JP4263799B2 - Method for producing scaly silver powder - Google Patents
Method for producing scaly silver powder Download PDFInfo
- Publication number
- JP4263799B2 JP4263799B2 JP03186699A JP3186699A JP4263799B2 JP 4263799 B2 JP4263799 B2 JP 4263799B2 JP 03186699 A JP03186699 A JP 03186699A JP 3186699 A JP3186699 A JP 3186699A JP 4263799 B2 JP4263799 B2 JP 4263799B2
- Authority
- JP
- Japan
- Prior art keywords
- silver powder
- nonionic surfactant
- grinding
- solvent
- production method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電子部品の実装やスクリーン印刷等により回路を形成するのに用いられる導電性ペーストに好適な鱗片状銀粉およびその製造方法に関する。
【0002】
【従来の技術】
電子部品の実装やスクリーン印刷等により回路を形成するのに用いられる導電性ペーストは、その用途により、高温焼成タイプと加熱硬化タイプに大きく分類され、高温焼成タイプは550℃〜900℃程度の高温が加えられるため、銀粒子同士が融着し、バルクの銀と同程度の低抵抗を示す。この用途に用いられる銀粉は球状銀粉であることが多いのに対し、加熱硬化タイプでは室温〜200℃程度の比較的低温で樹脂を硬化させ、これにより生じた銀粒子同士の接触により導電性が発現する。加熱硬化タイプでは高温焼成タイプと比較して抵抗が高く、より低抵抗化を期待されている。そのため、この用途に用いられる銀粉は鱗片状銀粉であることが多い。なぜなら、鱗片状銀粉ならば、その形状のため面接触が期待でき、導通が取りやすいためである。
【0003】
これまで、加熱硬化タイプのペーストは、耐熱性の劣る素材での回路形成や電気的導通を得るための接着に用いられることが多かった。こうした用途に加えて、最近では、環境負荷低減の観点から、多くのエネルギーを消費する高温焼成タイプから加熱硬化タイプへの流れが産業界において見られる。また、環境汚染問題を背景として、半田における鉛使用廃止が議論されているが、その解決手段の一つとして導電性接着剤が有力な候補と目されている。
【0004】
従来、前記加熱硬化タイプの導電性ペーストに使用される鱗片状銀粉は、例えば、銀塩のアンモニア錯体や酸化銀を還元して生成した球状銀粉をボールミル、振動ミル等により機械的に粉砕をすることにより製造されてきた。この際、凝集による銀粒子の粗粒子化を防止するために、脂肪酸や金属石鹸のような滑性を付与する目的を持った物質が被粉砕物である銀粉に添加されてきた。
【0005】
【発明が解決しようとする課題】
しかし上述の従来の技術にあっては、粉砕前および/または粉砕時に添加された脂肪酸は銀粉表面に強固に付着、残存し、除去が困難であり、表面に付着した脂肪酸は、導電性ペースト加熱硬化時にアウトガス成分として塗膜にボイドを形成し、抵抗値を上げる原因になったり、また、ペースト樹脂との馴染みを非常に悪化させ、ペーストが練れない原因となることは既に知られていた。また、金属石鹸の場合にはイオン不純分が問題となり、イオン汚染を嫌うIC周りに用いる導電性ペーストには使用できなかった。
【0006】
用途の一つである、導電性接着剤用途では低抵抗、高接着強度、寸法安定性等の基本特性は維持しつつ、作業性改善のために一液型で、ポットライフ(可使用時間)が長く、好ましくは室温にて保存可能な導電性ペーストが要望されている。
【0007】
こうした要望に応えるべく鋭意研究を重ねてきた結果、ペースト樹脂と銀粉表面に付着した添加剤の反応が問題となる系が存在することが明らかになってきた。
【0008】
例えば、ある種のエポキシ樹脂系と添加剤の脂肪酸は硬化阻害を起こす。これは、脂肪酸のカルボキシル基とエポキシ樹脂中のエポキシ基が反応したものと思われる。同様に、添加剤として脂肪酸の塩類、アミン類、酸アミド、各種カップリング剤を使用したものにもある種の縮重合をともなう熱硬化性樹脂との間で問題が生じることが、新規に明らかになってきた。
【0009】
この種の問題には、ペースト設計の自由度を保つためにも、導電性フィラーとして用いられる銀粉の側で対処するのが好ましい。
【0010】
この対処の方策として、理想的には銀粉表面に有機物の付着物がないのが好ましいが、粉砕助剤を添加しないと実質的に鱗片化処理ができないという問題があった。
【0011】
したがって本発明の目的は、粉砕助剤の効果を持ち、熱硬化性樹脂と反応せず、イオン不純分の少ない添加剤を使用した鱗片状銀粉の製造方法および銀粉を提供することにある。
【0012】
ここで言う鱗片状銀粉とは、例えば、銀塩のアンモニア錯体や酸化銀を還元して生成した球状銀粉をボールミル、振動ミル等により機械的に粉砕をすることにより製造される銀粉であり、走査型電子顕微鏡(SEM)により観察される形状が非球状(例えば、鱗片状、板状、フレーク状と形容される形状)に加工されたものが支配的な銀粉を意味する。
【0013】
【課題を解決するための手段】
本発明者等は上記目的を達成すべく鋭意研究した結果、銀粉に非イオン性界面活性剤を添加して、ボールミル、アトライターミル、ビーズミル等の粉砕機により粉砕溶媒中において湿式粉砕するようにすれば、生成する鱗片状銀粉の表面および内部に熱硬化性樹脂と反応する官能基を持った有機物が存在せず、かつ、生成する鱗片状銀粉の表面および内部にイオン解離する有機物が存在しない鱗片状銀粉を製造でき、導電性ペーストに好適な鱗片状銀粉が得られることを見いだし、本発明に到達した。ここで用いられる粉砕前の銀粉には脂肪酸等の熱硬化性樹脂と反応する不純分が残存していると不可となるが、非イオン性界面活性剤の場合には問題とならない。さらに言うならば、球状粉還元生成時等に表面処理が施されていないのが好ましい。
【0014】
すなわち本発明は第1に、銀粉を粉砕して鱗片状銀粉を製造する方法において、非イオン性界面活性剤を粉砕前および/または粉砕中に、銀粉および/または粉砕溶媒に添加し湿式粉砕により鱗片化処理することを特徴とする鱗片状銀粉の製造方法;第2に、前記非イオン性界面活性剤がポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステルの少なくとも1種類である上記第1記載の製造方法;第3に、前記非イオン性界面活性剤の添加量が粉砕前の銀粉の重量に対して0.1から25重量%である上記第1または第2記載の製造方法;第4に、前記粉砕溶媒が水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、ジメチルケトン、ジエチルケトン、ジエチルエーテル、ジメチルエーテル、ジフェニルエーテル、トルエン、キシレンの少なくとも1種類である上記第1ないし第3のいずれかに記載の製造方法;第5に、前記非イオン性界面活性剤のH.L.B.値は粉砕溶媒が水の場合には6から20、有機溶媒の場合には0.1から6である上記第1ないし第4のいずれかに記載の製造方法を提供するものである。
【0015】
【発明の実施の形態】
本発明では、銀粉に非イオン性界面活性剤を添加して、ボールミル、アトライターミル、ビーズミル等の粉砕機により粉砕溶媒中において湿式雰囲気で粉砕することにより、生成する鱗片状銀粉の表面および内部に樹脂と反応する官能基を持った有機物が存在せず、かつ、生成する鱗片状銀粉の表面および内部にイオン解離する有機物が存在しない鱗片状銀粉を製造することができる。ここで用いられる粉砕前の銀粉には脂肪酸等の熱硬化性樹脂と反応する添加剤が残存していると不可となるが、非イオン性界面活性剤の場合には問題とならない。さらに言うならば、球状粉還元生成時等に表面処理が施されていないのが好ましい。
【0016】
以下に本発明の実施の形態について説明する。
【0017】
本発明に用いられる非イオン性界面活性剤はポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステルの少なくとも1種類であることが望ましい。
【0018】
本発明で使用する非イオン性界面活性剤は、熱硬化性樹脂と反応する官能基を保有せず、結果的に樹脂の硬化阻害を起こすことはない。ここで言う硬化阻害とはペーストの使用意図に反した現象全般を指す。具体的には1)ペースト混練時に硬化が始まり、粘度上昇を起こし、ペースト化できない場合、2)ポットライフが非常に短く、保存中に硬化が始まる場合等の予期せぬ硬化。および、3)加熱をしても硬化しない場合のいずれも含む。なおかつイオン解離する官能基を保有しないためイオン不純分の原因とはなり得ない。
【0019】
熱硬化性樹脂と反応する官能基を保有せず、なおかつイオン解離する官能基を保有しない添加剤は他にも存在するが、鱗片化処理時の粒度分布制御性の良さ、鱗片化処理後の除去の容易さを考慮すると、非イオン性界面活性剤が最も有効である。例えば、エチレンワックス、流動パラフィン等の炭化水素では、鱗片化時の制御が非常に困難である。
【0020】
粉砕はボールミル、アトライターミル、ビーズミル等を用いて溶媒中、湿式雰囲気で行なえばよい。粉砕溶媒としては水または有機溶媒が使用可能であるが、特に、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、ジメチルケトン、ジエチルケトン、ジエチルエーテル、ジメチルエーテル、ジフェニルエーテル、トルエン、キシレンの少なくとも1種類が好ましい。
【0021】
一般に、非イオン性界面活性剤は界面活性剤の親水性親油性バランスを示すH.L.B.値0から20の間に存在すると規定されている。本発明では、H.L.B.値が0.1から20のものを、粉砕溶媒の特性に合わせて任意に使用できる。H.L.B.値はすなわち、粉砕溶媒が水の場合には、H.L.B.値が好ましくは6から20、更に好ましくは8から20のものを用いることができる。6より小さい場合には、水とのなじみが悪く不適である。一方、粉砕溶媒がアルコール等の有機溶媒の場合には、H.L.B.値が好ましくは0.1から6、更に好ましくは0.1から4のものを用いることができる。親水基を全く保有しない場合はH.L.B.値が0となり、銀粉の鱗片化処理時の添加剤としては不適である(例えば、エチレンワックス、流動パラフィン等の炭化水素)。また6より大きな場合には鱗片化処理時に凝集が起こりやすくなるため不適である。
【0022】
上記非イオン性界面活性剤の添加は、鱗片状銀粉製造時、粉砕前、および/または粉砕中に、銀粉および/または粉砕溶媒に行なう。添加は、1回のみでも2回以上でも良く、2回以上添加する場合は、非イオン性界面活性剤の種類は同一でも、異なっていてもよいが、粉砕前に予め銀粉に添加しておくのが特に好ましい。これは、予め添加することなしに粉砕を始めると、銀粒子が凝集し、粗粒化し易いためである。また、粉砕前の銀粉には、球状粉還元生成時等に表面処理が施されていないのが好ましいが、上記非イオン性界面活性剤の場合は付着していても問題なく使用できる。
【0023】
非イオン性界面活性剤の添加量は粉砕前の銀粉の重量に対して0.1重量%から50重量%、好ましくは0.1重量%から25重量%である。0.1重量%より少ないときは粒子が凝集しやすく、50重量%より多くても顕著な差が見られないためである。
【0024】
本発明においては、生成する鱗片状銀粉の表面および内部に熱硬化性樹脂と反応する官能基を持った有機物が存在せず、かつ、生成する鱗片状銀粉の表面および内部にイオン解離する有機物が存在しない。
【0025】
以上詳述したように、本発明の鱗片状銀粉は、熱硬化性樹脂との反応がないためペースト作製時の樹脂選択の自由度を高め、特に、添加剤が原因となって起こるペーストのポットライフの短期間化という問題を解決する。
【0026】
また、イオン不純分が少なく、特にイオン汚染が問題となるIC周りにも使用できる。さらに、導電性も良好であった。
【0027】
以下、実施例、比較例により具体的に説明するが、本発明の範囲はこれらによって限定されるものではない。
【0028】
【実施例1】
添加剤フリーの球状銀粉600gに対し、ノイゲンET190(第一工業製薬 非イオン性界面活性剤 H.L.B.値=19)を1重量%添加し、予備混合後、400mlの純水中で、5.25kgのSUSボールと共にアトライターミルにて40分粉砕を行なった。粉砕後のスラリーをSUSボールと分離後、吸引濾過により固液分離を行なった後、70℃で20時間真空乾燥を行なった。得られた乾燥物を小型粉砕器にて解砕した。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0029】
【実施例2】
添加量を20重量%とした以外は、実施例1と同様の条件で粉砕を行なった。
【0030】
こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0031】
【実施例3】
添加剤をノイゲンEA120(第一工業製薬 非イオン性界面活性剤 H.L.B.値=12)とした以外は、実施例1と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0032】
【実施例4】
添加量を10重量%とした以外は、実施例3と同様の条件で粉砕を行なった。
【0033】
こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0034】
【実施例5】
添加剤をノイゲンES99(第一工業製薬 非イオン性界面活性剤 H.L.B.値=9)とした以外は、実施例1と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0035】
【実施例6】
添加剤をノイゲンET80E(第一工業製薬 非イオン性界面活性剤 H.L.B.値=8)とした以外は、実施例1と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0036】
【実施例7】
添加剤フリーの球状銀粉600gに対し、ノイゲンEA33(第一工業製薬 非イオン性界面活性剤 H.L.B.値=4)を5重量%添加し、予備混合後、400mlのエタノール(和光純薬 試薬1級)中で、5.25kgのSUSボールと共にアトライターミルにて60分粉砕を行なった。粉砕後のスラリーをSUSボールと分離後、吸引濾過により固液分離を行なった後、70℃で20時間真空乾燥を行なった。得られた乾燥物を小型粉砕器にて解砕した。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0037】
【実施例8】
添加剤をノイゲンET60E(第一工業製薬 非イオン性界面活性剤 H.L.B.値=6)とした以外は、実施例7と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0038】
【実施例9】
添加剤をソルゲン30(第一工業製薬 非イオン性界面活性剤 H.L.B.値=3.7)とした以外は、実施例7と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こすこともなく、導電性も良好であった。
【0039】
【比較例1】
オレイン酸が表面に付着した球状銀粉を用い、粉砕溶媒をエタノール(和光純薬 試薬1級)に変えた以外は実施例1と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こした。
【0040】
【比較例2】
添加剤をオレイン酸(和光純薬 試薬特級)に変えた以外は実施例7と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こした。
【0041】
【比較例3】
添加剤をステアリン酸(和光純薬 試薬特級)に変えた以外は実施例7と同様の条件で粉砕を行なった。こうして得られた鱗片状銀粉は熱硬化性樹脂と硬化阻害を起こした。
【0042】
【発明の効果】
以上述べたように、本発明の方法によれば、銀粉を粉砕して鱗片状銀粉を製造する際、所定量の非イオン性界面活性剤を添加し、湿式粉砕により鱗片化処理をするので、得られた銀粉は熱硬化樹脂と硬化阻害を起こすことなく、電子部品の実装やスクリーン印刷等により回路を形成するのに用いられる導電性ペーストに好適な鱗片状銀粉を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scaly silver powder suitable for a conductive paste used for forming a circuit by mounting electronic components, screen printing, or the like, and a method for producing the same.
[0002]
[Prior art]
Conductive pastes used to form circuits by mounting electronic parts, screen printing, etc. are broadly classified into high-temperature firing types and heat-curing types depending on the application, and high-temperature firing types have a high temperature of about 550 ° C to 900 ° C. Since silver is added, the silver particles are fused to each other, and the resistance is as low as that of bulk silver. The silver powder used for this application is often a spherical silver powder, whereas the heat-curing type cures the resin at a relatively low temperature of about room temperature to 200 ° C., and the resulting silver particles contact each other to provide conductivity. To express. The heat-curing type has higher resistance than the high-temperature firing type, and is expected to have a lower resistance. Therefore, the silver powder used for this purpose is often scaly silver powder. This is because, in the case of scaly silver powder, surface contact can be expected due to its shape, and conduction is easily obtained.
[0003]
Until now, heat-curing type pastes have often been used for circuit formation and electrical continuity with materials having poor heat resistance. In addition to these applications, recently, from the viewpoint of reducing environmental impact, there is a trend in the industry from a high temperature firing type that consumes a lot of energy to a heat curing type. In addition, the abolition of lead in solder has been discussed against the background of environmental pollution problems, but conductive adhesives are considered to be a promising candidate as one of the solutions.
[0004]
Conventionally, the scaly silver powder used in the heat-curing type conductive paste is obtained by mechanically pulverizing, for example, a spherical silver powder produced by reducing an ammonia complex of silver salt or silver oxide with a ball mill, a vibration mill or the like. Have been manufactured. At this time, in order to prevent coarsening of silver particles due to aggregation, substances having the purpose of imparting lubricity, such as fatty acids and metal soaps, have been added to the silver powder that is to be ground.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional technology, the fatty acid added before and / or during pulverization adheres and remains firmly on the surface of the silver powder and is difficult to remove. It has been already known that voids are formed in the coating film as an outgas component at the time of curing, which causes the resistance value to increase, and that the familiarity with the paste resin greatly deteriorates and the paste cannot be kneaded. Further, in the case of metal soap, ion impurity becomes a problem, and it cannot be used as a conductive paste used around ICs that dislike ion contamination.
[0006]
One of the uses, conductive adhesives, is a one-pack type pot life (usable time) to improve workability while maintaining basic properties such as low resistance, high adhesive strength, and dimensional stability. There is a need for conductive pastes that are long, preferably storable at room temperature.
[0007]
As a result of intensive studies to meet these demands, it has become clear that there is a system in which the reaction between the paste resin and the additive adhering to the surface of the silver powder becomes a problem.
[0008]
For example, certain epoxy resin systems and additive fatty acids cause cure inhibition. This is considered to be a reaction between the carboxyl group of the fatty acid and the epoxy group in the epoxy resin. Similarly, it is newly apparent that there are problems with thermosetting resins with certain types of condensation polymerization even when using salts of fatty acids, amines, acid amides, and various coupling agents as additives. It has become.
[0009]
It is preferable to deal with this type of problem on the side of the silver powder used as the conductive filler in order to maintain the degree of freedom in paste design.
[0010]
As a countermeasure for this, it is ideal that there is no organic deposit on the surface of the silver powder, but there is a problem that the scaling treatment cannot be performed substantially unless a grinding aid is added.
[0011]
Accordingly, an object of the present invention is to provide a method for producing a scaly silver powder and a silver powder that have an effect of a grinding aid, do not react with a thermosetting resin, and use an additive having a small amount of ion impurities.
[0012]
The flaky silver powder mentioned here is, for example, silver powder produced by mechanically pulverizing spherical silver powder produced by reducing an ammonia complex of silver salt or silver oxide with a ball mill, a vibration mill, etc. The shape observed by a scanning electron microscope (SEM) means a dominant silver powder that is processed into a non-spherical shape (for example, a shape that is described as a scale shape, a plate shape, or a flake shape).
[0013]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have added a nonionic surfactant to silver powder, and wet pulverized in a pulverizing solvent by a pulverizer such as a ball mill, an attritor mill, or a bead mill. If there is no organic substance having a functional group that reacts with the thermosetting resin on the surface and inside of the resulting flaky silver powder, and there is no ion-dissociating organic substance on the surface and inside of the produced flaky silver powder. It has been found that scaly silver powder can be produced and scaly silver powder suitable for a conductive paste is obtained, and the present invention has been achieved. The impregnated component that reacts with the thermosetting resin such as fatty acid remains in the silver powder before pulverization used here, but this is not a problem in the case of a nonionic surfactant. If it says further, it is preferable that surface treatment is not performed at the time of spherical powder reduction | restoration production | generation.
[0014]
That is, the first aspect of the present invention is a method for producing a scaly silver powder by pulverizing silver powder, and adding a nonionic surfactant to the silver powder and / or pulverizing solvent before and / or during pulverization and performing wet pulverization. A method for producing flaky silver powder characterized by scaly treatment; second, the nonionic surfactant is polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene The production method according to the above-mentioned first item, which is at least one of sorbitan fatty acid ester and sorbitan fatty acid ester; and third, the amount of the nonionic surfactant added is from 0.1 to 25 based on the weight of the silver powder before pulverization. The production method according to the above first or second, wherein the grinding solvent is water, methanol, ethanol, -Propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, dimethyl ketone, diethyl ketone, diethyl ether, dimethyl ether, diphenyl ether, toluene, xylene The manufacturing method according to any one of the above first to third, wherein the nonionic surfactant is H.V. L. B. The value is 6 to 20 when the grinding solvent is water, and 0.1 to 6 when the pulverizing solvent is an organic solvent. The production method according to any one of the first to fourth aspects is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, by adding a nonionic surfactant to the silver powder, and pulverizing in a wet atmosphere in a pulverizing solvent by a pulverizer such as a ball mill, an attritor mill, a bead mill, etc. It is possible to produce a flaky silver powder that does not contain an organic substance having a functional group that reacts with the resin and that does not have an organic substance that ionically dissociates on the surface and inside of the flaky silver powder that is generated. The silver powder before pulverization used here becomes impossible when an additive that reacts with a thermosetting resin such as a fatty acid remains, but this is not a problem in the case of a nonionic surfactant. If it says further, it is preferable that surface treatment is not performed at the time of spherical powder reduction | restoration production | generation.
[0016]
Embodiments of the present invention will be described below.
[0017]
The nonionic surfactant used in the present invention is preferably at least one of polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, and sorbitan fatty acid ester. .
[0018]
The nonionic surfactant used in the present invention does not have a functional group that reacts with the thermosetting resin, and consequently does not inhibit the curing of the resin. The term “curing inhibition” here refers to all phenomena that are contrary to the intended use of the paste. Specifically, 1) Curing starts when the paste is kneaded, viscosity rises and cannot be made into a paste, 2) Unexpected curing when the pot life is very short and curing starts during storage. And 3) includes any case where the material does not cure even when heated. Moreover, since it does not have a functional group capable of ion dissociation, it cannot be a cause of ion impurity.
[0019]
There are other additives that do not have a functional group that reacts with the thermosetting resin, and that do not have a functional group that ionically dissociates. In view of ease of removal, nonionic surfactants are most effective. For example, hydrocarbons such as ethylene wax and liquid paraffin are very difficult to control at the time of scaling.
[0020]
The pulverization may be performed in a solvent and a wet atmosphere using a ball mill, an attritor mill, a bead mill or the like. As the grinding solvent, water or an organic solvent can be used, and in particular, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3 -At least one of pentanol, dimethyl ketone, diethyl ketone, diethyl ether, dimethyl ether, diphenyl ether, toluene and xylene is preferred.
[0021]
In general, it is specified that nonionic surfactants are present between HLB values 0 to 20, which indicate the hydrophilic lipophilic balance of the surfactant. In the present invention, those having an HLB value of 0.1 to 20 can be arbitrarily used according to the characteristics of the grinding solvent. That is, when the grinding solvent is water, the HLB value is preferably 6 to 20, more preferably 8 to 20. If it is less than 6, it is not suitable for water and is not suitable. On the other hand, when the grinding solvent is an organic solvent such as alcohol, one having an HLB value of preferably 0.1 to 6, more preferably 0.1 to 4 can be used. When no hydrophilic group is possessed, the HLB value is 0, which is unsuitable as an additive during the sizing process of silver powder (for example, hydrocarbons such as ethylene wax and liquid paraffin). On the other hand, when the ratio is larger than 6, aggregation is likely to occur during the scaly treatment, which is not suitable.
[0022]
The nonionic surfactant is added to the silver powder and / or the grinding solvent during the production of the scaly silver powder, before the grinding and / or during the grinding. The addition may be performed only once or twice or more. When the addition is performed twice or more, the kind of the nonionic surfactant may be the same or different, but it is added to the silver powder in advance before pulverization. Is particularly preferred. This is because if the pulverization is started without adding in advance, the silver particles aggregate and are easily coarsened. Further, the silver powder before pulverization is preferably not subjected to a surface treatment at the time of reducing the spherical powder, but in the case of the nonionic surfactant, it can be used without any problem.
[0023]
The addition amount of the nonionic surfactant is 0.1% to 50% by weight, preferably 0.1% to 25% by weight, based on the weight of the silver powder before pulverization. This is because when the amount is less than 0.1% by weight, the particles are easily aggregated, and when the amount is more than 50% by weight, no significant difference is observed.
[0024]
In the present invention, there is no organic substance having a functional group that reacts with the thermosetting resin on the surface and inside of the generated flaky silver powder, and there is no organic substance ion-dissociated on the surface and inside of the generated flaky silver powder. not exist.
[0025]
As described above in detail, the flaky silver powder of the present invention increases the degree of freedom of resin selection during paste preparation because there is no reaction with the thermosetting resin, and in particular, the paste pot caused by the additive Solve the problem of shortening life.
[0026]
Further, it can be used around ICs in which ion impurities are small and ion contamination is a problem. Furthermore, the conductivity was also good.
[0027]
Hereinafter, although an example and a comparative example explain concretely, the range of the present invention is not limited by these.
[0028]
[Example 1]
Add 1% by weight of Neugen ET190 (Daiichi Kogyo Seiyaku Co., Ltd. nonionic surfactant HLB value = 19) to 600 g of additive-free spherical silver powder. After premixing, add 400 ml of pure water. The pulverization was carried out with an 5.25 kg SUS ball in an attritor mill for 40 minutes. The pulverized slurry was separated from SUS balls, and solid-liquid separation was performed by suction filtration, followed by vacuum drying at 70 ° C. for 20 hours. The obtained dried product was crushed with a small pulverizer. The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0029]
[Example 2]
Grinding was performed under the same conditions as in Example 1 except that the addition amount was 20% by weight.
[0030]
The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0031]
[Example 3]
Grinding was performed under the same conditions as in Example 1 except that Neugen EA120 (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant, HLB value = 12) was used as the additive. The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0032]
[Example 4]
Grinding was performed under the same conditions as in Example 3 except that the amount added was 10 wt%.
[0033]
The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0034]
[Example 5]
Grinding was performed under the same conditions as in Example 1 except that Neugen ES99 (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant, HLB value = 9) was used as the additive. The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0035]
[Example 6]
Grinding was carried out under the same conditions as in Example 1 except that the additive was Neugen ET80E (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant, HLB value = 8). The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0036]
[Example 7]
5% by weight of Neugen EA33 (Daiichi Kogyo Seiyaku Co., Ltd. nonionic surfactant HLB value = 4) is added to 600 g of additive-free spherical silver powder. After pre-mixing, 400 ml of ethanol (Wako Pure) In the reagent grade 1), pulverization was performed for 60 minutes with an 5.25 kg SUS ball in an attritor mill. The pulverized slurry was separated from SUS balls, and solid-liquid separation was performed by suction filtration, followed by vacuum drying at 70 ° C. for 20 hours. The obtained dried product was crushed with a small pulverizer. The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0037]
[Example 8]
Grinding was carried out under the same conditions as in Example 7, except that Neugen ET60E (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant, HLB value = 6) was used as the additive. The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0038]
[Example 9]
Grinding was carried out under the same conditions as in Example 7 except that the additive was Sorgen 30 (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant, HLB value = 3.7). The scaly silver powder thus obtained did not cause curing inhibition with the thermosetting resin and had good conductivity.
[0039]
[Comparative Example 1]
Grinding was carried out under the same conditions as in Example 1 except that spherical silver powder having oleic acid attached to the surface was used and the grinding solvent was changed to ethanol (Wako Pure Chemicals Reagent Grade 1). The scaly silver powder thus obtained caused curing inhibition with the thermosetting resin.
[0040]
[Comparative Example 2]
Grinding was performed under the same conditions as in Example 7 except that the additive was changed to oleic acid (Wako Pure Chemicals reagent special grade). The scaly silver powder thus obtained caused curing inhibition with the thermosetting resin.
[0041]
[Comparative Example 3]
Grinding was carried out under the same conditions as in Example 7 except that the additive was changed to stearic acid (Wako Pure Chemicals Reagent Special Grade). The scaly silver powder thus obtained caused curing inhibition with the thermosetting resin.
[0042]
【The invention's effect】
As described above, according to the method of the present invention, when producing a scaly silver powder by pulverizing silver powder, a predetermined amount of a nonionic surfactant is added, and the scaly treatment is performed by wet pulverization. The obtained silver powder can produce a scaly silver powder suitable for a conductive paste used to form a circuit by mounting electronic parts, screen printing, or the like without causing curing inhibition with a thermosetting resin.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03186699A JP4263799B2 (en) | 1999-02-09 | 1999-02-09 | Method for producing scaly silver powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03186699A JP4263799B2 (en) | 1999-02-09 | 1999-02-09 | Method for producing scaly silver powder |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008153957A Division JP5198157B2 (en) | 2008-06-12 | 2008-06-12 | Scale-like silver powder for conductive thermosetting paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000234107A JP2000234107A (en) | 2000-08-29 |
JP4263799B2 true JP4263799B2 (en) | 2009-05-13 |
Family
ID=12342982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03186699A Expired - Lifetime JP4263799B2 (en) | 1999-02-09 | 1999-02-09 | Method for producing scaly silver powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4263799B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002124763A (en) | 2000-10-16 | 2002-04-26 | Matsushita Electric Ind Co Ltd | Circuit forming board, production method and materials therefor |
JP4857441B2 (en) * | 2000-11-14 | 2012-01-18 | 藤倉化成株式会社 | Conductive paste and manufacturing method thereof |
JP4489389B2 (en) | 2003-07-29 | 2010-06-23 | 三井金属鉱業株式会社 | Method for producing fine silver powder |
WO2006057348A1 (en) * | 2004-11-29 | 2006-06-01 | Dainippon Ink And Chemicals, Inc. | Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder |
JP5148821B2 (en) * | 2005-09-20 | 2013-02-20 | 三井金属鉱業株式会社 | Flake silver powder production method and flake silver powder produced by the production method |
JP5330724B2 (en) * | 2008-03-31 | 2013-10-30 | 三井金属鉱業株式会社 | Method for producing flake silver powder |
EP2128203A1 (en) * | 2008-05-28 | 2009-12-02 | Eckart GmbH | Die-form metal effect pigments containing copper, method for their manufacture and use |
EP2128204A1 (en) * | 2008-05-28 | 2009-12-02 | Eckart GmbH | Metal effect pigment with additive |
-
1999
- 1999-02-09 JP JP03186699A patent/JP4263799B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000234107A (en) | 2000-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110303168B (en) | Preparation method of nano silver powder | |
JP4263799B2 (en) | Method for producing scaly silver powder | |
JPH0333171A (en) | Electroconductive water paint and its manufacture | |
US8597547B2 (en) | Electrically conductive polymer composites | |
KR20140030091A (en) | Silver powder and method for producing same | |
CN104603049B (en) | The manufacture method of water-resistant aluminum nitride powder | |
JP2013036057A (en) | Silver particle dispersion composition, conductive circuit using the same, and method for forming the conductive circuit | |
CN108597676B (en) | A preparation method and application of low-temperature solidified silver paste containing organic bentonite | |
CN110615956B (en) | Preparation method of nano-sandwich structure composite material based on high breakdown and high energy storage | |
CN112980356A (en) | Conductive adhesive, flexible circuit, flexible printed circuit board and flexible electronic element | |
CN108410297A (en) | A kind of antistatic acrylic coating and preparation method thereof | |
CN115989555A (en) | Conductive two-dimensional particle and its manufacturing method | |
CN109370155B (en) | Field-induced nonlinear conductive composite material preparation method, prepared composite material and application | |
TWI710549B (en) | Manufacturing method of surface-treated copper particles | |
KR20180128469A (en) | Conductive composite material | |
JP5198157B2 (en) | Scale-like silver powder for conductive thermosetting paste | |
JP4857441B2 (en) | Conductive paste and manufacturing method thereof | |
JP4970836B2 (en) | Method for stabilizing ceramic powders and slurries by introducing chemical working groups | |
JP2002015622A (en) | Copper powder for electro-conductive paste and its manufacturing method | |
JP2017084587A (en) | Silver oxide slurry, and conductive paste and method for producing the same | |
EP4291614A1 (en) | Conductive carbon nanotube-silver composite ink composition | |
CN106128543B (en) | Conductive silver paste with good anti-settling effect and preparation method thereof | |
CN103666000B (en) | A kind of water based conductive coating and preparation method thereof | |
CN110465671B (en) | Preparation method of flaky silver powder | |
EP1114843A1 (en) | Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040206 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040318 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070815 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080523 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080526 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090213 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |