[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4264514B2 - Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same - Google Patents

Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same Download PDF

Info

Publication number
JP4264514B2
JP4264514B2 JP2004059237A JP2004059237A JP4264514B2 JP 4264514 B2 JP4264514 B2 JP 4264514B2 JP 2004059237 A JP2004059237 A JP 2004059237A JP 2004059237 A JP2004059237 A JP 2004059237A JP 4264514 B2 JP4264514 B2 JP 4264514B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
dme
hydrogen
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004059237A
Other languages
Japanese (ja)
Other versions
JP2005246210A (en
Inventor
裕介 山田
マテュー トーマス
厚 上田
洋 塩山
哲彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004059237A priority Critical patent/JP4264514B2/en
Publication of JP2005246210A publication Critical patent/JP2005246210A/en
Application granted granted Critical
Publication of JP4264514B2 publication Critical patent/JP4264514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

本発明は、ジメチルエーテル(以下「DME」と略記することがある)を水蒸気改質するこ
とにより、水素を生成させる触媒およびこの触媒を用いる水素含有ガスの製造方法に関する。
The present invention relates to a catalyst for generating hydrogen by steam reforming dimethyl ether (hereinafter sometimes abbreviated as “DME”) and a method for producing a hydrogen-containing gas using the catalyst.

近年、次世代型のエネルギー供給技術として、エネルギー効率に優れた各種の燃料電池(燃料発電装置)が注目されている。中でも、プロトン導電性膜にアノードとカソードとを配設した固体高分子形燃料電池は、小型化が可能である、低温での作動が可能であるなどの利点を備えているので、可搬型発電装置としての実用研究が精力的に進められている。固体高分子形燃料電池としては、燃料として水素を用いるものが、最も効率が良く、一般的である。しかしながら、水素は、容易には液化しないので、可搬性に劣るという問題点を有している。そのため、可搬性に優れた液体のメタノールを水蒸気と接触させて改質することにより、オンサイトで水素を得ることが検討されている。   In recent years, various types of fuel cells (fuel power generation devices) excellent in energy efficiency have attracted attention as next-generation energy supply technologies. Above all, a polymer electrolyte fuel cell in which an anode and a cathode are arranged on a proton conductive membrane has advantages such as miniaturization and operation at a low temperature. Practical research as a device is underway. As the polymer electrolyte fuel cell, one using hydrogen as a fuel is most efficient and is common. However, since hydrogen is not easily liquefied, it has a problem of poor portability. For this reason, it has been studied to obtain hydrogen on-site by reforming liquid methanol having excellent portability by bringing it into contact with water vapor.

メタノールを水素へと改質するためには、メタノールを気化させる必要がある。しかしながら、気化器を併設する場合には、発電装置が大型化するので、可搬型装置としての利点が損なわれる。   In order to reform methanol to hydrogen, it is necessary to vaporize methanol. However, when the vaporizer is additionally provided, the power generation device is increased in size, so that the advantage as a portable device is impaired.

最近、メタノールに代わる水素製造原料として、DMEが注目されている。DMEは、種々の方法により製造可能であり、例えば、メタノールを脱水することにより、製造することができる。さらに、炭化水素ガス(例えば、炭鉱内で発生するメタンガスなど)からDMEを製
造する技術(Gas-To-Liquid:GTL技術)の開発も、精力的に行われている。
Recently, DME has attracted attention as a hydrogen production raw material to replace methanol. DME can be produced by various methods, for example, by dehydrating methanol. Furthermore, development of a technology (Gas-To-Liquid: GTL technology) for producing DME from hydrocarbon gas (for example, methane gas generated in a coal mine) has been energetically performed.

DMEは、常温・常圧において気体であるが、5気圧程度に加圧することで、容易に液体となる。すなわち、DMEには、液体の形態で輸送乃至移動を行うことができ、水素製造反応
時には常圧に戻すのみで、気化するので、改質反応系に気化器を併設する必要がないという大きな利点がある。
DME is a gas at room temperature and pressure, but it can easily be made liquid by pressurizing to about 5 atmospheres. In other words, DME can be transported or moved in the form of a liquid, and is vaporized only by returning to normal pressure during the hydrogen production reaction, so there is no need to provide a vaporizer in the reforming reaction system. There is.

このDMEの改質反応には、加水分解反応を促進するための酸触媒と加水分解反応により
生成したメタノールを改質する触媒であるCu-Zn系触媒(特許文献1)またはPtを含む触媒(特許文献2)とが通常用いられている。しかしながら、Cu-Zn触媒には、Cuが空気中で酸化されることにより、活性が損なわれるという問題がある。これに対し、Pt系触媒を使用する場合には、酸化による活性劣化という問題は殆ど生じないが、十分な反応速度が得られる高温になると、COの水素化反応が進行してメタンが生成し、水素濃度が低下するという問題が生じる。
特開平10-174870号公報 特開2000-320407号公報
In this DME reforming reaction, an acid catalyst for promoting the hydrolysis reaction and a Cu-Zn catalyst (Patent Document 1) which is a catalyst for reforming methanol produced by the hydrolysis reaction or a catalyst containing Pt ( Patent Document 2) is usually used. However, the Cu-Zn catalyst has a problem that the activity is impaired by Cu being oxidized in the air. In contrast, when using a Pt-based catalyst, there is almost no problem of activity deterioration due to oxidation, but at a high temperature at which a sufficient reaction rate can be obtained, CO hydrogenation reaction proceeds and methane is produced. This causes a problem that the hydrogen concentration decreases.
JP-A-10-174870 Japanese Unexamined Patent Publication No. 2000-320407

従って、本発明は、DMEの改質により水素を製造するに際し、空気酸化により失活する
ことがなく、また十分な反応速度の得られる高温においてもメタン生成を抑制し得る新たなDEM改質用触媒を提供することを主な目的とする。
Therefore, the present invention provides a new DEM reforming process that does not deactivate due to air oxidation when producing hydrogen by reforming DME, and that can suppress methane formation even at a high temperature at which a sufficient reaction rate can be obtained. The main purpose is to provide a catalyst.

また、本発明は、DMEを高効率で水素含有ガスに転換し得る触媒およびこの触媒を用い
るDMEの改質方法を提供することをも、目的とする。
Another object of the present invention is to provide a catalyst capable of converting DME into a hydrogen-containing gas with high efficiency and a method for reforming DME using the catalyst.

本発明者は、上記の様な技術の現状を考慮しつつ、研究を重ねた結果、酸化ガリウムまたは酸化ガリウムと金属酸化物との混合物が、DMEの改質反応において、高い活性を発揮
することを見出した。
As a result of repeated research while considering the current state of the technology as described above, the present inventors have shown that gallium oxide or a mixture of gallium oxide and metal oxide exhibits high activity in the reforming reaction of DME. I found.

本発明は、下記のDME改質用触媒およびこの触媒を使用する水素含有ガスの製造方法を提供する。
1.酸化ガリウムを触媒活性成分とするジメチルエーテル水蒸気改質用触媒であって、酸化ガリウムと、他の金属酸化物とからなり、前記他の金属酸化物は、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化ケイ素、酸化ゲルマニウム、酸化マンガン、酸化鉄、酸化セリウム、酸化インジウムおよび酸化亜鉛からなる群から選ばれた金属酸化物の少なくとも1種である、ジメチルエーテル水蒸気改質用触媒。
2.上記項1に記載の触媒の存在下にジメチルエーテルと水蒸気とを接触させることを特徴とする水素含有ガスの製造方法。
The present invention provides the following DME reforming catalyst and a method for producing a hydrogen-containing gas using the catalyst.
1. A catalyst for reforming dimethyl ether steam using gallium oxide as a catalytic active component, comprising gallium oxide and another metal oxide, the other metal oxide being aluminum oxide, zirconium oxide, titanium oxide, silicon oxide A dimethyl ether steam reforming catalyst, which is at least one metal oxide selected from the group consisting of germanium oxide, manganese oxide, iron oxide, cerium oxide, indium oxide, and zinc oxide.
2. The method for producing a hydrogen-containing gas which comprises contacting the dimethyl ether and Mizu蒸gas in the presence of a catalyst according to Item 1.

本発明によれば、Ga2O3をチタニア、アルミナ、シリカなどの金属酸化物に担持するこ
とにより、空気中で劣化することなく、高温における取扱いが可能で、高活性を発揮するDME改質用触媒が得られる。
According to the present invention, by supporting Ga 2 O 3 on a metal oxide such as titania, alumina, silica, etc., it is possible to handle at high temperature without deteriorating in the air, and DME modification that exhibits high activity. The catalyst for use is obtained.

また、本発明によれば、DMEを原料として、燃料電池の燃料などとして有用な水素ガス
を効率よく製造することができる。
Further, according to the present invention, hydrogen gas useful as fuel for fuel cells can be efficiently produced using DME as a raw material.

本発明によるDME改質用触媒は、酸化ガリウム単独からなるか、或いは酸化ガリウムと
金属酸化物の少なくとも1種とを配合乃至混合してなるものである。酸化ガリウムと他の金属酸化物(以下「併用金属酸化物」ということがある)とを併用する場合には、酸化ガリウムと併用金属酸化物の少なくとも1種とからなる物理的混合物、酸化ガリウムを併用金属酸化物に担持させた担持体、酸化ガリウムと併用金属酸化物とを含む複酸化物などの任意の形態で使用することができる。
The DME reforming catalyst according to the present invention is composed of gallium oxide alone or a mixture or mixture of gallium oxide and at least one metal oxide. When gallium oxide and other metal oxide (hereinafter sometimes referred to as “combined metal oxide”) are used in combination, a physical mixture of gallium oxide and at least one of the combined metal oxides, It can be used in any form such as a carrier supported on a combined metal oxide or a double oxide containing gallium oxide and a combined metal oxide.

酸化ガリウムと併用される金属酸化物は、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化ケイ素、酸化ゲルマニウム、酸化マンガン、酸化鉄、酸化セリウム、酸化インジウムおよび酸化亜鉛からなる群から選ばれた金属酸化物の少なくとも1種である。   The metal oxide used in combination with gallium oxide is a metal oxide selected from the group consisting of aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, germanium oxide, manganese oxide, iron oxide, cerium oxide, indium oxide and zinc oxide. At least one of the following.

酸化ガリウムと金属酸化物とを併用する触媒は、担持触媒或いは混合触媒を製造するための常法に従って、製造することができる。例えば、ガリウムの水溶性化合物を溶解させた水溶液に、担体としての金属酸化物を浸漬した後、乾燥し、焼成することにより、調製することができる(担持法)。この際、担体として、2種以上の金属酸化物を併せて浸漬しても良い。焼成は、通常大気中で行う。   A catalyst using a combination of gallium oxide and a metal oxide can be produced according to a conventional method for producing a supported catalyst or a mixed catalyst. For example, it can be prepared by immersing a metal oxide as a carrier in an aqueous solution in which a water-soluble gallium compound is dissolved, followed by drying and firing (supporting method). At this time, two or more metal oxides may be immersed together as a carrier. Firing is usually performed in the air.

ガリウムの水溶性化合物としては、水溶性である限り特に限定されないが、具体的には、硝酸ガリウム、塩化ガリウム、シュウ酸ガリウムなどが例示される。   The water-soluble compound of gallium is not particularly limited as long as it is water-soluble, and specific examples thereof include gallium nitrate, gallium chloride, gallium oxalate and the like.

或いは、酸化ガリウムと金属酸化物とを併用する触媒は、ゾル-ゲル法により調製した
粉末状生成物を乾燥し、焼成することにより、得ることもできる。この場合にも、焼成は通常大気中で行う。
Or the catalyst which uses a gallium oxide and a metal oxide together can also be obtained by drying and baking the powdery product prepared by the sol-gel method. Also in this case, firing is usually performed in the atmosphere.

或いは、酸化ガリウムと金属酸化物とを併用する触媒は、酸化ガリウム粉末と金属酸化物粉末とを所定の割合で、単に物理的に混合することによっても、調製することができる(混合法)。必要ならば、得られた粉末混合物を大気中で焼成しても良い。   Alternatively, a catalyst using both gallium oxide and metal oxide can be prepared by simply physically mixing gallium oxide powder and metal oxide powder in a predetermined ratio (mixing method). If necessary, the obtained powder mixture may be fired in the air.

酸化ガリウムと金属酸化物とを使用する触媒において、酸化ガリウムと併用金属酸化物との配合比は、酸化ガリウム1重量部に対し、通常併用金属酸化物10〜1000重量部程度で
あり、好ましくは10〜50重量部程度である。
In the catalyst using gallium oxide and the metal oxide, the compounding ratio of gallium oxide and the combined metal oxide is usually about 10 to 1000 parts by weight of the combined metal oxide with respect to 1 part by weight of gallium oxide, preferably About 10 to 50 parts by weight.

酸化ガリウムを単独使用する場合の触媒の粒径は、DME改質時の条件、水分濃度、要求
寿命などを考慮して適宜選択すればよいが、通常0.1〜200μm程度であり、より好ましくは1〜100μm程度である。触媒の粒径は、SEMで確認することにより、容易に調整できる。
The particle size of the catalyst when gallium oxide is used alone may be appropriately selected in consideration of the DME reforming conditions, moisture concentration, required life, etc., but is usually about 0.1 to 200 μm, more preferably 1 It is about ~ 100 μm. The particle size of the catalyst can be easily adjusted by confirming with SEM.

酸化ガリウムと他の金属酸化物とを物理的に混合して併用する場合、金属酸化物の粒径は、特に限定されるものではないが、均一な混合状態を得るために、酸化ガリウムの粒径と同様とすることが好ましい。   When gallium oxide and another metal oxide are physically mixed and used together, the particle size of the metal oxide is not particularly limited, but in order to obtain a uniform mixed state, the gallium oxide particles The diameter is preferably the same.

本発明触媒は、常法に従って、さらに成形したり、或いは基材にコートして使用するも可能である。この様な場合には、例えば、触媒とバインダーとしてのシリカ或いはシリカ-アルミナなどとを混合し、混合物をハニカム形状に成形したり、或いは、混合物をコー
ディエライト、ベースメタルなどからなるハニカム構造体にウォッシュコートすればよい。
The catalyst of the present invention can be further shaped according to a conventional method, or can be used after being coated on a substrate. In such a case, for example, a catalyst and silica or silica-alumina as a binder are mixed, and the mixture is formed into a honeycomb shape, or the mixture is made of cordierite, base metal, etc. Just wash coat.

本発明による触媒の存在下に、DMEの水蒸気改質を行って水素を製造するに際しては、特
に限定されるものではないが、例えば25〜400℃程度(より好ましくは80〜250℃程度)の温度において、DMEを完全に水素に変換させるために必要な理論量以上(理論量の1〜5倍量、より好ましくは2〜3倍量)の水蒸気を供給しつつ、流動下にDMEと水蒸気とを反応させれば良い。DMEは、必要に応じて、窒素、アルゴン、ヘリウムなどのキャリアガスにより希釈
した混合物の形態で、反応に供しても良い。反応時の圧力は、常圧〜10MPa程度の範囲で
行うことができるが、常圧乃至その近傍とすることが有利である。
When hydrogen is produced by steam reforming of DME in the presence of the catalyst according to the present invention, it is not particularly limited. For example, it is about 25 to 400 ° C. (more preferably about 80 to 250 ° C.). While supplying steam at a temperature higher than the theoretical amount (1-5 times the theoretical amount, more preferably 2-3 times the theoretical amount) necessary to completely convert DME into hydrogen at a temperature, DME and water vapor under flow Can be reacted. If necessary, DME may be subjected to the reaction in the form of a mixture diluted with a carrier gas such as nitrogen, argon or helium. The pressure during the reaction can be in the range of normal pressure to 10 MPa, but is preferably normal pressure or the vicinity thereof.

上記の反応においては、系内に他のガス成分、例えば、水素、一酸化炭素、二酸化炭素などが存在していても良い。特に、一酸化炭素が共存する場合には、一酸化炭素の除去と水素の製造が同時に行われるので、有利である。この際、残存する一酸化炭素が阻害要因となる場合(例えば、水素を燃料電池の燃料として使用する場合など)には、必要に応じて、一酸化炭素除去装置を併設すればよい。   In the above reaction, other gas components such as hydrogen, carbon monoxide, and carbon dioxide may be present in the system. In particular, when carbon monoxide coexists, it is advantageous because removal of carbon monoxide and production of hydrogen are performed simultaneously. At this time, if the remaining carbon monoxide becomes an inhibiting factor (for example, when hydrogen is used as a fuel for the fuel cell), a carbon monoxide removing device may be additionally provided as necessary.

以下に、実施例および比較例を示し,本発明の特徴とするところをより明確とする。
[比較例1]
Cu-Zn-Al 2 O 3 触媒の調製
Cu(NO3)2・3H2O (9.4g)とZn(NO3)2・6H2O(11.4g)を26mlの蒸留水に溶かし、80℃に
加熱した。この溶液をよく撹拌しながら85℃に保ったNa2CO3(9.9g)の水溶液(23ml)
を1時間かけて滴下した。滴下終了後、系のpHが8.0になったことを確認し、1時間撹拌し
た。次いで、沈殿生成物を吸引濾取し、“50℃に加熱した純水中で20分間撹拌する”という洗浄工程を3回繰り返した。濾液のpH が中性になったことをフェノールフタレインで確認した後、沈殿物を110℃で15時間乾燥した。得られた乾燥粉末(Cu-Zn:を大気中400℃で5時間焼成した。
Examples and comparative examples are shown below to clarify the features of the present invention.
[Comparative Example 1]
Preparation of Cu-Zn-Al 2 O 3 catalyst
Cu (NO 3 ) 2 · 3H 2 O (9.4 g) and Zn (NO 3 ) 2 · 6H 2 O (11.4 g) were dissolved in 26 ml of distilled water and heated to 80 ° C. An aqueous solution of Na 2 CO 3 (9.9 g) kept at 85 ° C. with good stirring (23 ml)
Was added dropwise over 1 hour. After completion of the dropwise addition, it was confirmed that the pH of the system was 8.0 and stirred for 1 hour. Then, the precipitated product was collected by suction filtration, and the washing step of “stirring in pure water heated to 50 ° C. for 20 minutes” was repeated three times. After confirming that the pH of the filtrate was neutral with phenolphthalein, the precipitate was dried at 110 ° C. for 15 hours. The obtained dry powder (Cu-Zn: was fired at 400 ° C. for 5 hours in the air.

得られたCu-Zn粉末(粒径10〜100μm)を同重量のAl2O3(粒径50〜100μm) と物理混合す
ることにより、Cu-Zn-Al2O3触媒を得た。
[実施例1]
ゾル-ゲル法によるGa 2 O 3 /Al 2 O 3 触媒の調製
1mol/lの硝酸ガリウムのエチレングリコール溶液と1mol/lの硝酸アルミニウム9水和物
のエチレングリコール溶液とを10:0〜0:10の種々の比率で混合した(表1参照)。得られた溶液を80℃に保ちながら、10時間攪拌した後、80℃から110℃まで徐々に昇温しつつ、エ
チレングリコールを減圧留去した。得られた粉末を乳鉢ですりつぶした後、200℃で5時間乾燥させ、空気中500℃で5時間焼成を行うことにより、表1に示す組成を有する本発明触媒を得た。
The obtained Cu—Zn powder (particle size 10 to 100 μm) was physically mixed with the same weight of Al 2 O 3 (particle size 50 to 100 μm) to obtain a Cu—Zn—Al 2 O 3 catalyst.
[Example 1]
Preparation of Ga 2 O 3 / Al 2 O 3 catalyst by sol-gel method
An ethylene glycol solution of 1 mol / l gallium nitrate and an ethylene glycol solution of 1 mol / l aluminum nitrate nonahydrate were mixed in various ratios from 10: 0 to 0:10 (see Table 1). The resulting solution was stirred for 10 hours while maintaining at 80 ° C., and then ethylene glycol was distilled off under reduced pressure while gradually raising the temperature from 80 ° C. to 110 ° C. The obtained powder was ground in a mortar, dried at 200 ° C. for 5 hours, and calcined in air at 500 ° C. for 5 hours to obtain the catalyst of the present invention having the composition shown in Table 1.

本実施例および下記実施例2〜10で得られた触媒(粒径は0.2〜10μmの範囲内にある)は、空気との接触下においても、酸化による活性低下は認められなかった。
[実施例2]
含浸法によるGa 2 O 3 -Al 2 O 3 触媒(Ga/Al = 1/9)の調製
硝酸ガリウム・6.28水和物(0.738g、2.00mmol)を3mlの水に溶かした。この水溶液を
γ-アルミナ(0.918g、9.00mmol)へと滴下し、80℃で12時間乾燥させ、次いで200℃で5時間乾燥させた後、500℃で5時間焼成して、本発明による触媒を調製した。
[実施例3]
含浸法によるGa 2 O 3 -9ZrO 2 触媒の調製
実施例2のγ-アルミナの代わりにZrO2(1.11g, 9.00mmol)を用い、実施例2と同様の手
法で本発明による触媒を調製した。
[実施例4]
含浸法によるGa 2 O 3 -9TiO 2 触媒の調製
実施例2のγ-アルミナの代わりにTiO2 (0.719g, 9.00 mmol)を用い、実施例2と同様の手法で本発明による触媒を調製した。
[実施例5]
Ga 2 O 3 -SiO 2 触媒の調製
実施例2のγ-アルミナの代わりに0.54gのSiO2を用い、かつ実施例2で用いた硝酸ガリウム水溶液に5mlの水を加えて希釈した溶液を用いて、実施例2と同様の手法により、本
発明による触媒を調製した。
[実施例6]
Ga 2 O 3 -GeO 2 触媒の調製
実施例2のγ-アルミナの代わりに0.942gのGeO2を用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[実施例7]
Ga 2 O 3 -MnO 2 触媒の調製
実施例2のγ-アルミナの代わりに0.639gのMnO2を用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[実施例8]
Ga 2 O 3 -Fe 2 O 3 触媒の調製
実施例2のγ-アルミナの代わりに1.437gのFe2O3を用いて、実施例2と同様の手法に
より、本発明による触媒を調製した。
[実施例9]
Ga 2 O 3 -CeO 2 触媒の調製
実施例2のγ-アルミナの代わりに1.549gのCeO2を用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[実施例10]
Ga 2 O 3 -In 2 O 3 触媒の調製
実施例2のγ-アルミナの代わりに1.249gのIn2O3を用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[実施例11]
Ga 2 O 3 -ZnO触媒の調製
実施例2のγ-アルミナの代わりに0.733gのZnOを用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[実施例12]
0.5Ga 2 O 3 -9.5TiO 2 触媒の調製
実施例9のTl2O3の代わりに0.759gのTiO2を用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[実施例13]
ゾル-ゲル法によるGa 2 O 3 -9TiO 2 触媒の調製
チタンテトライソプロポキシド(3.84g、 13.5mmol)のエチレングリコール溶液と硝酸ガリウムn水和物(1.11g、3mmol)のエチレングリコール溶液とを混合した。得られた溶液を80℃に保って10時間撹拌した後、80℃から110℃まで徐々に昇温しながら、エチレング
リコールを減圧留去した。得られた粉末を乳鉢ですりつぶした後、200℃で5時間乾燥させ、500℃で5時間焼成することにより、本発明による触媒を調製した。
[実施例14]
含浸法による0.5Ga 2 O 3 -9.5TiO 2 触媒の調製
実施例2において、γ-アルミナの代わりにTiO2 (0.719g、9.00 mmol)を用い、かつ1/2濃度の硝酸ガリウム水溶液を用いて、実施例2と同様の手法により、本発明による触媒を調製した。
[試験例1]
比較例1および実施例1〜14において得られた触媒を用いて、それぞれのDME改質触
媒としての性能を評価した。
In the catalyst obtained in this example and the following Examples 2 to 10 (particle size is in the range of 0.2 to 10 μm), no decrease in activity due to oxidation was observed even in contact with air.
[Example 2]
Preparation of Ga 2 O 3 —Al 2 O 3 Catalyst (Ga / Al = 1/9) by Impregnation Method Gallium nitrate 6.28 hydrate (0.738 g, 2.00 mmol) was dissolved in 3 ml of water. The aqueous solution was dropped into γ-alumina (0.918 g, 9.00 mmol), dried at 80 ° C. for 12 hours, then dried at 200 ° C. for 5 hours, and then calcined at 500 ° C. for 5 hours to obtain the catalyst according to the present invention. Was prepared.
[Example 3]
Preparation of Ga 2 O 3 -9ZrO 2 Catalyst by Impregnation Method A catalyst according to the present invention was prepared in the same manner as in Example 2 using ZrO 2 (1.11 g, 9.00 mmol) instead of γ-alumina in Example 2. .
[Example 4]
Preparation of Ga 2 O 3 -9TiO 2 Catalyst by Impregnation Method A catalyst according to the present invention was prepared in the same manner as in Example 2 using TiO 2 (0.719 g, 9.00 mmol) instead of γ-alumina in Example 2. .
[Example 5]
Preparation of Ga 2 O 3 —SiO 2 catalyst In place of γ-alumina in Example 2, 0.54 g of SiO 2 was used, and a solution diluted with 5 ml of water added to the gallium nitrate aqueous solution used in Example 2 was used. Then, a catalyst according to the present invention was prepared in the same manner as in Example 2.
[Example 6]
Preparation of Ga 2 O 3 —GeO 2 Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 0.942 g of GeO 2 was used instead of γ-alumina in Example 2.
[Example 7]
Preparation of Ga 2 O 3 —MnO 2 Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 0.639 g of MnO 2 was used instead of γ-alumina in Example 2.
[Example 8]
Preparation of Ga 2 O 3 —Fe 2 O 3 Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 1.437 g of Fe 2 O 3 was used instead of γ-alumina in Example 2.
[Example 9]
Preparation of Ga 2 O 3 —CeO 2 Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 1.549 g of CeO 2 was used instead of γ-alumina in Example 2.
[Example 10]
Preparation of Ga 2 O 3 —In 2 O 3 Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 1.249 g of In 2 O 3 was used instead of γ-alumina in Example 2.
[Example 11]
Preparation of Ga 2 O 3 —ZnO Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 0.733 g of ZnO was used instead of γ-alumina in Example 2.
[Example 12]
Preparation of 0.5Ga 2 O 3 -9.5TiO 2 Catalyst A catalyst according to the present invention was prepared in the same manner as in Example 2, except that 0.759 g of TiO 2 was used instead of Tl 2 O 3 of Example 9.
[Example 13]
Preparation of Ga 2 O 3 -9TiO 2 catalyst by sol-gel method Titanium tetraisopropoxide (3.84g, 13.5mmol) in ethylene glycol solution and gallium nitrate n hydrate (1.11g, 3mmol) in ethylene glycol solution Mixed. The obtained solution was kept at 80 ° C. and stirred for 10 hours, and then ethylene glycol was distilled off under reduced pressure while gradually raising the temperature from 80 ° C. to 110 ° C. The obtained powder was ground in a mortar, dried at 200 ° C. for 5 hours, and calcined at 500 ° C. for 5 hours to prepare a catalyst according to the present invention.
[Example 14]
Preparation of 0.5Ga 2 O 3 -9.5TiO 2 catalyst by impregnation method In Example 2, TiO 2 (0.719 g, 9.00 mmol) was used in place of γ-alumina, and a 1/2 concentration gallium nitrate aqueous solution was used. A catalyst according to the present invention was prepared in the same manner as in Example 2.
[Test Example 1]
Using the catalysts obtained in Comparative Example 1 and Examples 1 to 14, the performance as each DME reforming catalyst was evaluated.

すなわち、内径8mmミリの石英製ガラス管に所定のDME触媒(150g)を充填し、常圧下に固定床流通式反応装置を用いて、1%(容積)のジメチルエーテルおよび3%の水蒸気を含む
アルゴンガスを50ml/minで流通させることにより、DME改質活性を測定した。反応に際し
ては、温度を200℃から順次50℃刻みで400℃まで変化させた。この際の昇温速度は、10℃/分とした。また、各設定温度における反応時間は、約3分とした。
That is, a quartz glass tube having an inner diameter of 8 mm is filled with a predetermined DME catalyst (150 g), and using a fixed bed flow reactor under normal pressure, argon containing 1% (volume) dimethyl ether and 3% water vapor is used. The DME reforming activity was measured by flowing gas at 50 ml / min. During the reaction, the temperature was changed from 200 ° C to 400 ° C in increments of 50 ° C. The temperature increase rate at this time was 10 ° C./min. The reaction time at each set temperature was about 3 minutes.

ガスクロマトグラフ分析装置を用いて、ガス状の反応生成物中に含まれる水素、メタン、一酸化炭素、二酸化炭素、未反応のジメチルエーテルおよびメタノールの濃度を測定した。
[試験例2]
反応原料中の水蒸気濃度の影響を調べるために、その濃度を1%刻みで4-6%まで変化
させる以外は試験例1と同様の条件で、DMEの改質反応を行った。
[試験例1〜2についての考察]
図1は、比較例1および実施例1に記した種々の比率で調製したGa2O3-Al2O3触媒を試
験例1の条件下で使用した場合の活性評価データを示す(図1-aは、DME転化率を示し、図1-bは、出口ガス中の水素濃度を示す)。
The concentration of hydrogen, methane, carbon monoxide, carbon dioxide, unreacted dimethyl ether and methanol contained in the gaseous reaction product was measured using a gas chromatograph analyzer.
[Test Example 2]
In order to investigate the influence of the water vapor concentration in the reaction raw material, the DME reforming reaction was carried out under the same conditions as in Test Example 1 except that the concentration was changed to 4-6% in 1% increments.
[Consideration about Test Examples 1 and 2]
FIG. 1 shows activity evaluation data when Ga 2 O 3 —Al 2 O 3 catalysts prepared at various ratios described in Comparative Example 1 and Example 1 were used under the conditions of Test Example 1 (FIG. 1). -a indicates DME conversion, and FIG. 1-b indicates the hydrogen concentration in the outlet gas).

また、表1は、反応温度350℃での各種触媒反応性生物の出口濃度を示す。既知のCu-ZnO触媒は、アルミナと混合することにより活性が飛躍的に向上しているのに対し、Ga2O3
系では、アルミナを混合しても活性の向上は見られない。この様な結果から、本発明によるGa2O3系触媒を用いるDME改質反応は、既知の触媒を用いるDME改質反応とは異なった反
応であることが示唆される。
Table 1 shows outlet concentrations of various catalytically reactive organisms at a reaction temperature of 350 ° C. In the known Cu-ZnO catalyst, the activity is dramatically improved by mixing with alumina, whereas in the Ga 2 O 3 system, the activity is not improved even when alumina is mixed. From these results, it is suggested that the DME reforming reaction using the Ga 2 O 3 catalyst according to the present invention is different from the DME reforming reaction using a known catalyst.

Figure 0004264514
Ga2O3を含まないアルミナ単独を用いた場合(図1-aおよび図1-bにおいて、酸化ガリウム濃度0モル%の場合)には、高温になるとDMEの加水分解が生じて、メタノールが生成さ
れるので、DME転化率が上がるが、水素の生成はほとんど見られない。これに対し、アル
ミナに少量の酸化ガリウムを加えると、反応温度300℃付近から水素が生成することが明
らかである。
Figure 0004264514
When alumina alone containing no Ga 2 O 3 is used (when the gallium oxide concentration is 0 mol% in FIGS. 1-a and 1-b), hydrolysis of DME occurs at high temperatures, and methanol is As it is produced, the DME conversion rate is increased, but almost no hydrogen is produced. On the other hand, when a small amount of gallium oxide is added to alumina, it is apparent that hydrogen is generated from a reaction temperature of about 300 ° C.

表2は、酸化ガリウム単独、Ga2O3-Al2O3(Ga/Al=9/1または8/2)を用いて、試験例2の
条件下(反応温度は400℃)で、DME改質反応を行い、その生成物を調べた結果を示す。水分濃度を当量(3%)以上とすることにより、出口水素濃度が上昇することが明らかである。
Table 2 shows DME using gallium oxide alone, Ga 2 O 3 —Al 2 O 3 (Ga / Al = 9/1 or 8/2) under the conditions of Test Example 2 (reaction temperature is 400 ° C.). The result of conducting a reforming reaction and examining the product is shown. It is clear that the outlet hydrogen concentration increases when the water concentration is equal to or greater than 3%.

Figure 0004264514
次に、触媒活性成分である酸化ガリウムを種々の金属酸化物に担持して、その担体としての効果を調べた。表3は、反応温度を350℃とし、10モル%のGa2O3を種々の金属酸化物に担持した触媒を用いた場合に得られたDME転化率、生成ガス中の水素および一酸化炭素
濃度を示す。表3から明らかな様に、反応温度350℃以上において、TiO2を担体とする触
媒を使用する場合に、特に水素の出口濃度が高くなることが判明した。
Figure 0004264514
Next, gallium oxide, which is a catalytically active component, was supported on various metal oxides, and the effect as a carrier was examined. Table 3 shows the DME conversion rate, hydrogen in the produced gas, and carbon monoxide when the reaction temperature was 350 ° C. and a catalyst in which 10 mol% of Ga 2 O 3 was supported on various metal oxides was used. Indicates the concentration. As is apparent from Table 3, it was found that when a catalyst having TiO 2 as a support was used at a reaction temperature of 350 ° C. or higher, the hydrogen outlet concentration was particularly high.

Figure 0004264514
そこで、実施例4と同様の手法により、比表面積の異なる市販のチタニアを担体として用いる種々の触媒を調製し、それぞれについて活性評価を行った。
Figure 0004264514
Therefore, various catalysts using commercially available titania having different specific surface areas as a support were prepared by the same method as in Example 4, and the activity was evaluated for each of the catalysts.

表4は、チタニアI(石原産業(株)製、“ST-01”、光触媒用チタニア、アナターゼ型
、比表面積207m2/g)、チタニアII(日本アエロジル(株)製、“チタニアP-25”、主に
アナターゼ型、比表面積41 m2/g)およびチタニアIII(関東化学(株)製、アナターゼ
型、比表面積8 m2/g)にそれぞれ10mol%の酸化ガリウムを含浸担持することにより調製した3種の触媒の活性を示す。
Table 4 shows titania I (manufactured by Ishihara Sangyo Co., Ltd., “ST-01”, titania for photocatalyst, anatase type, specific surface area 207 m 2 / g), titania II (manufactured by Nippon Aerosil Co., Ltd., “Titania P-25” "By mainly impregnating and supporting 10 mol% of gallium oxide in anatase type, specific surface area 41 m 2 / g) and titania III (manufactured by Kanto Chemical Co., Ltd., anatase type, specific surface area 8 m 2 / g) The activity of the three catalysts prepared is shown.

なお、表4は、実施例14に記したゾル-ゲル法により調製された触媒によるデータも
併せて示す。
Table 4 also shows data for the catalyst prepared by the sol-gel method described in Example 14.

表4に示す様に、350℃においては、チタニアIを担体に用いた場合に、触媒活性が最
も高くなることが分かった。しかしながら、400℃では、DME転化率は他の触媒よりも高いものの、水素濃度が低くなることが分かった。これは、比表面積の大きいチタニアIを担体に用いた場合にのみ、高温度でのメタン化が進行したためである。
As shown in Table 4, it was found that the catalytic activity was highest at 350 ° C. when titania I was used as the support. However, at 400 ° C., the DME conversion was higher than the other catalysts, but the hydrogen concentration was found to be lower. This is because methanation at a high temperature proceeded only when titania I having a large specific surface area was used as a support.

そこで、活性成分である酸化ガリウムの担持量を減らし、活性を抑えた触媒の調製を試みた。すなわち、担持する酸化ガリウムの量を5mol%に減らして、担体としてチタニアI
を用いた触媒を調製した。その結果、10mol%の酸化ガリウムを担持した触媒に比べて、DMEの転化率はやや低くなるものの、反応温度400℃での生成物中の水素濃度は高くなることが分かった。また、このチタニアIを担体とし、酸化ガリウムの担持量が5mol%である触
媒は、チタニアII或いはチタニアIIIに10mol%の酸化ガリウムを担持した触媒と比較しても、350℃での活性が高くなることが分かった。
Therefore, an attempt was made to prepare a catalyst with reduced activity by reducing the amount of gallium oxide as an active component. That is, the amount of gallium oxide supported is reduced to 5 mol%, and titania I
A catalyst using was prepared. As a result, it was found that the hydrogen concentration in the product at the reaction temperature of 400 ° C. was higher, although the DME conversion rate was slightly lower than that of the catalyst supporting 10 mol% gallium oxide. In addition, a catalyst having titania I as a carrier and a supported amount of gallium oxide of 5 mol% has a higher activity at 350 ° C. than a catalyst having 10 mol% of gallium oxide supported on titania II or titania III. I found out that

これらの結果は、チタニアの構造制御、他成分の添加などの手段を用いて、Ga2O3の分
散度向上させることにより、活性の更なる向上が可能であることを示唆している。
These results suggest that the activity can be further improved by improving the dispersity of Ga 2 O 3 using means such as structure control of titania and addition of other components.

Figure 0004264514
[実施例15]〜[実施例17]
酸化亜鉛、酸化コバルトおよび酸化マグネシウムのそれぞれを担体とする以外は実施例2の手法に準じて、本発明の触媒を得た。
Figure 0004264514
[Example 15] to [Example 17]
A catalyst of the present invention was obtained according to the method of Example 2 except that each of zinc oxide, cobalt oxide and magnesium oxide was used as a carrier.

これらの触媒を使用して、試験例1と同様の条件下にDME改質を行ったところ、いずれ
の場合にも、水素を含む反応ガスが得られた。
When these catalysts were used and DME reforming was performed under the same conditions as in Test Example 1, a reaction gas containing hydrogen was obtained in any case.

酸化ガリウムとγ-アルミナとの配合比が種々異なる触媒のDME転化率および水素収率を示すグラフである。4 is a graph showing DME conversion rates and hydrogen yields of catalysts having different mixing ratios of gallium oxide and γ-alumina.

Claims (2)

酸化ガリウムを触媒活性成分とするジメチルエーテル水蒸気改質用触媒であって、
酸化ガリウムと、他の金属酸化物とからなり、
前記他の金属酸化物は、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化ケイ素、酸化ゲルマニウム、酸化マンガン、酸化鉄、酸化セリウム、酸化インジウムおよび酸化亜鉛からなる群から選ばれた金属酸化物の少なくとも1種である、
ジメチルエーテル水蒸気改質用触媒。
A dimethyl ether steam reforming catalyst having gallium oxide as a catalytic active component,
Consists of gallium oxide and other metal oxides,
The other metal oxide is at least one metal oxide selected from the group consisting of aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, germanium oxide, manganese oxide, iron oxide, cerium oxide, indium oxide, and zinc oxide. Seeds,
Dimethyl ether steam reforming catalyst.
請求項1に記載の触媒の存在下にジメチルエーテルと水蒸気とを接触させることを特徴とする水素含有ガスの製造方法。 The method for producing a hydrogen-containing gas which comprises contacting the dimethyl ether and Mizu蒸gas in the presence of a catalyst according to claim 1.
JP2004059237A 2004-03-03 2004-03-03 Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same Expired - Lifetime JP4264514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059237A JP4264514B2 (en) 2004-03-03 2004-03-03 Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059237A JP4264514B2 (en) 2004-03-03 2004-03-03 Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same

Publications (2)

Publication Number Publication Date
JP2005246210A JP2005246210A (en) 2005-09-15
JP4264514B2 true JP4264514B2 (en) 2009-05-20

Family

ID=35027209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059237A Expired - Lifetime JP4264514B2 (en) 2004-03-03 2004-03-03 Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same

Country Status (1)

Country Link
JP (1) JP4264514B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947457A (en) * 2010-08-31 2011-01-19 西南化工研究设计院 Ventilation air methane combustion catalyst and preparation method thereof
KR101200022B1 (en) 2010-10-06 2012-11-09 서울대학교산학협력단 Gallium oxide catalyst supported on ceria-zirconia composite support, preparation method thereof and production method for dimethyl carbonate using said catalyst
KR101318255B1 (en) 2011-11-15 2013-10-15 서울대학교산학협력단 Gallium oxide-cerium oxide-zirconium oxide complex catalyst for dimethylcarbonate production and production method for direct synthesis of dimethylcarbonate using said catalyst
CN112705189B (en) * 2019-10-24 2023-08-04 中国石油化工股份有限公司 Catalyst for transesterification of dimethyl carbonate and phenol and preparation method thereof

Also Published As

Publication number Publication date
JP2005246210A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
Dai et al. Mesoporous silica-supported nanostructured PdO/CeO2 catalysts for low-temperature methane oxidation
JP5334870B2 (en) Metal-doped nickel oxide as a catalyst for methanation of carbon monoxide
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
US7906098B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
TWI608990B (en) Catalyst composition for producing hydrogen and fabrication method and use thereof
TWI294413B (en) Method for converting co and hydrogen into methane and water
Wu et al. Surface Oxygen Vacancies Induced by Calcium Substitution in Macroporous La2Ce2–x Ca x O7− δ Catalysts for Boosting Low-Temperature Oxidative Coupling of Methane
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
KR102117933B1 (en) Direct methane conversion on single rhodium site with fortified oxidant efficiency
KR20100072712A (en) Hydrocarbon reforming catalyst, preparation method thereof and fuel cell employing the catalyst
JP3421628B2 (en) Photocatalyst manufacturing method
JP4264514B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same
AbdelDayem et al. Selective methanol oxidation to hydrogen over Ag/ZnO catalysts doped with mono-and bi-rare earth oxides
TWI261533B (en) Nano-gold catalyst and preparation of nano-gold catalyst
CN114602496A (en) Nano-carbon-loaded platinum-iron bimetallic catalyst, preparation method thereof and application thereof in CO selective oxidation reaction under hydrogen-rich atmosphere
JP2005050760A (en) Anode electrode catalyst for solid polymer electrolytic fuel cell
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
JP3885139B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JPWO2013132862A1 (en) Catalyst, method for producing catalyst, method for producing hydrogen-containing gas using this catalyst, hydrogen generator, fuel cell system, and silicon-supported CeZr-based oxide
JP2004009011A (en) Catalyst for water-gas-shift reaction
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4264514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term