[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4254448B2 - Thermal storage unit setting method for constant temperature control unit - Google Patents

Thermal storage unit setting method for constant temperature control unit Download PDF

Info

Publication number
JP4254448B2
JP4254448B2 JP2003331976A JP2003331976A JP4254448B2 JP 4254448 B2 JP4254448 B2 JP 4254448B2 JP 2003331976 A JP2003331976 A JP 2003331976A JP 2003331976 A JP2003331976 A JP 2003331976A JP 4254448 B2 JP4254448 B2 JP 4254448B2
Authority
JP
Japan
Prior art keywords
storage body
heat storage
temperature
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003331976A
Other languages
Japanese (ja)
Other versions
JP2005098589A (en
Inventor
真 田中
豊 下川
龍介 後藤田
弘行 蒲生
芳宏 木元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003331976A priority Critical patent/JP4254448B2/en
Publication of JP2005098589A publication Critical patent/JP2005098589A/en
Application granted granted Critical
Publication of JP4254448B2 publication Critical patent/JP4254448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は恒温制御ユニットの蓄熱体設定方法に係り、特に恒温チャンバに供給される流体の温度変動を小さくするのに好適な恒温制御ユニットの蓄熱体設定方法に関する。 The present invention relates to a heat storage body setting method for a constant temperature control unit, and more particularly, to a heat storage body setting method for a constant temperature control unit suitable for reducing temperature fluctuation of a fluid supplied to a constant temperature chamber.

高精度のレーザ測定やレーザ加工を行う場合、測定や加工を行う恒温チャンバ内の空気の温度、湿度および圧力の変化によりレーザ光の光路が変化することがある。この光路の変化を防止するために、恒温チャンバ内の空気の温度、湿度および圧力を一定に保つ必要がある。そして空気の温度を一定に保つために恒温チャンバには、恒温チャンバ内の空気を循環させるとともに、前記空気の温度を一定にする恒温制御ユニットが設けられている。この恒温制御ユニットは、恒温チャンバの排気側から冷却コイル、ファンおよびヒータが、ダクトを介して順に接続され、前記ヒータの後段を恒温チャンバの供給側に接続した構成である。そしてチャンバから排気された空気は冷却コイルで冷却された後にファンで送気され、送気された空気はヒータで設定温度まで暖められて恒温チャンバに供給される。この構成において、ヒータで空気を暖めると温度に変動が生じてしまうが、ヒータを高精度に制御すると±0.01℃程度まで温度変動を小さくできる。   When performing highly accurate laser measurement or laser processing, the optical path of the laser beam may change due to changes in the temperature, humidity, and pressure of the air in the constant temperature chamber in which measurement or processing is performed. In order to prevent this change in the optical path, it is necessary to keep the temperature, humidity and pressure of the air in the constant temperature chamber constant. In order to keep the temperature of the air constant, the constant temperature chamber is provided with a constant temperature control unit that circulates the air in the constant temperature chamber and keeps the temperature of the air constant. This constant temperature control unit has a configuration in which a cooling coil, a fan, and a heater are connected in order from the exhaust side of the constant temperature chamber via a duct, and the latter stage of the heater is connected to the supply side of the constant temperature chamber. The air exhausted from the chamber is cooled by a cooling coil and then supplied by a fan. The supplied air is heated to a set temperature by a heater and supplied to a constant temperature chamber. In this configuration, when the air is heated by the heater, the temperature fluctuates. However, if the heater is controlled with high accuracy, the temperature fluctuation can be reduced to about ± 0.01 ° C.

また恒温チャンバ内に空気が供給される供給口の前段に、多数の小通路を束ねるとともに、その小通路の少なくとも一部を、その空気取入れ口と出口の位置が互いに変位するように傾斜させて積層した気流混合手段と、通路断面を塞ぐ大きさのフレーム枠の内側に空間率の大きな充填物を詰めた細混合手段を設けた構成の発明がある。この構成は、通路内の離れた位置にある気流同士を互いに混合するとともに、細断面の気流の温度分布をなくす作用を有し、空間的および時間的に±0.01℃の温度分布を達成したものである(特許文献1)。   In addition, a number of small passages are bundled in front of the supply port through which air is supplied into the constant temperature chamber, and at least a part of the small passages are inclined so that the positions of the air intake port and the outlet are displaced from each other. There is an invention in which a laminated airflow mixing means and a fine mixing means in which a filling material having a large space ratio is packed inside a frame frame sized to block the passage cross section are available. This configuration has the effect of mixing the airflows at distant positions in the passage with each other and eliminating the temperature distribution of the airflow in the narrow cross section, achieving a temperature distribution of ± 0.01 ° C in space and time (Patent Document 1).

また曲がりダクト内に、該ダクト内を流れる空気の流れ方向に沿って曲がり管を積層させた構成の発明がある。この構成は曲がりダクトの剛性を高めるとともに、曲がりダクト内を流れる空気の大きな2次流れを防止する効果を有するものであるが、ダクト内を流れる空気の温度変動を小さくすることを目的とするものでない(特許文献2)。   Further, there is an invention in which a bent pipe is laminated in a bent duct along the flow direction of air flowing in the duct. This structure has the effect of increasing the rigidity of the bent duct and preventing a large secondary flow of air flowing in the bent duct, but it is intended to reduce the temperature fluctuation of the air flowing in the duct. Not (Patent Document 2).

特開平6−66434号公報JP-A-6-66434 特開平11−157445号公報Japanese Patent Laid-Open No. 11-157445

恒温制御ユニットのヒータを制御する場合、ヒータの後段に設けられている温度センサにおいて空気の温度を計測し、この計測した温度に基づいて制御機器がヒータを制御している。ところが、ヒータから出力される空気の温度は時間的に変動しているために、温度を計測してからヒータを制御し、そして空気を暖める構成では時間的な応答性が悪く、ヒータを通過している空気に対して適切な温度制御を行うことができない問題点があった。またヒータから出力される空気の温度は様々な周波数で変動しているので、制御機器は温度変動の生じる全ての周波数に対応できない問題点があった。このため、制御機器を用いる恒温制御ユニットでは、空気の温度変動を±0.001℃以下にする高精度の温度制御ができない問題点があった。   When controlling the heater of the constant temperature control unit, the temperature of the air is measured by a temperature sensor provided at the subsequent stage of the heater, and the control device controls the heater based on the measured temperature. However, since the temperature of the air output from the heater fluctuates with time, the heater is controlled after the temperature is measured, and the air is warmed. However, there was a problem that proper temperature control could not be performed on the air. In addition, since the temperature of the air output from the heater fluctuates at various frequencies, there is a problem that the control device cannot cope with all the frequencies where the temperature fluctuates. For this reason, in the constant temperature control unit using a control apparatus, there existed a problem that the highly accurate temperature control which makes the temperature fluctuation of air below ± 0.001 degreeC cannot be performed.

また特許文献1に記載された発明は、気流混合手段と細混合手段でダクト内を流れる空気を混合するだけなので、温度変動を±0.001℃以下まで小さくすることができない。   Moreover, since the invention described in Patent Document 1 only mixes the air flowing in the duct by the airflow mixing means and the fine mixing means, the temperature fluctuation cannot be reduced to ± 0.001 ° C. or less.

本発明は、上記問題点を解決するためになされたもので、恒温チャンバに供給される流体の温度変動を極めて小さくする恒温制御ユニットの蓄熱体設定方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat storage body setting method for a constant temperature control unit that extremely reduces the temperature fluctuation of the fluid supplied to the constant temperature chamber.

上記目的を達成するために、本発明に係る恒温制御ユニットの蓄熱体設定方法は、温度調整された流体を恒温チャンバに供給する流体通路に配置される蓄熱体を有する恒温制御ユニットの設定方法であって、蓄熱体の伝熱面積や熱容量を変化させたときに、温度変動が小さくなる周波数域を予め調べておき、温度変動を小さくしたい温調流体の温度周波数領域の高い周波数領域に対応させて熱容量の値にて蓄熱体を選定するとともに、低い周波数領域に対応させて伝熱面積の値にて蓄熱体を選定して前記流体通路に配置することを特徴としている。 In order to achieve the above object, a method for setting a heat storage body of a constant temperature control unit according to the present invention is a method for setting a constant temperature control unit having a heat storage body arranged in a fluid passage for supplying a temperature-controlled fluid to a constant temperature chamber. Therefore, when changing the heat transfer area and heat capacity of the heat storage body, check the frequency range where the temperature fluctuation is small in advance and make it correspond to the high frequency area of the temperature control fluid of the temperature control fluid you want to reduce the temperature fluctuation. with selecting the regenerator at the value of the heat capacity Te, it is characterized in that by selecting a thermal storage medium disposed in said fluid passage so as to correspond to a lower frequency region in the value of heat transfer area.

温度調整された流体であっても僅かな温度変動を有しており、かつ様々な周波数において変動している。この流体が多孔通路部材を通過するときに、流体と蓄熱体の間で熱交換が行われる。この熱交換は流体の温度が高い場合には蓄熱体に対して熱を放出し、流体の温度が低い場合には蓄熱体から熱を吸収する。この熱交換により流体の温度がより一定となり、流体の温度変動を小さくすることができる。なお蓄熱体の熱容量をより大きくすると、低い周波数側の温度変動を小さくすることができ、蓄熱体の表面積をより大きくすると、高い周波数側の温度変動を小さくすることができる傾向がある。このため温調流体の温度変動周波数に対応して蓄熱体の熱容量と表面積について選定すると、前記温調流体の温度変動を小さくすることができる。   Even temperature-controlled fluid has slight temperature fluctuations and fluctuates at various frequencies. When the fluid passes through the porous passage member, heat exchange is performed between the fluid and the heat storage body. This heat exchange releases heat to the heat storage body when the temperature of the fluid is high, and absorbs heat from the heat storage body when the temperature of the fluid is low. By this heat exchange, the temperature of the fluid becomes more constant, and the temperature fluctuation of the fluid can be reduced. If the heat capacity of the heat storage body is increased, the temperature fluctuation on the low frequency side can be reduced, and if the surface area of the heat storage body is increased, the temperature fluctuation on the high frequency side tends to be reduced. For this reason, if the heat capacity and surface area of the heat storage body are selected corresponding to the temperature fluctuation frequency of the temperature control fluid, the temperature fluctuation of the temperature control fluid can be reduced.

また前記蓄熱体は熱容量および表面積が異なる複数材料から形成し、これを前記流体通路に直列配置したことを特徴としている。低い周波数で変動する流体は、蓄熱体の表面積の大きさよりも熱容量の大きさの影響を受け易い。また高い周波数で変動する流体は、蓄熱体の熱容量の大きさよりも表面積の大きさの影響を受け易い。すなわち、より大きな熱容量を持つ蓄熱体を用いると低い周波数側の温度変動を小さくすることができ、より大きな表面積を持つ蓄熱体を用いると高い周波数側の温度変動を小さくすることができる。このため熱容量の大きな蓄熱体と表面積の大きな蓄熱体を直列に配置すると、広い周波数範囲において温度変動を小さくすることができる。 The heat storage body is formed of a plurality of materials having different heat capacities and surface areas, and is arranged in series in the fluid passage. A fluid that fluctuates at a low frequency is more susceptible to the heat capacity than the surface area of the heat storage body. Moreover, the fluid which fluctuates at a high frequency is more easily affected by the size of the surface area than the size of the heat capacity of the heat storage body. That is, if a heat storage body having a larger heat capacity is used, temperature fluctuation on the low frequency side can be reduced, and if a heat storage body having a larger surface area is used, temperature fluctuation on the high frequency side can be reduced. For this reason, if a heat storage body with a large heat capacity and a heat storage body with a large surface area are arranged in series, temperature fluctuations can be reduced over a wide frequency range.

また前記蓄熱体は熱容量が異なる複数材料から形成し、これを前記流体通路の同一断面内に複合配置したことを特徴としている。流体通路内を流れる流体は、流体通路の断面方向に沿って異なる温度変動や、温度変動周波数を持つ場合がある。このとき前記温度変動や前記温度変動周波数に合わせて同一断面内で熱容量の異なる材料を蓄熱体に配置すると、同一断面内における温度変動や温度変動周波数の分布がなくなる。これにより同一断面内において均一な流体になるとともに、流体が持つ温度変動を小さくすることができる。 The heat storage body is formed of a plurality of materials having different heat capacities, and is compositely arranged in the same cross section of the fluid passage. The fluid flowing in the fluid passage may have different temperature fluctuations or temperature fluctuation frequencies along the cross-sectional direction of the fluid passage. At this time, if materials having different heat capacities in the same cross section are arranged on the heat storage body in accordance with the temperature fluctuation and the temperature fluctuation frequency, the distribution of the temperature fluctuation and the temperature fluctuation frequency in the same cross section is eliminated. As a result, the fluid becomes uniform in the same cross section, and the temperature variation of the fluid can be reduced.

上述した本発明によれば、温度調整された流体を恒温チャンバに供給する流体通路に配置される蓄熱体を有する恒温制御ユニットであって、前記蓄熱体を多孔通路部材により形成するとともに、温調流体の温度変動周波数に対応させて前記蓄熱体の熱容量の値と前記多孔通路部材の形状とを選定してなる構成としたので、蓄熱体を通過する流体の温度変動を極めて小さくすることができる。
According to the present invention described above, there is provided a constant temperature control unit having a heat storage body disposed in a fluid passage for supplying a temperature-controlled fluid to a constant temperature chamber, wherein the heat storage body is formed by a porous passage member and temperature control is performed. Since the heat capacity value of the heat storage body and the shape of the porous passage member are selected corresponding to the temperature fluctuation frequency of the fluid, the temperature fluctuation of the fluid passing through the heat storage body can be extremely reduced. .

以下に、本発明に係る恒温制御ユニットの蓄熱体設定方法について説明する。なお、以下に記載する実施形態では、流体として空気を用いた構成として説明するが、これは本発明の実施の一形態にすぎず、本発明はこれに限定されるものでない。 Below, the thermal storage body setting method of the constant temperature control unit which concerns on this invention is demonstrated. In addition, although embodiment described below demonstrates as a structure using air as a fluid, this is only one Embodiment of this invention, and this invention is not limited to this.

まず、第1の実施形態について説明する。図1に第1の実施形態に係る恒温制御ユニットの説明図を示す。恒温制御ユニット20は恒温チャンバ22、冷却コイル24、ファン26およびヒータ28が流体通路30(ダクト30)により接続され、これらを空気が循環する構成である。すなわち、恒温チャンバ22から空気が排出される出力側に、排出された空気を冷却する冷却コイル24が設けられている。この冷却コイル24はチラー32と配管34で接続され、これらの内部を冷媒が循環する構成である。前記冷却コイル24の後段にはファン26が設けられ、冷却コイル24を通過した空気をファン26で後段側へ送気する構成となっている。そしてファン26の後段にはヒータ28が設けられ、該ヒータ28で空気を予め設定された温度まで加熱して温度調整する構成である。本実施形態ではヒータ28を2段設けた構成にしているが、恒温制御ユニット20の設計によってはヒータを1段にしてもよく、3段以上設けてもよい。なおヒータを通過した空気は温度調整されているが、微小な温度変動を有している。この空気には、早く温度変動する場合や遅く変動する場合など、様々な温度変動の速さを持ったものが組み合わされている。そして温度変動の速さは温度変動周波数として表すことができる。   First, the first embodiment will be described. FIG. 1 is an explanatory diagram of a constant temperature control unit according to the first embodiment. The constant temperature control unit 20 is configured such that a constant temperature chamber 22, a cooling coil 24, a fan 26 and a heater 28 are connected by a fluid passage 30 (duct 30), and air is circulated through them. That is, a cooling coil 24 for cooling the discharged air is provided on the output side where the air is discharged from the constant temperature chamber 22. The cooling coil 24 is connected to the chiller 32 by a pipe 34, and the refrigerant circulates inside these. A fan 26 is provided at the subsequent stage of the cooling coil 24, and the air passing through the cooling coil 24 is sent to the subsequent stage side by the fan 26. A heater 28 is provided at the subsequent stage of the fan 26, and the air is heated to a preset temperature by the heater 28 to adjust the temperature. In this embodiment, the heater 28 is provided in two stages. However, depending on the design of the constant temperature control unit 20, the heater may be provided in one stage, or three or more stages may be provided. The temperature of the air that has passed through the heater is adjusted, but has a slight temperature fluctuation. This air is combined with air having various speeds of temperature fluctuation, such as when the temperature fluctuates quickly or fluctuates slowly. The speed of temperature fluctuation can be expressed as a temperature fluctuation frequency.

そしてヒータ28の後段のダクト30内には、空気の温度変動を小さくするための蓄熱体10が設けられている。図2に第1の実施形態に係る蓄熱体の説明図を示す。この蓄熱体10は複数の多孔通路部材12からなり、この多孔通路部材12に設けられた孔を空気が通過して、該空気と蓄熱体10が熱交換する構成となる。このため蓄熱体10は空気と熱交換し易くするために、表面積(伝熱面積)の大きいことが好ましい。すなわち、小さな孔を複数有してなる多孔通路部材12が好ましい。この多孔通路部材12には、例えば複数のパイプ部材の側面を密接して形成したもの(図2(a)参照)、ハニカム構造の部材(図2(b)参照)、平板部材を格子状に形成したもの(図2(c)参照)、多数の孔を有するとともに密度が疎になる多孔質部材等が用いられる。   And in the duct 30 of the back | latter stage of the heater 28, the thermal storage body 10 for making temperature fluctuation of air small is provided. FIG. 2 is an explanatory diagram of the heat storage body according to the first embodiment. The heat storage body 10 is composed of a plurality of porous passage members 12, and air passes through holes provided in the porous passage member 12, so that the air and the heat storage body 10 exchange heat. For this reason, it is preferable that the heat storage body 10 has a large surface area (heat transfer area) in order to facilitate heat exchange with air. That is, the porous passage member 12 having a plurality of small holes is preferable. In this porous passage member 12, for example, the side surfaces of a plurality of pipe members are formed in close contact (see FIG. 2 (a)), a honeycomb structure member (see FIG. 2 (b)), and a flat plate member in a lattice shape. A formed member (see FIG. 2C), a porous member having a large number of holes and a low density is used.

また蓄熱体10は、空気の温度が高ければ熱を吸収し、空気の温度が低ければ熱を放出する構成なので、蓄熱体10自体の温度が変化しにくいことが好ましい。このため、蓄熱体10には大きな熱容量を持つ材料、例えばアルミニウムや銅等の金属等が用いられる。ところで、蓄熱体10は温度変動の生じる広い周波数範囲にわたって、温度変動を小さくすることができない。すなわち蓄熱体10の形状や材料によって伝熱面積や熱容量が異なり、この伝熱面積や熱容量によって温度変動を小さくすることのできる周波数範囲が異なるのである。このため、空気の温度変動を小さくしたい周波数に応じて蓄熱体10を選定しなければならない。これは様々な蓄熱体10、すなわち蓄熱体10の伝熱面積や熱容量を変化させたときに、温度変動が小さくなる周波数域を予め調べておき、この結果を利用して温度変動を小さくしたい周波数に対応させ、蓄熱体10の伝熱面積の大きさと蓄熱体10の熱容量の値を選定すればよい。なお低い周波数で変動する空気は、蓄熱体10の伝熱面積の大きさよりも熱容量の大きさの影響を受け易く、高い周波数で変動する空気は、蓄熱体の熱容量の大きさよりも伝熱面積の大きさの影響を受け易い傾向がある。このため、低い周波数側の温度変動を小さくしたい場合には、熱容量のより大きな蓄熱体10を選定することになり、高い周波数側の温度変動を小さくしたい場合には、伝熱面積の大きな蓄熱体10を選定することになる。   Moreover, since the heat storage body 10 absorbs heat when the temperature of air is high and releases heat when the temperature of air is low, it is preferable that the temperature of the heat storage body 10 itself hardly changes. Therefore, a material having a large heat capacity, such as a metal such as aluminum or copper, is used for the heat storage body 10. By the way, the heat storage body 10 cannot reduce temperature fluctuation over a wide frequency range in which temperature fluctuation occurs. That is, the heat transfer area and the heat capacity are different depending on the shape and material of the heat storage body 10, and the frequency range in which the temperature fluctuation can be reduced is different depending on the heat transfer area and the heat capacity. For this reason, you have to select the thermal storage body 10 according to the frequency which wants to make temperature fluctuation of air small. This is because the frequency range in which the temperature fluctuation is reduced when the heat storage area 10 or the heat capacity of the heat storage body 10 is changed is examined in advance, and the frequency at which the temperature fluctuation is desired to be reduced using this result. The size of the heat transfer area of the heat storage body 10 and the value of the heat capacity of the heat storage body 10 may be selected. Note that air that fluctuates at a low frequency is more susceptible to the heat capacity than the heat transfer area of the heat storage body 10, and air that fluctuates at a high frequency has a heat transfer area larger than the heat capacity of the heat storage body. There is a tendency to be easily affected by size. For this reason, when it is desired to reduce the temperature fluctuation on the low frequency side, the heat storage body 10 having a larger heat capacity is selected. When it is desired to reduce the temperature fluctuation on the high frequency side, the heat storage body having a large heat transfer area is selected. 10 will be selected.

そして、蓄熱体10はダクト30の断面方向の全面に設けられている。すなわち、ダクト30を通る空気は全て蓄熱体10を通過する構成である。なお蓄熱体10をダクト30へ直接に配設してもよく、またダクト30の断面外周の大きさに一致する枠部を形成して、当該枠部の中に蓄熱体を配設した枠型蓄熱体としてもよい。枠型蓄熱体を形成すると、ダクト30への枠型蓄熱体の着脱が容易となり、蓄熱体の交換が容易となる。   The heat storage body 10 is provided on the entire surface of the duct 30 in the cross-sectional direction. That is, all the air passing through the duct 30 passes through the heat storage body 10. The heat accumulator 10 may be disposed directly on the duct 30, or a frame shape in which a frame portion corresponding to the size of the outer periphery of the cross section of the duct 30 is formed and the heat accumulator is disposed in the frame portion. It is good also as a heat storage body. When the frame-type heat storage body is formed, the frame-type heat storage body can be easily attached to and detached from the duct 30, and the heat storage body can be easily replaced.

また発明者は空気の温度変動を小さくするために検討を重ね、蓄熱体10の長さを長くすれば、温度変動をより小さくできることを見出している。また蓄熱体10の熱容量が大きければ大きい程、低周波の温度変動を小さくできることを見出している。また蓄熱体10の伝熱面積が大きければ大きい程、すなわち蓄熱体10の長さが長い程または多孔通路部材12が細く密に配置されている程、単位時間当たりの空気と蓄熱体10の熱交換の割合が大きくなり、高周波の温度変動を小さくできることを見出している。   Further, the inventor has repeatedly studied in order to reduce the temperature fluctuation of the air, and has found that if the length of the heat storage body 10 is increased, the temperature fluctuation can be further reduced. It has also been found that the greater the heat capacity of the heat storage body 10, the smaller the low frequency temperature fluctuation. Further, the larger the heat transfer area of the heat storage body 10, that is, the longer the heat storage body 10 is, or the more closely the porous passage member 12 is arranged densely, the more the air per unit time and the heat of the heat storage body 10 are. It has been found that the exchange rate is increased and the high-frequency temperature fluctuation can be reduced.

次に、恒温制御ユニット20の作用について説明する。恒温チャンバ22の出力側から排出された空気は冷却コイル24で前記溶媒と熱交換され、一定温度まで冷却される。そして冷却された空気はファン26によりヒータ28へ送気される。ヒータ28では空気を設定温度まで暖めて温度調整したのち出力する。このときヒータ28から出力される空気は、微小な温度変動を持って出力され、様々な温度変動周波数を持っている。図3に温度変動と時間の関係を示す。図3の最上段に示すグラフはヒータ28を通過した直後の空気の温度変動を示す。この図より、ヒータ28から出力される空気の温度変動は、時間が経過しても一定でなく、様々な振幅を持つことがわかる。また図4に空気がヒータを通過した直後の温度変動の強度と周波数の関係を示す。図4は各周波数における温度変動の大きさを示すものであり、ヒータ28を通過した直後の空気は広範囲な周波数で大きな温度変動の強度を持つことがわかる。   Next, the operation of the constant temperature control unit 20 will be described. The air discharged from the output side of the constant temperature chamber 22 is heat-exchanged with the solvent by the cooling coil 24 and cooled to a constant temperature. The cooled air is sent to the heater 28 by the fan 26. The heater 28 warms the air to a set temperature and adjusts the temperature before outputting. At this time, the air output from the heater 28 is output with a minute temperature fluctuation and has various temperature fluctuation frequencies. FIG. 3 shows the relationship between temperature fluctuation and time. The graph shown at the top of FIG. 3 shows the temperature variation of the air immediately after passing through the heater 28. From this figure, it can be seen that the temperature variation of the air output from the heater 28 is not constant over time and has various amplitudes. FIG. 4 shows the relationship between the frequency of the temperature fluctuation immediately after the air passes through the heater and the frequency. FIG. 4 shows the magnitude of the temperature fluctuation at each frequency, and it can be seen that the air immediately after passing through the heater 28 has a large temperature fluctuation intensity in a wide range of frequencies.

そしてヒータ28から出力された空気は、蓄熱体10を構成する多孔通路部材12の孔を通過する。このとき、空気の温度が高い場合には蓄熱体10に対して熱を放出し、空気の温度が低い場合には蓄熱体10から熱を吸収する。この熱交換により空気の温度変動を小さくする。図3において、上から2段目のグラフは熱容量が大きい蓄熱体を通過した空気の温度変動と時間の関係を示す。また3段目のグラフは伝熱面積が大きい蓄熱体を通過した空気の温度変動と時間の関係を示す。これらのグラフより、蓄熱体10を通過した空気は、ヒータを通過した直後の空気に比べて温度変動が小さくなっていることがわかる。   The air output from the heater 28 passes through the holes of the porous passage member 12 constituting the heat storage body 10. At this time, when the temperature of the air is high, heat is released to the heat storage body 10, and when the temperature of the air is low, the heat is absorbed from the heat storage body 10. This heat exchange reduces the temperature fluctuation of the air. In FIG. 3, the second graph from the top shows the relationship between the temperature variation of the air passing through the heat storage body having a large heat capacity and the time. The graph in the third row shows the relationship between the temperature variation of the air passing through the heat storage body having a large heat transfer area and time. From these graphs, it can be seen that the air passing through the heat accumulator 10 has a smaller temperature fluctuation than the air immediately after passing through the heater.

図5に熱容量が大きい蓄熱体を通過した空気の温度変動の強度と周波数の関係を示す。また図6に伝熱面積が大きい蓄熱体を通過した空気の温度変動の強度と周波数の関係を示す。これらの図より、熱容量が大きい蓄熱体または伝熱面積が大きい蓄熱体を通過した空気の温度変動の強度は、ヒータ28を通過した直後の空気の温度変動に比べて、すべての周波数において空気の温度変動が小さくなっていることがわかる。特に、低い周波数側における空気の温度変動の強度は、伝熱面積が大きい蓄熱体を用いた場合に比べて、熱容量が大きい蓄熱体を用いた場合の方が小さくなっていることがわかる。また、高い周波数側における空気の温度変動の強度は、熱容量が大きい蓄熱体を用いた場合に比べて、伝熱面積が大きい蓄熱体を用いた場合の方が小さくなっていることがわかる。   FIG. 5 shows the relationship between the intensity of the temperature fluctuation of the air passing through the heat storage body having a large heat capacity and the frequency. FIG. 6 shows the relationship between the frequency of the temperature fluctuation of the air passing through the heat storage body having a large heat transfer area and the frequency. From these figures, the intensity of the temperature fluctuation of the air that has passed through the heat accumulator having a large heat capacity or the heat accumulating area having a large heat transfer area is greater than the temperature fluctuation of the air immediately after passing through the heater 28 at all frequencies. It can be seen that the temperature fluctuation is small. In particular, it can be seen that the intensity of the temperature fluctuation of the air on the low frequency side is smaller in the case of using the heat storage body having a large heat capacity than in the case of using the heat storage body having a large heat transfer area. Moreover, it turns out that the intensity | strength of the temperature fluctuation of the air in the high frequency side is smaller at the time of using the thermal storage body with a large heat-transfer area compared with the case where the thermal storage body with a large heat capacity is used.

図7に蓄熱体10の入口と出口における温度変動比と周波数との関係を示す。そして図7からも、低い周波数側では熱容量が大きい蓄熱体を用いた方が温度変動を小さくするのに有効であり、高い周波数側では伝熱面積が大きい蓄熱体を用いた方が温度変動を小さくするのに有効であることがわかる。
そして蓄熱体10を通過して温度変動が小さくなった空気は恒温チャンバ22に供給される。
FIG. 7 shows the relationship between the temperature variation ratio and the frequency at the inlet and outlet of the heat storage body 10. Also from FIG. 7, it is more effective to reduce the temperature fluctuation by using a heat storage body having a large heat capacity on the low frequency side, and using the heat storage body having a large heat transfer area on the high frequency side. It turns out that it is effective to make small.
Then, the air that has passed through the heat storage body 10 and has a small temperature fluctuation is supplied to the constant temperature chamber 22.

このような構成によれば、恒温チャンバ22に空気が供給される供給口の前段に蓄熱体10を設け、該蓄熱体10にヒータ28から出力した空気を通して熱交換をさせることにより、空気の温度変動を小さくすることができる。これにより温度変動の小さい空気を恒温チャンバ22に供給することができる。また蓄熱体10の長さを長くすれば、温度変動をより小さくすることができる。   According to such a configuration, the heat storage body 10 is provided in the front stage of the supply port through which air is supplied to the constant temperature chamber 22, and heat exchange is performed through the air output from the heater 28 to the heat storage body 10, thereby Variation can be reduced. Thereby, air with a small temperature fluctuation can be supplied to the constant temperature chamber 22. Further, if the length of the heat storage body 10 is increased, the temperature fluctuation can be further reduced.

また空気と蓄熱体10の熱交換により空気の温度変動を小さくできるので、広範囲な周波数の温度変動に対応することができる。そして熱容量のより大きい材料からなる蓄熱体を用いれば低周波の温度変動を小さくすることができ、伝熱面積のより大きい材料からなる蓄熱体を用いれば高周波の温度変動を小さくすることができる。   Further, since the temperature fluctuation of the air can be reduced by the heat exchange between the air and the heat storage body 10, it is possible to cope with the temperature fluctuation of a wide range of frequencies. If a heat storage body made of a material having a larger heat capacity is used, low-frequency temperature fluctuations can be reduced, and if a heat storage body made of a material having a larger heat transfer area is used, high-frequency temperature fluctuations can be reduced.

また蓄熱体10はダクト30の断面の全面に設けられているので、蓄熱体10を通過する空気の温度がダクト30の断面方向に異なる温度分布を有することがない。このため温度がダクト30の断面方向に均一な空気を恒温チャンバ22へ供給することができる。   Moreover, since the heat storage body 10 is provided on the entire cross section of the duct 30, the temperature of the air passing through the heat storage body 10 does not have a different temperature distribution in the cross section direction of the duct 30. Therefore, air having a uniform temperature in the cross-sectional direction of the duct 30 can be supplied to the constant temperature chamber 22.

なお本実施形態では蓄熱体10を同一の材料、断面形状および寸法として形成しているが、蓄熱体10を熱容量の異なる複数材料から形成し、若しくは伝熱面積を変更してダクト30の同一断面内に複合配置することもできる。これはヒータ28から出力される空気がダクト30の断面方向に対して異なる温度変動の分布を有する場合、若しくはダクト30の断面方向に対して異なる温度変動周波数の分布を有する場合に用いられる。これにより、蓄熱体から出力される空気の温度変動を小さくできるとともに、ダクト30の断面方向に対する分布を一定にすることができる。   In addition, in this embodiment, although the heat storage body 10 is formed as the same material, cross-sectional shape, and a dimension, the heat storage body 10 is formed from several materials from which heat capacity differs, or the heat transfer area is changed, and the same cross section of the duct 30 It can also be arranged in a composite manner. This is used when the air output from the heater 28 has a different temperature fluctuation distribution with respect to the cross-sectional direction of the duct 30, or when the air fluctuation frequency has a different distribution with respect to the cross-sectional direction of the duct 30. Thereby, while the temperature fluctuation of the air output from a thermal storage body can be made small, distribution with respect to the cross-sectional direction of the duct 30 can be made constant.

次に、第2の実施形態について説明する。発明者は、恒温チャンバ22に供給される空気の温度変動をさらに小さくするために検討を重ね、1つの蓄熱体10を用いて温度変動を小さくしたときに得られる温度変動の値から、さらに温度変動を小さくする、すなわち温度変動を±0.001℃以下にするには、蓄熱体10の長さを3倍以上長くしなければならないことを見出した。しかし蓄熱体10の長さをこれ以上長くすることは、恒温制御ユニット20の構成上できなかった。すなわち、蓄熱体10の熱容量と伝熱面積を同時に大きく取ることは困難であった。このため、低い周波数側の温度変動を小さくする熱容量が大きい蓄熱体と、高い周波数側の温度変動を小さくする伝熱面積が大きい蓄熱体を直列に配設して、広い周波数範囲にわたって温度変動を小さくするとともに、蓄熱体の小型化することを行った。   Next, a second embodiment will be described. The inventor has repeatedly studied to further reduce the temperature fluctuation of the air supplied to the constant temperature chamber 22, and further increases the temperature from the value of the temperature fluctuation obtained when the temperature fluctuation is reduced using one heat storage body 10. It has been found that the length of the heat storage element 10 must be increased by three times or more in order to reduce the fluctuation, that is, to make the temperature fluctuation ± 0.001 ° C. or less. However, it is impossible to make the length of the heat storage body 10 longer than that in the configuration of the constant temperature control unit 20. That is, it is difficult to increase the heat capacity and heat transfer area of the heat storage body 10 at the same time. For this reason, a heat storage body with a large heat capacity that reduces temperature fluctuations on the low frequency side and a heat storage body with a large heat transfer area that reduces temperature fluctuations on the high frequency side are arranged in series so that temperature fluctuations can be achieved over a wide frequency range. While reducing the size, the heat storage body was reduced in size.

第2の実施形態に係る恒温制御ユニット20において、ヒータ28の後段のダクト30内には、熱容量が大きい蓄熱体と伝熱面積が大きい蓄熱体が直列に配設され、それぞれ前段の蓄熱体10aおよび後段の蓄熱体10bのどちらかを構成している。蓄熱体10a,10bは第1の実施形態と同じ構成でダクト30内に配設されている。これらの蓄熱体10a,10bは、熱容量や伝熱面積によって周波数に応じた温度変動が減衰するので、温度変動を小さくしたい周波数に応じて適切な蓄熱体を選定する。この選定は、使用する蓄熱体と、この蓄熱体を使用することによって温度変動が小さくなる周波数帯域との関係を予め調べておき、この結果を利用して行う。なお熱容量が大きい蓄熱体と伝熱面積が大きい蓄熱体を配設する順番は、どちらを先に配設してもよい。また蓄熱体の種類によっては、3種類以上の蓄熱体を直列に配設する構成としてもよい。   In the constant temperature control unit 20 according to the second embodiment, a heat storage body having a large heat capacity and a heat storage body having a large heat transfer area are arranged in series in the duct 30 at the rear stage of the heater 28, and each of the heat storage bodies 10a at the front stage. One of the rear heat storage elements 10b is configured. The heat accumulators 10a and 10b are arranged in the duct 30 with the same configuration as in the first embodiment. In these heat storage bodies 10a and 10b, the temperature fluctuations corresponding to the frequency are attenuated depending on the heat capacity and the heat transfer area. Therefore, an appropriate heat storage body is selected according to the frequency at which the temperature fluctuations are desired to be reduced. This selection is performed by examining in advance the relationship between the heat storage body to be used and the frequency band in which the temperature fluctuation is reduced by using this heat storage body. In addition, whichever may be arrange | positioned first in the order which arrange | positions the thermal storage body with a large heat capacity, and the thermal storage body with a large heat-transfer area. Moreover, it is good also as a structure which arrange | positions 3 or more types of thermal storage bodies in series depending on the kind of thermal storage body.

このような恒温制御ユニット20では、ヒータ28から出力された空気は前段の蓄熱体10aの孔を通過する。このとき、空気の温度が高い場合には蓄熱体10aに対して熱を放出し、空気の温度が低い場合には蓄熱体10aから熱を吸収する。さらに前段の蓄熱体10aを通過して温度変動が小さくなった空気は、後段の蓄熱体10bの孔を通過する。このとき前段の蓄熱体10aを通過したときと同じ作用が行われ、空気の温度変動がさらに小さくなる。図3の最下段に示すグラフは前段の蓄熱体10aと後段の10bを通過した空気の温度変動と時間の関係を示す。図3より、前段の蓄熱体10aと後段の蓄熱体10bを空気が通過することにより、温度変動が極めて小さくなることがわかる。また図7の最下段に示すスペクトルは、前段の蓄熱体10aの入口と、後段の蓄熱体10bの出口における温度変動の比を示す。さらに図8に熱容量が大きい蓄熱体と伝熱面積が大きい蓄熱体を通過した空気の温度変動の強度と周波数の関係を示す。図7および図8より、蓄熱体を1段のみ通過した空気に比べて、前段の蓄熱体10aと後段の蓄熱体10bを通過した空気の方が、広範囲な周波数にわたって温度変動の強度が小さくなることがわかる。
そして蓄熱体10a,10bを通過して温度変動が極めて小さくなった空気は、恒温チャンバ22に供給される。
In such a constant temperature control unit 20, the air output from the heater 28 passes through the hole of the heat storage body 10a in the previous stage. At this time, when the temperature of the air is high, heat is released to the heat storage body 10a, and when the temperature of the air is low, the heat is absorbed from the heat storage body 10a. Furthermore, the air whose temperature fluctuation has been reduced by passing through the front heat storage body 10a passes through the holes of the rear heat storage body 10b. At this time, the same action as when passing through the preceding heat storage element 10a is performed, and the temperature variation of the air is further reduced. The graph shown at the bottom of FIG. 3 shows the relationship between the temperature fluctuation of the air that has passed through the front heat storage body 10a and the rear stage 10b and time. From FIG. 3, it can be seen that the temperature fluctuation becomes extremely small when the air passes through the front heat storage body 10 a and the rear heat storage body 10 b. The spectrum shown at the bottom of FIG. 7 shows the ratio of temperature fluctuations at the inlet of the heat storage body 10a at the front stage and the outlet of the heat storage body 10b at the rear stage. Further, FIG. 8 shows the relationship between the frequency and the frequency of the temperature fluctuation of the air passing through the heat storage body having a large heat capacity and the heat storage body having a large heat transfer area. From FIG. 7 and FIG. 8, the intensity of the temperature fluctuation over a wide range of frequencies is smaller in the air that has passed through the first heat storage body 10 a and the second heat storage body 10 b than in the air that has passed only one stage through the heat storage body. I understand that.
The air that has passed through the heat accumulators 10 a and 10 b and has a very small temperature fluctuation is supplied to the constant temperature chamber 22.

このような構成によれば、ダクト30内に異なる特徴を有する蓄熱体を直列に配設し、一方の蓄熱体で低い周波数側の温度変動を小さくし、他方の蓄熱体で高い周波数側の温度変動を小さくしている。よって、蓄熱体を組み合わせることで広範囲な周波数の温度変動を極めて小さくすることができ、高精度の温度制御を実現できる。そして恒温チャンバ22内の温度を一定にすることができる。また蓄熱体の組み合わせを変えることで、様々な温度変動周波数に対応することができる。そして熱容量が大きい蓄熱体と伝熱面積が大きい蓄熱体を組み合わせて恒温制御ユニット20に配設したところ、恒温チャンバ22に供給される空気の温度変動を±0.001℃以下にすることができた。   According to such a configuration, the heat storage bodies having different characteristics are arranged in series in the duct 30, the temperature fluctuation on the low frequency side is reduced in one heat storage body, and the temperature on the high frequency side is reduced in the other heat storage body. The fluctuation is reduced. Therefore, by combining the heat accumulators, temperature fluctuations in a wide range of frequencies can be made extremely small, and highly accurate temperature control can be realized. And the temperature in the constant temperature chamber 22 can be made constant. Moreover, it can respond to various temperature fluctuation frequencies by changing the combination of heat storage bodies. When the heat storage body having a large heat capacity and the heat storage body having a large heat transfer area are combined and disposed in the constant temperature control unit 20, the temperature fluctuation of the air supplied to the constant temperature chamber 22 can be reduced to ± 0.001 ° C. or less. It was.

また上述したように、低い周波数側の温度変動を小さくする熱容量が大きい蓄熱体と、高い周波数側の温度変動を小さくする伝熱面積が大きい蓄熱体を直列に配設している。これは蓄熱体を1段のみ設けて熱容量と伝熱面積の両方を大きくする、すなわち熱容量の大きい蓄熱体を用いるとともに、該蓄熱体の長さを3倍以上長くしたものと同じ効果を得る。このため、蓄熱体を1段のみ設けて空気の温度変動を±0.001℃以下に小さくする場合よりも、異なる特徴を有する蓄熱体を組み合わせた方が、蓄熱体全体の長さを短くすることができる。すなわち蓄熱体を小型化することができる。   Further, as described above, the heat storage body having a large heat capacity for reducing temperature fluctuation on the low frequency side and the heat storage body having a large heat transfer area for reducing temperature fluctuation on the high frequency side are arranged in series. This provides the same effect as providing only one stage of the heat storage body to increase both the heat capacity and the heat transfer area, that is, using a heat storage body having a large heat capacity, and increasing the length of the heat storage body three times or more. For this reason, the length of the whole heat storage body is shortened by combining the heat storage bodies having different characteristics, compared with the case where only one stage of the heat storage body is provided and the temperature fluctuation of the air is reduced to ± 0.001 ° C. or less. be able to. That is, the heat storage body can be reduced in size.

第1の実施形態に係る恒温制御ユニットの説明図である。FIG. 2 is an explanatory diagram of a constant temperature control unit according to the first embodiment. 第1の実施形態に係る蓄熱体の説明図である。It is explanatory drawing of the thermal storage body which concerns on 1st Embodiment. 温度変動と時間の関係を示す図である。It is a figure which shows the relationship between temperature fluctuation and time. ヒータ通過直後の空気における温度変動の強度と周波数の関係を示す図である。It is a figure which shows the relationship between the intensity | strength of the temperature fluctuation in the air immediately after a heater passage, and a frequency. 熱容量が大きい蓄熱体を通過した空気の温度変動の強度と周波数の関係を示す図である。It is a figure which shows the relationship between the intensity | strength of the temperature fluctuation of the air which passed the thermal storage body with large heat capacity, and a frequency. 伝熱面積が大きい蓄熱体を通過した空気の温度変動の強度と周波数の関係を示す図である。It is a figure which shows the relationship between the intensity | strength of the temperature fluctuation of the air which passed the thermal storage body with a large heat-transfer area, and a frequency. 蓄熱体の入口と出口における温度変動比と周波数との関係を示す図である。It is a figure which shows the relationship between the temperature variation ratio in the inlet_port | entrance and exit of a thermal storage body, and a frequency. 熱容量が大きい蓄熱体と伝熱面積が大きい蓄熱体を通過した空気の温度変動の強度と周波数の関係を示す図である。It is a figure which shows the relationship between the intensity | strength of the temperature fluctuation of the air which passed the thermal storage body with a large heat capacity, and the thermal storage body with a large heat-transfer area, and a frequency.

符号の説明Explanation of symbols

10………蓄熱体、20………恒温制御ユニット、22………恒温チャンバ、24………冷却コイル、26………ファン、28………ヒータ。 DESCRIPTION OF SYMBOLS 10 ......... Storage body, 20 ......... Constant temperature control unit, 22 ......... Constant temperature chamber, 24 ......... Cooling coil, 26 ......... Fan, 28 ......... Heater.

Claims (2)

温度調整された流体を恒温チャンバに供給する流体通路に配置される蓄熱体を有する恒温制御ユニットの設定方法であって、蓄熱体の伝熱面積や熱容量を変化させたときに、温度変動が小さくなる周波数域を予め調べておき、温度変動を小さくしたい温調流体の温度周波数領域の高い周波数領域に対応させて熱容量の値にて蓄熱体を選定するとともに、低い周波数領域に対応させて伝熱面積の値にて蓄熱体を選定して前記流体通路に配置することを特徴とする恒温制御ユニットの蓄熱体設定方法。 A method for setting a constant temperature control unit having a heat storage body arranged in a fluid passage for supplying a temperature-controlled fluid to a constant temperature chamber, wherein the temperature fluctuation is small when the heat transfer area or heat capacity of the heat storage body is changed. The heat storage is selected according to the heat capacity value corresponding to the high frequency region of the temperature control fluid whose temperature fluctuation is desired to be reduced, and the heat transfer corresponding to the low frequency region. A heat storage body setting method for a constant temperature control unit, wherein a heat storage body is selected based on an area value and disposed in the fluid passage. 恒温制御ユニットの設定は、温調流体の温度変動を±0.001℃以下にする高精度の温度制御に適用することを特徴とする請求項1に記載の恒温制御ユニットの蓄熱体設定方法。2. The method of setting a heat storage body of a constant temperature control unit according to claim 1, wherein the setting of the constant temperature control unit is applied to high-accuracy temperature control that makes temperature fluctuation of the temperature control fluid ± 0.001 ° C. or less.
JP2003331976A 2003-09-24 2003-09-24 Thermal storage unit setting method for constant temperature control unit Expired - Lifetime JP4254448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331976A JP4254448B2 (en) 2003-09-24 2003-09-24 Thermal storage unit setting method for constant temperature control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331976A JP4254448B2 (en) 2003-09-24 2003-09-24 Thermal storage unit setting method for constant temperature control unit

Publications (2)

Publication Number Publication Date
JP2005098589A JP2005098589A (en) 2005-04-14
JP4254448B2 true JP4254448B2 (en) 2009-04-15

Family

ID=34460463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331976A Expired - Lifetime JP4254448B2 (en) 2003-09-24 2003-09-24 Thermal storage unit setting method for constant temperature control unit

Country Status (1)

Country Link
JP (1) JP4254448B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757419B1 (en) * 2005-08-25 2012-10-17 Freiberger Compound Materials GmbH Method, apparatus and slurry for wire sawing
JP4492504B2 (en) * 2005-09-21 2010-06-30 株式会社日立プラントテクノロジー Precision temperature control device
JP4655280B2 (en) * 2006-03-24 2011-03-23 株式会社日立プラントテクノロジー Clean bench

Also Published As

Publication number Publication date
JP2005098589A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US20100175866A1 (en) Thermal controller for electronic devices
JP2005083733A (en) Flat tube type heat exchanger
JP2004527764A (en) Electronic device temperature control apparatus and temperature control method
KR970060605A (en) Laser with improved beam quality and lower operating costs
WO2007105450A1 (en) Heat removing method and heat removing apparatus
JP4254448B2 (en) Thermal storage unit setting method for constant temperature control unit
Athavale et al. Impact of active tiles on data center flow and temperature distribution
EP0509844B1 (en) Apparatus for cooling electronic equipment
JP2009208001A (en) Dehumidifier, control method of dehumidifier, and air conditioning system
US4736529A (en) Device for the uniform application of gas on a plane surface
JP2007507899A (en) Electronic device temperature control apparatus and method
KR20180064416A (en) Thermoacoustic energy conversion system
EP1601043A2 (en) Method and apparatus for controlling cooling with coolant at a subambient pressure
JP2021173420A (en) Air conditioner
JP4081280B2 (en) Laser equipment
JP5563907B2 (en) Pneumatic radiant panel device
JP2002353551A (en) Semiconductor laser device
JP2000284832A (en) Temperature controller and valve control part of the same
JP2000012926A (en) Cooling device for laser oscillator and method for cooling laser oscillator
JP2007155183A (en) Heat exchanger
JP5817058B2 (en) Heat exchange unit and temperature control device
JP2006005135A (en) Temperature adjusting apparatus and device manufacturing apparatus
JP6894961B2 (en) Pneumatic radiant air conditioner
JP2000180501A (en) Environment testing device
JP4344941B2 (en) Air conditioning heating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4254448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term