞれ固定するために支柱98a,98b,98c,98dを配置してもよい。
A pressing extruder 73 attached to the lower end portion of the rotating shaft 68 and an upflow shielding board 75 for shielding the upflow of the return solution are arranged.
Further, support columns 98e and 98f may be arranged to fix the upper conical partition plate 93 as required. The columns 98a, 98b, 98c, and 98d may be arranged to fix the conical tray 71 and the conical descending pipe 74, respectively.

また、必要に応じて凍結防止装置を設けるものとする。再生器部内の戻り溶媒の加熱方法として、当該戻り溶媒を管路で取り出して当該再生器部の外部で加熱昇温させて再び管路を経由して当該再生器部内に還流させてもよい。
低温再生器部での加熱用熱源は燃焼排気及びまたは排蒸気などを使うことができる。
Further, an antifreezing device shall be provided as necessary. As a heating method of the return solvent in the regenerator unit, the return solvent may be taken out by a pipe line, heated to be heated outside the regenerator part, and refluxed again into the regenerator part via the pipe line.
As the heat source for heating in the low temperature regenerator section, combustion exhaust gas and / or exhaust steam can be used.

また本発明の実施の形態として一実施例を図2,3,4,5に基づいて説明する。この場合にも溶質としてチオシアン酸カリウム、溶媒として水を用いるものとする。   One embodiment of the present invention will be described with reference to FIGS. In this case, potassium thiocyanate is used as a solute and water is used as a solvent.

図2は再生器が外部の場合の1実施例を示す。115は円筒形状をした外部再生器溶液加熱濃縮器であって、底部中心部に低温再生溶液を注入するための低温再生溶液下降管114が上から下へ配置されている。低温再生器部から低温再生溶液輸送ポンプ111で輸送されてくる低温再生溶液を予混合気燃焼器116で外熱すると外部再生器溶液加熱濃縮器115内部で沸騰が起きる。沸点は濃縮度に応じて定まるため、所要の濃縮度を示す沸点に到るまでは、電動弁132aを開いて溶液のみバイパスして還流させる。濃縮度があがるとともに沸点が上昇し外部再生器温度検知器113bで所要の沸点になるのを検知したら、電動弁132aを閉止し濃厚溶液を溶媒蒸気とともに気液分離装置145内へ注入する。   FIG. 2 shows one embodiment where the regenerator is external. 115 is an external regenerator solution heating concentrator having a cylindrical shape, and a low temperature regenerative solution downcomer 114 for injecting a low temperature regenerative solution into the center of the bottom is arranged from top to bottom. When the low temperature regenerative solution transported by the low temperature regenerative solution transport pump 111 from the low temperature regenerator is externally heated by the premixed gas combustor 116, boiling occurs inside the external regenerator solution heating concentrator 115. Since the boiling point is determined according to the degree of concentration, the motor-operated valve 132a is opened and only the solution is bypassed and refluxed until the boiling point indicating the required concentration is reached. When it is detected that the boiling point rises as the concentration increases and the external regenerator temperature detector 113b reaches the required boiling point, the motor-operated valve 132a is closed and the concentrated solution is injected into the gas-liquid separator 145 together with the solvent vapor.

気液分離装置145内に設けた通常の気液分離器機構により分離した溶媒蒸気はエジェクター33の駆動蒸気入口34、蒸気吐出口を順次経由して吸入蒸気入口35より吸入した低温再生器の低温再生器内部の通常液面23より発生した溶媒蒸気と合わせて螺旋状流路熱交換器20の上部に注入する。エジェクター33の吸引力による減圧が低温再生器の蒸発これにより再生のエネルギー効率を高めるとともに低温再生器からの溶媒蒸気の抜き出しと凝縮器44への輸送装置を兼ねて装置をコンパクトにできる。   The solvent vapor separated by the normal gas-liquid separator mechanism provided in the gas-liquid separator 145 is sucked from the intake steam inlet 35 through the drive steam inlet 34 and the steam discharge port of the ejector 33 in order, and the low temperature of the low temperature regenerator Together with the solvent vapor generated from the normal liquid level 23 inside the regenerator, it is injected into the upper part of the spiral flow path heat exchanger 20. The decompression by the suction force of the ejector 33 evaporates the low-temperature regenerator, thereby increasing the energy efficiency of the regeneration and making the apparatus compact by combining the extraction of the solvent vapor from the low-temperature regenerator and the transport device to the condenser 44.

気液分離装置145内で分離した濃厚溶液は、フロート弁122aを経由して連続的に再生溶液流路148aに注入する。注入した当該濃厚溶液は上水の冷熱により冷却しつつ再生溶液流路148bを上昇して再生溶液流路148cの上部に到る。   The concentrated solution separated in the gas-liquid separator 145 is continuously injected into the regeneration solution channel 148a via the float valve 122a. The concentrated solution thus injected rises in the regeneration solution channel 148b while being cooled by the cooling water of the clean water, and reaches the upper part of the regeneration solution channel 148c.

再生溶液流路148cの内部では溶質の再結晶が起こるまで冷却が進んでいるよう螺旋状上水熱交換器126a,126bの伝熱面積を構成する。発生する溶質結晶は螺旋状かき落し機により鉛直下方に輸送する。このとき発生する下方向の流れが再生溶液流路148b内の上昇流を促進する。 Inside the regeneration solution channel 148c, the heat transfer areas of the helical water heat exchangers 126a and 126b are configured so that the cooling proceeds until solute recrystallization occurs. The generated solute crystals are transported vertically downward by a spiral scraper. The downward flow generated at this time promotes the upward flow in the regeneration solution channel 148b.

溶媒蒸気が凝縮器44の上端部に大気に開放して設けた大気開放管49から蒸散して凝縮器内の通常液面140が凝縮器内溶媒補充開始液面141まで低下したら、補充溶媒貯槽26内の溶媒が気体と入れ替わりに流出し溶媒液面を凝縮器内溶媒補充開始液面141以下にはさせない。補充溶媒貯槽26内の溶媒は定期的に補充する。補充し忘れたときは、液面検知器133bで知らせる。   When the solvent vapor evaporates from the open air pipe 49 provided open to the atmosphere at the upper end of the condenser 44 and the normal liquid level 140 in the condenser decreases to the solvent replenishment start liquid level 141 in the condenser, the replenishing solvent storage tank The solvent in 26 flows out in place of the gas, and the solvent liquid level is not lowered below the solvent replenishment start liquid level 141 in the condenser. The solvent in the replenishing solvent storage tank 26 is replenished periodically. When refilling is forgotten, it is notified by the liquid level detector 133b.

再生器部を外部に配置することによりメンテナンスが容易になるとともに本体の構成がシンプルにでき容積効率も向上する。
また、外熱熱源は蒸気や排気を利用してもよい。
By arranging the regenerator part outside, the maintenance becomes easy and the structure of the main body can be simplified and the volume efficiency is improved.
The external heat source may use steam or exhaust.

また、外部熱交換器64を経由して大気熱や低温排熱をシステム内に取り込みヒートポンプとして加熱効率を高める。
また、外部熱交換器64の冷却熱を居室や倉庫内の冷房などに利用することもできる。
In addition, atmospheric heat and low-temperature exhaust heat are taken into the system via the external heat exchanger 64 to increase heating efficiency as a heat pump.
Further, the cooling heat of the external heat exchanger 64 can be used for cooling in a room or a warehouse.

溶液が腐食性がある場合には、各種弁類は磁石の力で間接的に弁を動作できるものを利用することができる
撹拌翼などの材質として各種金属やその合金を利用できる、またガラス、樹脂、プラスチックなどの非金属材料も特性に応じて利用できる。
When the solution is corrosive, various types of valves can use materials that can operate the valve indirectly with the force of a magnet. Non-metallic materials such as resin and plastic can also be used depending on the characteristics.

チオシアン酸カリを溶質として水を溶媒として利用できる。この場合にはアルミニウム
及びまたはその合金を利用できる。
Water can be used as a solvent with potassium thiocyanate as a solute. In this case, aluminum and / or its alloy can be used.

本発明の上水を冷却塔や放熱器により冷却しつつ循環使用して、冷凍機として運転することができる。   The water supply of the present invention can be circulated and used as a refrigerator while being cooled by a cooling tower or a radiator.

また本発明の実施の形態として一実施例を図3に基づいて説明する。この場合にも溶質としてチオシアン酸カリウム、溶媒として水を用いるものとする。   An embodiment of the present invention will be described with reference to FIG. In this case, potassium thiocyanate is used as a solute and water is used as a solvent.

図3は再生器が外部の場合の1実施例を示す。26aは補充溶媒貯槽であり外部再生器内の気液界面が外部再生器内溶媒補充開始液面142まで低下したら当該補充溶媒貯槽26a 内に気体が流入し当該気体の流入量に応じた溶媒が通常運転時開かれている開閉弁160aを経由して外部再生器内に重力に従って流入する。これにより随時外部再生器内の気液界面が外部再生器内溶媒補充開始液面142以上に維持でき、外部再生器の空焚きが防止できる。   FIG. 3 shows one embodiment where the regenerator is external. 26a is a replenishment solvent storage tank, and when the gas-liquid interface in the external regenerator is lowered to the solvent replenishment start liquid level 142 in the external regenerator, gas flows into the replenishment solvent storage tank 26a, and a solvent corresponding to the amount of inflow of the gas is generated. It flows according to gravity into the external regenerator via the on-off valve 160a that is opened during normal operation. As a result, the gas-liquid interface in the external regenerator can be maintained at or above the solvent replenishment start liquid level 142 in the external regenerator at any time, and the external regenerator can be prevented from being blown.

また26bは補充溶媒貯槽であり凝縮器44内の気液界面が凝縮器内溶媒補充開始液面141まで低下したら当該補充溶媒貯槽26b内に気体が流入し当該気体の流入量に応じた溶媒が通常運転時開かれている開閉弁160bを経由して凝縮器44内に重力に従って流入する。また、当該凝縮器内溶媒補充開始液面141は凝縮器内の通常液面140より低い位置で且つ当該凝縮器内の通常液面140の波動が影響を及ぼさない範囲でできるだけ高い位置に設けるものとする。   Reference numeral 26b denotes a replenishing solvent storage tank. When the gas-liquid interface in the condenser 44 is lowered to the in-condenser solvent replenishment starting liquid level 141, gas flows into the replenishing solvent storage tank 26b, and a solvent corresponding to the amount of the gas flowing in is supplied. It flows according to gravity into the condenser 44 via the on-off valve 160b that is opened during normal operation. In addition, the solvent replenishment start liquid level 141 in the condenser is located at a position lower than the normal liquid level 140 in the condenser and as high as possible within the range where the wave of the normal liquid level 140 in the condenser does not affect. And

これにより凝縮器44内の溶媒液面を高く維持できるため、本件装置の起動時に凝縮器44内に凝縮溶媒が注入開始されると当該凝縮器内の凝縮溶媒液面が上昇し溢流して連絡管路125g、気液分離器161を順次経由して溶媒移送ポンプ62により速やかに凝縮溶媒の溶解器内への注入が開始され、溶解器部内の余剰結晶貯留部96に常時貯留している溶質と接触し溶解に伴う冷熱の発生を速やかに開始できる。 As a result, the liquid level of the solvent in the condenser 44 can be kept high, so that when the condensed solvent starts to be injected into the condenser 44 at the start-up of the apparatus, the liquid level of the condensed solvent in the condenser rises and communicates. Solute that is always stored in the surplus crystal storage unit 96 in the dissolver unit, where the solvent transfer pump 62 promptly injects the condensed solvent through the pipeline 125g and the gas-liquid separator 161 in sequence. Can immediately start generation of cold heat accompanying dissolution.

また本発明の実施の形態として一実施例を図3,4,5に基づいて説明する。この場合にも溶質としてチオシアン酸カリウム、溶媒として水を用いるものとする。 An embodiment of the present invention will be described with reference to FIGS. In this case, potassium thiocyanate is used as a solute and water is used as a solvent.

図4は低温再生器部に多重効用缶方式を用いる場合の1実施例を示すためのシステムフロー図であり、説明の簡素化のため直接関係しない一部の構成要素を省略している。また図5は図4に示す多重効用缶方式のシステムフロー図の一水平断面図であり説明の簡素化のため直接関係しない一部構成要素を省略している。
また、本実施例において低温再生器部以外の構成は図3に示すとおりである。
FIG. 4 is a system flow diagram for illustrating an embodiment in which a multi-effect can system is used in the low-temperature regenerator section, and some components not directly related are omitted for the sake of simplicity of explanation. FIG. 5 is a horizontal sectional view of the system flow diagram of the multi-effect can system shown in FIG. 4, and some components not directly related are omitted for simplicity of explanation.
Further, in the present embodiment, the configuration other than the low-temperature regenerator unit is as shown in FIG.

165a, 165b, 165cはそれぞれ低温再生器部における多重効用缶再生器室である。本発明の主要な構成要素の一つである晶析器部、溶解器部を全体として円柱状に構成配置し当該円柱状の構成要素の上部に中空円柱状に直列的且つ連続的に構成した三つの多重効用缶再生器室165a, 165b, 165cを一体的に配置している。   165a, 165b and 165c are multi-effect can regenerator chambers in the low temperature regenerator section. The crystallizer part and the dissolver part, which are one of the main components of the present invention, are configured and arranged in a cylindrical shape as a whole, and are formed in series and continuously in a hollow cylindrical shape above the cylindrical component. Three multi-effect can regenerator chambers 165a, 165b, and 165c are integrally arranged.

なお、当該多重効用缶再生器室の数は2つ以上複数個配置できるが、図4、図5は三つの場合を例示するものである。また、各多重効用缶再生器室165a, 165b, 165c内の主たる構成配置は同一の構成であり直列配置の先端部の多重効用缶再生器室165aには高温濃厚溶液と高温溶媒蒸気を注入するための入口を設け部分的に濃縮した戻り溶液を取り出すための出口を設ける。また終端部の多重効用缶再生器室165cには低温再生器部から多重効用缶部への戻り溶液移送管路177と螺旋状流路熱交換器20へ溶媒を注入するための溶媒移送管路178を設ける。   Two or more multi-effect can regenerator chambers can be arranged, but FIGS. 4 and 5 illustrate three cases. In addition, the main components in each of the multi-effect can regenerator chambers 165a, 165b, and 165c have the same configuration, and a high-temperature concentrated solution and a high-temperature solvent vapor are injected into the multi-effect can regenerator chamber 165a at the tip of the series arrangement. And an outlet for removing the partially concentrated return solution. Also, in the multi-effect can regenerator chamber 165c at the end, a return solution transfer line 177 from the low-temperature regenerator part to the multi-effect can part and a solvent transfer line for injecting the solvent into the spiral flow path heat exchanger 20 178 is provided.

当該多重効用缶再生器室165a内は多重効用缶仕切り板179aで上部と下部空間に仕切り、下部空間内で多重効用缶蒸気流路熱交換器169a及びまたは多重効用缶濃厚溶液流路熱交換器170により加熱して発生した溶媒蒸気を蒸気抽気用フロート弁166aを介して上部空間内に設けたエジェクター32aに吸引せしめ多重効用缶蒸気流路熱交換器169bを経由して下流側の多重効用缶再生器室165b内に排出させ順次これを繰り返した後に多重効用缶再生器室165cから溶媒移送管路178を経由して螺旋状流路熱交換器20へ排出させる。 The multi-effect can regenerator chamber 165a is divided into an upper space and a lower space by a multi-effect can partition plate 179a, and a multi-effect can vapor flow heat exchanger 169a and / or a multi-effect can concentrated solution flow heat exchanger in the lower space. Solvent vapor generated by heating by 170 is sucked into an ejector 32a provided in the upper space via a steam extraction float valve 166a, and a multi-effect can on the downstream side via a multi-effect can steam flow heat exchanger 169b After being discharged into the regenerator chamber 165b and sequentially repeating this, it is discharged from the multi-effect can regenerator chamber 165c via the solvent transfer line 178 to the spiral flow channel heat exchanger 20.

また、気液輸送管105を経由して注入される高温の濃厚溶液及び溶媒蒸気を気液分離装置145内に接線方向から注入させ流体の密度差を利用して気液分離し、当該高温の濃厚溶液を下部よりフロート弁122aを経由して多重効用缶濃厚溶液流路熱交換器170に注入する。また当該高温の溶媒蒸気は多重効用缶蒸気流路熱交換器169aを経由してエジェクター32aの駆動蒸気として利用した後に多重効用缶蒸気流路熱交換器169bへ移送する。   Further, a hot concentrated solution and solvent vapor injected through the gas-liquid transport pipe 105 are injected into the gas-liquid separator 145 from the tangential direction, and gas-liquid separation is performed using the density difference of the fluid. The concentrated solution is injected from below into the multi-effect can concentrated solution flow path heat exchanger 170 via the float valve 122a. The high-temperature solvent vapor is transferred to the multi-effect can vapor flow heat exchanger 169b after being used as the drive vapor for the ejector 32a via the multi-effect can vapor flow heat exchanger 169a.

多重効用缶蒸気流路熱交換器169a,169b,169cにおいて発生した凝縮溶媒は多重効用缶気液分離器168a,168b,168cをそれぞれ経由しさらに溶媒移送管路178を経由して螺旋状流路熱交換器20へ排出する。   The condensed solvent generated in the multi-effect can vapor flow heat exchangers 169a, 169b, and 169c passes through the multi-effect can gas-liquid separators 168a, 168b, and 168c, respectively, and then passes through the solvent transfer line 178 to form a spiral flow path. Discharge to heat exchanger 20.

上水は上水入口60aから注入し、熱交換用管路45a,連絡管路125a, 壁体貫通管路接続具130c, 連絡管路125b, 螺旋状上水流路熱交換器126a, 連絡管路125c, 螺旋状上水流路熱交換器126b, 連絡管路125d, 壁体貫通管路接続具130d, 連絡管路125e, 壁体貫通管路接続具130e, 高温水発生器103, 壁体貫通管路接続具130f, 高温水出口104,を順次経由して
温水として取り出す。
Water is injected from the water inlet 60a, and the heat exchange pipe 45a, the connecting pipe 125a, the wall through pipe connector 130c, the connecting pipe 125b, the spiral water supply heat exchanger 126a, and the connecting pipe 125c. , Spiral water flow heat exchanger 126b, connecting pipe 125d, wall through pipe connector 130d, connecting pipe 125e, wall through pipe connector 130e, high temperature water generator 103, wall through pipe connector It takes out as warm water through the tool 130f and the hot water outlet 104 in order.

この間、螺旋状上水流路熱交換器126aにおいて高温濃厚溶液が順次冷却して低温濃厚溶液となって生成する再生溶液となり当該再生溶液を再生溶液流路148a, 再生溶液流路148b, 再生溶液流路148cを順次移動する間に上水の冷熱により更に冷却して溶質の再析出を起こせしめ、析出熱を螺旋状上水流路熱交換器126aにより回収し上水温度を昇温させる。   During this time, the high-temperature concentrated solution is sequentially cooled in the spiral clean water flow channel heat exchanger 126a to form a low-temperature concentrated solution to be a regenerated solution, which is regenerated solution channel 148a, regenerated solution channel 148b, regenerated solution channel. While moving sequentially through 148c, the water is further cooled by the cold heat of the water to cause reprecipitation of the solute, and the heat of precipitation is recovered by the helical water flow channel heat exchanger 126a to raise the temperature of the water.

なお、上水温度が高い場合には上水の流動順序を変更して最初に螺旋状上水流路熱交換器126aに注入してもよい。 When the temperature of the clean water is high, the flow sequence of clean water may be changed and injected first into the spiral clean water flow channel heat exchanger 126a.

各実施例においてフロート弁は当該溶液の比重と当該フロート弁を通過する液流量と方向を考慮して設計製作したものを使用する。また気液分離、気液界面維持、逆流防止などの目的で使用する各弁機構においても浮遊体が利用できるが、この場合にも当該溶液の比重と当該浮遊体弁を通過する液流量と方向を考慮して設計、製作したものを使用する。
なお、同機能のものであってフロートまたは浮遊体を使用しないものも使用することができる。
In each embodiment, a float valve designed and manufactured in consideration of the specific gravity of the solution and the flow rate and direction of the liquid passing through the float valve is used. Floating bodies can also be used in each valve mechanism used for the purpose of gas-liquid separation, gas-liquid interface maintenance, backflow prevention, etc. In this case as well, the specific gravity of the solution and the flow rate and direction of the liquid passing through the floating body valve Use the one designed and manufactured considering the above.
In addition, the thing of the same function and not using a float or a floating body can also be used.

各種開閉弁は溶液及びまたは溶媒の腐食性について使用材質を選択する。当該溶液及びまたは溶媒の腐食性が問題になる場合においては、耐食性のある材質で覆った磁石の力を利用して開閉を行う弁を使用することもできる。   Various on-off valves select the material used for the corrosiveness of the solution and / or solvent. When the corrosiveness of the solution and / or solvent becomes a problem, a valve that opens and closes using the force of a magnet covered with a corrosion-resistant material can be used.

本発明は規模を拡大することは容易であり、一般家庭用のみならず業務用、等大規模の温水製造装置として利用できる。
また、本件装置は、200℃程度の比較的低温の再生用熱源と大気、河川水、等の冷熱源があれば、給湯、暖房、冷房、冷凍を組み合わせて大規模な地域冷暖房等の熱源発生装置としても利用できる。更に、ごみ焼却熱や工場廃熱等を再生用エネルギーとするエネルギーセンターの熱源発生装置にも利用可能であり省資源、省エネルギー、環境に適した熱源発生装置が構成でき、広く多用途に役立つものである。
The present invention can be easily expanded in scale, and can be used as a large-scale hot water production apparatus for business use as well as general household use.
In addition, if this equipment has a relatively low-temperature regeneration heat source of about 200 ° C and a cooling heat source such as air, river water, etc., it generates heat sources such as large-scale district cooling and heating by combining hot water supply, heating, cooling, and refrigeration. It can also be used as a device. Furthermore, it can be used for heat source generators in energy centers that use waste incineration heat, factory waste heat, etc. as regeneration energy, and can be configured for resource saving, energy saving, and environment-friendly heat source generators that are widely useful It is.

溶解熱を利用したヒートポンプ温水製造装置の構成の説明図(実施例1)Explanatory drawing of the configuration of the heat pump hot water production system using heat of dissolution (Example 1) 溶解熱を利用したヒートポンプ温水製造装置の構成の説明図(実施例2)Explanatory drawing of the configuration of a heat pump hot water production system using heat of dissolution (Example 2) 溶解熱を利用したヒートポンプ温水製造装置の構成の説明図(実施例3)Explanatory drawing of the configuration of the heat pump hot water production equipment using heat of dissolution (Example 3) 多重効用缶低温再生器部の構成の鉛直断面説明図(実施例4)Vertical cross-sectional explanatory diagram of the structure of the multi-effect can low temperature regenerator (Example 4) 多重効用缶低温再生器部の構成の水平断面説明図(実施例4)Horizontal cross-sectional explanatory diagram of the structure of the multi-effect can low temperature regenerator (Example 4)

符号の説明Explanation of symbols

2 再生器部上蓋
3 再生器部外周壁
4 再生器部内周壁
5 再生器部底部仕切板
6 溢流溶液下降流路
7 高温溶媒蒸気出口
8 溶質投入口
9 再生器部内の通常液面
10 溶液温度調節装置
11 燃焼ガス発生装置
12 燃焼ガス流路
13 燃焼ガス排出管
14 過圧蒸気放散弁
15a 15b 15c 15d 空間
17 低温再生器部外周壁
18 低温再生器部上蓋
19a 19b 19c 連結用フランジ外周部
20 螺旋状流路熱交換器
21 還流路
22 内部流路
23 低温再生器部内の通常液面
24 液面調節装置
25 低温再生器部溶媒蒸気出口
26a 26b 補充溶媒貯槽
27 電動弁
28a 28b 溶媒注入口
29 通気管
30a 30b 補充溶媒貯槽内の通常液面
31 隙間
32a 32b 32c 多重効用缶エジェクター
33 エジェクター
34 駆動蒸気入口
35 吸入蒸気入口
36 蒸気吐出口
38 高温水製造用熱交換器
40 高温上水出口
44 凝縮器
45a 45b 45c 熱交換用管路
48 凝縮器内の通常液面
49 大気開放管
50 過圧蒸気入口
51 溶媒入口
52a 52b 気液分離器
54a 54b 余剰気体出口
56a 56b 取出し口
58 逆流防止弁
59a 59b ドレン抜き弁
60a 60b 上水入口
61a 61b 上水出口
62 溶媒移送ポンプ
63 低温溶液循環ポンプ
64 外部熱交換装置
66a 66b 66c 66d 注入口
67 回転軸駆動装置
68 回転軸
69 かき落し板
70 かき寄せ板
71 円錐形状受け皿
72 受け皿中央底部開口部
73 圧搾押出し機
74 円錐形状下降管
75 上昇流遮蔽板
76 螺旋状翼板
77 円筒形状上水下降管路
78a 78b 接続具
80 円筒形状上水上昇管路
83a 83b 83c 晶析部中央部空間
85 晶析器部中央部側螺旋状管路
86 晶析器部外周部側螺旋状管路
87 晶析器部上蓋
88a 88b 88c 88d 連絡管
88f 88g 88h 88i 88j 連絡管
90 円錐形状仕切り板開口部
91 溶質結晶下降管
93 溶解器部上部円錐形状仕切り板
94 溶解器部底板
95 溶解器部外周壁
96 余剰溶質結晶貯留部
97 余剰沈積溶質結晶の通常表面
98a 98b 98c 98d 98e 98f 支柱
102 外部再生器排気筒
103 高温水発生器
104 高温水出口
105 気液輸送管
106 溶液バイパス出口
107 溶液バイパス入口
108 溶液バイパス制御装置
109 外部再生器加熱装置外周壁
110 外部再生器外周壁
111 低温再生溶液輸送ポンプ
112 低温再生溶液下降管入口
113a 113b 外部再生器温度検知器
114 低温再生溶液下降管
115 外部再生器溶液加熱濃縮器
116 予混合気燃焼器
117 燃焼ガス上昇管路
118 予混合気製造供給装置
119 予混合気供給管
120a 120b 120c 120d 120e 手動液抜き弁
121 高温溶液出口
122a 122b 122c 122d 122e 122f 122g フロート弁
123 磁石または電気磁石
124 磁石内臓円盤
125a 125b 125c 125d 125e 125f 125g 125h 125i 125j 125k 連絡管路
126a 126b 螺旋状上水流路熱交換器
127 円筒状仕切壁
128 下降流発生用プロペラ
129 接続用環状差込具
130a 130b 130c 130d 130e 130f 130g 壁体貫通管路接続具
131 螺旋形状かき落し機
132a 132b 電動開閉弁
133a 133b 133c 液面検知器
140 凝縮器内の通常液面
141 凝縮器内溶媒補充開始液面
142 外部再生器内溶媒補充開始液面
145 気液分離装置
146 溶解器部から低温再生器部への戻り溶液流路
148a 148b 148c 再生溶液流路
149 空間部
150 支持装置
151 上蓋
160a 160b 開閉弁
161 気液分離器
165a 165b 165c 多重効用缶再生器室
166a 166b 166c 蒸気抽気用フロート弁
167a 167b 多重効用缶再生器室間連絡流路
168a 168b 168c 多重効用缶気液分離器
169a 169b 169c 多重効用缶蒸気流路熱交換器
170 多重効用缶濃厚溶液流路熱交換器
171a 171b 171c 多重効用缶隔壁
172 多重効用缶内周壁
173 多重効用缶上蓋
174 多重効用缶底板
175 多重効用缶凝縮溶媒流路熱交換器
176 多重効用缶内通常気液界面
177 戻り溶液移送管路
178 溶媒移送管路
179a,179b,179c 多重効用缶仕切り板
2 Regenerator top cover
3 Regenerator outer wall
4 Regenerator inner wall
5 Regenerator bottom partition plate
6 Overflow solution descending flow path
7 Hot solvent vapor outlet
8 Solute inlet
9 Normal liquid level in the regenerator
10 Solution temperature controller
11 Combustion gas generator
12 Combustion gas flow path
13 Combustion gas discharge pipe
14 Overpressure steam release valve
15a 15b 15c 15d space
17 Low temperature regenerator outer wall
18 Low temperature regenerator top cover
19a 19b 19c Connecting flange outer periphery
20 Spiral channel heat exchanger
21 Return path
22 Internal flow path
23 Normal liquid level in the low-temperature regenerator
24 Liquid level control device
25 Low temperature regenerator part solvent vapor outlet
26a 26b Replenishment solvent storage tank
27 Motorized valve
28a 28b Solvent inlet
29 Vent pipe
30a 30b Normal liquid level in the replenishing solvent tank
31 Clearance
32a 32b 32c Multi-effect can ejector
33 Ejector
34 Drive steam inlet
35 Suction steam inlet
36 Steam outlet
38 Heat exchanger for high temperature water production
40 Hot water outlet
44 Condenser
45a 45b 45c Heat exchange conduit
48 Normal liquid level in the condenser
49 Open air pipe
50 Overpressure steam inlet
51 Solvent inlet
52a 52b Gas-liquid separator
54a 54b Excess gas outlet
56a 56b Outlet
58 Check valve
59a 59b Drain release valve
60a 60b Water inlet
61a 61b Water outlet
62 Solvent transfer pump
63 Low temperature solution circulation pump
64 External heat exchanger
66a 66b 66c 66d Inlet
67 Rotary shaft drive
68 axis of rotation
69 scraper
70 Scraper
71 Conical saucer
72 Opening at the bottom of the center of the pan
73 press extruder
74 Conical downcomer
75 Upflow shield
76 Spiral blade
77 Cylindrical water downcomer
78a 78b connector
80 Cylindrical water supply pipe
83a 83b 83c Crystallization center space
85 Crystallizer center side spiral pipe
86 Crystallizer outer peripheral side spiral pipe
87 Crystallizer top lid
88a 88b 88c 88d Connecting pipe
88f 88g 88h 88i 88j Connecting pipe
90 Conical partition opening
91 Solute crystal downcomer
93 Dissolver top conical partition plate
94 Dissolver bottom plate
95 Dissolver outer wall
96 Surplus solute crystal reservoir
97 Normal surface of surplus deposited solute crystals
98a 98b 98c 98d 98e 98f Post
102 External regenerator exhaust stack
103 Hot water generator
104 Hot water outlet
105 Gas-liquid transport pipe
106 Solution bypass outlet
107 Solution bypass inlet
108 Solution bypass controller
109 Outer wall of external regenerator heating device
110 External regenerator outer wall
111 Low temperature regeneration solution transport pump
112 Low temperature regeneration solution downcomer inlet
113a 113b External regenerator temperature detector
114 Low temperature regeneration solution downcomer
115 External regenerator solution heating concentrator
116 Premixed gas combustor
117 Combustion gas riser
118 Premixed gas production and supply equipment
119 Premixed gas supply pipe
120a 120b 120c 120d 120e Manual drain valve
121 Hot solution outlet
122a 122b 122c 122d 122e 122f 122g Float valve
123 magnet or electric magnet
124 Magnet built-in disk
125a 125b 125c 125d 125e 125f 125g 125h 125i 125j 125k Connecting line
126a 126b Spiral clean water flow heat exchanger
127 Cylindrical partition wall
128 Propeller for generating downward flow
129 Connection ring insert
130a 130b 130c 130d 130e 130f 130g Wall through pipe connection
131 spiral scraper
132a 132b Electric on-off valve
133a 133b 133c Liquid level detector
140 Normal liquid level in the condenser
141 Condenser solvent replenishment starting liquid level
142 Solvent replenishment liquid level in external regenerator
145 Gas-liquid separator
146 Return solution flow path from dissolver to low temperature regenerator
148a 148b 148c Regeneration solution flow path
149 Space
150 Supporting device
151 Top lid
160a 160b On-off valve
161 Gas-liquid separator
165a 165b 165c Multi-effect can regenerator room
166a 166b 166c Float valve for steam extraction
167a 167b Multi-effect can regenerator communication channel
168a 168b 168c Multi-effect can gas-liquid separator
169a 169b 169c Multi-effect can steam flow heat exchanger
170 Multi-effect can concentrated solution flow path heat exchanger
171a 171b 171c Multiple-effect can bulkhead
172 Multi-effect can inner wall
173 Multi-effect can lid
174 Multi-effect can bottom plate
175 Multi-effect can condensate solvent flow heat exchanger
176 Normal gas-liquid interface in multi-effect can
177 Return solution transfer line
178 Solvent transfer line
179a, 179b, 179c Multi-effect can partition

Claims (7)

溶解に伴い吸熱現象を示す溶質と溶媒を混合し溶解させ低温溶液を生成させるための空間と当該空間の底部に溶解度を超えて溶解できない余剰の当該溶質結晶を一時的に貯留させるための余剰溶質結晶貯留部(96)を配置すると共に、当該低温溶液の冷熱を利用して大気熱及びまたは外部温排熱から熱交換器を介して温熱を取り込むための外部熱交換装置(64)と、当該低温溶液を当該外部熱交換装置(64)に連続的に循環して輸送するための低温溶液循環ポンプ(63)及び当該輸送のための配管を、それぞれ具備させた溶解器部と、当該溶解器部で生成し還流した戻り溶液を加熱沸騰させるための装置と、当該戻り溶液が沸騰する空間(15c)の上部に当該沸騰により発生する高温溶媒蒸気を一時的に滞留させるための空間(15a)と当該沸騰により生成する高温濃厚溶液を溢流させ下部に流下させるための溢流溶液下降流路(6)と当該空間(15a)内の高温溶媒蒸気を取り出すための高温溶媒蒸気出口(7)を、それぞれ具備させた再生器部と、当該溶解器部から流出する戻り溶液を当該再生器部へ還流させるための還流路(21)と、当該還流路(21)の壁体の一部を構成するよう配置せしめた円筒形状の熱交換器であって当該再生器部の高温溶媒蒸気出口(7)から噴出する高温溶媒蒸気及びまたは当該高温溶媒蒸気の一部が凝縮した高温溶媒凝縮液が当該熱交換器の内部流路(22)に沿って上部より旋回しながら流下していくよう構成した螺旋状流路熱交換器(20)と、当該螺旋状流路熱交換器(20)により戻り溶液を加熱昇温させて当該戻り溶液中の溶媒の一部を蒸発せしめ当該蒸発により発生した当該溶媒蒸気を一時的に滞留させるための空間(15b)と、当該空間(15b)から当該溶媒蒸気を取り出すための溶媒蒸気出口(25)と、当該空間(15b)と接する低温再生器部内の通常液面(23)の高さを検知、調節するための液面調節計(24)と当該液面調節計(24)から低温再生器部内の通常液面(23)が低下した場合の信号を受けて補充溶媒貯槽(26)中の溶媒を電動弁(27)の開動作に従って凝縮器(44)、溶媒移送ポンプ(62)を順次経由して補充する仕組みを、それぞれ具備させた低温再生器部と、当該螺旋状流路熱交換器(20)の下端部の内部流路(22)から排出する当該溶媒を連絡管(88b)と溶媒入口(51)を経由して受容する空間と、当該溶媒入口(51)から注入された溶媒の蒸気の一部または全部を上水及びまたは通常大気の冷熱を利用して冷却凝縮させるための熱交換用管路(45a) と、凝縮溶媒を一時的に貯留するための空間(15d)と、上端部に大気開放管(49)と下部に当該空間(15d)に貯留した凝縮溶媒の取出し口(56a)を、それぞれ具備させた凝縮器と、再生器部の下方部に外周部から順次中央部に向かって配置した螺旋状流路熱交換器(20)、晶析部外周部側螺旋状管路(86)、晶析部中央部側螺旋状管路(85)のそれぞれにより仕切られた鉛直方向の間隙であって、2層からなる晶析部中央部空間(83b)(83c)であって、再析出のための冷熱源である上水が、円筒形状上水下降管路(77) を下降し連絡管(88f)を経由して晶析部中央部側螺旋状管路(85)を上部より旋回し下方向に流れ連絡管(88g)を経由して晶析部外周部側螺旋状管路(86)を下部より旋回し上方向に流れて連絡管(88h)を経由して円筒形状上水上昇管路(80)を上昇して上水出口(61b)から連絡管(88i)へ流れていく間に、それぞれの管路からなる熱交換器壁を介して再生器部から流入した当該高温濃厚溶液が晶析部中央部空間(83b)(83c)を順次経由して移動する間に当該高温濃厚溶液を冷却せしめ当該高温濃厚溶液内の溶質の一部を再析出させ、再析出した溶質結晶は自由沈降により下部空間に移動するよう構成配置した晶析器部を主たる構成要素とし、当該再生器部と当該晶析器部と当該溶解器部を鉛直方向に順次上から下へ連続的に配置し、当該低温再生器部を当該再生器部と当該晶析器部の外周部に一体的に配置し、当該各器部間を当該溶質結晶及びまたは溶液を管路及びまたは開口部を介して連続的に移動させるよう一体的に構成配置し、また上水は注入口(60a)、上水出口(61a)、連絡管(88c)、上水入口(60b)、円筒形状上水下降管(77)、連絡管(88f)、晶析部中央部側螺旋状管路(85)、連絡管路(88g)、晶析部外周部側螺旋状管路(86)、連絡管路(88h)、円筒形状上水上昇管路(80)、連絡管路(88i)、を順次経由して高温水製造用熱交換器(38)で再生器部から取り出した高温溶媒蒸気と熱交換器壁を介して加熱昇温されて高温水となり高温水出口(40)から送り出されるようそれぞれ構成配置したことを特徴とする溶解熱を利用したヒートポンプ温水製造装置。 A space for mixing and dissolving a solute exhibiting an endothermic phenomenon upon dissolution to form a low-temperature solution, and a surplus solute for temporarily storing excess solute crystals that cannot be dissolved beyond the solubility at the bottom of the space An external heat exchanger ( 64 ) for taking in heat from the atmospheric heat and / or external heat exhaust heat through the heat exchanger using the cold heat of the low temperature solution and arranging the crystal reservoir ( 96 ) A dissolver section provided with a low-temperature solution circulation pump ( 63 ) for continuously circulating and transporting a low-temperature solution to the external heat exchange device ( 64 ) and a pipe for the transport, and the dissolver An apparatus for heating and boiling the return solution generated and refluxed in the section, and a space ( 15a ) for temporarily retaining the high-temperature solvent vapor generated by the boiling above the space ( 15c ) where the return solution boils And produced by boiling That the hot concentrated solution overflow solution downward flow path for flow down the lower to overflow the (6) and the hot solvent vapor outlet for removing a high-temperature solvent vapor in the space (15a) (7), is provided respectively The regenerator part, a reflux path ( 21 ) for refluxing the return solution flowing out from the dissolver part to the regenerator part, and a part of the wall of the reflux path ( 21 ) are arranged. A high-temperature solvent vapor jetted from the high-temperature solvent vapor outlet ( 7 ) of the regenerator section or a high-temperature solvent condensate condensed with a part of the high-temperature solvent vapor A spiral channel heat exchanger ( 20 ) configured to swirl down from the top along the internal channel ( 22 ) , and the return solution is heated and heated by the spiral channel heat exchanger ( 20 ). The solvent generated by the evaporation by evaporating a part of the solvent in the return solution by heating A space (15b) for temporarily staying a gas, such as space (15b) solvent vapor outlet for removing the solvent vapors from (25), usually in a liquid of low temperature generator portion in contact with the space (15b) The liquid level controller ( 24 ) for detecting and adjusting the height of the surface ( 23 ) and the signal when the normal liquid level ( 23 ) in the low temperature regenerator section is lowered from the liquid level controller ( 24 ). A low temperature regenerator unit equipped with a mechanism for replenishing the solvent in the replenishing solvent storage tank ( 26 ) via the condenser ( 44 ) and the solvent transfer pump ( 62 ) in order according to the opening operation of the motorized valve ( 27 ). When the space for receiving via the solvent connection pipe for discharging (88b) and a solvent inlet (51) from the internal flow path of the lower end portion of the spiral flow path heat exchanger (20) (22), the heat exchange for part or all of the vapor of the solvent injected from the solvent inlet (51) is cooled and condensed clean water and or normally utilizing cold air Use line and (45a), and space (15d) for temporarily storing the condensed solvent, the atmosphere opening tube to the upper end (49) and outlet of the condensed solvent accumulated in the space (15d) to the lower ( 56a ) , respectively, a condenser, a spiral flow channel heat exchanger ( 20 ) arranged in the lower part of the regenerator part sequentially from the outer peripheral part toward the central part, and the outer peripheral side spiral tube of the crystallization part Channel ( 86 ) and vertical gaps separated by the central part of the crystallized part side spiral pipe ( 85 ) , respectively, in the crystallized part central space ( 83b ) and ( 83c ) consisting of two layers. Then, clean water as a cooling heat source for reprecipitation descends the cylindrical clean water descending pipe ( 77 ) and passes through the connecting pipe ( 88f ) to the central part of the crystallized section spiral pipe ( 85 ) and flows flow communication pipe downward pivoting from the top (the via 88 g) crystallized analyzing unit outer peripheral side spiral piping (86) upward to pivot from the lower part via a connecting pipe (88h) Cylindrical water supply rises While rising the road (80) flows from the water supply outlet (61b) to the connecting pipe (88i), the high-temperature concentrated solution flowing from the regenerator section through the heat exchanger walls each consisting of the conduit While moving through the crystallization part central space ( 83b ) , ( 83c ) in sequence, the high temperature concentrated solution is cooled to reprecipitate a part of the solute in the high temperature concentrated solution, and the reprecipitated solute crystal The main component is a crystallizer part that is configured to move to the lower space by free sedimentation, and the regenerator part, the crystallizer part, and the dissolver part are successively moved vertically from top to bottom. The low temperature regenerator unit is integrally disposed on the outer periphery of the regenerator unit and the crystallizer unit, and the solute crystals and / or the solution are routed between the units through a pipe line and / or an opening. integrally formed is arranged to move continuously Te, also tap water is inlet (60a), tap water outlet (61a) Communication pipe (88c), tap water inlet (60b), cylindrical tap water downcomer (77), connecting pipe (88f), crystallization analyzing unit center side spiral piping (85), the communication pipe line (88 g), Heat exchange for high-temperature water production via crystallization part outer peripheral side spiral pipe ( 86 ) , connecting pipe ( 88h ) , cylindrical water rising pipe ( 80 ) , connecting pipe ( 88i ) The melting is characterized in that each is arranged and arranged so that it is heated and heated through the high-temperature solvent vapor taken out from the regenerator part by the regenerator ( 38 ) and the heat exchanger wall to become high-temperature water and sent out from the high-temperature water outlet ( 40 ). Heat pump hot water production equipment using heat. 請求項1に記載の溶解熱を利用したヒートポンプ温水製造装置であって、当該再生器部から発生する高温溶媒蒸気を駆動媒体とするエジェクター(33)を設け当該エジェクター(33)の吸引力により当該低温再生器部上部空間(15b)中の溶媒蒸気の一部または全部を吸引し除去して低温再生器部上部空間(15b)における当該溶媒蒸気の蒸発を促進させるよう構成したことを特徴とする溶解熱を利用したヒートポンプ温水製造装置。 A heat pump hot water producing apparatus using the heat of solution of claim 1, said by the suction force of the ejector (33) is provided the ejector (33) to drive the medium hot solvent vapor generated from the regenerator portion characterized by being configured so as to accelerate the evaporation of the solvent vapor in part or all of the solvent vapor in the low temperature regenerator section headspace (15b) by suction to remove the low-temperature regenerator section headspace (15b) Heat pump hot water production equipment using heat of dissolution. 請求項1,2の溶解熱を利用したヒートポンプ温水製造装置であって、当該再生器部、当該晶析器部、及び当該溶解器部の中心部鉛直方向に回転軸(68)を設け、当該回転軸(68)駆動する回転軸駆動装置(67)を設け、当該回転軸(68)に、当該晶析器部内の空間の一部であって当該溶質の再析出を起こさせるための晶析部中央部空間(83c)の外周壁を構成する晶析器部中央部側螺旋状管路(85)の内周部低温壁面に付着する当該溶質結晶をかき落すためのかき落し板(69)及びまたはかき寄せ板(70)を、直接または接続具(78a),(78b)を介して一体的に設けたことを特徴とする溶解熱を利用したヒートポンプ温水製造装置。 A heat pump hot water production apparatus using heat of dissolution according to claim 1 or 2, wherein the regenerator part, the crystallizer part, and a central axis of the dissolver part are provided with a rotation axis ( 68 ) , rotation axis driving device for driving the rotating shaft (68) and (67) is provided, said the rotational axis (68), said for causing a part of the space in the crystallizer unit cause reprecipitation of the solute crystals A scraping plate (69) for scraping off the solute crystals adhering to the inner peripheral low temperature wall surface of the crystallizer section central spiral pipe (85) constituting the outer peripheral wall of the deposit section central space ( 83c ) ) And / or the scraper plate ( 70 ) directly or integrally through the connecting members ( 78a ) , ( 78b ) , a heat pump hot water production apparatus using heat of dissolution. 請求項1,2,3の溶解熱を利用したヒートポンプ温水製造装置であって、当該再生器部、当該晶析器部、及び当該溶解器部の中心部鉛直方向に回転軸(68)を設け、当該回転軸(68)を 駆動する回転軸駆動装置(67)を設け、当該回転軸(68)の下端部に、当該円錐形状受け皿(71)の中央底部に開口して設けた受け皿中央底部開口部(72)に連続して設けた円錐形状下降管(74)の内周壁面に沿って外部形状を円錐形状に構成した螺旋状翼板(76) を一体的に固定配置し、当該螺旋状翼板(76)及び円錐形状下降管(74)からなる圧搾押出し機(73)を設けたことを特徴とする溶解熱を利用したヒートポンプ温水製造装置。 A heat pump hot water production apparatus using heat of dissolution according to claims 1, 2, and 3, wherein the regenerator unit, the crystallizer unit, and a rotation axis (68) are provided in the central part vertical direction of the dissolver unit. A rotating shaft driving device (67) for driving the rotating shaft ( 68 ), and a bottom central portion of the pan provided at the lower end of the rotating shaft ( 68 ) at the central bottom of the conical tray ( 71 ). A spiral blade ( 76 ) having an outer shape configured in a conical shape is integrally fixed along the inner peripheral wall surface of the conical downcomer pipe ( 74 ) continuously provided in the opening ( 72 ) , and the spiral A heat pump hot water production apparatus using heat of dissolution, characterized in that it is provided with a pressing extruder ( 73 ) comprising a blade shaped blade ( 76 ) and a conical downcomer pipe ( 74 ) . 溶解に伴い吸熱現象を示す溶質と溶媒を混合し溶解させ低温溶液を生成させるための空間と当該空間の底部に溶解度を超えて溶解できない余剰の当該溶質結晶を一時的に貯留させるための余剰溶質結晶貯留部(96)を配置すると共に、当該低温溶液の冷熱を利用して大気熱及びまたは外部温排熱から熱交換器を介して温熱を取り込むための外部熱交換装置(64)と、当該低温溶液を当該外部熱交換装置(64)に連続的に循環して輸送するための低温溶液循環ポンプ(63)及び当該輸送のための配管を、それぞれ具備させた溶解器部と、当該溶解器部で生成し還流した戻り溶液を加熱沸騰させるための装置と、当該加熱沸騰により発生した高温の溶液と溶媒からなる気液混相状態の流体を気液輸送管(105)を経由して気液分離装置(145)に注入させ、蒸気はエジェクター(33)の駆動蒸気入口(34)を経由して螺旋状流路熱交換器(20)に注入し、溶液はフロート弁(122a)の下端部の高温溶液出口(121)を経由して再生溶液流路(148)へ注入するよう構成させた再生器部と、当該溶解器部から溶質結晶下降管(91)を経由して流出する戻り溶液を、当該溶液を当該再生器部へ還流させるための戻り流路(146)を経由させて、低温再生器部外周壁(17)と円筒状仕切り壁(127)の間に設けた円筒状の螺旋状流路熱交換器(20)の外壁面と接触させながら上昇させて、低温再生器部内の通常液面(23)を形成させつつ連絡管路(125k)を経由し低温再生溶液輸送ポンプ(111)から当該再生器部内に設けた低温再生溶液下降管入口(112)へ注入するよう構成させた低温再生器部と、当該螺旋状流路熱交換器(20)の下端部に接続した連絡管路(125f)を経由して排出する当該溶媒の蒸気及びまたは凝縮液を注入し貯留するする空間部(149)と、注入した溶媒の蒸気の一部または全部を上水及びまたは通常大気の冷熱を利用して冷却凝縮させるための熱交換用管路(45a)と、上端部に大気開放管(49)と下部に上水入口(60a)を、それぞれ具備させた凝縮器(44)と、再生溶液流路(148a),(148b), (148c)を順次流れる高温濃縮溶液を螺旋状流路熱交換器(126a), (126b)を順次流れる上水の冷熱により冷却し溶質を再析出させ、あわせて当該析出熱を上水側に回収させるよう構成した晶析器部を主たる構成要素とし、当該晶析器部と当該溶解器部を鉛直方向に順次上から下へ連続的に配置し、当該低温再生器部を当該晶析器部の外周部に一体的に配置し、当該各器部間を当該溶質結晶及びまたは溶液を連絡管路及びまたは開口部を介して連続的に移動させるよう一体的に構成配置したことを特徴とする溶解熱を利用したヒートポンプ温水製造装置 A space for mixing and dissolving a solute exhibiting an endothermic phenomenon upon dissolution to form a low-temperature solution, and a surplus solute for temporarily storing excess solute crystals that cannot be dissolved beyond the solubility at the bottom of the space An external heat exchanger ( 64 ) for taking in heat from the atmospheric heat and / or external heat exhaust heat through the heat exchanger using the cold heat of the low temperature solution and arranging the crystal reservoir ( 96 ) A dissolver section provided with a low-temperature solution circulation pump ( 63 ) for continuously circulating and transporting a low-temperature solution to the external heat exchange device ( 64 ) and a pipe for the transport, and the dissolver An apparatus for heating and boiling the return solution generated and refluxed in the section, and a gas-liquid mixed phase fluid composed of a high-temperature solution and a solvent generated by the heating boiling through a gas-liquid transport pipe ( 105 ) It is injected into the separation device (145), steam Via the ejector motive steam inlet (33) (34) was injected into the spiral flow path heat exchanger (20), the solution via the hot solution outlet at the lower end of the float valve (122a) (121) A regenerator unit configured to be injected into the regeneration solution channel ( 148 ) and a return solution flowing out from the dissolver unit via the solute crystal downcomer ( 91 ) , the solution is returned to the regenerator unit. Of the cylindrical spiral channel heat exchanger ( 20 ) provided between the outer peripheral wall ( 17 ) of the low temperature regenerator part and the cylindrical partition wall ( 127 ) via the return channel ( 146 ) Raised while being in contact with the outer wall surface, the normal liquid level ( 23 ) in the low-temperature regenerator part was formed, and the regenerator part was provided from the low-temperature regenerative solution transport pump ( 111 ) via the communication line ( 125k ) and the low temperature regenerator section is configured to inject into the low temperature solution downcomer inlet (112) and connected to the lower end portion of the spiral flow path heat exchanger (20) 絡管path space portion for injecting storing the steam and or condensate of the solvent to be discharged via (125f) and (149), injected part or all of the steam clean water and or normal atmospheric solvents A condenser ( 44 ) provided with a heat exchange pipe ( 45a ) for cooling and condensing using the cold heat, an open air pipe ( 49 ) at the upper end and a water inlet ( 60a ) at the lower part, respectively. Then, the high temperature concentrated solution flowing in the regenerative solution flow paths ( 148a ) , ( 148b ) , ( 148c ) in sequence is cooled by the cooling water in the spiral flow heat exchangers ( 126a ) , ( 126b ) in order to cool the solute. The main component is a crystallizer part configured to re-precipitate and collect the heat of precipitation to the water side, and the crystallizer part and the dissolver part are successively moved from top to bottom in the vertical direction. And the low temperature regenerator part is integrally arranged on the outer peripheral part of the crystallizer part, and the solute crystals and / or Is a heat pump hot water production apparatus using heat of dissolution, wherein the solution is integrally constructed and arranged so as to continuously move the solution through the connecting line and / or the opening. 請求項5の溶解熱を利用したヒートポンプ温水製造装置であって、当該晶析器部、及び当該溶解器部の中心部鉛直方向に回転軸(68)を設け、当該回転軸(68) 駆動する回転軸駆動装置(67)を設けるとともに当該回転軸(68)の晶析器部の部分に螺旋形状かき落し機(131)を固定して設け螺旋状流路熱交換器(126a)の内周面に析出する溶質結晶をかき落とすとともに再生溶液流路(148c)内の下降流を助長する方向で回転させ、また当該回転軸(68)の下部に、当該円錐形状受け皿(71)の中央底部に開口して設けた受け皿中央底部開口部(72)に連続して設けた円錐形状下降管(74)の内周壁面に沿って外部形状を円錐形状に構成した螺旋状翼板(76)を一体的に固定配置し、当該螺旋状翼板(76)及び円錐形状下降管(74)からなる圧搾押出し機(73)及びまたは当該回転軸(68)の下端部に下降流発生用プロペラ(128)を、また当該回転軸(68)の上端部に磁石内蔵円盤(124)を固定して設け、磁石または電気磁石(123)を配置し当該回転軸(68)にかかる上方への力を受けて接触せずに支えるよう構成した支持装置(150)をそれぞれ設けたことを特徴とする溶解熱を利用したヒートポンプ温水製造装置 A heat pump hot water producing apparatus using the heat of solution of claim 5, the crystallizer unit, and the rotation shaft (68) provided in the center vertical direction of the dissolver unit, driving the rotary shaft (68) A rotating shaft driving device (67) that is provided , and a helical scraper ( 131 ) is fixed to the crystallizer part of the rotating shaft ( 68 ) , and a spiral flow path heat exchanger ( 126a ) is provided. The solute crystals that precipitate on the peripheral surface are scraped off and rotated in a direction that promotes the downward flow in the regeneration solution flow path ( 148c ) , and at the bottom of the rotation shaft ( 68 ) , the center of the cone-shaped saucer ( 71 ) Spiral blade ( 76 ) whose outer shape is configured in a conical shape along the inner peripheral wall surface of the conical downcomer pipe ( 74 ) provided continuously to the bottom opening ( 72 ) of the saucer central opening provided at the bottom Squeezing and extruding machine ( 73 ) and / or the helical blade ( 76 ) and conical downcomer pipe ( 74 ) A propeller ( 128 ) for generating a downward flow is provided at the lower end portion of the rotary shaft (68), and a magnet built-in disk ( 124 ) is fixed to the upper end portion of the rotary shaft (68) , and a magnet or an electromagnet ( 123 ) is provided. Heat pump hot water production apparatus using heat of dissolution, characterized in that it is provided with a support device ( 150 ) arranged and supported without receiving contact with an upward force applied to the rotating shaft (68) 請求項5,6の溶解熱を利用したヒートポンプ温水製造装置であって、当該低温再生器部内の溶媒蒸気が発生し一時的に滞留する空間を隔壁により二つまたは三つ以上の空間に区分して構成した多重効用缶再生器室間を多重効用缶再生器室間連絡流路によりそれぞれ直列的且つ連続的に接続配置し、一方の端部に配置した当該多重効用缶再生器室(165c)に溶解器部から低温再生器部への戻り溶液流路(146)を経由した戻り溶液を流入せしめ順次各当該多重効用缶再生器室を経由させて他方の端部に配置した多重効用缶再生器室(165a)から連絡管路(125k)を経由し低温再生器輸送ポンプ(111)により外部再生器溶液加熱濃縮器(115)に流入させ、また当該多重効用缶再生器室内における溶媒蒸気の発生を当該多重効用缶再生器室に隣接的に配置した多重効用缶再生器室及びまたは外部再生器溶液加熱濃縮器(115)から発生する溶媒蒸気と溶液の持つ熱エネルギーの一部または全部により行うよう構成配置したことを特徴とする溶解熱を利用したヒートポンプ温水製造装置 A heat pump hot water production apparatus using heat of dissolution according to claims 5 and 6, wherein a space where solvent vapor is generated and temporarily retained in the low-temperature regenerator section is divided into two or more spaces by a partition wall. The multi-effect can regenerator chambers configured as described above are connected and arranged in series and continuously with the multi-effect can regenerator chamber communication flow path, and the multi-effect can regenerator chamber ( 165c ) disposed at one end thereof . A multi-effect can regenerator that is placed at the other end through each multi-effect can regenerator chamber by flowing a return solution from the dissolver section to the low-temperature regenerator section via the return solution flow path ( 146 ) From the regenerator chamber ( 165a ) via the connecting line ( 125k ) by the low temperature regenerator transport pump ( 111 ) to the external regenerator solution heating concentrator ( 115 ), and the solvent vapor in the multi-effect can regenerator chamber Multi-effects are placed adjacent to the multi-effect can regenerator chamber Can regenerator chamber and or external regenerator solution heated concentrator (115) a heat pump utilizing the heat of solution, characterized by being configured arranged to perform a part or all of the thermal energy of the solvent vapor and the solution generated from the hot water Manufacturing equipment
JP2005007518A 2004-12-01 2005-01-14 Dissolving heat pump hot water production system Expired - Fee Related JP4276184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007518A JP4276184B2 (en) 2004-12-01 2005-01-14 Dissolving heat pump hot water production system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004348258 2004-12-01
JP2004375228 2004-12-27
JP2005007518A JP4276184B2 (en) 2004-12-01 2005-01-14 Dissolving heat pump hot water production system

Publications (2)

Publication Number Publication Date
JP2006207836A JP2006207836A (en) 2006-08-10
JP4276184B2 true JP4276184B2 (en) 2009-06-10

Family

ID=36964908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007518A Expired - Fee Related JP4276184B2 (en) 2004-12-01 2005-01-14 Dissolving heat pump hot water production system

Country Status (1)

Country Link
JP (1) JP4276184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266091A (en) * 2009-05-12 2010-11-25 Toshinori Kanemitsu Intermediate-temperature heat dissolution type refrigeration heat engine evaporating concentrating device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101809A1 (en) * 2008-02-15 2009-08-20 Toshinori Kanemitsu Refrigerating apparatus of moderate-heat dissolution type
JP5604742B2 (en) * 2011-01-14 2014-10-15 株式会社ササクラ Distilled water production apparatus and method
CN107486375B (en) * 2017-10-10 2023-04-28 黄河科技学院 Paint heating tank for road marking of bridge and road

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266091A (en) * 2009-05-12 2010-11-25 Toshinori Kanemitsu Intermediate-temperature heat dissolution type refrigeration heat engine evaporating concentrating device

Also Published As

Publication number Publication date
JP2006207836A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US9279601B2 (en) Solar energy system
CN106401887A (en) Trench type solar heat-collection power generation system
CN105536276A (en) MVR (Mechanical Vapor Recompression) multi-level evaporation device
JP4276184B2 (en) Dissolving heat pump hot water production system
GB2511075A (en) Desalination Apparatus
CN106730962A (en) Condensing source heat pump Subcooled heat recovery drives single-effect distillator
SE527721C2 (en) Chemical heat pump operating according to the hybrid principle
US5027601A (en) Low boiling point medium recovery apparatus
CN217409748U (en) Negative pressure type concentration kettle for MAP production
US5220792A (en) Method of and means for extracting heat from a hot fluid containing foreign material that interferes with heat transfer
CN210728704U (en) Linkage distillation tower boiling tower system
CN216536985U (en) Skid-mounted heat pump evaporation crystallization device
SE517739C2 (en) Process for the manufacture of liquids, for example, black liquor from cellulose boiling, containing solids and dissolved substances
CN206280986U (en) For the spiral slag-draining device of boiler
JP4648014B2 (en) Absorption heat pump
CN214105833U (en) Evaporation concentration separation recovery plant
CN209704654U (en) A kind of hot salt double difference cogenerator
CN1143105C (en) Absorption refrigerating system with refrigerant managing device for dilution and partial load running
CN211035257U (en) Steam direct heating type ammonia still
US5148677A (en) Method of and means for extracting heat from a hot fluid containing foreign material that interferes with heat transfer
CN104163459A (en) Household water purifier
CN115388697B (en) Three-phase energy storage device and method based on cross honeycomb flat plate overflow heat exchange
CN217482959U (en) Waste heat recovery device of air compressor
JP2005329293A (en) Heat exchange system and method
CN114917601B (en) Zinc sulfate solution concentration device based on steam heating and concentration process thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification of exclusion from application

Free format text: JAPANESE INTERMEDIATE CODE: R2525

LAPS Cancellation because of no payment of annual fees