JP4273776B2 - Extreme UV exposure mask - Google Patents
Extreme UV exposure mask Download PDFInfo
- Publication number
- JP4273776B2 JP4273776B2 JP2003019905A JP2003019905A JP4273776B2 JP 4273776 B2 JP4273776 B2 JP 4273776B2 JP 2003019905 A JP2003019905 A JP 2003019905A JP 2003019905 A JP2003019905 A JP 2003019905A JP 4273776 B2 JP4273776 B2 JP 4273776B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- mask
- exposure
- layer
- reflectance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010408 film Substances 0.000 claims description 66
- 239000010409 thin film Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 238000003475 lamination Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
- G21K1/062—Devices having a multilayer structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
- G03F1/24—Reflection masks; Preparation thereof
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体製造プロセス中の、極限紫外線露光を用いたフォトリソグラフィ工程で使用される、極限紫外線露光用マスク、及びそのマスクを作製するためのブランク、並びにそのマスクを用いたパターン転写方法に関するものである。
【従来の技術】
【0002】
半導体集積回路の微細化技術は常に進歩しており、微細化のためのフォトリソグラフィ技術に使用される光の波長は次第に短くなってきている。光源としては、現状、これまで使用されて来たKrFエキシマレーザ(波長248nm)からArFエキシマレーザ(波長193nm)に切り替わりつつあり、さらにその次にはF2エキシマレーザ(波長157nm)の使用が提案され、開発が行われている。
【0003】
しかしながら、F2エキシマレーザをもってしても、将来的な50nm以下の線幅を有するデバイスを作製するためのリソグラフィ技術として適用するには、露光機やレジストの課題もあり、容易ではない。このため、エキシマレーザ光より波長が一桁以上短い(10〜15nm)極限紫外線(Extreme UV、以下EUVと略記)を用いた、EUVリソグラフィの研究開発が進められている。
【0004】
EUV露光では、上述のように波長が短いため、物質の屈折率がほとんど真空の値に近く、材料間の光吸収の差も小さい。このため、EUV領域では従来の透過型の屈折光学系が組めず、反射光学系となり、従ってマスクも反射型マスクとなる。これまで開発されてきた一般的なEUVマスクは、Siウェハーやガラス基板上に、例えばMoとSiからなる2層膜を40層ほど積層した多層膜部分を高反射領域とし、その上に低反射領域(吸収領域)として金属性膜のパターンを形成した構造であった。高反射領域は、界面が急峻で、屈折率差が大きく、吸収がなるべく小さな2種類の膜を相互に積層し、隣接する2層から成る層対の厚さを露光波長の略2分の1として、2層膜を40対程度成膜したものである。この結果、各層対からの僅かな反射成分が干渉して強め合い、直入射に近いEUV光に対して比較的高い反射率を得ることが可能となる。
【0005】
【非特許文献1】
小川「EUVリソグラフィの反射型マスク用多層膜」(光技術コンタクト、 Vol.39,No.5、2001、日本オプトメカトロニクス協会)p.292
【0006】
【発明が解決しようとする課題】
EUVマスクの高反射領域は、上記のように、多層膜を用いて形成されるが、原理的に反射光の薄膜干渉を用いるため、膜厚や膜質による影響を受けやすく、成膜バッチ間およびブランク面内のそれらのばらつきにより、反射率がブランク間、ブランク内で変動しやすい、という課題があった。
本発明では、EUV露光による転写解像性を向上するために、従来よりも安定的に、均一性良く高反射率が得られるEUV露光用マスク、およびそれを作製するためのブランク並びにそのマスクを用いたパターン形成方法を提供する。
【0007】
本発明は、基板と、前記基板上に形成された露光光の高反射領域となる多層膜と、前記多層膜上に形成された露光光の低反射領域となる吸収性薄膜パターンと、を少なくとも備え、前記多層膜は、MoとSiの2種類の膜が積層された2層膜がN回積層され、前記2層膜の膜厚は、露光波長の2分の1であり、前記露光波長は、13nmであり、前記2層膜にあって、Siの膜厚dは、積層回数Nを用いて下記式より算出され、算出された計算値の5%を誤差範囲とする範囲にあることを特徴とする極限紫外線露光用マスクである。
d(nm)=2.70+0.095N−0.0011N2
【0012】
【発明の実施の形態】
本発明の実施の形態を図を用いて説明する。図1(a)は本発明のEUV露光用マスクの実施形態の例を断面で示した説明図であり、図1(b)は、(a)の多層膜2の部分拡大図である。本発明のEUV露光用マスクは、基板上1に、露光光の高反射領域となる多層膜2が形成され、前記多層膜2上に低反射領域となる吸収性薄膜のパターン3が形成されたEUV露光用マスクを前提とする。そして前記高反射部となる多層膜2は、2種類の膜が相互に積層され、隣接する2層から成る層対の厚さTが露光波長の略2分の1であり、さらに一方の膜の厚さdが、前記多層膜2の反射率を最大ならしめる膜厚であることを特徴とする。
なお、ここで低反射領域となる吸収性薄膜のパターン3は2層以上の多層膜からなるパターンである場合もある。また、吸収性薄膜のパターン3の下には、パターニングや欠陥修正の際に、高反射部となる多層膜2を保護する緩衝膜が存在することもある。さらに高反射領域となる多層膜2は、その最上層のみが「Capping Layer」と呼ばれる厚めの膜である場合もあるが、いずれも本発明の主旨からは外れるので図1では省略する。
【0013】
また、図1(c)(d)は本発明のEUV露光用マスクブランクの実施形態の例を断面で示した説明図である。図1(c)のブランクの吸収性薄膜3’をパターニングすることにより図1(a)のマスクが得られる。図1(d)は図1(c)のブランクにおいて、吸収性薄膜3’を形成する前の形態である。
以下、図1(a)のEUV露光用マスクについて、代表して説明を行う。
【0014】
すなわち、隣接する2層から成る層対の厚さTを露光波長の略2分の1とすることで、各層対からの僅かな反射成分が干渉して強め合い、さらに膜の厚さdを調整することにより、反射率を安定的に均一性良く高めることができる。
【0015】
また、多層膜2を形成する2種類の膜を、MoとSiとする。これによって、界面が急峻で、屈折率差が大きく、吸収がなるべく小さな2層膜とし、反射率を高めることができる。
【0016】
さらに、多層膜を形成するMoとSiからなる2層膜の積層数をNとするとき、Siの膜厚dが略次式に等しいこととする。
d(Å)=27.0+0.95N−0.011N2・・・・(1)
このような膜厚にすることにより、反射率が最大となることを以下に述べる。
【0017】
図2はMo/Si多層膜の反射率を示したグラフである。横軸はSi膜厚(Å)、縦軸は反射率(%)を表す。MoとSiの2層膜を50層積層した多層膜(N=50)の反射率を、Siの膜厚に対して計算した。図から解るように、Si厚約48Åで反射率が最大になる。すなわち、48Å付近ではSi膜厚の変化に対する反射率の変化が0に近くなり、Si膜厚変動に対して、安定的に均一性の良い高反射率が得られる。
【0018】
尚前提として、露光波長λ=13(nm)、2層膜の1層あたりの合計膜厚=λ/2=65(Å)、波長13nmにおけるn,kは表1の通りとした。
【0019】
【表1】
【0020】
同様にN=1、10、20、30、40層の場合について、反射率が最大になるときのSi膜厚dを求める。図3は、2層膜の層数と、この反射率が最大になるときのSi膜厚との関係を表したグラフである。横軸は積層数N、縦軸はSi膜厚d(Å)を表す。図の曲線は、ほぼd(Å)=27.0+0.95N−0.011N2で近似できる。以上により、Siの膜厚dを略(1)と等しくすることにより、反射率が安定的に均一性良く高められたEUV露光用マスクとなる。
なお、反射率が最大値より3%程度少なくても作用効果に大差はなく、膜厚は計算値に対し5%程度の増減は許される。
【0021】
本発明のEUVマスクは、従来どおりのマスク作製プロセスに準拠して作製できる。すなわち、Siウェハーやガラス基板上に、例えばMoとSiからなる多層膜を、通常のマグネトロンスパッタリング法やイオンビームスパッタリング法などにより、所望の層数の膜を積層して高反射領域とする。その上に低反射(吸収)領域として、通常のマグネトロンスパッタリング法などにより薄膜を作製し、本発明のEUVハーフトーンマスク用ブランクが完成する。以下、通常のマスク作製プロセスに従って、薄膜のパターニングを行い、本発明のEUVハーフトーンマスクを作製する。すなわち、前記ブランク上に電子線レジストを塗布し、ベーキングを行った後、通常の電子線描画を行い、現像してレジストパターンを形成する。その後、このレジストパターンをマスクにして、低反射用2層膜のドライエッチングを行った後、レジストを剥離して、本発明のハーフトーンマスクが完成する。
【0022】
このように作製したEUV露光用ハーフトーンマスクは反射率が従来のマスクより安定的に均一性良く高められ、EUV露光における転写精度の向上に有効である。
【0023】
本発明によるフォトマスクを用いたパターン転写方法は、例えば、先ず被加工層を表面に形成した基板上にフォトレジスト層を設けたのち、本発明によるフォトマスクを介して反射した極限紫外線を選択的に照射する。
【0024】
次いで、現像工程において不必要な部分のフォトレジスト層を除去し、基板上にエッチングレジスト層のパターンを形成させたのち、このエッチングレジスト層のパターンをマスクとして被加工層をエッチング処理し、次いで、エッチングレジスト層のパターンを除去することにより、フォトマスクパターンに忠実なパターンを基板上に転写する方法である。
【0025】
【発明の効果】
本発明では、以上のような構成、作用をもつから、従来よりもブランク間、ブランク内の膜厚変化による反射率の変動が起きにくく、安定的に均一性のよい高反射率を有し、したがってEUV露光による転写解像性を向上したEUV露光用マスク、およびそれを作製するためのブランク並びにそのマスクを用いたパターン形成方法とすることができる。
【図面の簡単な説明】
【図1】(a)本発明のEUV露光用マスクの実施形態の例を断面で示した説明図である。
(b)は、(a)の多層膜2の部分拡大図である。
(c)、(d)は、本発明のEUV露光用マスクブランクの実施形態の例を断面で示した説明図である。
【図2】Mo/Si多層膜の反射率を示したグラフである。
【図3】2層膜の層数と、この反射率が最大になるときのSi膜厚との関係を表したグラフである。
【符号の説明】
1…基板
2…高反射多層膜
3…低反射薄膜パターン
3’…低反射薄膜(吸収性薄膜)
T…隣接する2層から成る層対の厚さ
d…多層膜の一方の膜の厚さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an extreme ultraviolet exposure mask used in a photolithography process using extreme ultraviolet exposure in a semiconductor manufacturing process, a blank for producing the mask, and a pattern transfer method using the mask. Is.
[Prior art]
[0002]
The miniaturization technology of semiconductor integrated circuits is constantly progressing, and the wavelength of light used in the photolithographic technology for miniaturization is gradually becoming shorter. As a light source, the KrF excimer laser (wavelength 248 nm) that has been used so far is being switched to an ArF excimer laser (wavelength 193 nm), and then the use of an F2 excimer laser (wavelength 157 nm) is proposed. Development is underway.
[0003]
However, even with an F2 excimer laser, it is not easy to apply as a lithography technique for manufacturing a device having a line width of 50 nm or less in the future because of exposure apparatus and resist problems. For this reason, research and development of EUV lithography using extreme ultraviolet (Extreme UV, hereinafter abbreviated as EUV) whose wavelength is one or more orders of magnitude shorter than excimer laser light (10-15 nm) is being promoted.
[0004]
In EUV exposure, since the wavelength is short as described above, the refractive index of a substance is almost close to the value of vacuum, and the difference in light absorption between materials is also small. For this reason, in the EUV region, a conventional transmissive refractive optical system cannot be assembled, and a reflective optical system is formed. Therefore, the mask is also a reflective mask. Conventional EUV masks that have been developed so far have a highly reflective region, for example, a multi-layer film part in which about 40 layers of two layers of Mo and Si are laminated on a Si wafer or glass substrate. The metal film pattern was formed as a region (absorption region). In the high reflection region, two types of films having a steep interface, a large refractive index difference, and as small an absorption as possible are stacked on each other, and the thickness of a layer pair composed of two adjacent layers is approximately one half of the exposure wavelength. About 40 pairs of two-layer films. As a result, a slight reflection component from each layer pair interferes and strengthens, and it is possible to obtain a relatively high reflectance for EUV light close to normal incidence.
[0005]
[Non-Patent Document 1]
Ogawa “Multilayer film for reflective masks for EUV lithography” (Optical Technology Contact, Vol. 39, No. 5, 2001, Japan Opto-Mechatronics Association) p. 292
[0006]
[Problems to be solved by the invention]
As described above, the highly reflective region of the EUV mask is formed by using a multilayer film. However, in principle, since the thin film interference of reflected light is used, the EUV mask is easily influenced by the film thickness and film quality, Due to these variations in the blank surface, there is a problem that the reflectance is likely to vary between blanks.
In the present invention, in order to improve the transfer resolution by EUV exposure, a mask for EUV exposure that can obtain a high reflectance more stably and more uniformly than before, and a blank for producing the mask and the mask are provided. The pattern forming method used is provided.
[0007]
The present invention comprises at least a substrate, a multilayer film that is a high reflection region of exposure light formed on the substrate, and an absorptive thin film pattern that is a low reflection region of exposure light formed on the multilayer film. The multilayer film includes a two-layer film in which two kinds of films of Mo and Si are stacked N times, and the film thickness of the two-layer film is a half of an exposure wavelength, and the exposure wavelength Is 13 nm, and in the two-layer film, the film thickness d of Si is calculated from the following formula using the number N of laminations, and the error range is within 5% of the calculated value. Is a mask for extreme ultraviolet exposure.
d (nm) = 2.70 + 0.095N−0.0011N 2
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1A is an explanatory view showing an example of an embodiment of an EUV exposure mask of the present invention in cross section, and FIG. 1B is a partially enlarged view of the
Here, the
[0013]
Moreover, FIG.1 (c) (d) is explanatory drawing which showed the example of embodiment of the mask blank for EUV exposure of this invention in the cross section. By patterning the blank absorbent
Hereinafter, the EUV exposure mask of FIG. 1A will be described as a representative.
[0014]
That is, by making the thickness T of two adjacent layer pairs approximately one half of the exposure wavelength, a slight reflection component from each layer pair interferes and strengthens, and the film thickness d is further reduced. By adjusting, the reflectance can be stably increased with good uniformity.
[0015]
Two types of films forming the
[0016]
Furthermore, when the number of stacked layers of Mo and Si forming the multilayer film is N, the film thickness d of Si is approximately equal to the following equation.
d (Å) = 27.0 + 0.95N−0.011N 2 (1)
It will be described below that the reflectance is maximized by using such a film thickness.
[0017]
FIG. 2 is a graph showing the reflectance of the Mo / Si multilayer film. The horizontal axis represents the Si film thickness (Å), and the vertical axis represents the reflectance (%). The reflectance of a multilayer film (N = 50) in which 50 layers of two layers of Mo and Si were laminated was calculated with respect to the film thickness of Si. As can be seen from the figure, the reflectance is maximized when the Si thickness is about 48 mm. That is, in the vicinity of 48 mm, the change in the reflectance with respect to the change in the Si film thickness is close to 0, and a high reflectivity with good uniformity can be stably obtained with respect to the Si film thickness fluctuation.
