[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4252893B2 - Duplex stainless steel strip for steel belt - Google Patents

Duplex stainless steel strip for steel belt Download PDF

Info

Publication number
JP4252893B2
JP4252893B2 JP2003503853A JP2003503853A JP4252893B2 JP 4252893 B2 JP4252893 B2 JP 4252893B2 JP 2003503853 A JP2003503853 A JP 2003503853A JP 2003503853 A JP2003503853 A JP 2003503853A JP 4252893 B2 JP4252893 B2 JP 4252893B2
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
transformation
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003503853A
Other languages
Japanese (ja)
Other versions
JPWO2002101108A1 (en
Inventor
宏紀 冨村
廣 藤本
憲一 森本
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of JPWO2002101108A1 publication Critical patent/JPWO2002101108A1/en
Application granted granted Critical
Publication of JP4252893B2 publication Critical patent/JP4252893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Belt Conveyors (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Package Frames And Binding Bands (AREA)

Abstract

A high-strength dual-phase stainless steel strip has a chemical composition consisting of 0.04-0.15 mass % C, 10.0-20.0 mass % Cr, 0.5-4.0 mass % Ni and the balance being Fe except inevitable impurities, and a metallurgical structure composed of 20-85 vol. % martensite grains and the balance ferrite grains with prior austenite grains controlled to 10 mu m or less in size. The stainless steel strip is conditioned to hardness of HV 300 or more. Transformation strains are uniformly distributed in a steel matrix during martensitic transformation, so that the steel strip is formed and straightened to a belt shape without L}ders band. Consequently, steel belts with fine external appearance are manufactured from the stainless steel strip.

Description

本発明は、スチールベルト製造プロセスにおける形状矯正時にリューダースバンドが発生しない表面形状優れスチールベルト用高強度複相ステンレス鋼帯に関する。 The present invention relates to a high-strength duplex stainless steel strip for steel belts that has an excellent surface shape that does not generate a Lueder's band during shape correction in a steel belt manufacturing process.

ステンレススチールベルトには、SUS301,SUS304等のオーステナイト系ステンレス鋼冷間圧延によって強化された加工硬化型オーステナイト系ステンレス鋼の他に、低炭素マルテンサイト系ステンレス鋼(特公昭51−31085号公報),析出硬化型マルテンサイト系ステンレス鋼(特公昭59−49303号公報)等が便用されている。 For stainless steel belts, in addition to work hardening type austenitic stainless steel in which austenitic stainless steel such as SUS301 and SUS304 is strengthened by cold rolling, low carbon martensitic stainless steel (Japanese Patent Publication No. 51-31085). Precipitation hardening type martensitic stainless steel (Japanese Patent Publication No. 59-49303) is used for convenience.

SUS304,SUS301に代表される加工硬化型の組織は準安定オーステナイト組織であり、変形により加工誘起マルテンサイトが形成される。そのため、変形中に加工誘起マルテンサイトの生成に起因するリューダースバンドが発生し(日本金属学会誌第55巻第4号第376〜382頁,日新製鋼技報第69号第1〜14頁)スチールベルト素材として望ましくない表面凹凸が発生する。 Work hardening type structures represented by SUS304 and SUS301 are metastable austenite structures, and work-induced martensite is formed by deformation. Therefore, a Luders band resulting from the formation of work-induced martensite is generated during the deformation (Journal of the Japan Institute of Metals, Vol. 55, No. 4, pages 376-382, Nisshin Steel Technical Report No. 69, pages 1-14. ) Undesirable surface irregularities occur as a steel belt material.

マルテンサイト系や析出硬化型マルテンサイト系は、製造工程における焼鈍からの冷却過程でほぼマルテンサイト単相に変態するが、変態に伴う膨張により形状変化を生じやすい。劣化した形状は、ベルト状態では容易に矯正できない。   The martensite system and the precipitation hardening type martensite system are transformed into a substantially martensite single phase in the cooling process from the annealing in the production process, but the shape is likely to change due to expansion accompanying the transformation. The deteriorated shape cannot be easily corrected in the belt state.

本発明は、このような問題を解消すべく案出されたものであり、準安定オーステナイト系のようなベルト形状矯正時にリューダースバンドの発生や、マルテンサイト系のように製造過程でマルテンサイトに完全変態することにより形状矯正が困難になることなく、フェライト/マルテンサイトの複相組織をもち表面形状に優れたスチールベルト用のステンレス鋼帯を提供することを目的とする。   The present invention has been devised to solve such a problem, and when a belt shape correction such as a metastable austenite system is performed, a Luders band is generated, or in the manufacturing process such as a martensite system. An object of the present invention is to provide a stainless steel strip for a steel belt having a ferrite / martensite double phase structure and an excellent surface shape without making shape correction difficult by complete transformation.

本発明のスチールベルト用高強度複相ステンレス鋼帯は、その目的を達成するため、C:0.04〜0.15質量%,Cr:10.0〜20.0質量%,Ni:0.5〜4.0質量%,Si:2.0質量%以下,Mn:2.0質量%以下,Al:0.10質量%以下,N:0.10質量%以下,Mo:1.0質量%以下,Cu:2.0質量%以下を含み、残部Fe及び不可避的不純物の組成をもち、旧オーステナイト平均粒径が10μm以下で、変態後の常温で20〜85体積%のマルテンサイトと残部がフェライトの組織をもち、硬度HV300以上に調質されている。 In order to achieve the object, the high-strength duplex stainless steel strip for steel belt of the present invention has C: 0.04 to 0.15% by mass, Cr: 10.0 to 20.0% by mass, Ni: 0.0. 5 to 4.0 mass%, Si: 2.0 mass% or less, Mn: 2.0 mass% or less, Al: 0.10 mass% or less, N: 0.10 mass% or less, Mo: 1.0 mass % Or less, Cu: 2.0% by mass or less, having the composition of the balance Fe and inevitable impurities, the prior austenite average particle size of 10 μm or less, and 20 to 85% by volume of martensite and the balance at room temperature after transformation Has a ferrite structure and is tempered to a hardness of HV300 or higher.

旧オーステナイト平均粒径を10μm以下にし、焼鈍工程の冷却過程でオーステナイトがマルテンサイト変態する際の平均膨張量を9%以下に調整することが好ましい。
なお、本件明細書では、鋼板を包含する意味で「鋼帯」を使用している。
It is preferable that the prior austenite average particle diameter is 10 μm or less, and the average expansion amount when the austenite undergoes martensitic transformation in the cooling process of the annealing process is adjusted to 9% or less.
In the present specification, “steel strip” is used to include steel plates.

本発明者等は、スチールベルトの形状矯正時に発生するリューダースバンドに及ぼす影響を組成,組織,材質等、種々の観点から調査・検討した。その結果、マルテンサイト変態に伴う歪み分布や体積膨張がリューダースバンドの発生に大きな影響を与えていることが判った。歪み分布,体積膨張の影響を考慮し、ステンレス鋼帯に残留オーステナイトをなくすと共に、焼鈍工程の冷却過程でオーステナイト相がマルテンサイト変態する際に生じる膨張歪みを鋼帯全体に分散発生させることがリューダースバンドの発生防止に有効であることを解明した。
以下、本発明が対象とする複相ステンレス鋼帯に含まれる合金成分,含有量等を説明する。
The inventors of the present invention investigated and examined the influence on the Lueders band generated during shape correction of the steel belt from various viewpoints such as composition, structure and material. As a result, it was found that the strain distribution and volume expansion accompanying the martensitic transformation have a great influence on the generation of the Lueders band. Considering the effects of strain distribution and volume expansion, it is possible to eliminate residual austenite in the stainless steel strip and to disperse and generate expansion strain throughout the steel strip when the austenite phase undergoes martensitic transformation during the cooling process in the annealing process. It was clarified that it is effective in preventing the occurrence of a dozen bands.
Hereinafter, alloy components, contents, and the like included in the duplex stainless steel strip targeted by the present invention will be described.

C:0.04〜0.15質量%
オーステナイト形成元素であり、マルテンサイト相の強化に極めて有効な合金成分である。オーステナイト化温度Ac点以上の高温加熱した後に生じるマルテンサイト量を調整でき、強度調整及び高強度化に寄与する。Cの添加効果は、0.04質量%以上のC含有量で顕著になる。しかし、過剰量のC含有は複化処理後の冷却過程や時効処理で粒界にCr炭化物を析出させて耐粒界腐食や疲労特性を低下させるので、C含有量の上限を0.15質量%に設定した。
C: 0.04-0.15 mass%
It is an austenite forming element and an alloy component that is extremely effective for strengthening the martensite phase. Can adjust the amount of martensite generated after the high temperature heating above austenitizing temperature Ac l point, it contributes to the intensity adjustment and high strength. The effect of adding C becomes significant when the C content is 0.04% by mass or more. However, excessive C content causes Cr carbide to precipitate at the grain boundaries in the cooling process and aging treatment after the multi- phase treatment, thereby reducing the intergranular corrosion resistance and fatigue characteristics, so the upper limit of the C content is 0.15. It was set to mass%.

Cr:10.0〜20.0質量%
ステンレス鋼としての耐食性を確保する上で必須の合金成分であり、必要な耐食性を付与するため10.0質量%以上でCrを含ませる。しかし、20.0質量%を超える過剰量のCrを添加すると、鋼材の靭性,加工性が低下する。Cr含有量の増加に応じて、マルテンサイトの生成及び高強度化に必要なC,N,Ni,Mn,Cu等のオーステナイト形成元素を増量することを余儀なくされる。オーステナイト形成元素の増量は、鋼帯コストを上昇させるばかりでなく、室温でオーステナイトを安定化し、高強度が得られがたくなる。したがって、Cr含有量の上限を20.0質量%に定めた。
Cr: 10.0-20.0 mass%
It is an essential alloy component for securing the corrosion resistance as stainless steel, and Cr is contained at 10.0 mass% or more in order to provide the necessary corrosion resistance. However, when an excessive amount of Cr exceeding 20.0 mass% is added, the toughness and workability of the steel material are lowered. As the Cr content increases, the amount of austenite-forming elements such as C, N, Ni, Mn, and Cu necessary for the formation of martensite and high strength is inevitably increased. Increasing the amount of austenite forming elements not only increases the cost of the steel strip, but also stabilizes austenite at room temperature, making it difficult to obtain high strength. Therefore, the upper limit of the Cr content is set to 20.0% by mass.

Ni:0.5〜4.0質量%
オーステナイト生成元素であり、高温でフェライト+オーステナイトの組織(室温でフェライト+マルテンサイト)を得るために添加される。Ni含有量に応じてマルテンサイト量が増加し、鋼材が高強度化される。また、Ni添加により、(オーステナイト+フェライト)二相域焼鈍で、オーステナイトの核形成頻度が増加し、結果として微細な(オーステナイト+フェライト)二相混合組織が得られる。Niの増量が微細な二相混合組織の生成に及ぼす機構は、古典的核形成理論で定義される臨界核を越えてオーステナイト核の成長速度が遅くなる一方、平衡状態図的には安定量のオーステナイトを生成しようとして、新たなオーステナイト核を形成するために核形成サイトが多くなることによるものと考えられる。二相混合組織の微細化に及ぼすNiの添加効果は、0.5質量%以上のNi含有量で顕著になる。しかし、鋼材コストを上昇させる高価な元素であることは勿論、Niの過剰添加によって高温で生成したオーステナイト相が室温までの冷却過程でマルテンサイトに変態せず残留オーステナイトとなって鋼材強度を低下させる原因である。したがって、Ni含有量の上限を4.0質量%に定めた。
Ni: 0.5-4.0 mass%
It is an austenite-forming element, and is added to obtain a ferrite + austenite structure (ferrite + martensite at room temperature) at a high temperature. The amount of martensite increases according to the Ni content, and the strength of the steel material is increased. In addition, the addition of Ni increases the austenite nucleation frequency in (austenite + ferrite) two-phase annealing, and as a result, a fine (austenite + ferrite) two-phase mixed structure is obtained. The mechanism of the increase of Ni on the formation of a fine two-phase mixed structure is that the growth rate of austenite nuclei is slower than the critical nuclei defined by classical nucleation theory, while the stable amount is This is considered to be due to an increase in the number of nucleation sites in order to form austenite nuclei in an attempt to generate austenite. The effect of adding Ni on the refinement of the two-phase mixed structure becomes significant when the Ni content is 0.5 mass% or more. However, it is an expensive element that raises the cost of steel, and of course, the austenite phase generated at a high temperature due to excessive addition of Ni does not transform into martensite in the cooling process to room temperature and becomes retained austenite, thus reducing the strength of the steel. Responsible. Therefore, the upper limit of the Ni content is set to 4.0% by mass.

本発明が対象とする複相ステンレス鋼帯では、C,Cr,Niの他に、Mn,Cu,Nのオーステナイト形成元素やSi,Alのフェライト形成元素を添加し、常温でフェライト+マルテンサイトの複相組織が得られるように各合金成分調整される。また、必要強度を低下させない範囲で、耐食性の向上に有効なMoが添加される。さらに,耐酸化性や熱間加工性の向上に有効なY,Ca,REM(希土類金属),各種の特性向上に有効なB,V等の合金元素,Ti,Nb等のフェライト形成元素を適宜添加しても良い。これら必須成分及び任意成分の含有量は、次のように定められる。 The dual-phase stainless steel strip to which the present invention is directed, C, Cr, in addition to Ni, M n, Cu, austenite-forming element or Si in N, ferrite forming elements Al and added pressure, ferrite + martensite at room temperature each alloy component as duplex structure of the site is obtained Ru is adjusted. In addition, Mo that is effective for improving corrosion resistance is added within a range that does not reduce the required strength . Furthermore , Y, Ca, REM (rare earth metal) effective for improving oxidation resistance and hot workability, B, V and other alloy elements effective for improving various properties , and ferrite forming elements such as Ti and Nb are appropriately used. It may be added. The contents of these essential components and optional components are determined as follows.

Si:2.0質量%以下
溶鋼段階で脱酸剤として添加される成分であるが、固溶強化能が高く、2.0質量%を超えるSiの過剰添加は鋼材を硬質化して延性を低下させる。
Si: 2.0% by mass or less Si is a component added as a deoxidizer in the molten steel stage, but has a high solid solution strengthening ability. Excessive addition of Si exceeding 2.0% by mass hardens the steel material and reduces ductility. Let

Mn:2.0質量%以下
オーステナイト形成元素であり、高温域でのδフェライトの生成を抑制しオーステナイトを生成しやすくする。しかし、2.0質量%を超える過剰量のMnが含まれると、焼鈍後に残留オーステナイトが生成し易く、製品形状に加工する際に加工誘起マルテンサイトを生成し、歪み発生の原因にもなる。
Mn: 2.0% by mass or less An austenite-forming element that suppresses the formation of δ ferrite in a high temperature range and facilitates the formation of austenite. However, when an excessive amount of Mn exceeding 2.0% by mass is contained, retained austenite is likely to be generated after annealing, and processing-induced martensite is generated when processing into a product shape, which also causes distortion.

P:0.050質量%以下
熱間加工性に有害な元素であり、0.050質量%を超える過剰なPが含まれると熱間加工性に及ぼす悪影響が顕著になる。
P: 0.050% by mass or less An element harmful to hot workability. When excessive P exceeding 0.050% by mass is included, an adverse effect on hot workability becomes remarkable.

S:0.020質量%以下
結晶粒界に偏析し易く、粒界を脆化して熱間加工性等を低下させる成分である。S起因の悪影響を抑えるため、S含有量の上限を0.020質量%に規制することが好ましい。
S: 0.020% by mass or less This is a component that easily segregates at the crystal grain boundaries, embrittles the grain boundaries, and decreases hot workability. In order to suppress the adverse effects caused by S, it is preferable to limit the upper limit of the S content to 0.020% by mass.

Al:0.10質量%以下
溶鋼段階で脱酸剤として添加される成分であるが、0.10質量%を超える過剰なAl添加は非金属介在物を増加させ、靭性低下や表面欠陥の原因となる。
Al: 0.10% by mass or less Al is a component added as a deoxidizer at the molten steel stage, but excessive addition of Al exceeding 0.10% by mass increases nonmetallic inclusions and causes toughness reduction and surface defects. It becomes.

N:0.10質量%以下
オーステナイト形成元素であり、高温域におけるδフェライトの生成を抑制し、オーステナイト相の生成を促進させる。しかし、0.10質量%を超える過剰量のNが含まれると、焼鈍後に残留オーステナイトが生成し易くなる。残留オーステナイトは、製品形状への加工段階で加工誘起マルテンサイトに変態し、歪み発生の原因にもなる。冷延焼鈍材の強度を上昇させる成分でもあり、N含有量の増加に応じて延性が低下する。
N: 0.10% by mass or less An austenite forming element that suppresses the formation of δ ferrite in a high temperature range and promotes the formation of an austenite phase. However, if an excessive amount of N exceeding 0.10% by mass is contained, retained austenite tends to be generated after annealing. Residual austenite transforms into processing-induced martensite at the stage of processing into the product shape, and causes distortion. It is also a component which raises the intensity | strength of a cold-rolled annealing material, and ductility falls according to the increase in N content.

Mo:1.0質量%以下
耐食性改善に有効な合金成分であるが、1.0質量%を超えるMoの過剰添加は高温での固溶強化や動的再結晶を遅滞させ、熱間加工性を低下させる。
Mo: 1.0% by mass or less Mo is an alloy component effective for improving corrosion resistance. However, excessive addition of Mo exceeding 1.0% by mass delays solid solution strengthening and dynamic recrystallization at high temperatures, resulting in hot workability. Reduce.

Cu:2.0質量%以下
溶解原料であるスクラップ等から混入する不可避的な不純物であるが、Cu含有量が過剰になると熱間加工性や耐食性に悪影響が現れる。Cu起因の悪影響は、Cu含有量を2.0質量%以下に規制することにより抑制される。
Cu: 2.0% by mass or less Cu is an unavoidable impurity mixed from scrap as a melting raw material. However, when the Cu content is excessive, there is an adverse effect on hot workability and corrosion resistance. The adverse effect caused by Cu is suppressed by regulating the Cu content to 2.0 mass% or less.

Ti:0.01〜0.50質量%
Nb:0.01〜0.50質量%
V:0.01〜0.30質量%
Zr:0.01〜0.30質量%
Ti,Nb,Vは固溶Cを炭化物として析出させて加工性を向上させ、Zrは鋼中の酸素を酸化物として捕捉することにより加工性や靭性を向上させる合金成分であるが、過剰添加は生産性を低下させることになる。そのため、各合金成分の含有量は、Ti:0.01〜0.50質量%,Nb:0.01〜0.50質量%,V:0.01〜0.30質量%,Zr:0.01〜0.30質量%の範囲で選定することが好ましい。
Ti: 0.01 to 0.50 mass%
Nb: 0.01 to 0.50 mass%
V: 0.01-0.30 mass%
Zr: 0.01-0.30 mass%
Ti, Nb and V precipitate solid solution C as carbides to improve workability, and Zr is an alloy component that improves workability and toughness by capturing oxygen in steel as an oxide. Will reduce productivity. Therefore, the content of each alloy component is as follows: Ti: 0.01 to 0.50 mass%, Nb: 0.01 to 0.50 mass%, V: 0.01 to 0.30 mass%, Zr: 0.00. It is preferable to select in the range of 01 to 0.30 mass%.

B:0.0010〜0.0100質量
熱延板の変態相を均一分散させ、複相化焼鈍段階で変態相を細粒化する作用を呈する。Bの添加効果は0.0010質量%以上で顕著になるが、0.0100質量%を超える過剰添加は熱間加工性,溶接性等に悪影響を及ぼす。
B: 0.0010 to 0.0100 mass %
The transformation phase of the hot-rolled sheet is uniformly dispersed, and the transformation phase is refined in the multiphase annealing stage. The addition effect of B becomes significant at 0.0010% by mass or more, but excessive addition exceeding 0.0100% by mass adversely affects hot workability and weldability.

Y:0.02質量%以下
Ca:0.05質量%以下
REM(希土類金属):0.1質量%以下
Y,Ca,REMは、熱間加工性の改善に有効な合金成分であるが、過剰に添加すると表面疵が発生しやすくなる。Y,Ca,REMを添加する場合、好ましくはY:0.02質量%,Ca:0.05質量%,REM:0.1質量%に上限をそれぞれ規制する。
Y: 0.02% by mass or less Ca: 0.05% by mass or less REM (rare earth metal): 0.1% by mass or less Y, Ca, and REM are effective alloy components for improving hot workability. If excessively added, surface defects are likely to occur. When adding Y, Ca, and REM, the upper limit is preferably restricted to Y: 0.02 mass%, Ca: 0.05 mass%, and REM: 0.1 mass%, respectively.

成分調整されたステンレス鋼は、マルテンサイト変態時の歪みや体積膨張がリューダースバンド発生に及ぼす影響を抑制するため、組織,旧オーステナイト粒,マルテンサイト変態時の膨張率等が規制される。   The component-adjusted stainless steel controls the structure, prior austenite grains, expansion coefficient during martensite transformation, and the like in order to suppress the influence of strain and volume expansion during the martensite transformation on the occurrence of the Lueders band.

組織:20〜85体積%のマルテンサイト及び残部フェライト
室温でのマルテンサイト量20〜85体積%は、高温でのオーステナイト量20〜85体積%に当る。室温までの冷却過程でオーステナイト相がマルテンサイト変態するが、生成したマルテンサイト中の変態転位及びマルテンサイト変態に伴う体積膨張に起因する変態歪みが冷却後のステンレス鋼に導入される。
マルテンサイト変態に際し、旧オーステナイト粒を細粒化して高温域における旧オーステナイト粒/フェライト粒の粒界表面積を大きくすると、マルテンサイト変態に起因する歪みが均一分散され、周囲にある軟質のフェライト粒に変態歪みが吸収される。その結果、鋼帯外面に現れる変態歪み起因の変形が小さくなる。変態歪みが均一分散・吸収されたスチールベルト形状のステンレス鋼帯に1〜2%の引張り歪みを加えて形状矯正すると、均一分散した微細な変態歪みが矯正時の歪みに吸収され、リューダースバンドの発生なくステンレス鋼帯が均一に加工変形する。
Structure: 20 to 85% by volume of martensite and the remaining ferrite The amount of martensite at room temperature of 20 to 85% by volume corresponds to the amount of austenite at a high temperature of 20 to 85% by volume. The austenite phase undergoes martensitic transformation in the cooling process to room temperature, but transformation strain due to the transformation dislocation in the produced martensite and volume expansion associated with the martensitic transformation is introduced into the stainless steel after cooling.
In the martensitic transformation, if the prior austenite grains are refined to increase the grain boundary surface area of the prior austenite grains / ferrite grains in the high temperature range, the strain due to the martensitic transformation is uniformly dispersed, and the soft ferrite grains in the surrounding area are dispersed. Transformation distortion is absorbed. As a result, deformation due to transformation strain appearing on the outer surface of the steel strip is reduced. When a steel belt-shaped stainless steel strip with uniform transformation / absorption of transformation strain is corrected by applying 1-2% tensile strain, the uniform transformation of fine transformation strain is absorbed by the strain during correction, and the Luders band The stainless steel strip is uniformly deformed without any occurrence.

均一分散した微細な変態歪みを形状矯正時の加工歪みに積極的に吸収させてリューダースバンドの発生を抑える上では、変態歪みの蓄積に有効なマルテンサイト量を20体積%以上に調整することが重要である。マルテンサイト量が20体積%に満たないと、形状矯正段階で付与される1〜2%の引張り歪みが変態歪みの蓄積量を超え、鋼帯表面にリューダースバンドが出現する。マルテンサイト量が少ないことは、軟質のフェライトが過剰なことを意味し、ステンレス鋼帯の強度も不足しがちになる。逆に、過剰なマルテンサイト量は、焼鈍工程の冷却段階でマルテンサイトに完全変態して変態歪み起因の形状劣化が現れやすくなると共に、形状矯正時の加工が困難になる。そのため、マルテンサイト量の上限を85体積%に規制する。   In order to suppress the generation of Luders bands by actively absorbing fine transformation strains that are uniformly dispersed into processing strains during shape correction, the amount of martensite that is effective for accumulating transformation strains should be adjusted to 20% by volume or more. is important. If the amount of martensite is less than 20% by volume, the tensile strain of 1 to 2% applied in the shape correction stage exceeds the accumulated amount of transformation strain, and a Luders band appears on the surface of the steel strip. When the amount of martensite is small, it means that soft ferrite is excessive, and the strength of the stainless steel strip tends to be insufficient. Conversely, an excessive amount of martensite is completely transformed into martensite in the cooling stage of the annealing process, and shape deterioration due to transformation distortion is likely to appear, and processing during shape correction becomes difficult. Therefore, the upper limit of the martensite amount is restricted to 85% by volume.

旧オーステナイトの平均粒径:10μm以下
旧オーステナイト粒を細粒化すると、焼鈍工程の冷却段階で生じるマルテンサイト及びフェライトの粒径が小さくなり、マルテンサイト変態領域が分散されるため、マルテンサイト変態に伴う歪みが均一分散される。その結果、スチールベルト矯正時の不均一変形が抑えられ、リューダースバンドが発生しなくなる。変態歪みの均一分散、ひいてはリューダースバンドの抑制は、旧オーステナイトの平均粒径を10μm以下にすることにより効果的になる。
Average grain size of prior austenite: 10 μm or less When the prior austenite grains are refined, the martensite and ferrite grains produced in the cooling stage of the annealing process become smaller and the martensite transformation region is dispersed. The accompanying distortion is uniformly dispersed. As a result, non-uniform deformation during steel belt correction is suppressed, and a Luders band is not generated. Uniform dispersion of transformation strain, and thus suppression of the Lueders band, can be effectively achieved by setting the average particle size of the prior austenite to 10 μm or less.

マルテンサイト変態に伴う平均膨張率:9%以下
オーステナイト相がマルテンサイト変態すると、結晶構造がf.c.c.からb.c.c.又はb.c.t.に変化する。結晶構造の変化に伴い、結晶構造の原子充填率が変わりステンレス鋼帯を変態膨張させる。変態起因の膨張率は、変態で生じたマルテンサイト量に単純比例せず、マルテンサイト及びフェライトの分布に依存する。旧オーステナイトの平均粒径が小さく、変態後のマルテンサイト/フェライトの粒界面積が大きいほど、換言すると変態マルテンサイトが微細分布するほど、周囲にある軟質のフェライトに変態歪みが吸収され、フェライト内部に変態歪みが蓄積される。
Average expansion coefficient associated with martensitic transformation: 9% or less When the austenite phase undergoes martensitic transformation, the crystal structure becomes f. c. c. To b. c. c. Or b. c. t. To change. As the crystal structure changes, the atomic filling rate of the crystal structure changes and the stainless steel strip is transformed and expanded. The expansion coefficient due to transformation is not simply proportional to the amount of martensite produced by transformation, but depends on the distribution of martensite and ferrite. The smaller the average grain size of the prior austenite and the larger the interfacial area of martensite / ferrite after transformation, in other words, the more finely distributed the transformation martensite, the more the transformation strain is absorbed in the surrounding soft ferrite. Transformation distortion is accumulated.

変態歪みの吸収・蓄積により、バルク全体の見掛け膨張量が小さくなる。変態マルテンサイトの細粒化が変態歪みを抑える効果を利用することにより、スチールベルト矯正時の不均一変形が防止され、リューダースバンドが発生しなくなる。そのためには、旧オーステナイトを平均粒径10μm以下に細粒化し、変態後のマルテンサイト/フェライトの二相組織の粒径を小さくしてマルテンサイト/フェライトの粒界面積を大きくし、平均膨張量を9%以下にする必要がある。   Absorption / accumulation of transformation strain reduces the apparent bulk expansion. By utilizing the effect that the transformation martensite is refined to suppress transformation distortion, non-uniform deformation during the steel belt correction is prevented, and the Luders band does not occur. For this purpose, prior austenite is refined to an average grain size of 10 μm or less, the grain size of the martensite / ferrite two-phase structure after transformation is reduced to increase the martensite / ferrite grain interface area, and the average expansion amount Needs to be 9% or less.

硬度:HV300以上
C,Ni含有量及びマルテンサイト量の調整により、複相組織ステンレス鋼は硬度が調質されるが、使用環境での高応答性・高速化,小プーリー化による高疲労強度が要求されるスチールベルトとしての用途にあってはHV300以上の素材硬度が必要になる。
Hardness: HV300 or higher Although the hardness of the multiphase stainless steel is adjusted by adjusting the C, Ni content and martensite content, it has high fatigue strength due to high responsiveness, high speed, and small pulley in the usage environment. In the required use as a steel belt, a material hardness of HV300 or higher is required.

次いで、実施例により本発明を具体的に説明する。
表1の組成をもつステンレス鋼を真空溶解し、鋳造,鍛造後、板厚3.0mmに熱間圧延した。表中、鋼種番号No.1〜5は本発明で規定した組成をもつステンレス鋼、鋼種番号No.6〜8は本発明で規定した範囲を外れる組成のステンレス鋼である。
鋼種番号No.1〜7では、780℃×8時間で拡散焼鈍し、酸洗後に板厚1.0mmに冷間圧延し、更に1050℃×1分均熱・空冷の複相化焼鈍を施し、再度酸洗した。鋼種番号No.8では、SUS301に相当する板厚2.0mmの熱延鋼板を1050℃×60秒で焼鈍した後、板厚1.0mmに冷間圧延した。
Next, the present invention will be described specifically by way of examples.
Stainless steel having the composition shown in Table 1 was vacuum melted, cast and forged, and then hot rolled to a thickness of 3.0 mm. In the table, steel type no. Nos. 1 to 5 are stainless steels having the composition defined in the present invention, steel type nos. 6 to 8 are stainless steels having a composition outside the range defined in the present invention.
Steel type no. 1-7, diffusion annealing at 780 ° C. for 8 hours, cold rolling to a plate thickness of 1.0 mm after pickling, further 1050 ° C. × 1 minute soaking / air cooling dual phase annealing, pickling again did. Steel type no. In No. 8, a hot-rolled steel sheet having a thickness of 2.0 mm corresponding to SUS301 was annealed at 1050 ° C. for 60 seconds, and then cold-rolled to a thickness of 1.0 mm.

Figure 0004252893
Figure 0004252893

各ステンレス鋼帯について、組織定量,表面のビッカース硬度(荷重1kg),旧オーステナイト粒径を調査した。フェライト及びマルテンサイトは、フッ酸2:硝酸1:グリセリン1のエッチング液でエッチングし、ポイントカウント法で定量した。オーステナイト量は磁気的方法で測定した。旧オーステナイト粒径は電子顕微鏡で観察し、切片法で測定した。マルテンサイト変態に起因する平均膨張率は、実験室的に実施した複相化焼鈍における冷却過程で一方向変態膨張量を測定し、測定値を3乗して体積膨張率に換算することにより求めた。調査結果を表2に示す。   Each stainless steel strip was examined for structure quantification, surface Vickers hardness (load 1 kg), and prior austenite grain size. Ferrite and martensite were etched with an etching solution of hydrofluoric acid 2: nitric acid 1: glycerin 1 and quantified by a point count method. The amount of austenite was measured by a magnetic method. The prior austenite particle size was observed with an electron microscope and measured by a section method. The average expansion coefficient resulting from martensitic transformation is obtained by measuring the amount of unidirectional transformation expansion during the cooling process in the multi-phase annealing performed in the laboratory, converting the measured value to the third power, and converting it to the volume expansion coefficient. It was. The survey results are shown in Table 2.

板厚1mmのステンレス鋼帯から、圧延方向に長さ方向が一致する幅50mm,長さ200mmの試験片を切り出し、実際のスチールベルト矯正をシミュレーションする試験に供した。シミュレーション試験では、引張り試験機を用いて歪み速度1mm/分で最大5%まで引張り歪みを付加し、リューダースバンドの発生有無を観察した。なお、プーリー部分で曲げ応力を受けるステンレススチールベルトの使用環境に近づけるため、引張り歪みの付加に先立って半径50mmの曲げ応力を試験片に10往復与えた。試験結果を表2に併せ示す。   A test piece having a width of 50 mm and a length of 200 mm, whose length direction coincides with the rolling direction, was cut out from a stainless steel strip having a thickness of 1 mm and subjected to a test for simulating actual steel belt correction. In the simulation test, tensile strain was applied to a maximum of 5% at a strain rate of 1 mm / min using a tensile tester, and the presence or absence of a Luders band was observed. In addition, in order to be close to the usage environment of the stainless steel belt subjected to the bending stress at the pulley portion, a bending stress having a radius of 50 mm was applied to the test specimen 10 times before the tensile strain was applied. The test results are also shown in Table 2.

Figure 0004252893
Figure 0004252893

表2の調査結果から、本発明に従ったステンレス鋼帯から作成されたスチールベルトを形状矯正してもリューダースバンドが発生しないことが判る。
これに対し、比較鋼No.6は、Ni含有量が不足するため旧オーステナイトの核が十分に形成されず、平均粒径が10μmを超える旧オーステナイト粒及び9体積%を超える平均膨張量に起因したリューダースバンドの発生が窺われる。また、比較鋼No.6は、少なすぎるNi含有量のため、強度が不足し、引張り歪み付加試験に先立つ繰返し曲げ試験の段階でクラックが発生するものもあった。
From the results of the investigation in Table 2, it can be seen that a Lueders band does not occur even when the shape of a steel belt made from a stainless steel strip according to the present invention is corrected.
On the other hand, comparative steel No. In No. 6, the old austenite nuclei were not sufficiently formed because the Ni content was insufficient, and the generation of Lueders bands due to the prior austenite grains having an average particle size exceeding 10 μm and the average expansion amount exceeding 9% by volume Is called. Comparative steel No. In No. 6, the Ni content was too small, so that the strength was insufficient, and cracks occurred in the repeated bending test prior to the tensile strain addition test.

比較鋼No.7は、C含有量が不足してマルテンサイト量が少ないため、変態歪みが少なく、ベルト矯正時の均一変形に必要な歪み量が不足している。そのため、不均一変形、換言するとリューダースバンドが発生し易くなっていた。比較鋼No.6と同様にNi含有量が少ないもののC含有量も少ないため、繰返し曲げ試験の段階でクラックは発生しなかった。
Ni含有量が過剰な比較鋼No.8は、残留オーステナイトが多く、引張り変形中に加工誘起マルテンサイト変態が生じた結果、リューダースバンドが発生した。
Comparative steel No. In No. 7, since the C content is insufficient and the amount of martensite is small, the transformation distortion is small, and the amount of distortion necessary for uniform deformation during belt correction is insufficient. Therefore, non-uniform deformation, in other words, a Luders band is likely to occur. Comparative steel No. As in the case of No. 6, although the Ni content is low, the C content is also low, so no cracks were generated at the repeated bending test stage.
Comparative steel No. with excessive Ni content No. 8 had a large amount of retained austenite, and as a result of work-induced martensitic transformation during tensile deformation, a Luders band was generated.

以上に説明したように、旧オーステナイト粒を細粒化してフェライト/マルテンサイトの複相組織の粒界面積を大きくすることにより、焼鈍工程の冷却過程でオーステナイト相がマルテンサイト変態する際に生じる変態歪みが均一分散されて軟質のフェライト相に吸収・蓄積される。蓄積された変態歪みは、スチールベルト製造段階の形状矯正で加えられる加工歪みに吸収され、リューダースバンドの発生原因にならない。このようにして、従来の加工硬化型,析出硬化型のステンレス鋼製ベルト材に比較して、形状安定性はもとよりリューダースバンドがなく表面形状に優れたスチールベルト用高強度ステンレス鋼帯が提供される。   As explained above, the transformation that occurs when the austenite phase undergoes martensitic transformation during the cooling process in the annealing process by refining the prior austenite grains and increasing the grain interfacial area of the ferrite / martensite double phase structure. Strain is uniformly dispersed and absorbed and accumulated in the soft ferrite phase. The accumulated transformation strain is absorbed by processing strain applied during shape correction in the steel belt manufacturing stage, and does not cause the generation of Luders band. In this way, a high-strength stainless steel strip for steel belts is provided that has superior surface shape and has no Luders band as well as shape stability compared to conventional work-hardening and precipitation-hardening stainless steel belt materials. Is done.

Claims (3)

C:0.04〜0.15質量%,Cr:10.0〜20.0質量%,Ni:0.5〜4.0質量%,Si:2.0質量%以下,Mn:2.0質量%以下,Al:0.10質量%以下,N:0.10質量%以下,Mo:1.0質量%以下,Cu:2.0質量%以下を含み,残部F及び不可避的不純物の組成をもち、旧オーステナイト平均粒径が10μm以下,変態後の常温組織がマルテンサイト20〜85体積%及び残部フェライト,硬度がHV300以上であることを特徴とするスチールベルト用複相ステンレス鋼帯。C: 0.04-0.15 mass%, Cr: 10.0-20.0 mass%, Ni: 0.5-4.0 mass%, Si: 2.0 mass% or less, Mn: 2.0 mass% or less, Al: 0.10 wt% or less, N: 0.10 wt% or less, Mo: 1.0 wt% or less, Cu: includes 2.0 mass% or less, the remaining portion F e and unavoidable impurities A duplex stainless steel strip for steel belts characterized in that the former austenite average grain size is 10 μm or less, the normal temperature structure after transformation is 20 to 85% by volume of martensite, the remaining ferrite, and the hardness is HV300 or more. . ステンレス鋼が更にTi:0.01〜0.50質量%,Nb:0.01〜0.50質量%,V:0.01〜0.30質量%,B:0.0010〜0.0100質量%,Y:0.02質量%以下,Ca:0.05質量%以下,REM(希土類金属):0.1質量%以下の1種又は2種以上を含む請求項1記載のスチールベルト用複相ステンレス鋼帯。  Stainless steel is further Ti: 0.01 to 0.50 mass%, Nb: 0.01 to 0.50 mass%, V: 0.01 to 0.30 mass%, B: 0.0010 to 0.0100 mass% %, Y: 0.02% by mass or less, Ca: 0.05% by mass or less, REM (rare earth metal): 0.1% by mass or less. Phase stainless steel strip. 焼鈍工程の冷却過程でオーステナイトがマルテンサイト変態する際の平均膨張量が9%以下である請求項1又は2記載のスチールベルト用複相ステンレス鋼帯。  The duplex stainless steel strip for a steel belt according to claim 1 or 2, wherein an average expansion amount when the austenite undergoes martensitic transformation in the cooling process of the annealing process is 9% or less.
JP2003503853A 2001-06-11 2002-06-06 Duplex stainless steel strip for steel belt Expired - Lifetime JP4252893B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001175109 2001-06-11
JP2001175109 2001-06-11
PCT/JP2002/005572 WO2002101108A1 (en) 2001-06-11 2002-06-06 Double phase stainless steel strip for steel belt

Publications (2)

Publication Number Publication Date
JPWO2002101108A1 JPWO2002101108A1 (en) 2004-09-24
JP4252893B2 true JP4252893B2 (en) 2009-04-08

Family

ID=19016298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003503853A Expired - Lifetime JP4252893B2 (en) 2001-06-11 2002-06-06 Duplex stainless steel strip for steel belt

Country Status (8)

Country Link
US (1) US20040168750A1 (en)
EP (1) EP1396552B1 (en)
JP (1) JP4252893B2 (en)
KR (1) KR20040014492A (en)
CN (1) CN1227383C (en)
AT (1) ATE303458T1 (en)
DE (1) DE60205896D1 (en)
WO (1) WO2002101108A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090681A (en) 2011-11-28 2014-07-17 신닛테츠스미킨 카부시키카이샤 Stainless steel and method of manufacturing same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248263A (en) * 2004-03-04 2005-09-15 Daido Steel Co Ltd Martensitic stainless steel
FR2872825B1 (en) * 2004-07-12 2007-04-27 Industeel Creusot MARTENSITIC STAINLESS STEEL FOR MOLDS AND CARCASES OF INJECTION MOLDS
JP5001520B2 (en) * 2005-03-30 2012-08-15 日新製鋼株式会社 Stainless steel for strain detection sensor substrate and sensor using the same
JP5098552B2 (en) * 2007-10-08 2012-12-12 大同特殊鋼株式会社 Duplex stainless steel, and steel bar, steel wire, wire rod, and steel parts using the same
EP2241645B1 (en) * 2008-02-07 2016-08-03 Nisshin Steel Co., Ltd. High-strength stainless steel material and process for production of the same
CN101867234B (en) * 2009-01-13 2014-12-10 日新制钢株式会社 Hysteresis motor and manufacturing method of rotor for hysteresis motor
KR20130105721A (en) 2011-01-27 2013-09-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
US9771628B2 (en) * 2011-02-14 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel and production method therefor
US20140255244A1 (en) * 2011-10-21 2014-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
WO2015064128A1 (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Ferrite-martensite two-phase stainless steel exhibiting low-temperature toughness, and method for producing same
CN104281774B (en) * 2014-09-02 2017-06-13 上海交通大学 Forecasting Methodology of the Q&P steel in different strain rate Dan Lahou residual austenite contents
JP6369284B2 (en) * 2014-10-20 2018-08-08 新日鐵住金株式会社 Duplex stainless steel and method for producing the same
AT516453B1 (en) * 2014-11-03 2018-02-15 Berndorf Band Gmbh Metallic strips and their manufacturing processes
JP6129140B2 (en) * 2014-11-05 2017-05-17 日新製鋼株式会社 Stainless steel for diffusion bonding
JP6128291B2 (en) * 2015-04-21 2017-05-17 Jfeスチール株式会社 Martensitic stainless steel
KR102169859B1 (en) * 2016-04-12 2020-10-26 제이에프이 스틸 가부시키가이샤 Martensite stainless steel plate
CN107523759A (en) * 2017-08-25 2017-12-29 苏州双金实业有限公司 A kind of new two phase stainless steel
CN109128166B (en) * 2018-09-27 2020-05-12 北京科技大学 Near-net forming method for ultrahigh-strength corrosion-resistant soft magnetic ferrite stainless steel
CN109457193A (en) * 2018-11-16 2019-03-12 襄阳五二五泵业有限公司 A kind of wear-resisting two phase stainless steel
CN111763893A (en) * 2020-07-13 2020-10-13 南阳师范学院 Corrosion-resistant composite metal material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3787961T2 (en) * 1986-12-30 1994-05-19 Nisshin Steel Co., Ltd., Tokio/Tokyo Process for the production of stainless chrome steel strip with two-phase structure with high strength and high elongation and with low anisotropy.
JP2756549B2 (en) * 1989-07-22 1998-05-25 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JPH09263912A (en) * 1996-03-29 1997-10-07 Nisshin Steel Co Ltd High strength double phase structure chromium stainless steel sheet for punching and its production
JP3253256B2 (en) * 1997-03-25 2002-02-04 日本金属株式会社 Method for producing steel with excellent stress corrosion resistance, strength and toughness
JP3421265B2 (en) * 1998-06-12 2003-06-30 日新製鋼株式会社 Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JP4209514B2 (en) * 1998-10-21 2009-01-14 日新製鋼株式会社 High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JP4209513B2 (en) * 1998-10-21 2009-01-14 日新製鋼株式会社 Martensitic stainless steel annealed steel with good strength, toughness and spring properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090681A (en) 2011-11-28 2014-07-17 신닛테츠스미킨 카부시키카이샤 Stainless steel and method of manufacturing same
US9631249B2 (en) 2011-11-28 2017-04-25 Nippon Steel & Sumitomo Metal Corporation Stainless steel and method for manufacturing same

Also Published As

Publication number Publication date
CN1514885A (en) 2004-07-21
DE60205896D1 (en) 2005-10-06
JPWO2002101108A1 (en) 2004-09-24
EP1396552B1 (en) 2005-08-31
CN1227383C (en) 2005-11-16
US20040168750A1 (en) 2004-09-02
EP1396552A1 (en) 2004-03-10
KR20040014492A (en) 2004-02-14
ATE303458T1 (en) 2005-09-15
WO2002101108A1 (en) 2002-12-19
EP1396552A4 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP4252893B2 (en) Duplex stainless steel strip for steel belt
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP5777283B2 (en) High strength stainless steel material and manufacturing method thereof
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
US20240336989A1 (en) Austenitic stainless steel and method for manufacturing same
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
EP3020841B1 (en) Coil spring, and method for manufacturing same
JP2018003139A (en) Stainless steel
KR20180027689A (en) Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
JP3474545B2 (en) Machine parts
TW202233863A (en) Austenitic stainless steel material, method for producing same, and leaf spring
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP2962038B2 (en) High tensile strength steel sheet and its manufacturing method
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JP2001247938A (en) Austenitic stainless steel sheet for electronic equipment component
JP2022155180A (en) Austenitic stainless steel and method for producing the same
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JP2000063947A (en) Manufacture of high strength stainless steel
JPH07216510A (en) High strength lead frame material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Ref document number: 4252893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term