[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4258425B2 - Refrigeration and air conditioning equipment - Google Patents

Refrigeration and air conditioning equipment Download PDF

Info

Publication number
JP4258425B2
JP4258425B2 JP2004130181A JP2004130181A JP4258425B2 JP 4258425 B2 JP4258425 B2 JP 4258425B2 JP 2004130181 A JP2004130181 A JP 2004130181A JP 2004130181 A JP2004130181 A JP 2004130181A JP 4258425 B2 JP4258425 B2 JP 4258425B2
Authority
JP
Japan
Prior art keywords
heat exchanger
load
compressor
refrigerant
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004130181A
Other languages
Japanese (ja)
Other versions
JP2005308375A (en
Inventor
信 齊藤
多佳志 岡崎
史武 畝崎
哲二 七種
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004130181A priority Critical patent/JP4258425B2/en
Publication of JP2005308375A publication Critical patent/JP2005308375A/en
Application granted granted Critical
Publication of JP4258425B2 publication Critical patent/JP4258425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

この発明は、負荷側に冷温水などの熱媒体を循環させて空気調和等を行う冷凍・空調装置に関するものである。特に、熱源から負荷へ熱を供給する2つ以上の負荷側熱交換器を有し、それぞれ異なる冷媒圧力で負荷側熱媒体と熱交換するものに関する。   The present invention relates to a refrigeration / air conditioning apparatus that performs air conditioning or the like by circulating a heat medium such as cold / hot water on a load side. In particular, the present invention relates to an apparatus having two or more load-side heat exchangers that supply heat from a heat source to a load and exchanging heat with a load-side heat medium at different refrigerant pressures.

従来のこの種の冷凍・空調装置においては、二段圧縮一段膨張式冷凍サイクルを用いて、高段蒸発器で空調用熱源を生成し、低段側蒸発器で冷蔵用熱源を生成するものがある(例えば、特許文献1参照。)。また、複数の圧縮機にそれぞれ設けた蒸発器、凝縮器に通水する冷水、冷却水を直列として圧縮機を台数制御する構成の技術が知られている。(例えば、特許文献2参照。)。   In this type of conventional refrigeration / air-conditioning apparatus, a two-stage compression single-stage expansion refrigeration cycle is used to generate an air-conditioning heat source with a high-stage evaporator and a refrigeration heat source with a low-stage evaporator. (For example, refer to Patent Document 1). In addition, a technique is known in which the number of compressors is controlled in series with an evaporator provided in each of a plurality of compressors, cold water passing through a condenser, and cooling water in series. (For example, refer to Patent Document 2).

特開2002−235960号公報(第1―8頁、第1図〜第4図)JP 2002-235960 A (pages 1-8, FIGS. 1 to 4) 特開平5−93550号公報(第1―5頁、第1図〜第3図)JP-A-5-93550 (pages 1-5, FIGS. 1 to 3)

しかしながら、高段蒸発器と低段蒸発器でそれぞれ異なる負荷を処理する場合、目的が異なりその対象温度が懸け離れている時や、それぞれの負荷比率が極端に偏ったり、いずれかの負荷が存在しなくなった際にも、その負荷に対して接続された熱交換器しか使用することができず、十分な熱交換能力が得られないという問題点がある。 However, when different loads are handled by the high-stage evaporator and the low-stage evaporator, when the target temperature is different and the target temperature is far away, or each load ratio is extremely biased, either load exists. Even when it is lost, only the heat exchanger connected to the load can be used, and there is a problem that sufficient heat exchange capability cannot be obtained.

また、複数の圧縮機にそれぞれ設けた熱交換器を直列に利用し省エネルギーを図る場合、外気により変化する熱源と負荷の組み合わせに対し最適な効率が得られないし、段階の選択で多くの圧縮機を設ける場合は、複数の配管接続や電源配線接続など設置現場での工事負荷が増大する。 In addition, when the heat exchangers provided in each of the plurality of compressors are used in series to save energy, the optimum efficiency cannot be obtained for the combination of the heat source and the load that changes depending on the outside air, and many compressors can be selected by selecting the stage. In the case of providing a work load on the installation site such as a plurality of pipe connections and power supply wiring connections increases.

この発明の目的は、上記のよう課題を解決するためになされたもので、各負荷に対し高効率で信頼性の高い冷凍・空調装置を得るものである。また、1台の熱源ユニット内で熱媒体を複数の熱交換器を用いて段階的に冷却もしくは加熱することにより高効率で冷凍空調用熱源を得るものである。   An object of the present invention is to solve the above-described problems, and is to obtain a highly efficient and reliable refrigeration / air conditioning apparatus for each load. In addition, a heat source for refrigeration and air conditioning is obtained with high efficiency by cooling or heating the heat medium in stages using a plurality of heat exchangers in one heat source unit.

この発明の目的は、熱媒体を段階的に冷却もしくは加熱する際、その途中段階での中間温度の熱媒体を取り出して冷凍空調を行うことにより、さらに高効率な運転を実現するものである。また負荷に応じてあるいは負荷の変化や増設などに応じて扱いやすくフレキシブルに対応でき高効率な冷凍空調装置を得ることを目的とする。 An object of the present invention is to realize a more efficient operation by cooling and heating a heat medium in stages, by taking out the intermediate temperature heat medium in the middle stage and performing refrigeration and air conditioning. It is another object of the present invention to obtain a highly efficient refrigeration air conditioner that can be handled easily and flexibly according to the load or according to a load change or expansion.

この発明に係る冷凍・空調装置は、第1の圧縮機、室外熱交換器、第1の減圧手段、冷媒と熱媒体との熱交換を行う第1の負荷側熱交換器、を順次接続し前記第1の圧縮機から吐出された前記冷媒を前記第1の圧縮機に戻す第1の冷凍サイクルと、前記室外熱交換器、第2の減圧手段、冷媒と熱媒体との熱交換を行う第2の負荷側熱交換器、第2の圧縮機を順次接続し、前記第2の圧縮機から吐出された冷媒を前記第1の圧縮機に吸入させ合流させる第2の冷凍サイクルと、前記第1の負荷側熱交換器、前記第2の負荷側熱交換器の順に前記熱媒体が流れるよう配置された熱媒体入口と熱媒体出口と、前記第1の負荷側熱交換器と前記第2の負荷側熱交換器との間から分岐した一部の熱媒体が流出する熱媒体中間出口と、負荷側空間に配置され、その一端が前記熱媒体出口につながる第1の室内ユニットと、前記負荷側空間に配置され、その一端が前記負荷側媒体中間出口につながる第2の室内ユニットと、を備え、前記第1の室内ユニットを流出した前記熱媒体が前記第2の室内ユニットを流出した前記熱媒体と合流して前記熱媒体入口へと流入するものである。 The refrigeration / air-conditioning apparatus according to the present invention sequentially connects a first compressor, an outdoor heat exchanger, a first decompression unit, and a first load-side heat exchanger that performs heat exchange between the refrigerant and the heat medium. performing a first refrigeration cycle for returning the refrigerant discharged from the first compressor to the first compressor, the outdoor heat exchanger, the second pressure reducing means, heat exchange between the refrigerant and the heat medium second load-side heat exchanger, a second compressor are sequentially connected, and a second refrigeration cycle for combining inhaled refrigerant discharged from the second compressor to the first compressor, the A heat medium inlet and a heat medium outlet arranged so that the heat medium flows in the order of the first load side heat exchanger, the second load side heat exchanger, the first load side heat exchanger, and the first A heat medium intermediate outlet through which a part of the heat medium branched from between the two load side heat exchangers and the load side space are arranged. A first indoor unit having one end connected to the heat medium outlet are arranged on the load side space, includes a second indoor unit having one end connected to said load-side medium intermediate outlet, a first The heat medium flowing out of the indoor unit joins the heat medium flowing out of the second indoor unit and flows into the heat medium inlet .

またこの発明は、第1の圧縮機、室外熱交換器、エゼクタ、第1の負荷側熱交換器、気液分離器のガス側流出路を順次接続する第1の冷凍サイクルと、前記気液分離器の液側流出路、第2の減圧手段、第2の負荷側熱交換器、前記エゼクタの吸入側を順次接続し前記第2の負荷側熱交換器からの冷媒をエゼクタで混合させる第2の冷凍サイクルと、を備え、負荷側媒体を前記第1の負荷側熱交換器、前記第2の負荷側熱交換器に直列に流通させるものである。   The present invention also provides a first refrigeration cycle for sequentially connecting a first compressor, an outdoor heat exchanger, an ejector, a first load-side heat exchanger, and a gas-side outflow passage of a gas-liquid separator, and the gas-liquid A liquid side outflow path of the separator, a second pressure reducing means, a second load side heat exchanger, and a suction side of the ejector are sequentially connected to mix refrigerant from the second load side heat exchanger with the ejector. 2 refrigeration cycles, and the load side medium is circulated in series with the first load side heat exchanger and the second load side heat exchanger.

また、この発明は、冷房運転時あるいは冷暖同時運転時には第1の圧縮機、室外熱交換器、第1の減圧手段、冷媒と熱媒体との熱交換を行う第1の負荷側熱交換器、を順次接続し前記第1の圧縮機から吐出された冷媒を前記第1の圧縮機に戻す第1の冷凍サイクルと、冷房運転時には前記室外熱交換器、第2の減圧手段、前記冷媒と前記熱媒体との熱交換を行う第2の負荷側熱交換器、第2の圧縮機を順次接続し、前記第2の圧縮機から吐出された冷媒を前記第1の圧縮機に吸入させ合流させる第2の冷凍サイクルと、暖房運転時には前記第1の冷凍サイクルの冷媒流通方向を第1の圧縮機、第1の負荷側熱交換器、第1の減圧手段、室外熱交換器、の順に切換える第1の流路切換手段と、暖房運転時あるいは冷暖同時運転時には前記第2の冷凍サイクルの冷媒流通方向を前記第2の圧縮機、第2の負荷側熱交換器、第2の減圧手段、の順に切換える第2の流路切換手段と、前記第1の負荷側熱交換器および前記第2の負荷側熱交換器と前記熱媒体が循環する配管によって接続され、負荷側空間の空気と前記熱媒体との熱交換を行う第1の室内ユニットと、第2の室内ユニットと、前記第1の負荷側熱交換器および第2の負荷側熱交換器の間に設けられ、冷房運転時あるいは暖房運転時は第1および第2の負荷側熱交換器に直列に前記熱媒体が流れ、前記第1の室内ユニットに前記熱媒体全量が循環するとともに、前記第2の室内ユニットに前記熱媒体の一部が分岐して循環するようにし、冷暖同時運転時には前記第1の負荷側熱交換器と前記第1の室内ユニットとの間、および前記第2の負荷側熱交換器と前記第2の室内ユニットとの間をそれぞれ独立に前記熱媒体が循環するよう切換える流路設定手段とを備えたものである。 The present invention also provides a first compressor, an outdoor heat exchanger, a first pressure reducing means, a first load-side heat exchanger that performs heat exchange between the refrigerant and the heat medium during cooling operation or simultaneous cooling and heating operation , Are connected sequentially to return the refrigerant discharged from the first compressor to the first compressor, and during the cooling operation , the outdoor heat exchanger, the second decompression means, the refrigerant and the A second load-side heat exchanger that performs heat exchange with the heat medium and a second compressor are sequentially connected, and the refrigerant discharged from the second compressor is sucked into the first compressor and joined. During the heating operation , the refrigerant flow direction of the first refrigeration cycle is switched in the order of the first compressor, the first load-side heat exchanger, the first pressure reducing means, and the outdoor heat exchanger. The first flow path switching means and the second flow path during heating operation or simultaneous cooling / heating operation Second flow path switching means for switching the refrigerant flow direction of the refrigeration cycle in the order of the second compressor, the second load side heat exchanger, and the second pressure reducing means, and the first load side heat exchanger A first indoor unit connected to the second load side heat exchanger and a pipe through which the heat medium circulates, and performs heat exchange between air in the load side space and the heat medium; and a second indoor unit; The heat medium is provided between the first load-side heat exchanger and the second load-side heat exchanger, and is connected in series with the first and second load-side heat exchangers during cooling operation or heating operation. And the entire amount of the heat medium circulates in the first indoor unit, and a part of the heat medium branches and circulates in the second indoor unit. Between the side heat exchanger and the first indoor unit and before In which the heating medium and a flow channel setting means for switching to circulate independently between the second load-side heat exchanger and the second indoor unit.

この発明の冷凍・空調装置は、複数の異なる蒸発圧力や凝縮圧力を発生させるそれぞれの熱交換器で段階的に負荷側熱媒体を冷却することとしたので、より高効率な運転を行うことができる。 In the refrigeration / air-conditioning apparatus of the present invention, the load-side heat medium is cooled step by step with each heat exchanger that generates a plurality of different evaporation pressures and condensation pressures, so that more efficient operation can be performed. it can.

この発明は、第1の冷凍サイクル、第2の冷凍サイクルそれぞれに流路切替手段を有するので、2つの異なる蒸発温度や凝縮温度で熱媒体の加熱を高効率で行うことができる。さらに、第1の冷凍サイクルで冷房、第2の冷凍サイクルで暖房運転を同時に行う等フレキシブルな冷凍空調を可能にすることができる。   In the present invention, since the first refrigeration cycle and the second refrigeration cycle have the flow path switching means, the heating medium can be heated with high efficiency at two different evaporation temperatures and condensation temperatures. Furthermore, flexible refrigeration and air conditioning such as cooling in the first refrigeration cycle and heating operation in the second refrigeration cycle can be made possible.

この発明は、負荷側回路の熱媒体を段階的に冷却もしくは加熱する際、その途中段階での中間温度の熱媒体を取り出して冷凍空調を行うようにしたので、多種多様なシステムに簡単に対応できる高効率な冷凍空調装置が得られる。   In the present invention, when the heat medium of the load side circuit is cooled or heated in stages, the intermediate temperature heat medium is taken out and the refrigeration air-conditioning is performed, so it can be easily applied to various systems. A highly efficient refrigeration air conditioner that can be obtained.

実施の形態1.
図1はこの発明の実施の形態における冷凍・空調装置の全体構成の一例を示すものである。図1において、1は熱源ユニットであり、2は負荷側空間である。熱源ユニット1は、少なくともいずれか一方が運転容量調整可能な高段圧縮機3、低段圧縮機4を備え、これらは直列に接続されて二段圧縮サイクルを形成する。5は空気熱交換器、6は送風機であり、空気熱交換器5での熱交換量を送風機6により調節する。7、8はそれぞれ高段膨張弁、低段膨張弁であり、高段熱交換器9、低段熱交換器10の熱交換量を調整できるよう可変絞りとなっている。また、高段熱交換器9、低段熱交換器10の順に負荷側熱媒体が流通するよう熱媒体入口ポート12、熱媒体出口ポート13が配置され、そして、高段熱交換器9と低段熱交換器10との間に流量調整弁11が備えられ、第3の熱媒体接続ポートとなる熱媒体中間出口ポート14が配置されている。
Embodiment 1 FIG.
FIG. 1 shows an example of the entire configuration of a refrigeration / air-conditioning apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a heat source unit, and 2 is a load side space. The heat source unit 1 includes a high-stage compressor 3 and a low-stage compressor 4 at least one of which can adjust the operation capacity, which are connected in series to form a two-stage compression cycle. 5 is an air heat exchanger, 6 is a blower, and the heat exchange amount in the air heat exchanger 5 is adjusted by the blower 6. Reference numerals 7 and 8 respectively denote a high stage expansion valve and a low stage expansion valve, which are variable throttles so that the heat exchange amounts of the high stage heat exchanger 9 and the low stage heat exchanger 10 can be adjusted. Further, a heat medium inlet port 12 and a heat medium outlet port 13 are arranged so that the load-side heat medium flows in the order of the high stage heat exchanger 9 and the low stage heat exchanger 10, and the high stage heat exchanger 9 and the low stage heat exchanger 9 A flow rate adjustment valve 11 is provided between the stage heat exchanger 10 and a heat medium intermediate outlet port 14 serving as a third heat medium connection port is disposed.

負荷側空間2には、その一端が熱媒体出口13に繋がる室内ユニット15と、その一端が熱媒体中間出口14に繋がる室内ユニット16がそれぞれ複数台(図示は省略)設置されている。これら室内ユニット15、16の他端は熱媒体搬送ポンプ17に接続されており、負荷側空間2と熱源ユニット1を熱媒体が循環するように構成される。この冷凍・空調装置の熱源側である冷凍サイクルの作動冷媒は非共沸混合冷媒であるR407Cであり、負荷側サイクルの熱媒体には水が用いられている。 In the load side space 2, a plurality of indoor units 15 (not shown) each having an indoor unit 15 whose one end is connected to the heat medium outlet 13 and an indoor unit 16 whose one end is connected to the heat medium intermediate outlet 14 are installed. The other ends of these indoor units 15 and 16 are connected to a heat medium transport pump 17 and are configured so that the heat medium circulates between the load side space 2 and the heat source unit 1. The working refrigerant of the refrigeration cycle, which is the heat source side of the refrigeration / air conditioning apparatus, is R407C, which is a non-azeotropic refrigerant mixture, and water is used as the heat medium of the load side cycle.

このように構成された本実施の形態1の冷凍・空調装置では、負荷の大小および負荷特性に応じて、室内ユニット15のみでの冷房運転、または室内ユニット15、16双方を使用した冷房運転を行う。   In the refrigeration / air conditioning apparatus of the first embodiment configured as described above, the cooling operation using only the indoor unit 15 or the cooling operation using both the indoor units 15 and 16 is performed according to the magnitude of the load and the load characteristics. Do.

まずは、1次側回路である熱源ユニット1での冷凍サイクル動作について、図1および図2を参照して説明する。図2は冷凍サイクル動作を示すP−h線図で、横軸は比エンタルピー[kJ/kg]、縦軸は冷媒圧力[MPa]である。 First, the refrigeration cycle operation in the heat source unit 1 that is the primary circuit will be described with reference to FIGS. 1 and 2. FIG. 2 is a Ph diagram showing the refrigeration cycle operation, in which the horizontal axis represents specific enthalpy [kJ / kg] and the vertical axis represents refrigerant pressure [MPa].

圧縮機3から吐出された高温高圧のガス冷媒(状態A)は、空気熱交換器5において外気に放熱して凝縮し、高圧液冷媒(状態B)となる。この高圧液冷媒は、高段膨張弁7により飽和温度で約10℃の中圧(状態C)まで減圧され、高段熱交換器9により負荷側媒体である水と熱交換を行い蒸発する。一方、低段膨張弁8では飽和温度で約5℃の低圧(状態E)まで減圧され、低段熱交換器10により水と熱交換を行い蒸発する。この低圧ガス冷媒(状態F)は低段圧縮機4により中圧まで昇圧され、高段熱交換器を流出した中圧二相冷媒(状態D)と合流して中圧飽和ガス(状態H)となり、再び高段圧縮機3に吸入される。このように、熱源ユニット1では二段圧縮ニ蒸発温度サイクルが形成される。この冷凍サイクル動作は、室内ユニット15のみで冷房した場合も、室内ユニット15、16双方を用いて冷房した場合も同様である。   The high-temperature and high-pressure gas refrigerant (state A) discharged from the compressor 3 dissipates heat to the outside air in the air heat exchanger 5 and condenses to become a high-pressure liquid refrigerant (state B). This high-pressure liquid refrigerant is depressurized to a medium pressure (state C) of about 10 ° C. at the saturation temperature by the high stage expansion valve 7, and is evaporated by exchanging heat with water as the load side medium by the high stage heat exchanger 9. On the other hand, the low-stage expansion valve 8 is decompressed to a low pressure (state E) of about 5 ° C. at the saturation temperature, and evaporates by exchanging heat with water by the low-stage heat exchanger 10. This low-pressure gas refrigerant (state F) is boosted to medium pressure by the low-stage compressor 4 and merges with the medium-pressure two-phase refrigerant (state D) that has flowed out of the high-stage heat exchanger to medium-pressure saturated gas (state H). Then, it is sucked into the high stage compressor 3 again. As described above, the heat source unit 1 forms a two-stage compression / di-evaporation temperature cycle. This refrigeration cycle operation is the same when both the indoor unit 15 and the indoor unit 15 and 16 are used for cooling.

続いて、負荷側サイクルである2次側回路を説明する。先ず室内ユニット15のみを用いた場合の負荷側動作を説明する。負荷側では、空調負荷を処理した後、熱媒体搬送ポンプ17より送られる17℃程度の水が熱媒体入口ポート12より熱源ユニット1に戻り、第1の負荷側熱交換器である高段熱交換器9に流入する。ここで、飽和温度10℃の中圧冷媒と熱交換を行い、12℃程度の冷水となって流出する。流量調整弁11では100%低段熱交換器10に流入するよう流路が設定され、12℃の冷水は第2の負荷側熱交換器である低段熱交換器10において5℃の冷媒と熱交換し、7℃程度の冷水となって熱媒体出口ポート13を出る。7℃の冷水は室内ユニット15において負荷側空間2の空気と熱交換し、再び17℃の水となって熱媒体搬送ポンプ17へ吸入される。   Next, the secondary side circuit that is the load side cycle will be described. First, the load side operation when only the indoor unit 15 is used will be described. On the load side, after processing the air conditioning load, water at about 17 ° C. sent from the heat medium transport pump 17 returns to the heat source unit 1 from the heat medium inlet port 12, and the high-stage heat that is the first load side heat exchanger It flows into the exchanger 9. Here, heat exchange is performed with a medium pressure refrigerant at a saturation temperature of 10 ° C., and it flows out as cold water of about 12 ° C. The flow control valve 11 has a flow path set to flow into the 100% low-stage heat exchanger 10, and 12 ° C. cold water is mixed with 5 ° C. refrigerant in the low-stage heat exchanger 10, which is the second load-side heat exchanger. Heat exchange is performed, and the water becomes cold water of about 7 ° C. and exits the heat medium outlet port 13. The 7 ° C. cold water exchanges heat with the air in the load-side space 2 in the indoor unit 15, and again becomes 17 ° C. water and is sucked into the heat medium transport pump 17.

このときの冷凍サイクルの制御動作としては、高段熱交換器9を流出する水温が、熱媒体出口ポート13を流出する目標温度(例えば7℃)と、熱媒体入口ポート12から流入する水温(例えば17℃)の中間温度となるように高段圧縮機3、低段圧縮機4それぞれの容量比が制御され各負荷側熱交換器での熱交換の処理が行われる。このような容量比率とすることで成績係数が最大となる。   As the control operation of the refrigeration cycle at this time, the water temperature flowing out of the high stage heat exchanger 9 has a target temperature (for example, 7 ° C.) flowing out of the heat medium outlet port 13 and a water temperature flowing in from the heat medium inlet port 12 ( For example, the capacity ratio of each of the high stage compressor 3 and the low stage compressor 4 is controlled so as to be an intermediate temperature of 17 ° C., and heat exchange processing is performed in each load side heat exchanger. The coefficient of performance is maximized with such a capacity ratio.

以上のように、室内ユニット15での冷房運転においては、高段熱交換器9を流通する冷媒(全冷媒循環量の約半分)の蒸発圧力が飽和温度10℃程度で7℃の冷水を発生できるので、この飽和温度10℃程度の蒸発圧力側冷媒流量分の冷凍サイクル成績係数は飽和温度5℃の運転より高効率となり、省エネルギーな冷房運転が可能となる。   As described above, in the cooling operation in the indoor unit 15, the evaporating pressure of the refrigerant flowing through the high stage heat exchanger 9 (about half of the total refrigerant circulation amount) generates 7 ° C. cold water at a saturation temperature of about 10 ° C. Therefore, the refrigeration cycle coefficient of performance corresponding to the evaporating pressure side refrigerant flow rate at the saturation temperature of about 10 ° C. is more efficient than the operation at the saturation temperature of 5 ° C., and energy-saving cooling operation is possible.

また、冷房負荷が室内ユニット容量に対して小さい場合、熱媒体搬送ポンプ17の搬送流量を小さくし、空調負荷処理後の熱媒体温度を17℃よりも高い温度に制御することもできる。このようにすることで、高段側蒸発圧力の飽和温度を10℃よりもさらに高い温度で7℃の冷水を生成することが可能となり、より一層の高効率運転が可能となる。   When the cooling load is smaller than the indoor unit capacity, the transfer flow rate of the heat medium transfer pump 17 can be reduced, and the heat medium temperature after the air conditioning load process can be controlled to a temperature higher than 17 ° C. By doing in this way, it becomes possible to produce | generate cold water of 7 degreeC with the saturation temperature of high stage side evaporation pressure still higher than 10 degreeC, and much more efficient operation is attained.

このとき、高段圧縮機3、低段圧縮機4それぞれの昇圧幅は1台の圧縮機で昇圧する場合よりも小さくなるため、体積効率や機械効率も向上し、高効率な冷房運転が可能となる。すなわち圧縮機入力は高低圧圧力差*体積流量に比例するので同じ冷凍能力を得るには低圧が高い方が有利となる。低圧が低いと同じ質量流量でも密度が小さく体積流量も大きくなり効率は悪くなる。   At this time, since the pressure increase width of each of the high-stage compressor 3 and the low-stage compressor 4 is smaller than that when the pressure is increased by one compressor, the volume efficiency and the mechanical efficiency are improved, and a highly efficient cooling operation is possible. It becomes. That is, since the compressor input is proportional to the high-low pressure difference * volume flow rate, a higher low pressure is advantageous to obtain the same refrigeration capacity. If the low pressure is low, the density is small and the volume flow is large even at the same mass flow rate, and the efficiency is deteriorated.

次に、本発明の負荷である室内ユニット15、16双方を用いた冷房運転について説明する。熱媒体搬送ポンプ17より送られる17℃程度の水が熱媒体入口ポート12より熱源ユニット1に戻り、高段熱交換器9に流入する。ここで、飽和温度10℃の中圧冷媒と熱交換を行い、12℃程度の冷水となって流出する。流量調整弁11では負荷特性に応じた比率で所定量を室内ユニット16に流通させ、残りを低段熱交換器10に流入するよう流路が設定される。室内ユニット16に分流された12℃の冷水は負荷側空間2の空気と熱交換して空調負荷を処理し、また、低段熱交換器10に分流された12℃の冷水は5℃の冷媒と熱交換し、7℃程度の冷水となって熱媒体出口ポート13を出る。7℃の冷水は室内ユニット15において負荷側空間2の空気と熱交換し、室内ユニット16を流出した水と合流して再び熱媒体搬送ポンプ17へ吸入される。   Next, the cooling operation using both the indoor units 15 and 16 that are loads of the present invention will be described. Water of about 17 ° C. sent from the heat medium transport pump 17 returns to the heat source unit 1 from the heat medium inlet port 12 and flows into the high stage heat exchanger 9. Here, heat exchange is performed with a medium pressure refrigerant at a saturation temperature of 10 ° C., and it flows out as cold water of about 12 ° C. In the flow rate adjusting valve 11, a flow path is set so that a predetermined amount is circulated through the indoor unit 16 at a ratio corresponding to the load characteristics, and the remainder flows into the low-stage heat exchanger 10. The 12 ° C. cold water divided into the indoor unit 16 exchanges heat with the air in the load side space 2 to treat the air conditioning load, and the 12 ° C. cold water divided into the low stage heat exchanger 10 is a 5 ° C. refrigerant. The heat exchange is performed, and the water becomes cold water of about 7 ° C. and exits the heat medium outlet port 13. The 7 ° C. cold water exchanges heat with the air in the load-side space 2 in the indoor unit 15, joins the water that has flowed out of the indoor unit 16, and is sucked into the heat medium transport pump 17 again.

このときの冷凍サイクルの制御動作としては、高段熱交換器9を流出する目標水温、および熱媒体出口ポート13を流出する目標水温が、それぞれ接続されている室内ユニット15、16の必要能力により設定される。このそれぞれの目標水温に応じて、高段圧縮機3、低段圧縮機4それぞれの容量比が制御される。   As the control operation of the refrigeration cycle at this time, the target water temperature that flows out of the high-stage heat exchanger 9 and the target water temperature that flows out of the heat medium outlet port 13 depend on the required capacities of the indoor units 15 and 16 connected thereto, respectively. Is set. The capacity ratios of the high stage compressor 3 and the low stage compressor 4 are controlled according to the respective target water temperatures.

負荷特性の説明を行う。ここで、室内ユニット16は例えば外気処理を行うものであり、熱交換する空気は室内温度よりも高温であるため、室内空気と熱交換する室内ユニット15より高い冷水温度で所定の熱交換量が得られるように構成している。   The load characteristics will be explained. Here, the indoor unit 16 performs, for example, outside air processing, and the air to be exchanged with heat is higher than the room temperature. Therefore, a predetermined heat exchange amount is obtained at a cold water temperature higher than the indoor unit 15 to exchange heat with the room air. It is configured to be obtained.

あるいは、室内ユニット16も室内ユニット15と同様に室内空気と熱交換するように配置し、冷房負荷が小さい場合に室内ユニット16で処理する負荷比率を増大させるように流量調整弁である分流手段11にて熱媒体流量比率を調整してもよい。   Alternatively, the indoor unit 16 is also arranged so as to exchange heat with the indoor air in the same manner as the indoor unit 15, and when the cooling load is small, the flow dividing means 11 is a flow rate adjusting valve so as to increase the load ratio processed by the indoor unit 16. The heat medium flow rate ratio may be adjusted at.

また、負荷側空間2の空気を室内ユニット16に通過させた後に室内ユニット15に通過させるようにしてもよい。このような構成にすると、室内ユニット16で室内の熱負荷を処理した後で室内ユニット15で室内熱負荷を処理するので室内ユニット15で処理する熱量がさらに減少し、7℃まで冷却する熱媒体流量を小さくすることができる。   Alternatively, the air in the load side space 2 may be allowed to pass through the indoor unit 15 after passing through the indoor unit 16. With such a configuration, since the indoor heat load is processed by the indoor unit 15 after the indoor heat load is processed by the indoor unit 16, the amount of heat processed by the indoor unit 15 is further reduced and the heat medium is cooled to 7 ° C. The flow rate can be reduced.

以上のように、室内ユニット16では高段熱交換器9で中間温度まで冷却された10℃〜15℃の冷水で冷房負荷を処理するため、7℃まで冷却する熱媒体流量を減少させることができる。これは、冷凍サイクル側からみると高い蒸発圧力の冷媒流量比率が増大することを意味し、熱媒体の全量を7℃まで冷却する場合より高効率な運転が可能となる。   As described above, in the indoor unit 16, since the cooling load is treated with the cold water of 10 ° C. to 15 ° C. cooled to the intermediate temperature by the high stage heat exchanger 9, the flow rate of the heat medium to be cooled to 7 ° C. can be reduced. it can. This means that when viewed from the refrigeration cycle side, the refrigerant flow rate ratio at a high evaporation pressure increases, and a more efficient operation is possible than when the entire amount of the heat medium is cooled to 7 ° C.

すなわち、この冷凍・空調装置では、飽和温度5℃と飽和温度10℃以上の2つの蒸発圧力で熱媒体を冷却するため、すべての冷媒を飽和温度5℃の蒸発圧力とするよりも成績係数が高くなる。さらに、飽和温度10℃以上の蒸発圧力で冷却した熱媒体を用いて直接負荷側空間2の負荷を処理することを可能としたため、
飽和温度10℃以上の蒸発圧力となる冷媒流量比率を大きくすることができる。
That is, in this refrigeration / air-conditioning apparatus, the heat medium is cooled at two evaporation pressures of a saturation temperature of 5 ° C. and a saturation temperature of 10 ° C. or more, so the coefficient of performance is higher than that of all the refrigerants at the evaporation temperature of the saturation temperature of 5 ° C. Get higher. Furthermore, since it became possible to process the load of the load side space 2 directly using a heat medium cooled at an evaporation pressure of a saturation temperature of 10 ° C. or higher,
The refrigerant flow rate ratio at which the evaporation pressure becomes a saturation temperature of 10 ° C. or higher can be increased.

この発明に係る冷凍・空調装置は、第1の圧縮機、室外熱交換器、第1の減圧手段、第1の負荷側熱交換器、を順次接続してなる第1の冷凍サイクルと、室外熱交換器、第2の減圧手段、第2の負荷側熱交換器、第2の圧縮機を順次接続し、第2の圧縮機吐出を第1の圧縮機吸入に合流させてなる第2の冷凍サイクルを有し、この第2の圧縮機吐出を第1の圧縮機吸入に合流させる多段階圧縮機を使用し、かつ、負荷側熱交換器を直列構成にして、負荷側媒体を第1の負荷側熱交換器、第2の負荷側熱交換器の順に直列に流通させるものである。これにより負荷量に対応する冷凍能力は多段階圧縮機の容量、すなわち回転数の選択でまかなうことができる。また2次回路である複数の負荷のそれぞれに対応する熱媒体の選択は膨張弁7,8の開度調整で行うことができる。この膨張弁7,8の開度により熱媒体の温度状態のみならず1次回路のそれぞれの負荷側熱交換器冷媒出口状態まで調整できる。また各圧縮機の個別の容量、各負荷側熱交換器の熱交換能力、すなわち熱交換面積はほぼ同程度のものをそれぞれ直列にしておくと、部分負荷時に有効となるだけでなく冷凍空調装置の据付、配置などが容易となり、更に、負荷の増減や特殊な負荷との組み合わせなどでもフレキシブルに対応できる。ただし、膨張弁7,8の開度調整で圧縮機の容量や負荷側熱交換器の面積の違いをカバーすることも可能であり、効率対策を考えた構成を選択しても良い。更にすべての圧縮機をたとえば誘導電動機駆動として一定の速度のものとし、すなわち回転数を可変にしなくとも良い。その場合、負荷能力の変化にはポンプ17のような2次回路を循環する熱媒体の量を調節したり、複数の圧縮機の一部を停止させるなどが可能である。   The refrigeration / air-conditioning apparatus according to the present invention includes a first refrigeration cycle in which a first compressor, an outdoor heat exchanger, a first pressure reducing means, and a first load-side heat exchanger are sequentially connected, and an outdoor A heat exchanger, a second pressure reducing means, a second load side heat exchanger, and a second compressor are connected in order, and a second compressor discharge is joined to the first compressor suction. A multi-stage compressor having a refrigeration cycle and joining the second compressor discharge to the first compressor suction is used, and the load-side heat exchanger is connected in series so that the load-side medium is the first The load side heat exchanger and the second load side heat exchanger are circulated in series in this order. As a result, the refrigeration capacity corresponding to the load can be met by selecting the capacity of the multistage compressor, that is, the rotational speed. The selection of the heat medium corresponding to each of the plurality of loads as the secondary circuit can be performed by adjusting the opening degree of the expansion valves 7 and 8. The opening degree of the expansion valves 7 and 8 can adjust not only the temperature state of the heat medium but also the load side heat exchanger refrigerant outlet state of the primary circuit. In addition, if the individual capacity of each compressor and the heat exchange capacity of each load-side heat exchanger, that is, the heat exchange area is approximately the same, it is not only effective at the partial load but also the refrigeration air conditioner Can be easily installed, arranged, etc., and can be flexibly handled by increasing / decreasing the load or combining with a special load. However, the adjustment of the opening degree of the expansion valves 7 and 8 can cover the difference in the capacity of the compressor and the area of the load side heat exchanger, and a configuration considering efficiency measures may be selected. Further, all the compressors are driven at a constant speed by, for example, induction motor driving, that is, the rotational speed need not be variable. In this case, the load capacity can be changed by adjusting the amount of the heat medium circulating in the secondary circuit such as the pump 17 or stopping some of the plurality of compressors.

図3は、この発明の別の冷凍・空調装置の構成を示すものである。また、図4はこの別の冷凍サイクルの動作を示すP−h線図である。なお、図1と同一または相当部分には同一符号を付し、詳細な説明を省略する。   FIG. 3 shows the configuration of another refrigeration / air-conditioning apparatus of the present invention. FIG. 4 is a Ph diagram showing the operation of this other refrigeration cycle. The same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図3において、18はエゼクタである。可変絞り機構を有し、さらに、減圧時の膨張動力により減圧後の冷媒圧力より低圧の冷媒を吸引する機能を有している。また、19は気液分離器であり、ここに流入する二相冷媒を重力により液とガスに分離して各々の出口から流出させる機能を有する。エゼクタは電磁コイルで動かすニードル部へ高圧液冷媒Bを導き、減圧を行うノズル部で減圧膨張させ、このとき低圧ガス冷媒Fを周囲から吸引して混合し、気液2相冷媒Cとするものである。エゼクタは高圧液状態Bを中圧2相状態Cまで減圧したときの膨張動力で低圧ガスFを中圧まで昇圧する。   In FIG. 3, 18 is an ejector. It has a variable throttle mechanism, and further has a function of sucking a refrigerant having a pressure lower than the refrigerant pressure after depressurization by expansion power at the time of depressurization. Reference numeral 19 denotes a gas-liquid separator, which has a function of separating the two-phase refrigerant flowing into the liquid and gas by gravity and allowing the two-phase refrigerant to flow out from the respective outlets. The ejector introduces the high-pressure liquid refrigerant B to the needle part that is moved by the electromagnetic coil, and decompresses and expands it at the nozzle part that performs pressure reduction. At this time, the low-pressure gas refrigerant F is sucked from the surroundings and mixed to form a gas-liquid two-phase refrigerant C. It is. The ejector boosts the low-pressure gas F to the medium pressure by the expansion power when the high-pressure liquid state B is decompressed to the medium-pressure two-phase state C.

この冷凍サイクルの動作を図3および図4を参照して説明する。圧縮機3から吐出された高温高圧のガス冷媒(状態A)は、空気熱交換器5において外気に放熱して凝縮し、高圧液冷媒(状態B)となる。この高圧液冷媒は、エゼクタ18により減圧されるとともに、状態Fの低圧ガス冷媒を吸引して飽和温度で約10℃の中圧(状態C)となる。その後、高段熱交換器9により水と熱交換を行い蒸発し、中圧気液二相冷媒(状態D)となる。   The operation of this refrigeration cycle will be described with reference to FIG. 3 and FIG. The high-temperature and high-pressure gas refrigerant (state A) discharged from the compressor 3 dissipates heat to the outside air in the air heat exchanger 5 and condenses to become a high-pressure liquid refrigerant (state B). The high-pressure liquid refrigerant is decompressed by the ejector 18 and sucks the low-pressure gas refrigerant in the state F to a medium pressure (state C) of about 10 ° C. at the saturation temperature. Thereafter, heat is exchanged with water by the high-stage heat exchanger 9 to evaporate to become an intermediate pressure gas-liquid two-phase refrigerant (state D).

この気液二相冷媒は、気液分離器19内で液冷媒(状態G)とガス冷媒(状態H)に分離され、ガス冷媒は中圧のまま再び圧縮機3に吸入される。一方、液冷媒は低段膨張弁8で飽和温度で約5℃の低圧(状態E)まで減圧され、低段熱交換器10により水と熱交換を行い蒸発する。ここで蒸発した低圧ガス冷媒(状態F)は前述のようにエゼクタ18に吸引され、状態Cとなって再び高段熱交換器9に循環する。負荷側の動作については図1と同様であるため説明を省略する。 This gas-liquid two-phase refrigerant is separated into a liquid refrigerant (state G) and a gas refrigerant (state H) in the gas-liquid separator 19, and the gas refrigerant is sucked into the compressor 3 again with medium pressure. On the other hand, the liquid refrigerant is decompressed to a low pressure (state E) of about 5 ° C. at the saturation temperature by the low stage expansion valve 8, and is evaporated by exchanging heat with water by the low stage heat exchanger 10. The low-pressure gas refrigerant (state F) evaporated here is sucked into the ejector 18 as described above, becomes the state C, and circulates again to the high stage heat exchanger 9. The operation on the load side is the same as in FIG.

以上のように、エゼクタを利用することで1台の圧縮機においても2つの蒸発圧力を生成し、最終冷水温度よりも高い飽和温度の蒸発圧力で冷水を発生させることができ、高効率な運転が可能となる。また、本実施の形態では低段側蒸発圧力を生成するのに膨張動力を利用しているため、低段圧縮機を駆動するための入力が不要となり、大きな省エネルギー効果が得られる。図1の構成に対し位置を変更できるニードルを使用して絞り開度を調節できるエゼクタ18により圧縮機4および高段膨張弁7の機能を行うことになる。圧縮機3の回転数で冷媒流量、すなわち冷凍サイクルの冷凍能力を決め、エゼクタの絞り開度で高段熱交換器9と低段熱交換器10の熱交換量の比率を決めて、低段膨張弁8で低段熱交換器10の熱交換量であって、低段熱交換器10の冷媒出口状態を決定する。   As described above, by using the ejector, two evaporating pressures can be generated even in one compressor, and chilled water can be generated at an evaporating pressure with a saturation temperature higher than the final chilled water temperature. Is possible. Further, in this embodiment, since expansion power is used to generate the low-stage side evaporation pressure, an input for driving the low-stage compressor is unnecessary, and a great energy saving effect is obtained. The functions of the compressor 4 and the high stage expansion valve 7 are performed by an ejector 18 that can adjust the throttle opening using a needle whose position can be changed with respect to the configuration of FIG. The refrigerant flow rate, that is, the refrigeration capacity of the refrigeration cycle is determined by the rotational speed of the compressor 3, and the ratio of the heat exchange amount between the high stage heat exchanger 9 and the low stage heat exchanger 10 is determined by the throttle opening of the ejector. The expansion valve 8 determines the amount of heat exchange of the low stage heat exchanger 10 and the refrigerant outlet state of the low stage heat exchanger 10.

ここで、図5を参照してこの発明における高効率化の原理について詳細に説明する。図5(a)は1つの蒸発圧力で冷房運転を実施する場合で、従来の冷凍・空調装置の動作を示している。但し負荷側熱交換器9、10は直列に設けられ負荷側媒体である水は両方の熱交換器を順に流れるが第2の負荷側熱交換器では熱交換されない。図5(b)は2つの蒸発圧力を発生させる本発明の動作を説明するものであり、室内ユニット15のみでの運転を行った場合を示している。図5(c)および図5(d)は室内ユニット15、16双方を用いた場合の動作である。図5(e)は2つの蒸発圧力を有する冷凍サイクルの動作を示すP−h線図である。図5(e)において、Gr1は低段熱交換器10を流通する冷媒流量、Gr2は高段熱交換器9を流通する冷媒流量を示している。また、W1は低段圧縮機4の入力、W2は高段圧縮機3の入力を示したもので、これらはそれぞれ、W1=Gr1×Δh1、 W2=(Gr1+Gr2)×Δh2、で表される。   Here, the principle of high efficiency in the present invention will be described in detail with reference to FIG. FIG. 5A shows the operation of a conventional refrigeration / air-conditioning apparatus when the cooling operation is performed with one evaporating pressure. However, the load-side heat exchangers 9 and 10 are provided in series, and water as the load-side medium sequentially flows through both heat exchangers, but heat is not exchanged in the second load-side heat exchanger. FIG. 5B illustrates the operation of the present invention for generating two evaporation pressures, and shows a case where the operation is performed only with the indoor unit 15. FIG. 5C and FIG. 5D are operations when both indoor units 15 and 16 are used. FIG. 5E is a Ph diagram illustrating the operation of the refrigeration cycle having two evaporation pressures. In FIG. 5 (e), Gr 1 indicates the refrigerant flow rate through the low stage heat exchanger 10, and Gr 2 indicates the refrigerant flow rate through the high stage heat exchanger 9. W1 represents the input of the low-stage compressor 4, and W2 represents the input of the high-stage compressor 3. These are represented by W1 = Gr1 × Δh1, and W2 = (Gr1 + Gr2) × Δh2, respectively.

まず、従来の冷凍・空調装置の動作を示す図5(a)について説明する。冷凍サイクル(図示は省略)では飽和温度5℃の蒸発圧力のみを発生し、高段熱交換器9に流通、蒸発させている。ここで負荷側の熱媒体は17℃から7℃まで冷却され、室内ユニット15に流通する。室内ユニット15では負荷側空間2の27℃の空気を吸込み、12℃まで冷却して負荷側空間2に吹出すことで負荷を処理する。この運転においては、図5(e)において実線で示す飽和温度5℃の蒸発圧力での冷凍サイクルのみで動作するので、低圧から中圧まで昇圧する低段圧縮機入力W1=(Gr1+Gr2)×Δh1となる。   First, FIG. 5A showing the operation of a conventional refrigeration / air-conditioning apparatus will be described. In the refrigeration cycle (not shown), only an evaporation pressure with a saturation temperature of 5 ° C. is generated, and is distributed and evaporated in the high stage heat exchanger 9. Here, the heat medium on the load side is cooled from 17 ° C. to 7 ° C. and circulates in the indoor unit 15. In the indoor unit 15, 27 ° C. air in the load side space 2 is sucked, cooled to 12 ° C. and blown out to the load side space 2 to process the load. In this operation, since it operates only in the refrigeration cycle at the evaporating pressure with a saturation temperature of 5 ° C. shown by the solid line in FIG. 5 (e), the low-stage compressor input W1 = (Gr1 + Gr2) × Δh1 It becomes.

次に、図5(b)について説明する。冷凍サイクルでは飽和温度5℃の蒸発圧力と飽和温度10℃の蒸発圧力を発生させて負荷側熱媒体を冷却する。負荷側熱媒体は、高段熱交換器9で17℃から12℃まで、低段熱交換器10で12℃から7℃まで冷却される。流量調整弁11は100%低段熱交換器10側に流路を設定しており、室内ユニット16に熱媒体は流通しない。すなわち、高段熱交換器9と低段熱交換器10は熱媒体流量同一、熱媒体入口出口温度差も双方5[deg]と同一であり、熱交換量も等しくなる。よって、冷凍サイクル側の冷媒流量Gr1とGr2もほぼ等しくなる。   Next, FIG. 5B will be described. In the refrigeration cycle, an evaporation pressure having a saturation temperature of 5 ° C. and an evaporation pressure having a saturation temperature of 10 ° C. are generated to cool the load-side heat medium. The load-side heat medium is cooled from 17 ° C. to 12 ° C. by the high stage heat exchanger 9 and from 12 ° C. to 7 ° C. by the low stage heat exchanger 10. The flow rate adjusting valve 11 has a flow path on the 100% low stage heat exchanger 10 side, and no heat medium flows through the indoor unit 16. That is, the high-stage heat exchanger 9 and the low-stage heat exchanger 10 have the same heat medium flow rate, the heat medium inlet / outlet temperature difference is the same as 5 [deg], and the heat exchange amount is also equal. Therefore, the refrigerant flow rates Gr1 and Gr2 on the refrigeration cycle side are also substantially equal.

このときの低段圧縮機入力W1は、W1=Gr1×Δh1であるため、前述の図5(a)に比べ、Gr2×Δh1だけ小さくなる。これが2つの蒸発圧力としたときの効率向上効果である。これによれば、高段冷媒流量Gr2を極力大きくすること、また、Δh1を大きくすること、すなわち高段蒸発圧力を高くすることでより大きな効率向上効果が得られる。   Since the low-stage compressor input W1 at this time is W1 = Gr1 × Δh1, it is smaller by Gr2 × Δh1 than the above-described FIG. This is the efficiency improvement effect when the two evaporation pressures are used. According to this, it is possible to obtain a greater efficiency improvement effect by increasing the high stage refrigerant flow rate Gr2 as much as possible and by increasing Δh1, that is, by increasing the high stage evaporation pressure.

その高効率化の1つの手段として、図5(c)に示すような方法が考えられる。流量調整弁11により、高段熱交換器9を流出した熱媒体の一部を分岐し、熱媒体中間出口ポート14から直接負荷側空間2に流通させ、室内ユニット16により負荷を処理するものである。図5(c)中、一点鎖線で示した12℃の熱媒体流量が、全熱媒体流量に占める割合が大きくなると、高段熱交換器9での熱交換量は低段熱交換器10での熱交換量よりも大きくなり、冷凍サイクル側ではGr2が大きくなる。よって、12℃の熱媒体流量を大きくすることが効率向上に繋がる。   As one means for improving the efficiency, a method as shown in FIG. A part of the heat medium that has flowed out of the high-stage heat exchanger 9 is branched by the flow rate adjusting valve 11, is directly circulated from the heat medium intermediate outlet port 14 to the load side space 2, and the load is processed by the indoor unit 16. is there. In FIG. 5 (c), when the ratio of the heat medium flow rate of 12 ° C. indicated by the one-dot chain line to the total heat medium flow rate becomes large, the heat exchange amount in the high stage heat exchanger 9 is the low stage heat exchanger 10. The amount of heat exchange becomes larger, and Gr2 becomes larger on the refrigeration cycle side. Therefore, increasing the heat medium flow rate of 12 ° C. leads to an improvement in efficiency.

一方、負荷側空間2においては室内ユニット16では吹出空気温度が17℃程度となる。負荷側空間2で発生している冷房負荷が比較的大きい場合、例えば夏季の昼間や除湿負荷が大きい条件では、吹出空気温度12℃、すなわち7℃の熱媒体で負荷を処理することが必須であるとしても、中間期や夕方以降などの比較的冷房負荷の小さい場合には、12℃の熱媒体で吹出空気温度17℃でも負荷を処理できる場合が多い。このような負荷条件であるときにこの発明の実施の形態が非常に有効である。吹出空気温度が17℃以上でも負荷処理できるような負荷条件においては、中間熱媒体温度を12℃以上とすること、すなわち高段蒸発圧力の飽和温度を10℃より高くするなどの制御を行うことで益々の高効率化を図ることができる。 On the other hand, in the load side space 2, the blown air temperature is about 17 ° C. in the indoor unit 16. When the cooling load generated in the load side space 2 is relatively large, for example, in the daytime in summer or when the dehumidification load is large, it is essential to treat the load with a heat medium having a blown air temperature of 12 ° C., that is, 7 ° C. Even when there is a relatively small cooling load such as in the middle period or after the evening, the load can often be processed with a heat medium of 12 ° C. even at a blown air temperature of 17 ° C. The embodiment of the present invention is very effective under such a load condition. Under load conditions that allow load treatment even when the blown air temperature is 17 ° C. or higher, control is performed such that the intermediate heat medium temperature is 12 ° C. or higher, that is, the saturation temperature of the high stage evaporation pressure is higher than 10 ° C. With this, it is possible to increase the efficiency further.

さらに高段熱交換器9に流通する冷媒流量Gr2を大きくする構成として、例えば図5(d)のような方法が考えられる。図5(d)では、負荷側空間2において、27℃の空気を室内ユニット16により17℃まで冷却した後、室内ユニット15で12℃まで冷却している。このような構成では、室内ユニット16において空気温度27℃から17℃まで冷却する動作は図5(c)と同様であるが、室内ユニット15においては空気温度17℃から12℃までの冷却で済み、図5(c)で27℃から12℃まで冷却するのに対して熱交換量が小さくなる。これは、室内ユニット16で処理する熱量に対して室内ユニット15で処理する熱量の比率が図5(c)の動作に比べて減少することを意味しており、冷凍サイクル側でみると、低段冷媒流量Gr1に対してGr2の流量比率が増大することを示す。   Furthermore, as a configuration for increasing the refrigerant flow rate Gr2 flowing through the high stage heat exchanger 9, for example, a method as shown in FIG. In FIG. 5D, in the load side space 2, 27 ° C. air is cooled to 17 ° C. by the indoor unit 16 and then cooled to 12 ° C. by the indoor unit 15. In such a configuration, the operation for cooling the air temperature from 27 ° C. to 17 ° C. in the indoor unit 16 is the same as that in FIG. 5C, but the air temperature in the indoor unit 15 can be cooled from 17 ° C. to 12 ° C. In FIG. 5 (c), the heat exchange amount becomes small while cooling from 27 ° C. to 12 ° C. This means that the ratio of the amount of heat processed by the indoor unit 15 to the amount of heat processed by the indoor unit 16 is reduced compared to the operation of FIG. 5 (c). It shows that the flow rate ratio of Gr2 increases with respect to the stage refrigerant flow rate Gr1.

このように、2つの蒸発圧力を発生させ、それぞれ独立の熱交換器を有する構成においては高段側冷媒流量比率を増大させること、および、高段側蒸発圧力を上昇させることが効率向上となる。   Thus, in the configuration in which two evaporation pressures are generated and each has an independent heat exchanger, increasing the high-stage side refrigerant flow rate ratio and increasing the high-stage side evaporation pressure improve the efficiency. .

図6は、この発明の別の冷凍・空調装置の構成を示すものである。なお、図1と同一または相当部分には同一符号を付し、詳細な説明を省略する。   FIG. 6 shows the configuration of another refrigeration / air-conditioning apparatus of the present invention. The same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図6おいて、20a、20bは冷房と暖房で冷媒流路を切り替える四方弁であり、高段圧縮機3、低段圧縮機4それぞれに配置されている。四方弁20aはその一端を空気熱交換器5とつながり、もう一端は高段熱交換器9に接続されている。四方弁20bはその一端を高段圧縮機3の吸入管と、もう一端を低段熱交換器10と接続されている。21はレシーバ22、高段膨張弁7の流通方向を冷房と暖房で同一とする流路切替手段であり、23a、23bもまた、冷房と暖房で高段熱交換器9、低段熱交換器10の流通方向を同一となるようそれぞれに配置された流路切替手段である。本実施の形態では冷媒に非共沸混合冷媒R407Cを用いているため、蒸発過程で温度上昇、凝縮過程で温度低下を伴う。このような特性を有する冷媒においては、対向流化により熱交換性能を向上させることができる。   In FIG. 6, 20 a and 20 b are four-way valves that switch the refrigerant flow path between cooling and heating, and are arranged in the high-stage compressor 3 and the low-stage compressor 4, respectively. One end of the four-way valve 20 a is connected to the air heat exchanger 5, and the other end is connected to the high stage heat exchanger 9. One end of the four-way valve 20b is connected to the suction pipe of the high stage compressor 3, and the other end is connected to the low stage heat exchanger 10. 21 is a flow path switching means for making the flow direction of the receiver 22 and the high stage expansion valve 7 the same for cooling and heating, and 23a and 23b are also a high stage heat exchanger 9 and a low stage heat exchanger for cooling and heating. The flow path switching means is arranged so that the ten distribution directions are the same. In this embodiment, since the non-azeotropic refrigerant mixture R407C is used as the refrigerant, the temperature rises during the evaporation process and the temperature falls during the condensation process. In the refrigerant having such characteristics, heat exchange performance can be improved by counterflow.

負荷側においては、流量調整弁11a、11bが熱源ユニット1内に配置され、流量調整弁11aは高段熱交換器9を流出した熱媒体を低段熱交換器10と室内ユニット16それぞれの所定流量に調節する機能を有し、流量調整弁11bは室内ユニット15を流出した熱媒体を高段熱交換器9か低段熱交換器10いずれかに流入するよう選択する機能を有する。   On the load side, flow rate adjusting valves 11 a and 11 b are arranged in the heat source unit 1, and the flow rate adjusting valve 11 a transfers the heat medium flowing out of the high stage heat exchanger 9 to each of the low stage heat exchanger 10 and the indoor unit 16. The flow rate adjusting valve 11b has a function of selecting the heat medium flowing out of the indoor unit 15 to flow into either the high stage heat exchanger 9 or the low stage heat exchanger 10.

熱源ユニット1には、室内ユニット15、室内ユニット16それぞれ独立に熱媒体を流通できるように、熱媒体入口ポート12a、12b、熱媒体出口ポート13a、13bの4つの入出ポートが備えられ、また、熱媒体搬送ポンプ17a、17bもそれぞれ独立に熱媒体を流通できるよう配置されている。   The heat source unit 1 is provided with four inlet / outlet ports, ie, heat medium inlet ports 12a and 12b and heat medium outlet ports 13a and 13b, so that the heat medium can be circulated independently of the indoor unit 15 and the indoor unit 16, respectively. The heat medium transport pumps 17a and 17b are also arranged so that the heat medium can flow independently.

先ず負荷側空間2に配置された2台の室内ユニットに対し、冷房運転時の動作を冷凍サイクルの動作として説明する。本発明の冷房運転は、図1の構成とほぼ同様の動作を行う。図2のP−h線図と図6を参照して簡単に説明する。   First, the operation during the cooling operation will be described as the operation of the refrigeration cycle for the two indoor units arranged in the load side space 2. The cooling operation of the present invention performs substantially the same operation as the configuration of FIG. This will be briefly described with reference to the Ph diagram of FIG. 2 and FIG.

高段圧縮機3を吐出した高温高圧ガス(状態A)は空気熱交換器3で外気に放熱して高圧液冷媒(状態B)となる。レシーバ22を通過し、高段膨張弁7で中圧まで減圧された二相冷媒(状態C)は、高段熱交換器9に流入するとともに、一部は低段膨張弁8でさらに低圧まで減圧されて低圧二相冷媒(状態E)となる。高段熱交換器9に流入した冷媒は熱媒体と熱交換して中圧二相冷媒(状態D)となり、一方、低段熱交換器10に流入した冷媒も熱媒体と熱交換して低圧ガス冷媒(状態F)となる。この低圧ガス冷媒は、低段圧縮機4で中圧まで昇圧され状態Gとなった後、状態Dの冷媒と合流して中圧ガス冷媒(状態H)となり、再び高段圧縮機3に吸入される。   The high-temperature and high-pressure gas (state A) discharged from the high-stage compressor 3 is radiated to the outside air by the air heat exchanger 3 to become a high-pressure liquid refrigerant (state B). The two-phase refrigerant (state C) that has passed through the receiver 22 and has been depressurized to a medium pressure by the high stage expansion valve 7 flows into the high stage heat exchanger 9 and partly to the low pressure by the low stage expansion valve 8. The pressure is reduced to a low-pressure two-phase refrigerant (state E). The refrigerant flowing into the high stage heat exchanger 9 exchanges heat with the heat medium to become a medium pressure two-phase refrigerant (state D), while the refrigerant flowing into the low stage heat exchanger 10 also exchanges heat with the heat medium to reduce the pressure. It becomes a gas refrigerant (state F). This low-pressure gas refrigerant is pressurized to the medium pressure by the low-stage compressor 4 and enters the state G, and then merges with the refrigerant in the state D to become the medium-pressure gas refrigerant (state H) and is sucked into the high-stage compressor 3 again. Is done.

負荷側においても、図1で説明したように、室内ユニット15のみで冷房する場合には高段熱交換器9、低段熱交換器10の順で熱媒体が流通するよう流量調整弁11a、11bが流路を設定する。また、室内ユニット15、16双方で冷房する場合には、流量調整弁11aが高段熱交換器9を流出した中間温度の熱媒体を室内ユニット15と低段熱交換器10に分流する。低段熱交換器10で低温まで冷却された熱媒体は、室内ユニット15で冷房負荷を処理した後、室内ユニット16で冷房負荷を処理した熱媒体と合流して再び高段熱交換器9へと流入する。   Also on the load side, as described with reference to FIG. 1, in the case of cooling only with the indoor unit 15, the flow rate adjusting valve 11 a, so that the heat medium flows in the order of the high stage heat exchanger 9 and the low stage heat exchanger 10. 11b sets the flow path. When both the indoor units 15 and 16 are cooled, the flow rate adjusting valve 11a diverts the intermediate temperature heat medium flowing out of the high stage heat exchanger 9 to the indoor unit 15 and the low stage heat exchanger 10. The heat medium cooled to a low temperature by the low stage heat exchanger 10 is subjected to the cooling load by the indoor unit 15, and then merged with the heat medium that has been processed the cooling load by the indoor unit 16, and again to the high stage heat exchanger 9. And flows in.

次に暖房運転時の動作を、暖房運転時の冷凍サイクルの動作で図6および図7を参照して説明する。図7は図6の構成における暖房運転時の冷凍サイクル動作を示すP−h線図である。また、図6において四方弁20a、20b双方とも図中破線方向に流路が設定される。   Next, the operation during the heating operation will be described with reference to FIGS. 6 and 7 in the operation of the refrigeration cycle during the heating operation. FIG. 7 is a Ph diagram showing the refrigeration cycle operation during the heating operation in the configuration of FIG. Moreover, in FIG. 6, the flow path is set in the direction of the broken line in both the four-way valves 20a and 20b.

高段圧縮機3を吐出した飽和温度で40℃〜45℃程度の中圧ガス冷媒(状態A)は、流路切替手段23aを通過して高段熱交換器9へ流入し、熱媒体と熱交換して凝縮する(状態D)。このとき熱媒体側では35℃〜40℃まで昇温される。一方、低段圧縮機4においては、高段圧縮機3よりさらに高い圧力、例えば飽和温度で50℃程度まで昇圧された高圧ガス冷媒(状態G)が吐出され、流路切替手段23bを通過して低段熱交換器10に流入する。低段熱交換器10で熱媒体と熱交換して凝縮した高圧液冷媒(状態F)は、低段膨張弁8で中圧まで減圧され、前記状態Dの中圧冷媒と合流して中圧液冷媒(状態C)となる。ここでの熱媒体は、45℃程度まで昇温されている。この中圧液冷媒はレシーバ22を通過後、高段膨張弁7にて減圧され、低圧二相冷媒(状態B)となる。さらに空気熱交換器5において外気から吸熱して蒸発し低圧ガス冷媒(状態H)となり、高段圧縮機3、低段圧縮機4双方に再び吸入される。   The medium pressure gas refrigerant (state A) of about 40 ° C. to 45 ° C. at the saturation temperature discharged from the high stage compressor 3 passes through the flow path switching means 23a and flows into the high stage heat exchanger 9, Heat exchange and condensation (state D). At this time, the temperature is raised to 35 ° C. to 40 ° C. on the heat medium side. On the other hand, in the low-stage compressor 4, a higher pressure than the high-stage compressor 3, for example, a high-pressure gas refrigerant (state G) whose pressure is increased to about 50 ° C. at the saturation temperature is discharged and passes through the flow path switching unit 23b. Into the low-stage heat exchanger 10. The high-pressure liquid refrigerant (state F) condensed by exchanging heat with the heat medium in the low-stage heat exchanger 10 is reduced to an intermediate pressure by the low-stage expansion valve 8 and merged with the intermediate-pressure refrigerant in the state D. It becomes a liquid refrigerant (state C). The heat medium here is heated to about 45 ° C. This medium-pressure liquid refrigerant is reduced in pressure by the high stage expansion valve 7 after passing through the receiver 22 to become a low-pressure two-phase refrigerant (state B). Further, the air heat exchanger 5 absorbs heat from outside air and evaporates to become a low-pressure gas refrigerant (state H), and is sucked again into both the high-stage compressor 3 and the low-stage compressor 4.

負荷側においては、冷房運転時と同様の流路切替により、室内ユニット15のみでの暖房モードと室内ユニット15、16双方を使用した暖房モードを切り替えて運転するようになっている。   On the load side, switching is performed between the heating mode using only the indoor unit 15 and the heating mode using both the indoor units 15 and 16 by switching the flow path in the same manner as in the cooling operation.

以上のように、室内ユニット15のみでの暖房運転においては、高段熱交換器9を流通する冷媒(全冷媒循環量の約半分)の凝縮圧力が飽和温度40℃程度で45℃の熱媒体を発生できるので、この部分の冷凍サイクルの成績係数は飽和温度50℃の運転より高効率となり、省エネルギーな暖房運転が可能となる。   As described above, in the heating operation with only the indoor unit 15, the heat medium in which the condensation pressure of the refrigerant (about half of the total refrigerant circulation amount) flowing through the high stage heat exchanger 9 is about 40 ° C. and 45 ° C. Therefore, the coefficient of performance of the refrigeration cycle in this part is more efficient than the operation at the saturation temperature of 50 ° C., and energy-saving heating operation is possible.

さらに、室内ユニット16を用いた場合には、高段熱交換器9で中間温度まで加熱された35℃〜40℃の熱媒体で直接暖房負荷を処理するため、45℃まで加熱する熱媒体流量を減少させることができる。これは、冷凍サイクル側からみると低い凝縮温度の冷媒流量比率が増大することを意味し、熱媒体の全量を45℃まで加熱する場合、すなわち室内ユニット15のみで暖房運転を行う場合よりさらに高効率な運転が可能となる。   Furthermore, when the indoor unit 16 is used, since the heating load is directly treated with the heat medium of 35 ° C. to 40 ° C. heated to the intermediate temperature by the high stage heat exchanger 9, the heat medium flow rate heated to 45 ° C. Can be reduced. This means that when viewed from the refrigeration cycle side, the refrigerant flow rate ratio at a low condensing temperature increases, which is higher than when the entire heat medium is heated to 45 ° C., that is, when heating operation is performed only by the indoor unit 15. Efficient operation is possible.

もちろん、室内ユニット16においてより低い熱媒体温度で負荷を処理できる場合においては、中圧飽和温度をさらに低下させることができ、より高効率な暖房運転が可能となる。   Of course, when the load can be processed in the indoor unit 16 at a lower heat medium temperature, the intermediate pressure saturation temperature can be further reduced, and a more efficient heating operation can be performed.

また、室内ユニット16を通過した後の空気を室内ユニット15に流通させることで、室内ユニット15での熱交換量、すなわち飽和温度50℃で加熱した高温側の温水流量を低減することができ、より高効率な暖房運転が可能となる。   Moreover, by circulating the air after passing through the indoor unit 16 to the indoor unit 15, the heat exchange amount in the indoor unit 15, that is, the flow rate of hot water heated at the saturation temperature of 50 ° C. can be reduced, More efficient heating operation becomes possible.

更に冷暖同時運転の動作を、冷暖同時運転時の冷凍サイクルの動作にて図6および図8を参照して説明する。図8は図6の構成の冷暖同時運転時の冷凍サイクル動作を示すP−h線図である。また、図6において四方弁20aは図中実線方向に、20bは図中破線方向に流路が設定される。   Further, the operation of the simultaneous cooling and heating operation will be described with reference to FIGS. 6 and 8 in the operation of the refrigeration cycle during the simultaneous cooling and heating operation. FIG. 8 is a Ph diagram showing the refrigeration cycle operation during the simultaneous cooling and heating operation of the configuration of FIG. In FIG. 6, the four-way valve 20a has a flow path in the solid line direction, and 20b has a flow path in the broken line direction.

高段圧縮機3を吐出した中圧ガス冷媒(状態A)は、空気熱交換器5へ流入し、外気と熱交換して凝縮する。この中圧液冷媒(状態B)は、流路切替手段21、レシーバ22を通過して高段膨張弁7にて低圧まで減圧される。一方、低段圧縮機4においては、飽和温度で50℃程度まで昇圧された高圧ガス冷媒(状態G)が吐出され、流路切替手段23bを通過して低段熱交換器10に流入する。低段熱交換器10で熱媒体と熱交換して凝縮した高圧液冷媒(状態F)は、低段膨張弁8で低圧まで減圧され、前記高段膨張弁で減圧された冷媒と合流し、低圧二相冷媒(状態C)となる。この低圧二相冷媒は、流路切替手段23aを通過して高段熱交換器9へ流入し、熱媒体と熱交換して蒸発する。この低圧ガス冷媒(状態H)は、再び高段圧縮機3、低段圧縮機4双方に吸入される。   The medium-pressure gas refrigerant (state A) discharged from the high stage compressor 3 flows into the air heat exchanger 5 and is condensed by exchanging heat with the outside air. This medium-pressure liquid refrigerant (state B) passes through the flow path switching means 21 and the receiver 22 and is decompressed to a low pressure by the high stage expansion valve 7. On the other hand, in the low stage compressor 4, high-pressure gas refrigerant (state G) whose pressure has been increased to about 50 ° C. at the saturation temperature is discharged, and flows into the low stage heat exchanger 10 through the flow path switching unit 23b. The high pressure liquid refrigerant (state F) condensed by exchanging heat with the heat medium in the low stage heat exchanger 10 is decompressed to a low pressure by the low stage expansion valve 8 and merged with the refrigerant decompressed by the high stage expansion valve, It becomes a low-pressure two-phase refrigerant (state C). The low-pressure two-phase refrigerant passes through the flow path switching unit 23a and flows into the high stage heat exchanger 9, and is evaporated by exchanging heat with the heat medium. This low-pressure gas refrigerant (state H) is again sucked into both the high-stage compressor 3 and the low-stage compressor 4.

負荷側においては、流量調整弁11a、11bにより、それぞれ独立した熱媒体流路を形成する。すなわち、流量調整弁11aは高段熱交換器9から流入する熱媒体を100%熱媒体出口ポート13aに導き、流量調整弁11bは熱媒体入口ポート12bから流入する熱媒体を100%低段熱交換器10へと導く。   On the load side, independent heat medium flow paths are formed by the flow rate adjusting valves 11a and 11b. That is, the flow rate adjusting valve 11a guides the heat medium flowing from the high stage heat exchanger 9 to the 100% heat medium outlet port 13a, and the flow rate adjusting valve 11b converts the heat medium flowing from the heat medium inlet port 12b to 100% low stage heat. Guide to exchanger 10.

このように、空気熱交換器5および低段熱交換器10を凝縮器として機能させ、高段熱交換器9を蒸発器として機能させるとともに、熱媒体流路を高段熱交換器9と低段熱交換器10それぞれ独立に循環するよう切り替えることで、室内ユニット15では暖房運転、室内ユニット16では冷房運転という冷暖同時運転が可能となる。   As described above, the air heat exchanger 5 and the low-stage heat exchanger 10 function as a condenser, the high-stage heat exchanger 9 functions as an evaporator, and the heat medium flow path is low with the high-stage heat exchanger 9. By switching so that each of the stage heat exchangers 10 circulates independently, it is possible to perform a cooling and heating simultaneous operation such as a heating operation in the indoor unit 15 and a cooling operation in the indoor unit 16.

このとき、低段熱交換器10にて得られる凝縮熱は、高段熱交換器9にて処理される冷房負荷を熱源としており、冷暖同時負荷が混在する場合の運転効率は大きく向上する。   At this time, the condensation heat obtained by the low stage heat exchanger 10 uses the cooling load processed by the high stage heat exchanger 9 as a heat source, and the operation efficiency when the simultaneous cooling and heating load is mixed is greatly improved.

図6の構成における以上の説明に対し、負荷側熱媒体の流通動作を図9にて具体的に説明する。図9(a)は室内ユニット15のみでの運転の場合の構成を示すもので流量調整弁11a、11bは熱媒体である水が図で示す流になる様に負荷側熱交換器9、10を直列に流し流量調整弁11aからは室内ユニット16に分流させない開閉を行う。図9(b)は室内ユニット15、16双方での運転状態の場合の構成を示すもので流量調整弁11a、11bは熱媒体である水が図で示す流れになる様に負荷側熱交換器9、10を直列に流し流量調整弁11aからは室内ユニット16に分流させて双方の負荷に流す開閉を行う。以上の構成に対しては熱媒体である水を循環させるポンプは図6の如くそれぞれの負荷に対応して設けても、あるいは双方の負荷に循環可能な位置に1つだけ設けてもよいことは図からも明らかである。図9(c)は双方の負荷をそれぞれ独立に運転させる例であって、例えば冷房と暖房をそれぞれの室内ユニットで同時に行う運転状態を示し、熱源側の1次サイクルから負荷側熱交換器9、10へ供給される温冷熱のため、負荷側熱媒体である水が温水と冷水になり、この2次側回路を負荷の要求に応じて完全に分離させる構成を示している。図の様にポンプ17はそれぞれの負荷に応じて設けるとともに、負荷の回路を独立させる流量調整弁11a、11bの開閉を行う。   In contrast to the above description in the configuration of FIG. 6, the flow operation of the load-side heat medium will be specifically described with reference to FIG. FIG. 9 (a) shows a configuration in the case of operation with only the indoor unit 15, and the flow rate adjusting valves 11a and 11b have the load side heat exchangers 9 and 10 so that the water as the heat medium becomes the flow shown in the figure. Are opened and closed in series so that the flow rate adjusting valve 11a is not diverted to the indoor unit 16. FIG. 9 (b) shows the configuration in the operation state in both the indoor units 15 and 16, and the flow rate adjusting valves 11a and 11b are load-side heat exchangers so that water as a heat medium has a flow shown in the figure. 9 and 10 are flown in series, and the flow rate adjusting valve 11a is diverted to the indoor unit 16 to perform opening and closing to flow to both loads. For the above configuration, a pump for circulating water as a heat medium may be provided corresponding to each load as shown in FIG. 6, or only one pump may be provided at a position where it can be circulated to both loads. Is also clear from the figure. FIG. 9C shows an example in which both loads are operated independently. For example, an operation state in which cooling and heating are simultaneously performed in each indoor unit is shown. From the primary cycle on the heat source side to the load side heat exchanger 9. 10 shows a configuration in which water that is a load-side heat medium becomes hot water and cold water because of the hot and cold heat supplied to 10, and the secondary circuit is completely separated according to the demand of the load. As shown in the figure, the pump 17 is provided according to each load, and opens and closes the flow rate adjusting valves 11a and 11b that make the load circuit independent.

以上の説明では熱源側冷媒としてハイドロフルオロカーボンを使用する例を示し、負荷側熱媒体として水を循環させる例を示したが、いずれもこれに限定されることはない。例えば炭酸ガスのような自然冷媒を1次側、2次側に用いても良いし、あるいは複数の種類を混合させることでも良い。又、本発明の冷凍空調装置を高効率で運転させるため、可変速の圧縮機3又は4、高段側と低段側の開度調整可能な膨張弁7、8、流量調整弁11、水量調整可能なポンプ17を使用すし、負荷の種類や負荷能力の大小に応じてそれぞれを調整する説明を行ってきたが、各調整装置は必ずしも必要ない。全く調整せずに負荷に応じてあらかじめ設定された装置機器類を使用するか、どれか1つだけを調整可能とし、誘導機などによる略一定速度の圧縮機3やポンプ17、膨張弁の代わりに固定状態の膨張手段7、8、流量調整を行わない開閉弁11などを用いても従来の装置などよりも高い効率を得ることができる。   Although the example which uses hydrofluorocarbon as a heat source side refrigerant | coolant and the example which circulates water as a load side heat medium was shown in the above description, all are not limited to this. For example, a natural refrigerant such as carbon dioxide may be used on the primary side and the secondary side, or a plurality of types may be mixed. In order to operate the refrigeration and air-conditioning apparatus of the present invention with high efficiency, the variable speed compressor 3 or 4, the expansion valves 7 and 8, the flow rate adjustment valve 11, and the amount of water that can adjust the opening degree of the high stage side and the low stage side. Although an explanation has been given of using the adjustable pump 17 and adjusting each according to the type of load and the load capacity, each adjusting device is not necessarily required. It is possible to use any one of the devices set in advance according to the load without any adjustment, or to adjust only one of them. Instead of the compressor 3, the pump 17, and the expansion valve at a substantially constant speed by an induction machine or the like. Even if the expansion means 7 and 8 in a fixed state and the on-off valve 11 that does not adjust the flow rate are used, higher efficiency can be obtained than in the conventional apparatus.

以上説明したように、本発明の実施の形態における冷凍・空調装置は、冷房運転時においては、前述の図1、図3のものと同様に、高段熱交換器9と低段熱交換器10の蒸発圧力を異なるものとし、段階的に熱媒体を冷却することで、高効率な冷房運転が可能となる。   As described above, the refrigeration / air-conditioning apparatus according to the embodiment of the present invention has a high stage heat exchanger 9 and a low stage heat exchanger in the cooling operation, similar to those shown in FIGS. By making the evaporation pressure of 10 different and cooling the heat medium in stages, a highly efficient cooling operation is possible.

また、暖房運転時においては、高段熱交換器9と低段熱交換器10の凝縮圧力を異なるものとし、段階的に熱媒体を加熱することで、高段圧縮機3での圧縮比を小さくすることができ、高効率な運転が可能となる。   Further, during the heating operation, the condensation pressures of the high stage heat exchanger 9 and the low stage heat exchanger 10 are different from each other, and the heat medium is heated stepwise so that the compression ratio in the high stage compressor 3 is increased. It can be made small, and highly efficient operation is possible.

また、冷暖同時運転時においては、高段熱交換器9にて処理した冷房負荷を暖房用熱源として利用できるため、高効率な運転が可能となる。ここでは冷房と暖房を例に挙げたが、一方を冷房や除湿の空調負荷とし、他方を給湯のような凝縮熱を利用するものでも良い。   Further, at the time of simultaneous cooling and heating operation, since the cooling load processed by the high stage heat exchanger 9 can be used as a heating heat source, highly efficient operation is possible. Here, cooling and heating have been described as examples, but one may be an air conditioning load for cooling or dehumidification, and the other may utilize condensation heat such as hot water supply.

この発明に係る冷凍・空調装置は、第1の圧縮機、室外熱交換器、第1の減圧手段、第1の負荷側熱交換器、を順次接続してなる第1の冷凍サイクルと、前記室外熱交換器、第2の減圧手段、第2の負荷側熱交換器、第2の圧縮機を順次接続し、前記第2の圧縮機吐出を前記第1の圧縮機吸入に合流させてなる第2の冷凍サイクルを有し、負荷側媒体を前記第1の負荷側熱交換器、前記第2の負荷側熱交換器の順に直列に流通させるものである。   The refrigeration / air-conditioning apparatus according to the present invention includes a first refrigeration cycle in which a first compressor, an outdoor heat exchanger, a first pressure reducing unit, and a first load-side heat exchanger are sequentially connected; An outdoor heat exchanger, a second pressure reducing means, a second load side heat exchanger, and a second compressor are connected in order, and the discharge of the second compressor is merged with the suction of the first compressor. A second refrigeration cycle is provided, and the load-side medium is circulated in series in the order of the first load-side heat exchanger and the second load-side heat exchanger.

または、第1の圧縮機、室外熱交換器、エゼクタ、第1の負荷側熱交換器、気液分離器のガス側流出路を順次接続してなる第1の冷凍サイクルと、前記気液分離器の液側流出路、第2の減圧手段、第2の負荷側熱交換器、前記エゼクタに合流させてなる第2の冷凍サイクルを有し、負荷側媒体を前記第1の負荷側熱交換器、前記第2の負荷側熱交換器の順に直列に流通させるものである。   Alternatively, the first compressor, the outdoor heat exchanger, the ejector, the first load-side heat exchanger, the first refrigeration cycle formed by sequentially connecting the gas-side outflow passages of the gas-liquid separator, and the gas-liquid separation A liquid side outflow path, a second decompression means, a second load side heat exchanger, a second refrigeration cycle joined to the ejector, and a load side medium for the first load side heat exchange And the second load-side heat exchanger in series in this order.

または、前記第1の冷凍サイクルの冷媒流通方向を、第1の圧縮機、第1の負荷側熱交換器、第1の減圧手段、室外熱交換器、の順に切り替える第1の流路切替手段と、前記第2の冷凍サイクルの冷媒流通方向を、第2の圧縮機、第2の負荷側熱交換器、第2の減圧手段、の順に切り替える第2の流路切替手段を有する1台の熱源ユニット内で熱媒体を複数の熱交換器を用いて段階的に冷却もしくは加熱することにより高効率で空調用熱源を得るものである。   Alternatively, the first flow path switching means for switching the refrigerant flow direction of the first refrigeration cycle in the order of the first compressor, the first load side heat exchanger, the first pressure reducing means, and the outdoor heat exchanger. And a second flow path switching means for switching the refrigerant flow direction of the second refrigeration cycle in the order of the second compressor, the second load-side heat exchanger, and the second pressure reducing means. A heat source for air conditioning is obtained with high efficiency by cooling or heating the heat medium in stages using a plurality of heat exchangers in the heat source unit.

本発明は、熱媒体を段階的に冷却もしくは加熱する際、その途中段階での中間温度の熱媒体を取り出して空調を行うことにより、さらに高効率な運転を実現するものである。 In the present invention, when the heat medium is cooled or heated stepwise, the heat medium having an intermediate temperature in the middle of the heat medium is taken out and air-conditioned, thereby realizing a more efficient operation.

この発明の冷凍・空調装置は、1台の熱源ユニットで異なる2つの蒸発圧力を発生させ、それぞれの熱交換器で段階的に負荷側熱媒体を冷却することとしたので、1つの蒸発圧力で冷却するよりも高効率な運転を行うことができる。本発明は第1の負荷側熱交換器の熱交換量、負荷側媒体量などを第2の負荷側熱交換器の方より多くしている。圧縮機の回転数を変えて高効率化を得るものである。又第1の冷凍サイクルを循環する冷媒量を第2の冷凍サイクルを循環する冷媒量より多くする。圧縮機の回転数操作で高段低段の流量比率を変えて高効率化を図る。このため第1の圧縮機と第2の圧縮機、あるいは第1の圧縮機とエゼクタは双方とも独立に可変速度とする。又両方の冷凍サイクルの膨張弁の絞りを変えられるようにして、効率の良い運転を行うものである。但し運転範囲や用途によっては一方をあらかじめ設定される固定値に固定することでも良い。   In the refrigeration / air-conditioning apparatus according to the present invention, two different evaporation pressures are generated by one heat source unit, and the load-side heat medium is cooled step by step by each heat exchanger. Higher efficiency operation than cooling is possible. In the present invention, the heat exchange amount of the first load side heat exchanger, the load side medium amount, and the like are made larger than those of the second load side heat exchanger. High efficiency is obtained by changing the rotation speed of the compressor. Further, the amount of refrigerant circulating through the first refrigeration cycle is made larger than the amount of refrigerant circulating through the second refrigeration cycle. Higher efficiency is achieved by changing the flow rate ratio between the high and low stages by operating the rotation speed of the compressor. For this reason, the first compressor and the second compressor, or both the first compressor and the ejector are independently set to variable speeds. In addition, efficient operation is performed by changing the throttles of the expansion valves of both refrigeration cycles. However, depending on the operating range and application, one may be fixed to a fixed value set in advance.

また、エゼクタにより膨張動力を回収し、低段側蒸発圧力よりも高い圧力で圧縮機に吸入させることで、より高効率な運転を行うことができる。   Further, the expansion power is recovered by the ejector, and the compressor is sucked into the compressor at a pressure higher than the low-stage evaporation pressure, so that a more efficient operation can be performed.

また、第1の冷凍サイクル、第2の冷凍サイクルそれぞれに流路切替手段を有するので、2つの異なる凝縮温度で熱媒体の加熱を高効率で行うことができる。さらに、第1の冷凍サイクルで冷房、第2の冷凍サイクルで暖房運転を同時に行うことができる。   In addition, since the first refrigeration cycle and the second refrigeration cycle each have the flow path switching unit, the heating medium can be heated with high efficiency at two different condensation temperatures. Furthermore, it is possible to simultaneously perform cooling in the first refrigeration cycle and heating operation in the second refrigeration cycle.

なお上記説明では主として空調装置を例にしたが、冷却温度に差がある冷凍冷蔵庫や冷蔵庫などにも当然使用できるし、空調と冷凍の組合せにも使用できる。これらの併用において、特定の負荷を増減させることに対し制御内容の変更、回路の組換え、負荷側熱交換器の変更などで簡単に対応できる。   In the above description, the air conditioner is mainly taken as an example, but it can also be used for a refrigerator or a refrigerator having a difference in cooling temperature, or a combination of air conditioning and freezing. In the combined use, it is possible to easily cope with increasing or decreasing a specific load by changing the control contents, recombining the circuit, changing the load-side heat exchanger, or the like.

特に図1、図3の構成における第1と2の冷凍サイクルを家庭用冷蔵庫に使用すれば各庫室の切換や負荷の大小にに対しても常に効率の良い冷凍空調装置が得られる。第1の負荷側熱交換器と第2の負荷側熱交換器にそのまま庫内を循環する空気を直列負荷として供給すればよい。即ち図1、図3のような水媒体の代わりに庫内ファンで冷蔵庫の内部を循環する空気の温冷熱が負荷となる。図3のように圧縮機を1台としエゼクタを使用するとともに、低段側膨張手段はキャピラリチューブとし安価な構成にすることも可能である。なお図3の空気熱交換器5は冷蔵庫の壁面に設けるコンデンサでも良く、その場合送風機6も不要になる。   In particular, if the first and second refrigeration cycles in the configurations of FIGS. 1 and 3 are used in a home refrigerator, a refrigeration air conditioner that is always efficient even when the storage room is switched or the load is large or small can be obtained. What is necessary is just to supply the air which circulates the inside as it is to a 1st load side heat exchanger and a 2nd load side heat exchanger as a series load. That is, instead of the aqueous medium as shown in FIGS. 1 and 3, the heat of the air circulating in the refrigerator by the internal fan becomes a load. As shown in FIG. 3, it is possible to use a single compressor and use an ejector, and the low-stage expansion means can be a capillary tube and can be constructed inexpensively. The air heat exchanger 5 in FIG. 3 may be a condenser provided on the wall surface of the refrigerator, and in that case, the blower 6 is also unnecessary.

この発明の実施の形態1を示す冷凍・空調装置の全体構成図である。1 is an overall configuration diagram of a refrigeration / air conditioning apparatus showing Embodiment 1 of the present invention. FIG. この発明の実施の形態1の冷凍サイクル動作を示すP−h線図である。It is a Ph diagram which shows the refrigerating cycle operation | movement of Embodiment 1 of this invention. この発明の別の冷凍・空調装置の全体構成図である。It is a whole block diagram of another freezing and air-conditioning apparatus of this invention. この発明の別の冷凍サイクル動作を示すP−h線図である。It is a Ph diagram which shows another refrigeration cycle operation | movement of this invention. この発明の効率向上効果の説明図である。It is explanatory drawing of the efficiency improvement effect of this invention. この発明の別の冷凍・空調装置の構成図である。It is a block diagram of another freezing and air-conditioning apparatus of this invention. この発明の別の冷凍サイクルの暖房運転時の冷凍サイクル動作を示すP−h線図である。It is a Ph diagram which shows the refrigerating cycle operation | movement at the time of the heating operation of another refrigerating cycle of this invention. この発明の別の冷凍サイクルの冷暖同時運転時の冷凍サイクル動作を示すP−h線図である。It is a Ph diagram which shows the refrigerating-cycle operation | movement at the time of simultaneous cooling-heating operation of another refrigerating cycle of this invention. この発明の別の冷凍サイクルの負荷側熱媒体の流通動作を示す図である。It is a figure which shows the distribution | circulation operation | movement of the load side heat carrier of another refrigeration cycle of this invention.

符号の説明Explanation of symbols

1 熱源ユニット、 2 負荷側空間、
3 高段圧縮機、 4 低段圧縮機、
5 空気熱交換器、 6 送風機、
7 高段膨張弁、 8 低段膨張弁、
9 高段熱交換器、 10 低段熱交換器、
11a、11b 流量調整弁、 12a、12b 熱媒体入口ポート、
13a、13b 熱媒体出口ポート、14 熱媒体中間出口ポート、
15、16 室内ユニット、 17a、17b 熱媒体搬送ポンプ、
18 エゼクタ、 19 気液分離器、
20a、20b 四方弁、 21 流路切替手段、
22 レシーバ、 23a、23b 流路切替手段。
1 heat source unit, 2 load side space,
3 High stage compressor, 4 Low stage compressor,
5 Air heat exchanger, 6 Blower,
7 High stage expansion valve, 8 Low stage expansion valve,
9 High stage heat exchanger, 10 Low stage heat exchanger,
11a, 11b Flow rate regulating valve, 12a, 12b Heat medium inlet port,
13a, 13b Heat medium outlet port, 14 Heat medium intermediate outlet port,
15, 16 indoor unit, 17a, 17b heat transfer pump,
18 Ejector, 19 Gas-liquid separator,
20a, 20b four-way valve, 21 flow path switching means,
22 Receiver, 23a, 23b Flow path switching means.

Claims (7)

第1の圧縮機、室外熱交換器、第1の減圧手段、冷媒と熱媒体との熱交換を行う第1の負荷側熱交換器、を順次接続し前記第1の圧縮機から吐出された前記冷媒を前記第1の圧縮機に戻す第1の冷凍サイクルと、
前記室外熱交換器、第2の減圧手段、冷媒と熱媒体との熱交換を行う第2の負荷側熱交換器、第2の圧縮機を順次接続し、前記第2の圧縮機から吐出された冷媒を前記第1の圧縮機に吸入させ合流させる第2の冷凍サイクルと、
前記第1の負荷側熱交換器、前記第2の負荷側熱交換器の順に前記熱媒体が流れるよう配置された熱媒体入口と熱媒体出口と、
前記第1の負荷側熱交換器と前記第2の負荷側熱交換器との間から分岐した一部の熱媒体が流出する熱媒体中間出口と、
負荷側空間に配置され、その一端が前記熱媒体出口につながる第1の室内ユニットと、
前記負荷側空間に配置され、その一端が前記負荷側媒体中間出口につながる第2の室内ユニットと、を備え、
前記第1の室内ユニットを流出した前記熱媒体が前記第2の室内ユニットを流出した前記熱媒体と合流して前記熱媒体入口へと流入することを特徴とする冷凍・空調装置。
The first compressor, the outdoor heat exchanger, the first pressure reducing means, and the first load-side heat exchanger that performs heat exchange between the refrigerant and the heat medium were sequentially connected and discharged from the first compressor. A first refrigeration cycle for returning the refrigerant to the first compressor;
The outdoor heat exchanger, the second pressure reducing means, the second load side heat exchanger for exchanging heat between the refrigerant and the heat medium, and the second compressor are sequentially connected and discharged from the second compressor. A second refrigeration cycle in which the first refrigerant is sucked into the first compressor and merged;
A heat medium inlet and a heat medium outlet arranged so that the heat medium flows in the order of the first load side heat exchanger and the second load side heat exchanger;
A heat medium intermediate outlet through which a part of the heat medium branched from between the first load side heat exchanger and the second load side heat exchanger flows out;
A first indoor unit disposed in the load side space, one end of which is connected to the heat medium outlet;
A second indoor unit disposed in the load side space, one end of which is connected to the load side medium intermediate outlet,
The refrigeration / air conditioning apparatus , wherein the heat medium flowing out of the first indoor unit merges with the heat medium flowing out of the second indoor unit and flows into the heat medium inlet .
前記第1の負荷側熱交換器と前記第2の負荷側熱交換器との間に設けられ、前記第1の負荷側熱交換器から流出した前記熱媒体の一部を分岐する流量調整弁と、
前記第1および第2の室内ユニットの他端が接続され、前記第1および第2の負荷側熱交換器を前記熱媒体が循環するよう構成した負荷側媒体搬送ポンプとを備えたことを特徴とする請求項1に記載の冷凍・空調装置。
A flow rate adjustment valve provided between the first load-side heat exchanger and the second load-side heat exchanger, for branching a part of the heat medium flowing out from the first load-side heat exchanger When,
And a load-side medium transport pump configured to connect the other ends of the first and second indoor units and to circulate the heat medium through the first and second load-side heat exchangers. The refrigeration / air conditioning apparatus according to claim 1 .
前記第1の冷凍サイクルの流通方向を第1の圧縮機、第1の負荷側熱交換器、第1の減圧手段、室外熱交換器、の順に切換える第1の流路切換手段と、前記第2の冷凍サイクルの冷媒流通方向を前記第2の圧縮機、第2の負荷側熱交換器、第2の減圧手段、の順に切換える第2の流路切換手段と、を備えることを特徴とする請求項1または2に記載の冷凍・空調装置。 First flow path switching means for switching the flow direction of the first refrigeration cycle in the order of a first compressor, a first load side heat exchanger, a first pressure reducing means, and an outdoor heat exchanger; And a second flow path switching means for switching the refrigerant flow direction of the second refrigeration cycle in the order of the second compressor, the second load-side heat exchanger, and the second pressure reducing means. The refrigeration / air conditioning apparatus according to claim 1 or 2 . 前記負荷側空間の空気を前記第1の室内ユニットに通過させた後に前記第2の室内ユニットに通過させるように構成したことを特徴とする請求項1乃至3のいずれか一項に記載の冷凍・空調装置。 The refrigeration according to any one of claims 1 to 3, wherein air in the load side space is configured to pass through the first indoor unit and then through the second indoor unit.・ Air conditioning equipment. 冷房運転時あるいは冷暖同時運転時には第1の圧縮機、室外熱交換器、第1の減圧手段、冷媒と熱媒体との熱交換を行う第1の負荷側熱交換器、を順次接続し前記第1の圧縮機から吐出された冷媒を前記第1の圧縮機に戻す第1の冷凍サイクルと、
冷房運転時には前記室外熱交換器、第2の減圧手段、前記冷媒と前記熱媒体との熱交換を行う第2の負荷側熱交換器、第2の圧縮機を順次接続し、前記第2の圧縮機から吐出された冷媒を前記第1の圧縮機に吸入させ合流させる第2の冷凍サイクルと、
暖房運転時には前記第1の冷凍サイクルの冷媒流通方向を第1の圧縮機、第1の負荷側熱交換器、第1の減圧手段、室外熱交換器、の順に切換える第1の流路切換手段と、
暖房運転時あるいは冷暖同時運転時には前記第2の冷凍サイクルの冷媒流通方向を前記第2の圧縮機、第2の負荷側熱交換器、第2の減圧手段、の順に切換える第2の流路切換手段と、
前記第1の負荷側熱交換器および前記第2の負荷側熱交換器と前記熱媒体が循環する配管によって接続され、負荷側空間の空気と前記熱媒体との熱交換を行う第1の室内ユニットと、第2の室内ユニットと、
前記第1の負荷側熱交換器および第2の負荷側熱交換器の間に設けられ、冷房運転時あるいは暖房運転時は第1および第2の負荷側熱交換器に直列に前記熱媒体が流れ、前記第1の室内ユニットに前記熱媒体全量が循環するとともに、前記第2の室内ユニットに前記熱媒体の一部が分岐して循環するようにし、冷暖同時運転時には前記第1の負荷側熱交換器と前記第1の室内ユニットとの間、および前記第2の負荷側熱交換器と前記第2の室内ユニットとの間をそれぞれ独立に前記熱媒体が循環するよう切換える流路設定手段とを備えたことを特徴とする冷凍・空調装置。
During cooling operation or simultaneous cooling and heating operation, the first compressor, the outdoor heat exchanger, the first pressure reducing means, and the first load-side heat exchanger that performs heat exchange between the refrigerant and the heat medium are sequentially connected to each other. A first refrigeration cycle for returning refrigerant discharged from one compressor to the first compressor;
During the cooling operation, the outdoor heat exchanger, the second pressure reducing means, a second load side heat exchanger for exchanging heat between the refrigerant and the heat medium, and a second compressor are sequentially connected, and the second heat exchanger is connected. A second refrigeration cycle for sucking and joining the refrigerant discharged from the compressor into the first compressor;
First flow path switching means for switching the refrigerant flow direction of the first refrigeration cycle in the order of the first compressor, the first load side heat exchanger, the first pressure reducing means, and the outdoor heat exchanger during heating operation. When,
Second flow path switching for switching the refrigerant flow direction of the second refrigeration cycle in the order of the second compressor, the second load-side heat exchanger, and the second pressure reducing means during heating operation or simultaneous cooling and heating operation. Means,
A first chamber that is connected to the first load-side heat exchanger and the second load-side heat exchanger by a pipe through which the heat medium circulates and performs heat exchange between the air in the load-side space and the heat medium. A unit, a second indoor unit,
The heat medium is provided between the first load-side heat exchanger and the second load-side heat exchanger, and the heat medium is connected in series with the first and second load-side heat exchangers during cooling operation or heating operation. The total amount of the heat medium circulates in the first indoor unit, and a part of the heat medium diverges and circulates in the second indoor unit. Flow path setting means for switching the heat medium to circulate independently between the heat exchanger and the first indoor unit and between the second load side heat exchanger and the second indoor unit. And a refrigeration / air-conditioning device.
前記暖房運転時に前記第2の切換手段からの冷媒流通方向は第2の圧縮機、第2の負荷側熱交換器、第2の減圧手段、第1の減圧手段、室外熱交換器の順であって、前記冷暖同時運転時に前記第2の切換手段からの冷媒流通方向は第2の圧縮機、第2の負荷側熱交換器、第2の減圧手段、第1の負荷側熱交換器の順に流れ、前記第1および第2の圧縮機双方に吸入されるよう構成されていることを特徴とする請求項5に記載の冷凍・空調装置。During the heating operation, the refrigerant flow direction from the second switching means is in the order of the second compressor, the second load side heat exchanger, the second pressure reducing means, the first pressure reducing means, and the outdoor heat exchanger. In the simultaneous cooling and heating operation, the refrigerant flow direction from the second switching means is that of the second compressor, the second load side heat exchanger, the second pressure reducing means, and the first load side heat exchanger. 6. The refrigeration / air conditioning apparatus according to claim 5, wherein the refrigeration / air conditioning apparatus is configured to flow in order and to be sucked into both the first and second compressors. 前記第1の冷凍サイクルおよび前記第2の冷凍サイクルを循環する冷媒が、非共沸混合冷媒であることを特徴とする請求項1乃至6のいずれか一項に記載の冷凍・空調装置。 The refrigeration / air-conditioning apparatus according to any one of claims 1 to 6, wherein the refrigerant circulating through the first refrigeration cycle and the second refrigeration cycle is a non-azeotropic refrigerant mixture.
JP2004130181A 2004-04-26 2004-04-26 Refrigeration and air conditioning equipment Expired - Lifetime JP4258425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130181A JP4258425B2 (en) 2004-04-26 2004-04-26 Refrigeration and air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130181A JP4258425B2 (en) 2004-04-26 2004-04-26 Refrigeration and air conditioning equipment

Publications (2)

Publication Number Publication Date
JP2005308375A JP2005308375A (en) 2005-11-04
JP4258425B2 true JP4258425B2 (en) 2009-04-30

Family

ID=35437338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130181A Expired - Lifetime JP4258425B2 (en) 2004-04-26 2004-04-26 Refrigeration and air conditioning equipment

Country Status (1)

Country Link
JP (1) JP4258425B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050001A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP5375919B2 (en) * 2011-09-30 2013-12-25 ダイキン工業株式会社 heat pump
JP5790675B2 (en) * 2013-02-12 2015-10-07 ダイキン工業株式会社 heat pump
WO2021065944A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Air conditioning apparatus

Also Published As

Publication number Publication date
JP2005308375A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
EP1816416B1 (en) Air conditioner
US20150052927A1 (en) Refrigeration apparatus
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
KR20090082236A (en) Air conditioner
JP2006052934A (en) Heat exchange apparatus and refrigerating machine
JP2010133606A (en) Ejector type refrigerating cycle
JP2009229051A (en) Refrigerating device
KR20120049440A (en) Air conditioner
JP2006071137A (en) Refrigeration unit
JP5359231B2 (en) Ejector refrigeration cycle
JP6880204B2 (en) Air conditioner
JP4118254B2 (en) Refrigeration equipment
JP2017101855A (en) Air conditioning system
JP2003130492A (en) Air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2006258330A (en) Refrigerating plant
KR20090015148A (en) Refrigeration device
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2001235245A (en) Freezer
JP4767340B2 (en) Heat pump control device
JPWO2018055740A1 (en) Heat exchanger and refrigeration cycle device
JP5895662B2 (en) Refrigeration equipment
JP4258425B2 (en) Refrigeration and air conditioning equipment
JP2017101854A (en) Air conditioning system
JP2013053849A (en) Heat pump device, and outdoor unit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term