[0018]
As a premise, the exposure wavelength λ = 13 (nm), the total film thickness per layer of two layers = λ / 2 = 65 (Å), and n and k at a wavelength of 13 nm are as shown in Table 1.
[0019]
[Table 1]
[0020]
Similarly, in the case of N = 1, 10, 20, 30, 40 layers, the Si film thickness d when the reflectivity is maximized is obtained. FIG. 3 is a graph showing the relationship between the number of layers of the two-layer film and the Si film thickness when this reflectance is maximized. The horizontal axis represents the number of stacked layers N, and the vertical axis represents the Si film thickness d (Å). The curve in the figure can be approximated by approximately d (Å) = 27.0 + 0.95N−0.011N 2 . As described above, by setting the Si film thickness d to be substantially equal to (1), an EUV exposure mask is obtained in which the reflectance is stably improved with good uniformity.
Even if the reflectance is about 3% less than the maximum value, there is no great difference in the effect, and the film thickness is allowed to increase or decrease by about 5% with respect to the calculated value.
[0021]
The EUV mask of the present invention can be manufactured according to a conventional mask manufacturing process. That is, a multilayer film made of, for example, Mo and Si is laminated on a Si wafer or glass substrate by a normal magnetron sputtering method, an ion beam sputtering method, or the like to form a highly reflective region. On top of that, as a low reflection (absorption) region, a thin film is produced by a normal magnetron sputtering method or the like, and the blank for EUV halftone mask of the present invention is completed. Hereinafter, in accordance with a normal mask manufacturing process, the thin film is patterned to manufacture the EUV halftone mask of the present invention. That is, an electron beam resist is applied on the blank and baked, followed by normal electron beam drawing and development to form a resist pattern. Thereafter, using this resist pattern as a mask, dry etching of the low-reflection double-layer film is performed, and then the resist is removed to complete the halftone mask of the present invention.
[0022]
The thus prepared halftone mask for EUV exposure has a reflectance that is stably and uniformly improved as compared with the conventional mask, and is effective in improving transfer accuracy in EUV exposure.
[0023]
In the pattern transfer method using the photomask according to the present invention, for example, first, a photoresist layer is provided on a substrate on which a layer to be processed is formed, and then the extreme ultraviolet rays reflected through the photomask according to the present invention are selectively selected. Irradiate.
[0024]
Next, an unnecessary portion of the photoresist layer is removed in the development step, and a pattern of the etching resist layer is formed on the substrate. Then, the layer to be processed is etched using the pattern of the etching resist layer as a mask. In this method, a pattern faithful to the photomask pattern is transferred onto the substrate by removing the pattern of the etching resist layer.
[0025]
【The invention's effect】
In the present invention, since it has the above-described configuration and action, it is less likely to cause a change in reflectance due to a change in the film thickness between the blanks in the blank than in the past, and has a high reflectance with a stable and uniform uniformity. Therefore, it can be set as the EUV exposure mask which improved the transfer resolution by EUV exposure, the blank for producing it, and the pattern formation method using the mask.
[Brief description of the drawings]
FIG. 1A is an explanatory view showing, in section, an example of an embodiment of an EUV exposure mask of the present invention.
(B) is the elements on larger scale of the
(C), (d) is explanatory drawing which showed the example of embodiment of the mask blank for EUV exposure of this invention in the cross section.
FIG. 2 is a graph showing the reflectance of a Mo / Si multilayer film.
FIG. 3 is a graph showing the relationship between the number of two-layer films and the Si film thickness when this reflectance is maximized.
[Explanation of symbols]
DESCRIPTION OF
T: thickness of a pair of two adjacent layers d: thickness of one of the multilayer films
Claims (1)
前記基板上に形成された露光光の高反射領域となる多層膜と、
前記多層膜上に形成された露光光の低反射領域となる吸収性薄膜パターンと、を少なくとも備え、
前記多層膜は、
MoとSiの2種類の膜が積層された2層膜がN回積層され、
前記2層膜の膜厚は、露光波長の2分の1であり、
前記露光波長は、13nmであり、
前記2層膜にあって、Siの膜厚dは、積層回数Nを用いて下記式より算出され、算出された計算値の5%を誤差範囲とする範囲にあること
を特徴とする極限紫外線露光用マスク。
d(nm)=2.70+0.095N−0.0011N2 A substrate,
A multilayer film that is a highly reflective region of exposure light formed on the substrate;
An at least an absorptive thin film pattern that is a low reflection region of exposure light formed on the multilayer film,
The multilayer film is
A two-layer film in which two types of films of Mo and Si are stacked is stacked N times,
The film thickness of the two-layer film is half of the exposure wavelength,
The exposure wavelength is 13 nm,
In the two-layer film, the film thickness d of Si is calculated from the following formula using the number N of laminations, and is in a range where 5% of the calculated value is within an error range. A mask for extreme ultraviolet exposure.
d (nm) = 2.70 + 0.095N−0.0011N 2
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019905A JP4273776B2 (en) | 2003-01-29 | 2003-01-29 | Extreme UV exposure mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003019905A JP4273776B2 (en) | 2003-01-29 | 2003-01-29 | Extreme UV exposure mask |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004235296A JP2004235296A (en) | 2004-08-19 |
JP4273776B2 true JP4273776B2 (en) | 2009-06-03 |
Family
ID=32949671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003019905A Expired - Fee Related JP4273776B2 (en) | 2003-01-29 | 2003-01-29 | Extreme UV exposure mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4273776B2 (en) |
-
2003
- 2003-01-29 JP JP2003019905A patent/JP4273776B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004235296A (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6562522B1 (en) | Photomasking | |
JP2004207593A (en) | Mask for extreme ultra-violet exposure, blank, and method for pattern transfer | |
JP5233321B2 (en) | Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, extreme ultraviolet exposure mask manufacturing method, and pattern transfer method using extreme ultraviolet exposure mask | |
US11022874B2 (en) | Chromeless phase shift mask structure and process | |
JP6070085B2 (en) | Reflective mask and method of manufacturing reflective mask | |
JP6915280B2 (en) | Reflective photomask and reflective photomask blank | |
KR20100137194A (en) | Mask for extreme ultraviolet lithography and exposure method using the same | |
JP5476679B2 (en) | Halftone EUV mask and method of manufacturing halftone EUV mask | |
JPH10123692A (en) | Photo-mask and its manufacture | |
JP4946136B2 (en) | Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, and pattern transfer method | |
US20090233185A1 (en) | Extreme Ultraviolet Mask and Method for Fabricating the Same | |
JP4529359B2 (en) | Ultraviolet exposure mask, blank and pattern transfer method | |
JP4923923B2 (en) | Extreme ultraviolet exposure mask and semiconductor integrated circuit manufacturing method using the same | |
JP4483355B2 (en) | Ultraviolet exposure mask blank, mask and transfer method | |
JP4622504B2 (en) | Mask blank for extreme ultraviolet exposure, mask and pattern transfer method | |
JPH10254122A (en) | Photomask for exposure | |
JP4501347B2 (en) | Ultraviolet exposure mask, blank and pattern transfer method | |
JP4273776B2 (en) | Extreme UV exposure mask | |
JP4613499B2 (en) | Ultraviolet exposure mask, blank, mask manufacturing method, and pattern transfer method | |
JP4538254B2 (en) | Mask substrate for EUV lithography and manufacturing method thereof | |
US8673521B2 (en) | Blank substrates for extreme ultra violet photo masks and methods of fabricating an extreme ultra violet photo mask using the same | |
JP4300930B2 (en) | Ultraviolet exposure mask, blank and pattern transfer method | |
JPH08106151A (en) | Phase shift mask and its production | |
JP4605284B2 (en) | Extreme ultraviolet exposure mask, extreme ultraviolet exposure mask blank, and pattern transfer method | |
KR20210155863A (en) | Phase shift mask for extreme ultraviolet lithography and method of forming a semiconductor device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4273776 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140313 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |