JP4253845B2 - Magnesium alloy wire, method for producing the same, and magnesium alloy molded body - Google Patents
Magnesium alloy wire, method for producing the same, and magnesium alloy molded body Download PDFInfo
- Publication number
- JP4253845B2 JP4253845B2 JP2004346861A JP2004346861A JP4253845B2 JP 4253845 B2 JP4253845 B2 JP 4253845B2 JP 2004346861 A JP2004346861 A JP 2004346861A JP 2004346861 A JP2004346861 A JP 2004346861A JP 4253845 B2 JP4253845 B2 JP 4253845B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- wire
- mass
- alloy wire
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Forging (AREA)
Description
本発明は、鍛造加工性に優れるマグネシウム合金素材、この素材の製造方法、及びこの素材に鍛造加工を施したマグネシウム合金成形体に関するものである。特に、太径でありながら比較的低温での鍛造加工性に優れるマグネシウム合金素材に関する。 The present invention relates to a magnesium alloy material excellent in forgeability, a method for producing the material, and a magnesium alloy molded body obtained by forging the material. In particular, the present invention relates to a magnesium alloy material having a large diameter and excellent forging processability at a relatively low temperature.
マグネシウム合金は、アルミニウムよりも軽く、比強度、比剛性が鋼やアルミニウムよりも優れており、航空機部品、自動車部品などの他、各種電気製品のボディーなどに広く利用されてきている。また、特許文献1に記載されるようにマグネシウム合金からなる押出材を引き抜くことで機械的特性に優れるマグネシウム合金ワイヤが得られるようになってきている。 Magnesium alloys are lighter than aluminum and have a higher specific strength and specific rigidity than steel and aluminum, and have been widely used for bodies of various electrical products in addition to aircraft parts and automobile parts. Further, as described in Patent Document 1, a magnesium alloy wire excellent in mechanical properties has been obtained by drawing out an extruded material made of a magnesium alloy.
引き抜きにより得られたマグネシウム合金ワイヤは、特許文献1に記載されるように機械的特性に優れることから、ばね加工といった塑性加工を施すことができる。しかし、特許文献1に記載されるワイヤは、直径6mm程度以下の細径のものであり、直径が8mm以上、特に10mm以上といった太径のマグネシウム合金ワイヤについては検討されていない。そして、本発明者らが検討した結果、直径が8mm以上といった太径のワイヤを得るにあたり、従来の引抜条件をそのまま適用すると、得られたワイヤは、鍛造加工といった塑性加工性が細径ワイヤに比較して低下するとの知見を得た。 Since the magnesium alloy wire obtained by drawing is excellent in mechanical properties as described in Patent Document 1, plastic processing such as spring processing can be performed. However, the wire described in Patent Document 1 has a small diameter of about 6 mm or less, and a magnesium alloy wire having a large diameter of 8 mm or more, particularly 10 mm or more has not been studied. As a result of investigations by the present inventors, when a conventional wire drawing condition is applied as it is to obtain a large-diameter wire having a diameter of 8 mm or more, the obtained wire has a plastic workability such as forging into a thin wire. The knowledge that it fell compared was acquired.
そこで、本発明の主目的は、鍛造加工性に優れるマグネシウム合金素材、及びこの素材の製造方法を提供することにある。また、本発明の他の目的は、上記マグネシウム合金素材からなるマグネシウム合金成形体を提供することにある。 Therefore, a main object of the present invention is to provide a magnesium alloy material excellent in forgeability and a method for producing the material. Moreover, the other object of this invention is to provide the magnesium alloy molded object which consists of said magnesium alloy raw material.
本発明素材は、配向性を特定することで上記目的を達成する。即ち、本発明マグネシウム合金素材は、質量%でAl:0.01〜12%を含有し、残部がMg及び不純物からなるマグネシウム合金素材であって、この素材の縦断面軸方向におけるX線回折ピーク高さの比(以下の数式1に示す)が0.2以上0.6以下を満たすことを規定する。 The material of the present invention achieves the above object by specifying the orientation. That is, the magnesium alloy material of the present invention is a magnesium alloy material containing Al: 0.01-12% by mass with the balance being Mg and impurities, and the X-ray diffraction peak height in the longitudinal section axis direction of this material. The ratio (shown in the following formula 1) satisfies 0.2 or more and 0.6 or less.
上記マグネシウム合金素材は、以下の製造方法により得ることができる。即ち、本発明マグネシウム合金素材の製造方法は、以下の工程を具えることを特徴とする。
1 質量%でAl:0.01〜12%を含有し、残部がMg及び不純物からなるマグネシウム合金母材を用意する工程
2 アプローチ角度6°以上12°以下の伸線ダイスを用いて、上記母材を引き抜く工程
3 引き抜かれた引抜材に300℃以上450℃以下にて熱処理を行う工程
The magnesium alloy material can be obtained by the following manufacturing method. That is, the manufacturing method of the magnesium alloy material of the present invention includes the following steps.
A step of preparing a magnesium alloy base material containing Al: 0.01-12% by mass and the balance being Mg and impurities.
2 The process of drawing the base material using a wire drawing die with an approach angle of 6 ° to 12 °
3 A process of heat-treating the drawn material at 300 ° C or higher and 450 ° C or lower
直径が8mm未満の細径ワイヤでは、引抜加工時、ワイヤの横断面全体において、ほぼ均一に加工が施される。これに対し、細径ワイヤに用いたダイスと同様の仕様のダイスを用いて太径ワイヤ、特に、直径8mm以上の太径ワイヤを得る場合、集合組織が細径ワイヤと異なる。具体的には、表層部が比較的加工されやすく、中央部が加工されにくいことから、太径ワイヤでは、表層側においてワイヤの軸方向に(0002)面が平行になる配向性が高まる、即ち、ワイヤの縦断面軸方向におけるX線回折において上記数式1に示すピーク高さの比が高くなる傾向にある。このように配向性が高いことから得られたワイヤは、鍛造加工性が低下する。そこで、本発明マグネシウム合金素材では、配向性を特定することで、特に、太径ワイヤにおいて鍛造加工性といった塑性加工性の向上を実現する。また、上記特定の配向性に制御するべく、本発明マグネシウム合金素材の製造方法では、特定のダイス角度の伸線ダイスを用いて引き抜くと共に、引き抜き後、特定の温度条件で熱処理することを規定する。以下、本発明を詳しく説明する。 In a thin wire having a diameter of less than 8 mm, the entire cross section of the wire is processed almost uniformly during drawing. On the other hand, when a thick wire, in particular, a thick wire having a diameter of 8 mm or more is obtained using a die having the same specifications as the die used for the thin wire, the texture is different from that of the thin wire. Specifically, since the surface layer portion is relatively easily processed and the center portion is difficult to be processed, in a large-diameter wire, the orientation with the (0002) plane parallel to the axial direction of the wire on the surface layer side is increased. In the X-ray diffraction in the longitudinal cross-sectional axis direction of the wire, the peak height ratio shown in the above formula 1 tends to increase. In this way, the wire obtained from the high orientation is deteriorated in forgeability. Therefore, in the magnesium alloy material of the present invention, by specifying the orientation, an improvement in plastic workability such as forging workability is realized particularly in a large-diameter wire. In addition, in order to control to the above specific orientation, the manufacturing method of the magnesium alloy material of the present invention specifies that the wire is drawn using a wire drawing die having a specific die angle, and that the heat treatment is performed at a specific temperature condition after the drawing. . The present invention will be described in detail below.
本発明マグネシウム合金素材は、Alを含有するマグネシウム合金を用いて製造される。Al以外に更に、質量%でMn:0.1〜2.0%、Zn:0.1〜7.0%、Si:0.01〜5.0%から選択される元素を1種以上含むマグネシウム合金を適用してもよい。即ち、本発明素材に用いられるマグネシウム合金は、鋳造用マグネシウム合金、展伸用マグネシウム合金のいずれも利用することができる。具体的には、例えば、ASTM記号におけるAZ系、AM系、AS系などが利用できる。AZ系では、例えば、AZ10、AZ21、AZ31、AZ61、AZ80、AZ91が挙げられる。AM系では、例えば、AM60、AM100などが挙げられる。AS系では、例えば、AS21、AS41などが挙げられる。これらAZ系、AM系、AS系合金に、更に、質量%でY:0.01〜3.0%、Sr:0.1〜3.0%、Ca:0.01〜5.0%から選択される元素を1種以上含んだものを利用してもよい。これらの元素を添加することで、強度と靭性とをよりバランスよく具えた素材を得ることができる。なお、不純物は、Fe、Cu、Niなどが挙げられ、これらの含有量は、0.01質量%以下であることが好ましい。 The magnesium alloy material of the present invention is manufactured using a magnesium alloy containing Al. In addition to Al, a magnesium alloy containing one or more elements selected from Mn: 0.1 to 2.0%, Zn: 0.1 to 7.0%, and Si: 0.01 to 5.0% by mass% may be applied. That is, as the magnesium alloy used for the material of the present invention, either a magnesium alloy for casting or a magnesium alloy for drawing can be used. Specifically, for example, an AZ system, an AM system, an AS system or the like in the ASTM symbol can be used. In the AZ system, for example, AZ10, AZ21, AZ31, AZ61, AZ80, and AZ91 can be mentioned. Examples of AM systems include AM60 and AM100. In the AS system, for example, AS21, AS41 and the like can be mentioned. Those containing one or more elements selected from Y: 0.01-3.0%, Sr: 0.1-3.0%, Ca: 0.01-5.0% by mass% in addition to these AZ, AM, and AS alloys May be used. By adding these elements, a material having a better balance between strength and toughness can be obtained. The impurities include Fe, Cu, Ni and the like, and the content thereof is preferably 0.01% by mass or less.
マグネシウム単体では十分な強度を得ることが難しいが、上記の添加元素を含むことで好ましい強度が得られる。また、このようなマグネシウム合金を用いて上記製造方法により製造することで、鍛造加工といった塑性加工性に優れたマグネシウム合金素材を得ることができる。 Although it is difficult to obtain sufficient strength with magnesium alone, preferable strength can be obtained by including the above-mentioned additive elements. Moreover, the magnesium alloy raw material excellent in plastic workability, such as a forging process, can be obtained by manufacturing by such a manufacturing method using such a magnesium alloy.
本発明マグネシウム素材は、線状体又は棒状体の線材(ワイヤ)とする。横断面形状は、円形状でもよいし、非円形状、例えば、楕円や矩形、多角形の異形であってもよい。本発明素材の断面形状を非円形状にするには、ダイスの形状を変えることで容易に対応できる。本発明素材は、上記製造方法により配向性を制御することで、直径8mm(断面積が50.2mm2(直径8mmの断面積に相当))以上、特に10mm(断面積78.5mm2)以上といった太径でありながら、鍛造加工性に優れる素材とすることができる。 The magnesium material of the present invention is a linear or rod-shaped wire (wire). The cross-sectional shape may be circular or non-circular, for example, an ellipse, rectangle, or polygonal variant. To make the cross-sectional shape of the material of the present invention non-circular, it can be easily handled by changing the shape of the die. The material of the present invention has a diameter of 8 mm (cross-sectional area of 50.2 mm 2 (corresponding to a cross-sectional area of 8 mm in diameter)) or more, particularly 10 mm (cross-sectional area of 78.5 mm 2 ) or more by controlling the orientation by the above manufacturing method. Although it is a diameter, it can be set as the material excellent in forgeability.
また、本発明マグネシウム素材は、鍛造加工といった塑性加工性を向上するべく、特定の配向性を高めないようにする。具体的には、素材の縦断面軸方向におけるX線回折ピーク高さの比(数式1参照)を0.2以上0.6以下とする。0.5以下がより好ましい。上記ピーク高さの比が0.2に近いほど、結晶方向がほとんど揃わない、即ち、ランダムな配向を示し、鍛造加工性が良好となる。上記ピーク高さの比が0.6超であると、結晶方向が揃い過ぎる、即ち、配向性が強く、鍛造加工性に劣る。なお、上記ピーク高さの比は、素材を縦方向に切断し、その断面において素材の軸方向のX線回折を行い、各面(結晶面)のピーク強度(ピーク高さ)を測定し、得られたピーク強度を演算することで求められる。X線回折は、断面全域において行うとよい。 In addition, the magnesium material of the present invention does not increase the specific orientation in order to improve plastic workability such as forging. Specifically, the ratio of X-ray diffraction peak heights in the longitudinal cross-sectional axis direction of the material (see Formula 1) is set to 0.2 or more and 0.6 or less. 0.5 or less is more preferable. As the peak height ratio is closer to 0.2, the crystal directions are hardly aligned, that is, exhibit random orientation and better forgeability. If the peak height ratio is more than 0.6, the crystal directions are too aligned, that is, the orientation is strong and the forgeability is poor. In addition, the ratio of the peak height is obtained by cutting the material in the longitudinal direction, performing X-ray diffraction in the axial direction of the material in the cross section, measuring the peak intensity (peak height) of each surface (crystal surface), It is obtained by calculating the obtained peak intensity. X-ray diffraction may be performed over the entire cross section.
このような本発明マグネシウム合金素材は、特定量のAlを含有するマグネシウム合金からなる母材に特定の引抜加工と、引き抜き後に特定の熱処理を施すことで得られる。利用する母材は、鋳造材を押し出した押出材、鋳造材を圧延した圧延材などが挙げられる。押し出しや圧延を行う前に溶体化処理を施してもよい。この溶体化処理条件としては、例えば、温度:380〜420℃、保持時間:2〜20時間が挙げられる。このような母材に対し、伸線ダイスを用いて引き抜き加工を行う。引き抜き前にも溶体化処理を施してもよく、その条件としては、例えば、温度:380〜420℃、保持時間:1〜10時間が挙げられる。 Such a magnesium alloy material of the present invention can be obtained by subjecting a base material made of a magnesium alloy containing a specific amount of Al to a specific drawing process and a specific heat treatment after the drawing. Examples of the base material to be used include an extruded material obtained by extruding a cast material, and a rolled material obtained by rolling the cast material. Solution treatment may be performed before extrusion or rolling. Examples of the solution treatment conditions include a temperature: 380 to 420 ° C. and a holding time: 2 to 20 hours. Such a base material is drawn using a wire drawing die. The solution treatment may be performed before drawing, and the conditions include, for example, temperature: 380 to 420 ° C., holding time: 1 to 10 hours.
上記引き抜きを行うにあたり、特に、本発明では、伸線ダイスとして、アプローチ角度が6°以上12°以下のものを利用する。従来、伸線ダイスとして、アプローチ角度が16°程度のものがよく利用されており、本発明者らも本発明素材を得るに当たり、アプローチ角度が16°の従来の伸線ダイスを利用したところ、得られた引抜材は、表面側においてワイヤの軸方向に(0002)面が平行になる配向性が高くなりやすいとの知見を得た。そして、このような表面の配向性が高い引抜材では、塑性加工性に劣るとの知見も得た。そこで、本発明者らは、ダイス角度を種々変更して種々の引抜材を作製したところ、アプローチ角度が6°〜12°のものが好ましいことがわかった。アプローチ角度が6°未満の場合、ダイス孔と母材との接触面積が増加することで、引抜力が増大して、引抜途中で断線する恐れがあり好ましくない。アプローチ角度が12°超では、断線することなく引抜加工を行うことができるが、上記のように、引抜材の表面側においてワイヤの軸方向に(0002)面が平行になる配向性が強くなる。より好ましいアプローチ角度は、8°〜12°である。 In carrying out the above drawing, in particular, the present invention uses a wire drawing die having an approach angle of 6 ° to 12 °. Conventionally, as the wire drawing dies, those having an approach angle of about 16 ° are often used, and the present inventors also used a conventional wire drawing die with an approach angle of 16 ° to obtain the material of the present invention. It has been found that the obtained drawn material is likely to have high orientation with the (0002) plane parallel to the axial direction of the wire on the surface side. And the knowledge that such drawn material with high surface orientation was inferior in plastic workability was also obtained. Therefore, the inventors of the present invention made various drawing materials by changing the die angle in various ways, and found that an approach angle of 6 ° to 12 ° was preferable. When the approach angle is less than 6 °, the contact area between the die hole and the base material is increased, so that the drawing force is increased, and there is a possibility of disconnection in the middle of drawing, which is not preferable. When the approach angle is over 12 °, drawing can be performed without disconnection, but as described above, the orientation that the (0002) plane is parallel to the axial direction of the wire on the surface side of the drawn material becomes strong. . A more preferred approach angle is 8 ° to 12 °.
その他、引き抜き条件としては、加工温度への昇温速度:1℃/sec〜100℃/sec、加工温度:50℃以上200℃以下(より好ましく150℃〜200℃)、加工度:引抜き加工1回(1パス)に対して10%以上、線速:1m/min以上、引抜加工後の冷却速度:0.1℃/sec以上が挙げられる。加工温度が50℃未満であると、引き抜き途中で断線する恐れがあり、加工温度が高いほど引抜加工性が向上して好ましいが、200℃を超えると強度の低下を招く恐れがある。冷却速度が0.1℃/secを下回ると結晶粒の成長を促進してしまうため、好ましくない。冷却手段には衝風などが挙げられ、速度の調整は風速、風量などにより行うことができる。 In addition, as drawing conditions, the heating rate to the processing temperature: 1 ° C./sec to 100 ° C./sec, the processing temperature: 50 ° C. to 200 ° C. (more preferably 150 ° C. to 200 ° C.), the processing degree: drawing processing 1 10% or more per rotation (1 pass), linear speed: 1 m / min or more, cooling rate after drawing: 0.1 ° C./sec or more. If the processing temperature is less than 50 ° C, the wire may be broken during drawing, and the higher the processing temperature, the better the drawing processability. However, if it exceeds 200 ° C, the strength may be reduced. When the cooling rate is less than 0.1 ° C./sec, the growth of crystal grains is promoted, which is not preferable. An example of the cooling means is blast, and the speed can be adjusted by the wind speed, the air volume, and the like.
引抜加工は、1パスのみとしてもよいが、伸線ダイスを複数用いて、多段階に行うこともできる。一回の引抜加工における加工度は、断面減少率で10%以上とすると、強度に優れた素材とすることができる。より好ましい1パス当たりの断面減少率は15%以上である。ただし、加工度が大きくなりすぎると実際に加工できないため、1パス当たりの断面減少率の上限は30%程度以下である。トータルの加工度は、断面減少率で15%以上であることが好適である。より好ましいトータルの断面減少率は25%以上である。 The drawing process may be performed in only one pass, but can be performed in multiple stages using a plurality of wire drawing dies. If the degree of processing in one drawing process is 10% or more in terms of the cross-sectional reduction rate, a material having excellent strength can be obtained. A more preferable cross-sectional reduction rate per pass is 15% or more. However, since the actual processing cannot be performed if the processing degree becomes too large, the upper limit of the cross-section reduction rate per pass is about 30% or less. The total degree of processing is preferably 15% or more in terms of the cross-sectional reduction rate. A more preferable total cross-sectional reduction rate is 25% or more.
そして、上記特定のダイスを用いて引き抜きを行うと共に、得られた引抜材の配向性を調整するべく、引抜材に300℃以上450℃以下の熱処理を施す。保持時間は、5分以上が好ましく、あまり長すぎると結晶粒の成長を促すため、60分以下が好ましい。概ね15分程度の保持時間で配向性の制御を十分行うことができる。熱処理温度が300℃未満では、上記ピーク高さの比を0.6以下とすることができない。熱処理温度が高いほどピーク高さの比を小さくすることができるため、特に、350℃以上とすることが好ましい。しかし、450℃超では、素材が溶融したり、燃焼したりする恐れがあり、好ましくない。従って、本発明では、熱処理温度の上限を450℃以下とする。また、温度の上昇に伴い、上記のように結晶粒の成長を促進するため、成長した結晶粒が塑性加工の際、割れなどの起点となる恐れがあり、鍛造加工性を低下させる傾向にある。そのため、400℃以下とすることがより好ましい。多パスの引抜加工を行う場合は、1パスごとに上記熱処理を行ってもよいし、数パスごとに熱処理を行ってもよいし、全パス終了後のみに熱処理を行ってもよい。少なくとも全パス終了後には、熱処理を施す。 And while performing drawing using the said specific die, in order to adjust the orientation of the obtained drawing material, the heat processing of 300 to 450 degreeC is performed to a drawing material. The holding time is preferably 5 minutes or more, and if it is too long, it promotes the growth of crystal grains, and is preferably 60 minutes or less. The orientation can be sufficiently controlled with a holding time of about 15 minutes. If the heat treatment temperature is less than 300 ° C., the peak height ratio cannot be 0.6 or less. Since the ratio of the peak height can be reduced as the heat treatment temperature is higher, it is particularly preferably 350 ° C. or higher. However, if it exceeds 450 ° C., the material may melt or burn, which is not preferable. Therefore, in the present invention, the upper limit of the heat treatment temperature is set to 450 ° C. or less. In addition, as the temperature rises, the growth of crystal grains is promoted as described above, so that the grown crystal grains may become a starting point of cracking or the like during plastic working, and there is a tendency to reduce forging workability. . Therefore, it is more preferable to set it to 400 ° C. or lower. When performing multi-pass drawing, the heat treatment may be performed for each pass, the heat treatment may be performed for several passes, or the heat treatment may be performed only after the completion of all passes. Heat treatment is performed at least after all passes.
なお、本発明製造方法は、直径8mm未満の細径ワイヤを製造する際にも利用することができるが、直径8mm以上、特に、直径10mm以上といった太径のワイヤを製造する際に好適である。 The production method of the present invention can also be used when producing a thin wire having a diameter of less than 8 mm, but is suitable for producing a wire having a diameter of 8 mm or more, and particularly a diameter of 10 mm or more. .
上記特定の伸線ダイスを用いた引抜加工と、引抜後に特定の熱処理を施すことで特定の配向性に制御された本発明マグネシウム合金素材は、鍛造加工といった塑性加工性に優れる。特に、200℃以下といった比較的低温での鍛造加工性に優れるものであり、150℃程度の加熱でも十分な塑性加工を行うことができる。 The magnesium alloy material of the present invention, which is controlled to have a specific orientation by performing a drawing process using the specific wire drawing die and a specific heat treatment after drawing, is excellent in plastic workability such as forging. In particular, it is excellent in forging processability at a relatively low temperature of 200 ° C. or less, and sufficient plastic working can be performed even by heating at about 150 ° C.
また、上記鍛造加工が施された本発明マグネシウム合金成形体は、軽量で強度や剛性に優れるものであるため、例えば、自転車のクランクなどの自転車用部品、その他自動車部品などに利用することができる。 Further, the magnesium alloy molded body of the present invention subjected to the forging process is lightweight and excellent in strength and rigidity, and can be used, for example, for bicycle parts such as a bicycle crank and other automobile parts. .
以上説明したように本発明マグネシウム合金素材によれば、特に、太径の素材でありながら、鍛造加工といった塑性加工を行うことができるという特有の効果を奏し得る。また、比較的低温の鍛造加工を施すことができる。更に、本発明マグネシウム合金素材の製造方法によれば、上記鍛造加工性に優れるマグネシウム合金素材を生産性よく製造することができる。そして、本発明マグネシウム合金素材に鍛造加工を施したマグネシウム合金成形体は、軽量で高強度であることが求められる種々の分野の材料として好適に利用することができる。 As described above, according to the magnesium alloy material of the present invention, it is possible to achieve a specific effect that plastic processing such as forging can be performed even though it is a material having a large diameter. Moreover, a relatively low temperature forging process can be performed. Furthermore, according to the method for producing a magnesium alloy material of the present invention, the magnesium alloy material having excellent forgeability can be produced with high productivity. And the magnesium alloy molded object which gave the forge process to this invention magnesium alloy raw material can be utilized suitably as a material of the various field | areas calculated | required that it is lightweight and high intensity | strength.
以下、本発明の実施の形態を説明する。
(試験例1)
AZ31相当合金(質量%でAl:3.0%、Zn:0.77%、Mn:0.65%を含み、残部がMgおよび不純物)、AZ61相当合金(質量%でAl:6.4%、Zn:0.76%、Mn:0.28%を含み、残部がMgおよび不純物)、AZ91相当合金(質量%でAl:9.0%、Zn:0.7%、Mn:0.32%を含み、残部がMgおよび不純物)を用意し、各合金を溶解鋳造、溶体化処理(400℃×4時間)、圧延加工を順次行って、直径φ25mmの棒材を得た。得られた棒材に400℃×2時間の溶体化処理を施した後、150〜200℃にて引抜加工を行い、直径φ20mmの引抜材を得た。引抜加工は、表1に示すアプローチ角度の伸線ダイスを用いて行い、加工温度への昇温速度:20℃/sec、1パスあたりの加工度:14〜18%(トータル加工度:36%)、線速:3m/min、引抜後の冷却速度:約1℃/secとした。
Embodiments of the present invention will be described below.
(Test Example 1)
AZ31 equivalent alloy (Al: 3.0% by mass, Zn: 0.77%, including Mn: 0.65%, the balance being Mg and impurities), AZ61 equivalent alloy (Al: 6.4% by mass, Zn: 0.76%, Mn: Prepare AZ91 equivalent alloy (Al: 9.0%, Zn: 0.7%, Mn: 0.32% in mass%, balance is Mg and impurities) Casting, solution treatment (400 ° C. × 4 hours), and rolling were sequentially performed to obtain a bar with a diameter of 25 mm. The obtained bar was subjected to a solution treatment at 400 ° C. for 2 hours and then drawn at 150 to 200 ° C. to obtain a drawn material having a diameter of 20 mm. Drawing is performed using a wire drawing die with the approach angle shown in Table 1. Temperature increase rate to the processing temperature: 20 ° C / sec, processing degree per pass: 14-18% (total processing degree: 36% ), Linear velocity: 3 m / min, cooling rate after drawing: about 1 ° C./sec.
得られた引抜材に表1に示す温度(AN温度)にて熱処理を行い(保持時間:15分)、得られた熱処理材を縦方向に切断し、X線回折分析装置(XRD)を用い、縦断面(全面)の軸方向においてX線回折による各面のピーク強度(ピーク高さ)を測定し、以下の数式2に示すピーク高さの比を評価した。その結果を表1に示す。 The obtained drawn material was heat-treated at the temperature (AN temperature) shown in Table 1 (holding time: 15 minutes), the obtained heat-treated material was cut in the longitudinal direction, and an X-ray diffraction analyzer (XRD) was used. Then, the peak intensity (peak height) of each surface was measured by X-ray diffraction in the axial direction of the longitudinal section (entire surface), and the ratio of peak heights shown in the following formula 2 was evaluated. The results are shown in Table 1.
更に、得られた直径φ20mmの素材を長さ40mmに切断し、軸方向への据込試験(据込試験温度:150℃)を実施した。この試験は、「鍛造」(社団法人日本塑性加工学会編、コロナ社出版1995年8月、155-156ページ)に記載される「金属材料の冷間据込み性試験方法(暫定基準)」に準じ、耐圧板により試験片を圧縮する際、試験片を150℃に加熱した状態とし、歪み速度を0.5/secとして行い、最大50%までの限界据込率を評価した。その結果を表1に示す。 Further, the obtained material having a diameter of 20 mm was cut into a length of 40 mm, and an upsetting test in the axial direction (upsetting test temperature: 150 ° C.) was performed. This test is based on “Cold Upsetting Test Method for Metallic Materials (Provisional Standard)” described in “Forging” (Edited by Japan Society for Technology of Plasticity, Corona Publishing August 1995, pages 155-156). Accordingly, when compressing the test piece with the pressure plate, the test piece was heated to 150 ° C., the strain rate was 0.5 / sec, and the maximum upsetting rate up to 50% was evaluated. The results are shown in Table 1.
表1に示すようにアプローチ角6°〜12°の伸線ダイスを用いた引抜材に、300℃〜450℃の熱処理を行ったマグネシウム合金素材(試料No.6〜9,16〜19,26〜29,32〜35)は、数式2に示すピーク高さの比が0.2以上0.6以下となっている。そして、これらピーク高さの比が0.2〜0.6を満たす各素材は、鍛造加工性に優れていることがわかる。特に、これらの素材のうち、400℃以下の熱処理を行った素材は、より鍛造加工性に優れていた。 As shown in Table 1, a magnesium alloy material (sample Nos. 6-9, 16-19, 26) that was heat-treated at 300 ° C to 450 ° C on a drawn material using a wire drawing die having an approach angle of 6 ° to 12 °. -29,32-35), the ratio of the peak height shown in Formula 2 is 0.2 or more and 0.6 or less. And it turns out that each raw material which satisfy | fills ratio of these peak heights 0.2-0.6 is excellent in forge processability. In particular, among these materials, materials subjected to heat treatment at 400 ° C. or lower were more excellent in forgeability.
これに対し、伸線ダイスのアプローチ角が11°であっても、熱処理を施していない素材(試料No.1,11,21)や、熱処理を施していても300℃未満の素材では、上記ピーク高さの比が大きく、鍛造加工性が劣っている。一方、350℃の熱処理を施していても、伸線ダイスのアプローチ角が大きい素材(試料No.36,37)では、表面側においてワイヤの軸方向に(0002)面が平行になる配向性が高まってピーク高さの比が大きくなっており、鍛造加工性が悪くなっている。また、アプローチ角が小さい素材(試料No.31)では、引き抜きの際、摩擦が大きくなって断線してしまった。更に、得られた引抜材に対し、480℃の温度にて熱処理を実施したが、引抜材の一部が溶融又は燃焼してしまい、ピーク高さの比の評価や据込試験を行うことが可能な試料が得られなかった。 On the other hand, even if the approach angle of the wire drawing dies is 11 °, the material not subjected to heat treatment (Sample No.1, 11, 21), or the material less than 300 ° C even if heat treated, The ratio of peak height is large and forging processability is inferior. On the other hand, even when heat treatment is performed at 350 ° C, the material with a large wire die approach angle (sample No. 36, 37) has an orientation in which the (0002) plane is parallel to the axial direction of the wire on the surface side. The peak height ratio is increased and the forging processability is deteriorated. In addition, the material with a small approach angle (Sample No. 31) was broken due to increased friction during drawing. Furthermore, the obtained drawn material was heat-treated at a temperature of 480 ° C., but a part of the drawn material was melted or burned, and the peak height ratio evaluation and upsetting test can be performed. No possible sample was obtained.
(試験例2)
上記試験例1で用いたAZ31相当合金材、AZ61相当合金材、AZ91相当合金材に対し、Yを0.1質量%含有させたもの、Srを0.5質量%含有させたもの、AM60相当合金(質量%でAl:6.1%、Mn:0.44%を含み、残部がMgおよび不純物)、AS41相当合金(質量%でAl:4.2%、Si:1.0%、Mn:0.40%を含み、残部がMgおよび不純物)を用意し、上記試験例1と同様の条件で、溶解鋳造→溶体化処理→圧延加工(直径φ25mm)→溶体化処理→引抜加工(アプローチ角度:11°の伸線ダイス使用)を行い、直径φ20mmの引抜材を得た。得られた引抜材に350℃×15分の熱処理を行い、得られた熱処理材に対し、試験例1と同様にして数式2に示すピーク高さの比を求めた。その結果、ピーク高さの比は、0.25〜0.46であり、いずれの試料も0.2〜0.6を満たしていた。
(Test Example 2)
AZ31 equivalent alloy material, AZ61 equivalent alloy material, AZ91 equivalent alloy material used in Test Example 1 above, 0.1% by mass of Y, 0.5% by mass of Sr, AM60 equivalent alloy (% by mass) Al: 6.1%, Mn: 0.44% included, balance is Mg and impurities), AS41 equivalent alloy (mass% is Al: 4.2%, Si: 1.0%, Mn: 0.40%, balance is Mg and impurities) Prepared under the same conditions as in Test Example 1 above, melt casting → solution treatment → rolling process (diameter φ25 mm) → solution treatment → drawing process (using wire drawing die with an approach angle of 11 °) A drawn material with a diameter of 20 mm was obtained. The obtained drawn material was heat-treated at 350 ° C. for 15 minutes, and the peak height ratio shown in Formula 2 was obtained in the same manner as in Test Example 1 for the obtained heat-treated material. As a result, the peak height ratio was 0.25 to 0.46, and all the samples satisfied 0.2 to 0.6.
また、得られた熱処理材に試験例1と同様の条件にて限界据込率(150℃、歪み速度:0.5/sec、最大の限界据込率:50%)を評価した。その結果、いずれの試料も、限界据込率が40%であり、良好な鍛造加工性を示すことが確認された。 Further, the limit upsetting rate (150 ° C., strain rate: 0.5 / sec, maximum limit upsetting rate: 50%) was evaluated on the obtained heat treated material under the same conditions as in Test Example 1. As a result, it was confirmed that each sample had a limit upsetting rate of 40% and showed good forgeability.
(試験例3)
AZ31相当合金(質量%でAl:3.1%、Zn:0.75%、Mn:0.67%を含み、残部がMgおよび不純物)、AZ61相当合金(質量%でAl:6.4%、Zn:0.77%、Mn:0.28%を含み、残部がMgおよび不純物)、AZ91相当合金(質量%でAl:9.1%、Zn:0.70%、Mn:0.55%を含み、残部がMgおよび不純物)からなる押出材(直径φ25mmの棒状体)を用意し、これら押出材に溶体化処理を施すことなく、150〜200℃にて引抜加工を行い、直径φ20mmの引抜材を得た。引抜加工は、アプローチ角度:11°の伸線ダイスを用いて行い、加工温度への昇温速度:20℃/sec、1パスあたりの加工度:14〜18%(トータル加工度:36%)、線速:3m/min、引抜後の冷却速度:約1℃/secとした。
(Test Example 3)
AZ31 equivalent alloy (Al: 3.1% by mass, Zn: 0.75%, Mn: 0.67% included, the balance being Mg and impurities), AZ61 equivalent alloy (Al by mass: Al: 6.4%, Zn: 0.77%, Mn: Extruded material (diameter: 25 mm in diameter including 0.28%, balance Mg and impurities), AZ91 equivalent alloy (mass% Al: 9.1%, Zn: 0.70%, Mn: 0.55%, balance Mg and impurities) A rod-like body) was prepared, and the extruded material was drawn at 150 to 200 ° C. without subjecting the extruded material to a solution treatment to obtain a drawn material having a diameter of 20 mm. Drawing is performed using a wire drawing die with an approach angle of 11 °, the rate of temperature rise to the processing temperature: 20 ° C / sec, the processing rate per pass: 14-18% (total processing rate: 36%) The drawing speed was 3 m / min, and the cooling rate after drawing was about 1 ° C./sec.
得られた引抜材に400℃×15分の熱処理を行い、得られた熱処理材に対し、試験例1と同様にして数式2に示すピーク高さの比を求めた。その結果、AZ31相当合金材:0.40、AZ61相当合金材:0.36、AZ91相当合金材:0.25であり、いずれもピーク高さ比が0.2〜0.6を満たしていた。 The obtained drawn material was heat-treated at 400 ° C. for 15 minutes, and the peak height ratio shown in Formula 2 was obtained for the obtained heat-treated material in the same manner as in Test Example 1. As a result, AZ31 equivalent alloy material: 0.40, AZ61 equivalent alloy material: 0.36, AZ91 equivalent alloy material: 0.25, and the peak height ratio satisfied 0.2 to 0.6.
また、得られた熱処理材に試験例1と同様の条件にて限界据込率(150℃、歪み速度:0.5/sec、最大の限界据込率:50%)を評価した。その結果、いずれの試料も、限界据込率が40%であり、良好な鍛造加工性を示すことが確認された。 Further, the limit upsetting rate (150 ° C., strain rate: 0.5 / sec, maximum limit upsetting rate: 50%) was evaluated on the obtained heat treated material under the same conditions as in Test Example 1. As a result, it was confirmed that each sample had a limit upsetting rate of 40% and showed good forgeability.
上記試験から、直径8mm以上といった太径のマグネシウム合金素材の場合、伸線ダイスのアプローチ角及び熱処理温度を特定することで、鍛造加工性に優れた素材とすることができることが確認された。 From the above test, it was confirmed that in the case of a magnesium alloy material having a large diameter of 8 mm or more, it is possible to obtain a material excellent in forgeability by specifying the approach angle of the wire drawing die and the heat treatment temperature.
本発明マグネシウム合金素材は、鍛造加工用素材として好適である。特に、200℃以下といった比較的低温での鍛造加工性に優れる。また、本発明マグネシウム合金素材の製造方法は、上記鍛造加工性に優れる素材の製造に適する。この素材に鍛造加工を施した本発明成形体は、例えば、自転車のクランクといった自転車部品や、種々の自動車部品に利用することができる。 The magnesium alloy material of the present invention is suitable as a forging material. In particular, it is excellent in forging workability at a relatively low temperature of 200 ° C. or less. Moreover, the manufacturing method of this invention magnesium alloy raw material is suitable for manufacture of the raw material which is excellent in the said forge workability. The molded product of the present invention obtained by subjecting this material to forging can be used for, for example, bicycle parts such as a bicycle crank and various automobile parts.
Claims (6)
この線材の縦断面において線材の軸方向のX線回折を行った場合、X線回折ピーク高さの比が以下の式を満たし、
線材の直径が10mm以上であることを特徴とするマグネシウム合金線材。
When X-ray diffraction in the axial direction of the wire is performed in the longitudinal section of this wire, the ratio of the X-ray diffraction peak height satisfies the following formula:
A magnesium alloy wire characterized by having a wire diameter of 10 mm or more.
アプローチ角度6°以上12°以下の伸線ダイスを用いて、前記母材を引き抜く工程と、
引き抜かれた引抜材に300℃以上450℃以下にて熱処理を行う工程とを具え、
これらの工程により、線材の縦断面において線材の軸方向のX線回折を行った場合、X線回折ピーク高さの比が以下の式を満たすマグネシウム合金線材を製造することを特徴とするマグネシウム合金線材の製造方法。
Using a wire drawing die with an approach angle of 6 ° or more and 12 ° or less, a step of pulling out the base material,
A process of performing heat treatment on the drawn material at 300 ° C. or higher and 450 ° C. or lower,
According to these steps, when performing X-ray diffraction in the axial direction of the wire in the longitudinal section of the wire , a magnesium alloy wire is produced in which the ratio of X-ray diffraction peak heights satisfies the following formula: A manufacturing method of a wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346861A JP4253845B2 (en) | 2004-11-30 | 2004-11-30 | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004346861A JP4253845B2 (en) | 2004-11-30 | 2004-11-30 | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006152397A JP2006152397A (en) | 2006-06-15 |
JP4253845B2 true JP4253845B2 (en) | 2009-04-15 |
Family
ID=36631031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004346861A Expired - Fee Related JP4253845B2 (en) | 2004-11-30 | 2004-11-30 | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4253845B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5046178B2 (en) * | 2006-09-26 | 2012-10-10 | 住友電気工業株式会社 | Magnesium alloy material and manufacturing method thereof |
-
2004
- 2004-11-30 JP JP2004346861A patent/JP4253845B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006152397A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003293069A (en) | Magnesium-base alloy wire and its manufacturing method | |
JP4332889B2 (en) | Method for producing magnesium-based alloy compact | |
WO2016161565A1 (en) | Formable magnesium based wrought alloys | |
JP6860235B2 (en) | Magnesium-based alloy wrought material and its manufacturing method | |
JP4189687B2 (en) | Magnesium alloy material | |
JP4253847B2 (en) | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body | |
JP7350805B2 (en) | Method for manufacturing deformed semi-finished products from aluminum-based alloy | |
JP4782987B2 (en) | Magnesium-based alloy screw manufacturing method | |
JP4433916B2 (en) | Magnesium alloy and magnesium alloy member for plastic working | |
WO2006100859A1 (en) | Process for producing continuous magnesium material | |
WO2018088351A1 (en) | Aluminum alloy extruded material | |
JP4253845B2 (en) | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body | |
JP4253846B2 (en) | Magnesium alloy wire, method for producing the same, and magnesium alloy molded body | |
JP2004124152A (en) | Rolled wire rod of magnesium based alloy, and its production method | |
JP7410542B2 (en) | magnesium alloy plate | |
JP5348624B2 (en) | Magnesium alloy screw | |
JP3568942B2 (en) | Magnesium-based alloy wire and method of manufacturing the same | |
JP4160922B2 (en) | Magnesium wire | |
JP4849377B2 (en) | Magnesium alloy screw manufacturing method and magnesium alloy screw | |
JP5249367B2 (en) | Magnesium-based alloy screw | |
CN106663490B (en) | Aluminium alloy conductor core and its manufacturing method | |
WO2021215241A1 (en) | Magnesium alloy, magnesium alloy plate, magnesium alloy rod, methods for producing these, and magnesium alloy member | |
JP2010174337A (en) | Al-Mg-Si-BASED ALLOY BILLET FOR FORGING | |
CN118755995A (en) | High-strength easily-formed brass and preparation method thereof | |
JP2011115856A (en) | Method for producing magnesium long-length material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4253845 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |