[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4253783B2 - Geological disposal facility and its construction method - Google Patents

Geological disposal facility and its construction method Download PDF

Info

Publication number
JP4253783B2
JP4253783B2 JP2000379817A JP2000379817A JP4253783B2 JP 4253783 B2 JP4253783 B2 JP 4253783B2 JP 2000379817 A JP2000379817 A JP 2000379817A JP 2000379817 A JP2000379817 A JP 2000379817A JP 4253783 B2 JP4253783 B2 JP 4253783B2
Authority
JP
Japan
Prior art keywords
disposal
hole
geological
waste
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000379817A
Other languages
Japanese (ja)
Other versions
JP2002181995A (en
Inventor
博夫 熊坂
満夫 塩沢
英行 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2000379817A priority Critical patent/JP4253783B2/en
Publication of JP2002181995A publication Critical patent/JP2002181995A/en
Application granted granted Critical
Publication of JP4253783B2 publication Critical patent/JP4253783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地層処分施設とその施工法に関し、特に、堆積岩においても周辺岩盤の安定性を確保して廃棄体を安全に処分できる地層処分施設とその施工法に関する。
【0002】
【従来の技術】
原子力発電所を中心にした核燃料サイクルは、使用済燃料を再利用するために、使用済燃料を直接あるいはリサイクル燃料備蓄センターを経由させて再処理工場に移して、ウランやプルトニウムを回収し、燃料に加工して再利用するように構成されているが、この燃料サイクルから外れる放射性廃棄物については、安全に隔離処分されるように計画されている。そのうち、原子力発電所から排出される低レベルの放射性廃棄物は、低レベル放射性廃棄物埋設センターにおいて安全に埋設されている。
【0003】
一方、再処理工場で発生する高レベルの放射性廃棄物については、高レベル放射性廃棄物貯蔵施設において廃棄体を冷却のための貯蔵をした後に地層処分施設において処分することが決められており、地層処分施設では、高レベル放射性廃棄物を処分するために、図7に示されるように地下300m以深の地下施設として構築されている。
【0004】
地層処分施設10は、地下施設部1とこれに地上受入施設2を連絡している立坑3及び排気立坑4から構成されている。地下施設部1は、複数の処分トンネル5とこれらを連絡している主要トンネル6から構成されており、立坑3は、キャニスター搬入立坑7、人員・資材立坑8、緊急用立坑9を擁している。
【0005】
地層処分施設は、岩種によって硬岩と堆積岩の二つを対象とした施設に分類されて計画設計されており、各々の施設に関する技術的な検討がなされている。
【0006】
軟岩における地層処分施設は、花崗岩に比べると強度の低い堆積岩において構築されるものであり、堆積岩を対象とした地層処分施設での処分トンネル5は、図8に示されるように処分坑道19と処分孔11とから構成されている。
【0007】
処分坑道19は、廃棄体12を搬送して坑道の底盤部13に埋設するためのトンネルであり、処分孔11は、廃棄体12を最終的に埋設するための穴である。
【0008】
処分坑道19は、TBMで堀削してからコンクリートセグメントにより支保されて構築されており、処分孔11は、処分坑道19を建設した後に、処分坑道19から堀削して作成している。
【0009】
廃棄体12の処分作業は、先ず処分孔11の中にベントナイト等から成る底部の緩衝材14を詰めてから緩衝材15を封入しており、次いで緩衝材15の中に廃棄体12を埋設してから緩衝材15の上端を蓋状の緩衝材16で封鎖している。
【0010】
廃棄体12の埋設に際して、廃棄体12の上下端には粉末緩衝材17を介在させることで廃棄体12の定着を安定させるようにしている。
【0011】
処分孔11は、残余の空間にベントナイト等から成る緩衝材18をさらに封入しており、最終的には処分坑道19内まで緩衝材を充填することで廃棄体12の処分作業を完了している。
【0012】
しかして、従来の設計計画では処分坑道の安定設計を中心にしており、坑道周辺の安定性に関する検討を実施して坑道を安定させるために必要な支保の仕様が定められている。一方、処分孔を掘削する際の安定性や安全性の確保に関しては検討されておらず、支保の必要性を考慮することなく支保を実施しないままで廃棄体を定置させることも考えられている。
【0013】
【発明が解決しようとする課題】
ところが、同じ地層に構築するトンネルの場合には、その安定性を評価する場合、トンネルの径の大小によってトンネル周辺の地山の安定性に相違は生じない結果が得られる。
【0014】
従って、処分坑道の安定のために支保が必要と判断される場合には、周辺地山に安定性の相違を生じさせないように処分孔の安定性を確保するために、処分孔にも何らかの支保によって安定性を確保する必要がある。
【0015】
しかるに、従来の設計・検討のように、周辺地山への安定性に関して処分坑道に対する安定性の確立のみが検討なされて、処分孔に対して考慮していない状況は、原子力発電における高レベル放射性廃棄物の処分において、安全上の懸念すべき問題である。
【0016】
本発明は、上述した現状に鑑みて高レベル放射性廃棄物の地層処分における改善策を提案するものであり、処分孔に対しても周辺の地山において安定性の相違が生じないように処分孔を支保することで、その安定性を確保して安全上の懸念を解消する地層処分施設とその施工法を提供している。
【0017】
【課題を解決するための手段】
本発明による地層処分施設は、基本的に、掘削した処分坑道に処分孔を形成し、この処分孔に封入される緩衝材中に廃棄体を埋設して定置する地層処分施設において、処分孔に封入する緩衝材を有底鋼管に充填させて配置しており、具体的には、有底鋼管の底部を平面や球面に形成することを特徴とし、堆積岩から成る地層に構築することを特徴としている。
【0018】
これによって、硬岩や堆積層から成る地層にあっても廃棄体を埋設定置する地層処分施設における処分孔周辺の岩盤の安定性を確保して、原子力発電の高レベル放射性廃棄物を処分するための安全性を確立している。
【0019】
又、本発明による地層処分施設の施工法は、掘削した処分坑道に処分孔を形成し、この処分孔に有底鋼管を設置してから緩衝材を封入し、次いで封入された緩衝材中に廃棄体を埋設して定置させ、しかる後に蓋状の緩衝材で廃棄体を封鎖してから処分孔を緩衝材で充填することで構成しており、硬岩や堆積層から成る地層にあっても廃棄体を埋設定置する地層処分施設における処分孔を合理的に施工して周辺地盤の安定性を確保している。
【0020】
【発明の実施の形態】
本発明による地層処分施設は、掘削した処分坑道に処分孔を形成し、この処分孔に封入される緩衝材中に廃棄体を埋設して定置するために、処分孔に封入する緩衝材を有底鋼管に充填させて配置しており、硬岩、特に堆積岩から成る地層に構築することを特徴としている。
【0021】
以下に、各発明の実施の形態を図面に基づいて詳細に説明するが、発明の特徴を明確にするために、従来と同様の部分については同じ符号で表示している。
【0022】
図1は、本発明による地層処分施設における処分坑道と処分孔の実施の形態を示す断面図である。
【0023】
地層処分施設に埋設する原子力発電で発生する高レベル放射性廃棄物から成る廃棄体12は、高レベル放射性廃棄物の廃液を飛散防止のためにガラスと混合して形成したガラス固化体を厚さ約20cmのオーバーパック等の金属容器に格納した状態で形成されており、高レベル放射性廃棄物が地下水に触れて溶け出すのを防止している。
【0024】
廃棄体埋設から処分坑道の埋め戻しまでの間、トンネルの安全性を確保するために、処分坑道19と処分孔11とが築造されているが、処分坑道19は、TBMで堀削してからコンクリートセグメントにより支保して構築され、廃棄体12を最終的に埋設するための処分孔11は、処分坑道19を建設した後に、処分坑道19の底盤部13から掘削することで築造されている。
【0025】
尚、処分孔11の配置は、処分坑道19の底盤部13に限定されるものでなく、処分坑道19の側部に処分孔11を形成して廃棄体12を横置きに定置する場合もあるが、この場合の処分孔11は、処分坑道19の側部から掘削することになる。
【0026】
処分孔11には、周辺壁と底部とを含めた周辺岩盤の安定性を確保するために縦置きの有底鋼管20を挿入しているが、有底鋼管20は、上述のように縦置きに限定されないので、処分坑道19に対する処分孔11の位置と処分孔11のための掘削孔に対応させた形状に造形されることになる。
【0027】
有底鋼管20の底部には、ベントナイト等から成る底部の緩衝材14が詰められており、その上に緩衝材15が配置されている。
【0028】
緩衝材15の中には廃棄体12が定置されており、その上下端に粉末状あるいは粒状等の緩衝材17、17を介在させることによって廃棄体12と緩衝材15との密着度を高めるようにしながら、その上端を蓋状の緩衝材16で封鎖することで、廃棄体12の定着を安定させるようにしている。
【0029】
処分孔11には、残余の空間にベントナイト等から成る緩衝材18をさらに封入しており、最終的には処分坑道19内まで緩衝材を充填している。
【0030】
しかして、処分孔に有底鋼管を配置することによるコスト面について述べると、例えば相似形である処分孔と処分坑道とは各径の比率が1/5程度でり、処分孔と処分坑道とが負担する強度の比率は、同強度の材質の材料を用いると、(1/5)2に比例することになり、処分孔が必要な剛性を確保するために採用する材質の厚さは、処分坑道のそれに比較して極めて薄くなる。
【0031】
特に、処分坑道の支保に対して高強度を発揮する鋼材で有底鋼管20を構成する場合には、鋼管の厚さを施工性や埋設時の機能性から決まってくる最小の厚さで、充分に対処できることになる。従って、処分孔に有底鋼管を配置してもコスト面での嵩高は殆ど問題にならない程度で収まるものである。
【0032】
以上のように、本発明による地層処分施設は、処分孔に封入する緩衝材を有底鋼管に充填させて配置しているので、処分孔周辺の岩盤の安定性を確実に確保し、処分施設の設計・建設を合理的にすると共に、緩衝材が水に接触することを阻止して緩衝材の膨潤等が無くし、鋼管が腐食しても周辺の地盤を還元雰囲気にすることで廃棄体を格納した金属容器の腐食速度を低減させる効果もある。
【0033】
図2は、処分孔に挿入する有底鋼管の実施形態を斜視状に示している。
図2(a)は、有底鋼管の底部を平面に形成する実施の形態であり、本実施の形態では、円筒状に掘削されて従来と同様に平坦な底部を構成する処分孔に対応できるように構成されている。
【0034】
有底鋼管21は、処分孔の周壁に密着して処分孔周辺の岩盤の安定性を確保するための円筒部22と処分孔下部の岩盤に安定性を確保する平面状の底板23から構成されており、内部に充填される緩衝材や廃棄体を格納した金属容器に地下水が浸透しないように円筒部22と底板23とを密に接合している。
【0035】
従って、有底鋼管21は、処分孔に縦置きする際の安定性を確実に確保しており、周辺の岩盤の安定性を図ると同時に廃棄体の垂直度を確保して定着性を向上させている。
【0036】
図2(b)は、有底鋼管の底部を球面に形成する実施の形態であり、本実施の形態では、球面形にすることにより、孔底の安全性を向上させる機能や掘削される処分孔の平坦に整備されていない底部にも柔軟に対応できる機能を有している。
【0037】
有底鋼管25は、上記実施の形態と同様に処分孔の周壁に密着して処分孔周辺の岩盤の安定性を確保するための円筒部22と処分孔下部の岩盤に安定性を確保する球面状の底板26とから構成されており、内部に充填される緩衝材や廃棄体を格納した金属容器に地下水が浸透しないように円筒部22と底板26とは同様に密な状態で接合されている。
【0038】
従って、有底鋼管25は、処分孔の底部が平坦に整備されていない場合にも、定置する際の安定性を確実に確保しており、周辺の岩盤の安定性を図ると同時に廃棄体の垂直度を確保して定着性を向上させている。
【0039】
次に、本発明による地層処分施設の施工法について説明する。
本発明による地層処分施設の施工法は、掘削した処分坑道に処分孔を形成し、処分孔に有底鋼管を設置してから緩衝材を封入し、次いで封入された緩衝材中に廃棄体を埋設して定置させ、しかる後に蓋状の緩衝材で廃棄体を封鎖してから処分孔を緩衝材で充填しており、これによって、経済性を確保できる薄い有底鋼管を設置するのみで、硬岩や堆積層の地層でも廃棄体を埋設定置する処分孔を合理的に施工して周辺地盤の安定性を確保している。
【0040】
以下に、各発明の実施の形態を図面に基づいて詳細に説明するが、上記図面と同様の部分については同じ符号で表示している。
【0041】
図3〜6は、本発明による地層処分施設の施工法の実施形態における各工程での処分孔の断面図である。
【0042】
図3は、処分孔底面の施工図である。
処分孔11は、図3(a)に示すように、処分坑道の底盤部から削孔機27によって掘削されており、本実施の形態では底部を平坦な平板状に構成している。掘削後の処分孔11には、図3(b)に示すように、有底鋼管20が敷設されることで処分孔周辺と底面下部との岩盤の安定性を確保すると共に、緩衝材等に対する地下水の浸透を阻止している。
【0043】
図4の工程は、緩衝材15の定置状態を示している。
緩衝材15は、図4(a)に示すように、定置装置28に吊下げ装置29で保持された状態に載置されており、その状態で所定の処分孔11の位置に移送される。
【0044】
次いで、緩衝材15は、図4(b)に示すように、定置装置28の吊下げ装置29の降下によって処分孔11に挿入される。この際に、有底鋼管20の内底には予め粉末状あるいは粒状等の底部の緩衝材14を充填しておくことで、有底鋼管20に対する緩衝材15の安定的な定着を確立している。
【0045】
図4(c)は、緩衝材15を有底鋼管20の内底に精度良く定着させた後に、定置装置28が吊下げ装置29を収納して退避する工程状態を示している。
【0046】
図5の工程は、廃棄体12の埋設状態を示している。
廃棄体12は、図5(a)に示すように、定置装置28に異なる吊下げ装置29’で保持された状態に載置されており、その状態で所定の処分孔11の位置に移送されて来る。
【0047】
次いで、廃棄体12は、図5(b)に示すように、定置装置28の吊下げ装置29’の降下によって緩衝材15の内部に挿入される。この際に、緩衝材15の内底には予め粉末状あるいは粒状等の底部の緩衝材17を充填して在り、緩衝材15に対する廃棄体12の安定的な定着を確立している。
【0048】
図5(c)は、廃棄体12緩衝材15を緩衝材15の内底に精度良く定着させた後に、定置装置28が吊下げ装置29’を収納して退避する工程状態を示している。
【0049】
図6の工程は、蓋状の緩衝材16の定置状態を示している。
蓋状の緩衝材16は、図6(a)に示すように、定置装置28に吊下げ装置29に保持されない状態で載置されており、その状態で所定の処分孔11の位置に移送される。
【0050】
次いで、蓋状の緩衝材16は、図6(b)に示すように、定置装置28の吊下げ装置29に吊り下げられて降下することによって有底鋼管20の緩衝材15上に挿入される。この際に、廃棄体12の上端面には予め粉末状あるいは粒状等の緩衝材17が充填されており、廃棄体12の上下端に充填設置された粉末状あるいは粒状等の緩衝材17によって廃棄体12の緩衝材15に対する安定的な定着を確立している。
【0051】
図6(c)は、蓋状の緩衝材16を有底鋼管20の緩衝材15上に精度良く定着させた後に、定置装置28が吊下げ装置29を収納して退避する工程状態を示しており、廃棄体12の処分作業が完了した状態を表示している。
【0052】
以上のような作業工程によって明らかなように、本発明による地層処分施設の施工法は、経済性を確保できる程度の安価な薄い有底鋼管を設置するのみで、硬岩や堆積層の地層でも廃棄体を埋設定置する処分孔を合理的に施工して周辺地盤の安定性と廃棄体の定着を確実に確保している。
【0053】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による地層処分施設とその施工法は、上記実施の形態に何ら限定されるものでなく、廃棄体の形状や処分孔の配置及び施工装置等に関して、本発明の趣旨を逸脱しない範囲において種々の変更が可能であることは当然のことである。
【0054】
【発明の効果】
請求項1に記載の発明である地層処分施設は、掘削した処分坑道に処分孔を形成し、処分孔に封入される緩衝材中に廃棄体を埋設して定置するために、処分孔に封入する緩衝材を縦置きの有底鋼管に充填させて配置しているので、処分孔周辺の岩盤の安定性を確実に確保し、処分施設の設計・建設を合理的にすると共に、以下の効果を奏している。
▲1▼ 鋼管に底部を設けて、廃棄体を埋設する緩衝材が水に接触することを阻止するので、緩衝材の膨潤等が無く廃棄体処分の品質確保ができる。
▲2▼ 鋼管が腐食することで、周辺の地盤を還元雰囲気にして廃棄体を格納したオーバーパック等の金属容器の腐食速度を低減できる。
【0055】
請求項2に記載の発明である地層処分施設は、請求項1に記載の地層処分施設において、有底鋼管の底部を平面に形成することを特徴としているので、上記効果に加えて、有底鋼管を縦置きする際の安定性を確保する効果を奏している。
【0056】
請求項3に記載の発明である地層処分施設は、請求項1に記載の地層処分施設において、有底鋼管の底部を球面に形成することを特徴としているので、上記効果に加えて、処分孔の掘削された底面に容易に対応することで有底鋼管を縦置きする際の安定性を確保する効果を奏している。
【0057】
請求項4に記載の発明である地層処分施設は、請求項1乃至3のいずれかに記載の地層処分施設において、地層が堆積岩であることを特徴としているので、地層が花崗岩よりも強度が低くい場合でも処分施設を構築できる効果を奏している。
【0058】
本発明による地層処分施設の施工法は、掘削した処分坑道に処分孔を形成し、処分孔に有底鋼管を設置してから緩衝材を封入し、次いで封入された緩衝材中に廃棄体を埋設して定置させ、しかる後に蓋状の緩衝材で廃棄体を封鎖してから処分孔を緩衝材で充填しているので、経済性を確保できる薄い有底鋼管を設置するのみで、硬岩や堆積層の地層でも廃棄体を埋設定置する処分孔を合理的に施工して周辺地盤の安定性を確保する効果を奏している。
【図面の簡単な説明】
【 図1】本発明の地層処分施設における処分坑道と処分孔の断面図
【 図2】本発明の地層処分施設に用いる有底鋼管の実施の形態を示す斜視図
【 図3】本発明の地層処分施設の施工法における処分孔底面の施工図
【 図4】本発明の地層処分施設の施工法における緩衝材の定置状態を示す施工図
【 図5】本発明の地層処分施設の施工法における廃棄体の埋設状態を示す施工図
【 図6】本発明の地層処分施設の施工法における蓋状の緩衝材を定置する状態を示す施工図
【 図7】従来工法による地層処分施設の斜視図
【 図8】従来工法による処分坑道と処分孔の断面図
【符号の説明】
1 地下施設部、 2 地上受入施設、 3 立坑、 4 排気立坑、
5 処分トンネル、 6 主要トンネル、 7 キャニスター搬入立坑、
8 資材立坑、 9 緊急用立坑、 10 地層処分施設、
11 処分孔、 12 廃棄体、 13 底盤部、
14、17、18 緩衝材、 15 緩衝材、 16 蓋状の緩衝材、
19 処分坑道、 20 有底鋼管、 21、25 有底鋼管、
22 円筒部、 23 平板状の底板、 26 球面状の底板、
27 削孔機、 28 定置装置、 29、29’ 吊下げ装置、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a geological disposal facility and a construction method thereof, and more particularly, to a geological disposal facility and a construction method thereof that can secure the stability of surrounding rocks even in sedimentary rocks and can safely dispose of waste.
[0002]
[Prior art]
In the nuclear fuel cycle centered on nuclear power plants, in order to recycle spent fuel, spent fuel is transferred directly or via a recycle fuel storage center to a reprocessing plant, where uranium and plutonium are recovered. However, the radioactive waste that falls outside this fuel cycle is planned to be safely isolated and disposed of. Of these, low-level radioactive waste discharged from nuclear power plants is safely buried in low-level radioactive waste burial centers.
[0003]
On the other hand, for high-level radioactive waste generated at reprocessing plants, it is decided to dispose of waste in the geological disposal facility after storing the waste for cooling in the high-level radioactive waste storage facility. In the disposal facility, in order to dispose of high-level radioactive waste, as shown in FIG. 7, it is constructed as an underground facility deeper than 300 m underground.
[0004]
The geological disposal facility 10 includes an underground facility section 1 and a vertical shaft 3 and an exhaust vertical shaft 4 that communicate with the ground receiving facility 2. The underground facility section 1 is composed of a plurality of disposal tunnels 5 and a main tunnel 6 connecting them, and the shaft 3 has a canister carry-in shaft 7, a personnel / material shaft 8, and an emergency shaft 9. .
[0005]
Geological disposal facilities are classified and designed according to the type of rock, which are hard rocks and sedimentary rocks, and technical studies on each facility are underway.
[0006]
The geological disposal facility in soft rock is constructed with sedimentary rock, which is lower in strength than granite, and the disposal tunnel 5 in the geological disposal facility for sedimentary rock is disposed with the disposal tunnel 19 and disposal as shown in FIG. It consists of holes 11.
[0007]
The disposal tunnel 19 is a tunnel for transporting the waste body 12 and burying it in the bottom plate portion 13 of the tunnel, and the disposal hole 11 is a hole for finally burying the waste body 12.
[0008]
The disposal tunnel 19 is constructed by excavating with a TBM and then supported by a concrete segment, and the disposal hole 11 is created by excavating from the disposal tunnel 19 after the disposal tunnel 19 is constructed.
[0009]
The disposal operation of the waste body 12 is performed by first filling the disposal hole 11 with the cushioning material 14 at the bottom made of bentonite or the like and then enclosing the cushioning material 15, and then burying the waste body 12 in the cushioning material 15. After that, the upper end of the cushioning material 15 is sealed with a lid-shaped cushioning material 16.
[0010]
When the waste body 12 is embedded, the powder body 17 is interposed between the upper and lower ends of the waste body 12 so that the fixing of the waste body 12 is stabilized.
[0011]
The disposal hole 11 further encloses a buffer material 18 made of bentonite or the like in the remaining space, and finally, the disposal operation of the waste body 12 is completed by filling the buffer material into the disposal tunnel 19. .
[0012]
Therefore, the conventional design plan is centered on the stable design of the disposal tunnel, and the support specifications necessary to stabilize the tunnel by carrying out a study on the stability around the tunnel are defined. On the other hand, the stability and safety of excavation of the disposal hole have not been studied, and it is also considered to place the waste without supporting without considering the necessity of support. .
[0013]
[Problems to be solved by the invention]
However, in the case of tunnels constructed in the same strata, when evaluating the stability, the result is that there is no difference in the stability of ground around the tunnel depending on the diameter of the tunnel.
[0014]
Therefore, when it is judged that support is necessary for the stability of the disposal tunnel, some support is also applied to the disposal hole in order to ensure the stability of the disposal hole so as not to cause a difference in stability in the surrounding ground. It is necessary to ensure stability.
[0015]
However, as in the conventional design / examination, only the establishment of stability for the disposal mine is considered with respect to the stability of the surrounding ground, and the situation that does not consider the disposal hole is the high-level radioactive in nuclear power generation. This is a safety concern in the disposal of waste.
[0016]
The present invention proposes an improvement measure in the geological disposal of high-level radioactive waste in view of the above-mentioned current situation, and the disposal hole is arranged so as not to cause a difference in stability in the surrounding natural ground with respect to the disposal hole. By providing support, we provide a geological disposal facility that secures its stability and eliminates safety concerns and its construction method.
[0017]
[Means for Solving the Problems]
The geological disposal facility according to the present invention basically forms a disposal hole in an excavated disposal tunnel, and in the geological disposal facility in which waste is buried and placed in a buffer material enclosed in the disposal hole, The bottomed steel pipe is filled with the buffer material to be enclosed, and specifically, the bottom of the bottomed steel pipe is formed into a flat surface or a spherical surface, and it is constructed in a formation made of sedimentary rock. Yes.
[0018]
This ensures the stability of the bedrock around the disposal hole in the geological disposal facility where the waste is buried even in geological formations consisting of hard rock and sedimentary layers, and to dispose of high-level radioactive waste from nuclear power generation Has established safety.
[0019]
In addition, according to the construction method of the geological disposal facility according to the present invention, a disposal hole is formed in the excavated disposal tunnel, a bottomed steel pipe is installed in the disposal hole, a buffer material is enclosed, and then the sealed buffer material is enclosed. The waste body is buried and placed, and then the waste body is sealed with a lid-like buffer material, and then the disposal hole is filled with the buffer material. In addition, the disposal hole in the geological disposal facility where waste is buried is rationally constructed to ensure the stability of the surrounding ground.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The geological disposal facility according to the present invention has a buffer material enclosed in the disposal hole in order to form a disposal hole in the excavated disposal tunnel and to embed and place the waste in the buffer material sealed in the disposal hole. It is arranged by filling the bottom steel pipe, and is characterized by being constructed in a stratum composed of hard rock, especially sedimentary rock.
[0021]
Embodiments of the present invention will be described below in detail with reference to the drawings. In order to clarify the features of the present invention, the same parts as those in the prior art are denoted by the same reference numerals.
[0022]
FIG. 1 is a cross-sectional view showing an embodiment of a disposal mine and a disposal hole in a geological disposal facility according to the present invention.
[0023]
The waste body 12 made of high-level radioactive waste generated by nuclear power generation buried in a geological disposal facility is a glass solidified body formed by mixing the waste liquid of high-level radioactive waste with glass to prevent scattering. It is formed in a state where it is stored in a metal container such as a 20 cm overpack, and prevents high-level radioactive waste from coming into contact with groundwater.
[0024]
In order to ensure the safety of the tunnel from the disposal of the waste to the backfilling of the disposal tunnel, the disposal tunnel 19 and the disposal hole 11 are built, but the disposal tunnel 19 has been excavated with TBM. The disposal hole 11 that is constructed by supporting the concrete segment and finally embeds the waste body 12 is constructed by excavating from the bottom plate 13 of the disposal tunnel 19 after the disposal tunnel 19 is constructed.
[0025]
In addition, arrangement | positioning of the disposal hole 11 is not limited to the bottom board part 13 of the disposal tunnel 19, The disposal hole 11 may be formed in the side part of the disposal tunnel 19, and the waste body 12 may be installed horizontally. However, the disposal hole 11 in this case is excavated from the side of the disposal tunnel 19.
[0026]
A vertical bottomed steel pipe 20 is inserted into the disposal hole 11 in order to secure the stability of the surrounding rock mass including the peripheral wall and the bottom, but the bottomed steel pipe 20 is placed vertically as described above. Therefore, the shape is formed in a shape corresponding to the position of the disposal hole 11 with respect to the disposal tunnel 19 and the excavation hole for the disposal hole 11.
[0027]
The bottom portion of the bottomed steel pipe 20 is packed with a bottom cushioning material 14 made of bentonite or the like, and the cushioning material 15 is disposed thereon.
[0028]
The waste body 12 is fixed in the buffer material 15, and the adhesiveness between the waste body 12 and the buffer material 15 is increased by interposing powder or granular buffer materials 17, 17 at the upper and lower ends thereof. On the other hand, the upper end of the waste body 12 is sealed with the lid-like cushioning material 16 so that the fixing of the waste body 12 is stabilized.
[0029]
In the disposal hole 11, a buffer material 18 made of bentonite or the like is further sealed in the remaining space, and finally the buffer material is filled up to the disposal tunnel 19.
[0030]
Therefore, the cost of placing a bottomed steel pipe in the disposal hole is described. For example, the ratio of the diameter of the disposal hole and the disposal tunnel that are similar to each other is about 1/5. If the material of the same strength material is used, the ratio of the strength borne by will be proportional to (1/5) 2 , and the thickness of the material used to secure the rigidity necessary for the disposal hole is It becomes extremely thin compared to that of the disposal tunnel.
[0031]
In particular, when the bottomed steel pipe 20 is composed of a steel material that exhibits high strength for supporting the disposal tunnel, the thickness of the steel pipe is the minimum thickness determined from the workability and functionality at the time of embedment, You will be able to cope with it. Therefore, even if a bottomed steel pipe is disposed in the disposal hole, the bulkiness in terms of cost is kept to such an extent that it hardly causes a problem.
[0032]
As described above, the geological disposal facility according to the present invention is arranged by filling the bottomed steel pipe with the buffer material enclosed in the disposal hole, so that the stability of the rock around the disposal hole is surely secured, and the disposal facility In addition to rationalizing the design and construction of the product, it prevents the buffer material from coming into contact with water, eliminates the swelling of the buffer material, etc. There is also an effect of reducing the corrosion rate of the stored metal container.
[0033]
FIG. 2 is a perspective view showing an embodiment of a bottomed steel pipe inserted into the disposal hole.
FIG. 2 (a) is an embodiment in which the bottom of a bottomed steel pipe is formed into a flat surface. In this embodiment, the bottom of the bottomed steel pipe can be handled as a disposal hole that is excavated in a cylindrical shape and forms a flat bottom as in the prior art. It is configured as follows.
[0034]
The bottomed steel pipe 21 is composed of a cylindrical portion 22 that is in close contact with the peripheral wall of the disposal hole and ensures the stability of the rock around the disposal hole, and a flat bottom plate 23 that ensures the stability of the rock in the lower portion of the disposal hole. In addition, the cylindrical portion 22 and the bottom plate 23 are closely joined so that the groundwater does not penetrate into the metal container storing the cushioning material or waste body filled therein.
[0035]
Therefore, the bottomed steel pipe 21 ensures the stability when placed vertically in the disposal hole, and the stability of the surrounding rock mass is ensured, and at the same time the verticality of the waste body is secured and the fixing property is improved. ing.
[0036]
FIG. 2 (b) is an embodiment in which the bottom of a bottomed steel pipe is formed into a spherical surface. In this embodiment, the spherical surface has a function to improve the safety of the hole bottom and disposal to be excavated. It has a function that can flexibly cope with the bottom of the hole that is not maintained flat.
[0037]
The bottomed steel pipe 25 is in close contact with the peripheral wall of the disposal hole as in the above-described embodiment, and the spherical surface 22 that secures the stability of the cylindrical portion 22 for securing the stability of the rock around the disposal hole and the rock in the lower portion of the disposal hole. The cylindrical portion 22 and the bottom plate 26 are joined together in a dense state so that the groundwater does not penetrate into the metal container storing the cushioning material and waste body filled therein. Yes.
[0038]
Therefore, the bottomed steel pipe 25 ensures the stability when it is placed even when the bottom of the disposal hole is not evenly maintained, and at the same time the stability of the surrounding rock is improved. The fixability is improved by ensuring the verticality.
[0039]
Next, the construction method of the geological disposal facility according to the present invention will be described.
According to the construction method of the geological disposal facility according to the present invention, a disposal hole is formed in an excavated disposal tunnel, a bottomed steel pipe is installed in the disposal hole, a buffer material is enclosed, and then a waste body is placed in the enclosed buffer material. It is buried and placed, and then the waste body is sealed with a lid-like buffer material, and then the disposal hole is filled with the buffer material, so that only by installing a thin bottomed steel pipe that can ensure economic efficiency, In the formation of hard rocks and sedimentary layers, disposal holes for placing waste bodies are rationally constructed to ensure the stability of the surrounding ground.
[0040]
Hereinafter, embodiments of each invention will be described in detail with reference to the drawings. The same parts as those in the above drawings are denoted by the same reference numerals.
[0041]
3-6 is sectional drawing of the disposal hole in each process in embodiment of the construction method of the geological disposal facility by this invention.
[0042]
FIG. 3 is a construction diagram of the bottom surface of the disposal hole.
As shown in FIG. 3A, the disposal hole 11 is excavated from the bottom plate portion of the disposal tunnel by a drilling machine 27, and the bottom portion is configured in a flat plate shape in this embodiment. As shown in FIG. 3 (b), the bottomed steel pipe 20 is laid in the disposal hole 11 after excavation to ensure the stability of the rock in the vicinity of the disposal hole and the bottom bottom, and against the buffer material and the like. Prevents penetration of groundwater.
[0043]
The process of FIG. 4 shows the stationary state of the cushioning material 15.
As shown in FIG. 4A, the cushioning material 15 is placed on the stationary device 28 while being held by the suspending device 29, and is transferred to the predetermined disposal hole 11 in that state.
[0044]
Next, as shown in FIG. 4B, the cushioning material 15 is inserted into the disposal hole 11 by the lowering of the suspension device 29 of the stationary device 28. At this time, the inner bottom of the bottomed steel pipe 20 is preliminarily filled with the bottom cushioning material 14 in the form of powder or granules, so that the stable fixing of the cushioning material 15 to the bottomed steel pipe 20 is established. Yes.
[0045]
FIG. 4C shows a process state in which the stationary device 28 accommodates and retracts the suspension device 29 after the buffer material 15 is fixed to the inner bottom of the bottomed steel pipe 20 with high accuracy.
[0046]
The process of FIG. 5 shows the embedded state of the waste body 12.
As shown in FIG. 5A, the waste body 12 is placed in a state where it is held by a different suspension device 29 ′ on the stationary device 28, and is transferred to a predetermined disposal hole 11 in that state. Come on.
[0047]
Next, as shown in FIG. 5B, the waste body 12 is inserted into the cushioning material 15 by the lowering of the suspension device 29 ′ of the stationary device 28. At this time, the inner bottom of the cushioning material 15 is previously filled with a cushioning material 17 at the bottom, such as powdered or granular, and the stable fixing of the waste body 12 to the cushioning material 15 is established.
[0048]
FIG. 5C shows a process state in which the stationary device 28 accommodates and retracts the suspension device 29 ′ after the waste body 12 cushioning material 15 is fixed to the inner bottom of the cushioning material 15 with high accuracy.
[0049]
The process of FIG. 6 shows a stationary state of the lid-like cushioning material 16.
As shown in FIG. 6A, the lid-like cushioning material 16 is placed on the stationary device 28 in a state where it is not held by the suspension device 29, and is transferred to a predetermined disposal hole 11 in that state. The
[0050]
Next, as shown in FIG. 6 (b), the lid-like cushioning material 16 is inserted onto the cushioning material 15 of the bottomed steel pipe 20 by being suspended and lowered by the suspension device 29 of the stationary device 28. . At this time, the upper end surface of the waste body 12 is preliminarily filled with a buffer material 17 such as powder or granule, and is discarded by the powder or granule buffer material 17 filled at the upper and lower ends of the waste body 12. A stable fixing of the body 12 to the cushioning material 15 is established.
[0051]
FIG. 6C shows a process state in which the stationary device 28 accommodates and retracts the suspension device 29 after the lid-shaped buffer material 16 is accurately fixed on the buffer material 15 of the bottomed steel pipe 20. The state where the disposal work of the waste body 12 is completed is displayed.
[0052]
As is clear from the above work process, the construction method of the geological disposal facility according to the present invention is only to install an inexpensive thin bottomed steel pipe that is economical enough to secure the hard rock and the sedimentary layer. The disposal hole for placing waste is set up rationally to ensure the stability of the surrounding ground and the solid establishment of the waste.
[0053]
As described above, the present invention has been described in detail based on the embodiment. However, the geological disposal facility and the construction method according to the present invention are not limited to the above embodiment, and the shape of the waste body and the disposal hole are not limited. Of course, various changes can be made to the arrangement and construction apparatus of the present invention without departing from the spirit of the present invention.
[0054]
【The invention's effect】
The geological disposal facility according to claim 1 is formed in a disposal hole in order to form a disposal hole in an excavated disposal tunnel and embed and place the waste in a buffer material enclosed in the disposal hole. Since the bottomed steel pipe is filled with the cushioning material to be placed, the stability of the rock mass around the disposal hole is ensured, the design and construction of the disposal facility is rationalized, and the following effects I play.
(1) Since the bottom of the steel pipe is provided to prevent the buffer material for burying the waste material from coming into contact with water, the quality of the waste material disposal can be ensured without swelling of the buffer material.
{Circle around (2)} Corrosion of steel pipes can reduce the corrosion rate of metal containers such as overpacks that store waste in a reducing atmosphere around the surrounding ground.
[0055]
The geological disposal facility according to claim 2 is characterized in that, in the geological disposal facility according to claim 1, the bottom of the bottomed steel pipe is formed into a flat surface. It has the effect of ensuring stability when the steel pipe is placed vertically.
[0056]
The geological disposal facility according to claim 3 is characterized in that, in the geological disposal facility according to claim 1, the bottom portion of the bottomed steel pipe is formed into a spherical surface. It has the effect of ensuring the stability when the bottomed steel pipe is placed vertically by easily corresponding to the bottom surface of the excavated.
[0057]
The geological disposal facility according to claim 4 is characterized in that in the geological disposal facility according to any one of claims 1 to 3, the geological layer is sedimentary rock, so the geological layer has lower strength than granite. Even if there is a problem, the disposal facility can be constructed.
[0058]
According to the construction method of the geological disposal facility according to the present invention, a disposal hole is formed in an excavated disposal tunnel, a bottomed steel pipe is installed in the disposal hole, a buffer material is enclosed, and then a waste body is placed in the enclosed buffer material. Since the waste is sealed with lid-shaped cushioning material and the disposal holes are filled with cushioning material, the hard rock is simply installed by installing a thin bottomed steel pipe that can ensure economic efficiency. In addition, it has the effect of ensuring the stability of the surrounding ground by rationally constructing a disposal hole for placing waste in landfills and sedimentary layers.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a disposal tunnel and a disposal hole in a geological disposal facility according to the present invention. FIG. 2 is a perspective view showing an embodiment of a bottomed steel pipe used in the geological disposal facility according to the present invention. Construction diagram of bottom surface of disposal hole in construction method of disposal facility [Figure 4] Construction diagram showing the stationary state of buffer material in construction method of geological disposal facility of the present invention [Figure 5] Disposal in construction method of geological disposal facility of the present invention Construction diagram showing the buried state of the body [Fig. 6] Construction diagram showing the state of placing the lid-like cushioning material in the construction method of the geological disposal facility of the present invention [Fig. 7] Perspective view of the geological disposal facility by the conventional construction method [Fig. 8] Cross-sectional view of disposal tunnel and disposal hole by conventional method 【Explanation of symbols】
1 underground facilities, 2 ground receiving facilities, 3 shafts, 4 exhaust shafts,
5 disposal tunnels, 6 main tunnels, 7 canister carry-in shafts,
8 Material shafts, 9 Emergency shafts, 10 Geological disposal facilities,
11 disposal hole, 12 waste body, 13 bottom board,
14, 17, 18 cushioning material, 15 cushioning material, 16 lid-shaped cushioning material,
19 disposal tunnels, 20 bottomed steel pipes, 21, 25 bottomed steel pipes,
22 cylindrical portion, 23 flat bottom plate, 26 spherical bottom plate,
27 drilling machine, 28 stationary device, 29, 29 'hanging device,

Claims (5)

掘削した処分坑道に処分孔を形成し、該処分孔に封入される緩衝材中に廃棄体を埋設して定置する地層処分施設であって、処分孔に封入する緩衝材を有底鋼管に充填させて配置することを特徴とする地層処分施設。It is a geological disposal facility where a disposal hole is formed in the excavated disposal tunnel, and the waste is buried in the buffer material enclosed in the disposal hole, and the bottomed steel pipe is filled with the buffer material enclosed in the disposal hole A geological disposal facility characterized by being arranged. 有底鋼管が、底部を平面に形成することを特徴とする請求項1に記載の地層処分施設。The geological disposal facility according to claim 1, wherein the bottomed steel pipe has a flat bottom. 有底鋼管が、底部を球面に形成することを特徴とする請求項1に記載の地層処分施設。The geological disposal facility according to claim 1, wherein the bottomed steel pipe has a spherical bottom. 地層が、堆積岩から構成されることを特徴とする請求項1乃至3のいずれかに記載の地層処分施設。The geological disposal facility according to any one of claims 1 to 3, wherein the geological layer is composed of sedimentary rock. 掘削した処分坑道に処分孔を形成し、該処分孔に有底鋼管を設置してから緩衝材を封入し、次いで封入された緩衝材中に廃棄体を埋設して定置させ、しかる後に蓋状の緩衝材で廃棄体を封鎖してから処分孔を緩衝材で充填する請求項1乃至4のいずれかに記載の地層処分施設の施工法。Form a disposal hole in the excavated disposal tunnel, install a bottomed steel pipe in the disposal hole, enclose the buffer material, then embed the waste body in the enclosed buffer material and place it in place, and then cover it The construction method of the geological disposal facility according to any one of claims 1 to 4, wherein the disposal body is sealed with a buffer material and then the disposal hole is filled with the buffer material.
JP2000379817A 2000-12-14 2000-12-14 Geological disposal facility and its construction method Expired - Fee Related JP4253783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000379817A JP4253783B2 (en) 2000-12-14 2000-12-14 Geological disposal facility and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379817A JP4253783B2 (en) 2000-12-14 2000-12-14 Geological disposal facility and its construction method

Publications (2)

Publication Number Publication Date
JP2002181995A JP2002181995A (en) 2002-06-26
JP4253783B2 true JP4253783B2 (en) 2009-04-15

Family

ID=18848114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379817A Expired - Fee Related JP4253783B2 (en) 2000-12-14 2000-12-14 Geological disposal facility and its construction method

Country Status (1)

Country Link
JP (1) JP4253783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537090B1 (en) * 2012-07-17 2015-07-15 야마모토키소코교 가부시키가이샤 Method for waste burial and container for waste storage

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637376B2 (en) * 2010-10-28 2014-12-10 清水建設株式会社 Method of burying radioactive waste
CN105971010B (en) * 2016-07-05 2017-12-15 宏大国源(芜湖)资源环境治理有限公司 A kind of guide locating device provided prefabricated piping lane of band
CN108022032A (en) * 2016-11-01 2018-05-11 核工业北京地质研究院 A kind of conformation identification method suitable for high level radioactive waste repository addressing area
CN108022033A (en) * 2016-11-01 2018-05-11 核工业北京地质研究院 A kind of construction coverage evaluation method suitable for high level radioactive waste repository addressing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537090B1 (en) * 2012-07-17 2015-07-15 야마모토키소코교 가부시키가이샤 Method for waste burial and container for waste storage
US9117556B2 (en) 2012-07-17 2015-08-25 Yamamoto Foundation Works Co., Ltd. Method for waste burial and container for waste storage

Also Published As

Publication number Publication date
JP2002181995A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP2012132867A (en) Method for filling of clearance filler in burial site for radioactive waste
JP4253783B2 (en) Geological disposal facility and its construction method
JP4356252B2 (en) Geological disposal facility and disposal tunnel segment
JP5740456B2 (en) Radioactive waste underground storage facility and construction method thereof
US5171483A (en) Method for retrievable/permanent storage of hazardous waste materials
US5022788A (en) Subductive waste disposal method
JP2002214394A (en) Geological disposal facility and its execution method
JPH10153696A (en) Disposal vessel of high level radioactive waste
JP2002048900A (en) Structure for fixing high-level radioactive waste for geologic disposal
ES2345333T3 (en) METHOD FOR THE ELIMINATION OF THE INSTALLATIONS OF A POWER PLANT DIRECTLY BELOW THE ORIGINAL LOCATION.
JP4225245B2 (en) Underwater tunnel structure
RU2212720C1 (en) Method for long-time storage of spent nuclear fuel in large-diameter wells with three-layer steel-concrete casing
JP4492373B2 (en) Disposal tunnel facility at waste geological disposal site
JP4281618B2 (en) Underground facility of waste geological disposal facility
JP7229086B2 (en) Radioactive waste disposal tunnel structure, disposal tunnel structure manufacturing method, and disposal tunnel structure maintenance method
JPS61201200A (en) Equipment for treating stratum of radiation waste and execution method thereof
JPH09304596A (en) Method for disposal of radioactive waste
Hoskins et al. Geologic and engineering dimensions of nuclear waste storage
JP2010066112A (en) Method and installation for disposing of ri waste under inshore seabed
JPS63243800A (en) Underground structure for storing and treating radioactive waste
JP2003043192A (en) Disposal tunnel of layer disposal facility and filling cushioning material
JPH073477B2 (en) Underground structure for storage and disposal of radioactive waste
Åkesson et al. WP-Cave-A New Concept For Underground High-Level Nuclear Waste Repository
JP2570084Y2 (en) Geological disposal structure of radioactive waste
Salehe et al. Borehole disposal concept: a proposed option for disposal of spent sealed radioactive sources in Tanzania

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4253783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees