[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4242118B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP4242118B2
JP4242118B2 JP2002214087A JP2002214087A JP4242118B2 JP 4242118 B2 JP4242118 B2 JP 4242118B2 JP 2002214087 A JP2002214087 A JP 2002214087A JP 2002214087 A JP2002214087 A JP 2002214087A JP 4242118 B2 JP4242118 B2 JP 4242118B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
substrates
electrodes
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002214087A
Other languages
Japanese (ja)
Other versions
JP2004055993A (en
Inventor
康弘 鈴木
Original Assignee
岡野電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡野電線株式会社 filed Critical 岡野電線株式会社
Priority to JP2002214087A priority Critical patent/JP4242118B2/en
Publication of JP2004055993A publication Critical patent/JP2004055993A/en
Application granted granted Critical
Publication of JP4242118B2 publication Critical patent/JP4242118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光通信用部品、理化学機器、携帯用クーラ、半導体プロセス中でのプロセス温度管理等に用いられて冷却や加熱を行う熱電変換モジュールや、ゼーベック効果を利用して発電を行う熱電変換モジュールに関するものである。
【0002】
【背景技術】
例えば図4に示すようなペルチェモジュール等の熱電変換モジュールが、光通信分野等の様々な分野に用いられている。熱電変換モジュールは、上下に互いに間隔を介して対向配置された2枚の基板6,7の間に、複数の熱電変換素子5(5a,5b)を立設配置して形成されている。
【0003】
なお、本明細書において、「上下に互いに間隔を介して対向配置された基板」という表現における上下は、図4に示すような姿勢の状態における上下を意味しており、熱電変換モジュールを使用するときの姿勢は問わない。
【0004】
基板6,7は、電気絶縁性を有するアルミナ(Al)等のセラミック製の基板であり、基板6,7の対向表面には複数の導通用の電極2が互いに間隔を介して形成されていて、上側基板6の表面の電極2と下側基板7の表面の電極2とは形成電極2の位置を互いにずらした状態で形成されている。
【0005】
前記熱電変換素子5が対応する電極2を介して直列に接続されており、熱電変換素子5の接続回路が形成されている。なお、熱電変換素子5は、例えば図示されていない半田によって電極2に固定されている。
【0006】
熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型の熱電変換素子5aと、N型半導体により形成されたN型の熱電変換素子5bとを有する。P型の熱電変換素子5aとN型の熱電変換素子5bは交互に配置され、電極2を介して直列に接続されてPN素子対が形成されている。
【0007】
P型の熱電変換素子5aとN型の熱電変換素子5bは、それぞれ、例えばビスマス・テルル等の金属間化合物にアンチモン、セレン等の元素を添加することにより形成されている。1つの熱電変換素子5は直径0.6〜3mm程度、長さ0.5〜3mm程度である。また、前記基板6,7は、例えば厚さ3mm程度に形成されている。
【0008】
例えば下側の基板7に形成された、熱電変換素子5の接続回路の端部に位置する電極2(2a)にはリード線10が半田9により半田付けされて接続されている。この熱電変換モジュールにおいて、通電手段(図示せず)によってリード線10から電極2aに電流を流すと、P型の熱電変換素子5aとN型の熱電変換素子5bに電流が流れる。
【0009】
そして、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。つまり、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるいわゆるペルチェ効果が生じる。
【0010】
このペルチェ効果によって熱電変換素子5(5a,5b)の一方の端部、例えば上端部が発熱せしめられると、この熱が上側の基板6を介して、基板6の上側に設けられた部材に伝えられ、この部材の加熱が行われる。また、その逆に、ペルチェ効果によって熱電変換素子5(5a,5b)の例えば上端部が冷却せしめられると、基板6を介し、基板6の上側に設けられた部材の冷却(吸熱)が行われる。
【0011】
【発明が解決しようとする課題】
ところで、上記のような熱電変換モジュールにおいて、図3に示すような熱電変換モジュールが提案されている。なお、図3の(a)は、この提案の熱電変換モジュールの上側基板6の電極形成面を示す平面図であり、同図の(b)は、この熱電変換モジュールを、上側基板6を透かした状態で示す平面図であり、同図の(c)は、この熱電変換モジュールの側面図である。
【0012】
この提案の熱電変換モジュールは、基板6,7の片端側に設けられた電極2と熱電変換素子5(5a,5b)とに電流を流す電流経路1aと、基板6,7の残りの領域に設けられた電極2と熱電変換素子5(5a,5b)とに電流を流す電流経路1bを設け、これらの電流経路1a,1bを並列接続して形成されている。
【0013】
なお、図3の(b)においては、説明を分かりやすくするために、電流経路1bを破線で示しているが、電流経路1bも電流経路1aと同様に連続した経路である。
【0014】
しかしながら、電流経路1a側の抵抗値と電流経路1b側の抵抗値は、電極2や熱電変換素子5の微妙な作製誤差等に伴って微妙に異なるものであり、この微妙な差による電流の流れの差が発生する。そうすると、例えばこの熱電変換モジュールの基板6の上面が、熱電変換モジュールの動作時に偏った温度分布を有するものになってしまう。
【0015】
また、図3に示す構成において、電流経路1a,1bのいずれか一方側が故障したときには、顕著な温度分布障害または温度分布異常が発生し、熱電変換モジュールによって冷却する機器に影響しかねないことになり、信頼性を損ねるといった問題が生じる。
【0016】
本発明は、上記課題を解決するために成されたものであり、その目的は、基板の温度分布がほぼ均一で信頼性が高い熱電変換モジュールを提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、本発明は、上下に間隔を介して対向配置された2枚の基板を有し、これらの基板の対向表面には複数の電極が互いに間隔を介して形成されていて、上側基板表面の電極と下側基板表面の電極とは形成電極の位置を互いにずらした状態で形成されており、前記基板間には複数の熱電変換素子が立設配置され、隣り合う熱電変換素子が対応する電極を介して順次接続されて前記電極と前記熱電変換素子とに電流を流す複数の独立した電流経路が形成されており、該電流経路は互いに並設されて並列接続され、前記基板の電極形成面全体にわたって引き回し形成されている構成をもって課題を解決する手段としている。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。
【0019】
図1には、本発明に係る熱電変換モジュールの一実施形態例が示されており、図1の(c)に示すように、本実施形態例の熱電変換モジュールも、従来例と同様に、上下に間隔を介して配置された2枚の基板6,7と、これらの基板6,7の対向表面に形成された複数の電極2と、基板6,7の間に立設配置された複数の熱電変換素子5(5a,5b)を有している。
【0020】
なお、図1の(a)は、基板6の電極形成面の平面図であり、同図の(b)は、熱電変換モジュールを、上側基板6を透かした状態で示す平面図であり、同図の(c)は本実施形態例の熱電変換モジュールの側面図である。
【0021】
本実施形態例の熱電変換モジュールの特徴は、図1の(b)に示すように、隣り合う熱電変換素子5(5a,5b)が対応する電極2を介して順次接続されて、電極2と熱電変換素子5(5a,5b)とに電流を流す複数(ここでは2つ)の独立した電流経路1(1a,1b)が形成されており、該電流経路1(1a,1b)が互いに並設されて基板6,7の電極形成面全体にわたって引き回し形成されていることである。
【0022】
電流経路1a,1bは、基板7に形成されている電極2a1,2a2で分岐して、互いに並列に接続されている。また、電流経路1a,1bは、基板6,7の一端側11から他端側12にかけて並設され、さらに、基板6,7の一端側11と他端側12で順次折り返して形成されている。
【0023】
なお、図1の(b)においては、説明を分かりやすくするために、電流経路1bを破線で示しているが、電流経路1bも電流経路1aと同様に連続した経路である。
【0024】
本実施形態例は以上のように構成されており、上記2つの電流経路1a,1bが、互いに並設されて基板6,7の電極形成面全体にわたって引き回し形成されているので、電流経路1a側の抵抗値と電流経路1b側の抵抗値が微妙に異なっていて、この微妙な差による電流の流れの差が発生しても、例えば熱電変換モジュールの基板6の上面温度が偏ることを抑制できる。
【0025】
また、本実施形態例によれば、たとえ電流経路1a,1bのいずれか一方側が故障しても、図3に示した熱電変換モジュールのように、顕著な温度分布障害や温度分布異常が発生することはなく、信頼性の高い熱電変換モジュールを実現することができる。
【0026】
なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記実施形態例では、2つの電流経路1a,1bを有していたが、3つ以上の独立した電流経路1を設けて熱電変換モジュールを形成してもよい。この場合も、3つ以上の独立した電流経路1を互いに並設して並列接続し、基板6,7の電極形成面全体にわたって引き回し形成することにより、上記実施形態例と同様の効果を奏することができる。
【0027】
また、電流経路1の形成態様は、上記実施形態例に限定されるものではなく、適宜設定されるものであり、例えば図2に示すような態様で、2つ以上(ここでは2つ)の電流経路1(ここでは1a,1b)を配設してもよい。
【0028】
さらに、上記説明は、いずれもペルチェ効果によって、熱電変換モジュールが冷却・加熱を行う例について説明したが、本発明の熱電変換モジュールは、ゼーベック効果を利用して発電を行う熱電変換モジュールにも適用できる。
【0029】
【発明の効果】
本発明によれば、熱電変換モジュールの上下の基板間に設けられた隣り合う熱電変換素子が対応する電極2を介して順次接続されて、複数の独立した電流経路が形成され、該電流経路が互いに並設されて並列接続され、基板の電極形成面全体にわたって引き回し形成されているので、各電流経路の抵抗値が微妙に異なっていて、この微妙な差による電流の流れの差が発生しても、熱電変換モジュールの基板の温度が偏ることを抑制できる。
【0030】
また、本発明によれば、たとえ上記独立した複数の電流経路のいずれかが故障しても、顕著な温度分布障害や温度分布異常が発生することはなく、信頼性の高い熱電変換モジュールを実現することができる。
【図面の簡単な説明】
【図1】本発明に係る熱電変換モジュールの一実施形態例を模式的に示す要部構成図である。
【図2】本発明に係る熱電変換モジュールの他の実施形態例に形成されている電流経路を模式的に示す説明図である。
【図3】熱電変換モジュールにおいて、電極と熱電変換素子に電流を流す2つの電流経路を備えた熱電変換モジュールの提案例を示す説明図である。
【図4】従来の熱電変換モジュールの例を側面図により示す説明図である。
【符号の説明】
1,1a,1b 電流経路
2 電極
5,5a,5b 熱電変換素子
6,7 基板
[0001]
BACKGROUND OF THE INVENTION
The present invention includes, for example, optical communication parts, physics and chemistry equipment, portable coolers, thermoelectric conversion modules that are used for process temperature management in semiconductor processes and the like, and thermoelectric modules that generate electricity using the Seebeck effect. It concerns the conversion module.
[0002]
[Background]
For example, thermoelectric conversion modules such as Peltier modules as shown in FIG. 4 are used in various fields such as the optical communication field. The thermoelectric conversion module is formed by vertically arranging a plurality of thermoelectric conversion elements 5 (5a, 5b) between two substrates 6 and 7 that are arranged to face each other with a gap therebetween.
[0003]
In the present specification, “up and down” in the expression “substrates arranged opposite to each other with a gap therebetween” means up and down in a posture state as shown in FIG. 4, and a thermoelectric conversion module is used. There is no limitation on the posture.
[0004]
The substrates 6 and 7 are ceramic substrates such as alumina (Al 2 O 3 ) having electrical insulation, and a plurality of conductive electrodes 2 are formed on the opposing surfaces of the substrates 6 and 7 with a space between each other. In addition, the electrode 2 on the surface of the upper substrate 6 and the electrode 2 on the surface of the lower substrate 7 are formed in a state where the positions of the forming electrodes 2 are shifted from each other.
[0005]
The thermoelectric conversion elements 5 are connected in series via the corresponding electrodes 2, and a connection circuit for the thermoelectric conversion elements 5 is formed. In addition, the thermoelectric conversion element 5 is being fixed to the electrode 2 with the solder which is not illustrated, for example.
[0006]
The thermoelectric conversion element 5 (5a, 5b) is generally known as a Peltier element, and a P-type thermoelectric conversion element 5a formed of a P-type semiconductor and an N-type thermoelectric conversion formed of an N-type semiconductor. And an element 5b. P-type thermoelectric conversion elements 5a and N-type thermoelectric conversion elements 5b are alternately arranged and connected in series via the electrode 2 to form a PN element pair.
[0007]
The P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b are each formed by adding an element such as antimony or selenium to an intermetallic compound such as bismuth or tellurium. One thermoelectric conversion element 5 has a diameter of about 0.6 to 3 mm and a length of about 0.5 to 3 mm. Moreover, the said board | substrates 6 and 7 are formed in thickness about 3 mm, for example.
[0008]
For example, the lead wire 10 is soldered and connected to the electrode 2 (2 a) formed on the lower substrate 7 and located at the end of the connection circuit of the thermoelectric conversion element 5. In this thermoelectric conversion module, when a current is passed from the lead wire 10 to the electrode 2a by energization means (not shown), a current flows through the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b.
[0009]
And a cooling and heating effect arises in the junction part (interface) of thermoelectric conversion element 5 (5a, 5b) and electrode 2. FIG. That is, a so-called Peltier effect is generated in which one end portion of the thermoelectric conversion element 5 (5a, 5b) is heated while the other end portion is cooled depending on the direction of the current flowing through the junction.
[0010]
When one end, for example, the upper end of the thermoelectric conversion element 5 (5a, 5b) is caused to generate heat by the Peltier effect, this heat is transferred to the member provided on the upper side of the substrate 6 via the upper substrate 6. The member is heated. Conversely, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) is cooled by the Peltier effect, the member provided on the upper side of the substrate 6 is cooled (heat absorption) via the substrate 6. .
[0011]
[Problems to be solved by the invention]
By the way, the thermoelectric conversion module as shown in FIG. 3 is proposed in the above thermoelectric conversion modules. 3A is a plan view showing an electrode forming surface of the upper substrate 6 of the proposed thermoelectric conversion module, and FIG. 3B is a view showing the thermoelectric conversion module through the upper substrate 6 as a watermark. (C) of the figure is a side view of the thermoelectric conversion module.
[0012]
In the proposed thermoelectric conversion module, a current path 1a for passing a current to the electrode 2 and the thermoelectric conversion element 5 (5a, 5b) provided on one end of the substrates 6 and 7 and the remaining regions of the substrates 6 and 7 are provided. A current path 1b for passing a current is provided in the provided electrode 2 and thermoelectric conversion element 5 (5a, 5b), and these current paths 1a, 1b are connected in parallel.
[0013]
In FIG. 3B, for ease of explanation, the current path 1b is shown by a broken line, but the current path 1b is also a continuous path in the same manner as the current path 1a.
[0014]
However, the resistance value on the current path 1a side and the resistance value on the current path 1b side are slightly different due to subtle manufacturing errors of the electrode 2 and the thermoelectric conversion element 5, and the current flow due to this subtle difference. The difference occurs. Then, for example, the upper surface of the substrate 6 of the thermoelectric conversion module has a temperature distribution that is biased during operation of the thermoelectric conversion module.
[0015]
In addition, in the configuration shown in FIG. 3, when one of the current paths 1a and 1b fails, a remarkable temperature distribution failure or temperature distribution abnormality occurs, which may affect the equipment cooled by the thermoelectric conversion module. Thus, there arises a problem that reliability is impaired.
[0016]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a thermoelectric conversion module having a highly uniform temperature distribution of a substrate and high reliability.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the present invention has two substrates that are vertically opposed to each other with a gap therebetween, and a plurality of electrodes are formed on the opposite surfaces of these substrates with a gap therebetween. The electrode and the electrode on the lower substrate surface are formed in a state where the positions of the forming electrodes are shifted from each other, and a plurality of thermoelectric conversion elements are arranged between the substrates, and adjacent thermoelectric conversion elements correspond to the corresponding electrodes. A plurality of independent current paths are formed that are sequentially connected to each other and flow currents to the electrodes and the thermoelectric conversion elements, and the current paths are arranged in parallel and connected in parallel to each other , and the electrode forming surface of the substrate It is a means for solving the problems with a configuration that is routed throughout.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.
[0019]
FIG. 1 shows an embodiment of a thermoelectric conversion module according to the present invention. As shown in FIG. 1C, the thermoelectric conversion module of this embodiment is also similar to the conventional example. Two substrates 6, 7 disposed above and below at intervals, a plurality of electrodes 2 formed on the opposing surfaces of these substrates 6, 7, and a plurality of devices erected between the substrates 6, 7 Thermoelectric conversion element 5 (5a, 5b).
[0020]
1A is a plan view of the electrode forming surface of the substrate 6, and FIG. 1B is a plan view showing the thermoelectric conversion module in a state where the upper substrate 6 is seen through. (C) of a figure is a side view of the thermoelectric conversion module of this embodiment.
[0021]
As shown in FIG. 1B, the thermoelectric conversion module according to the present embodiment is characterized in that adjacent thermoelectric conversion elements 5 (5a, 5b) are sequentially connected via corresponding electrodes 2, A plurality of (in this case, two) independent current paths 1 (1a, 1b) for flowing current to the thermoelectric conversion elements 5 (5a, 5b) are formed, and the current paths 1 (1a, 1b) are arranged in parallel with each other. It is provided and routed over the entire electrode formation surface of the substrates 6 and 7.
[0022]
The current paths 1a and 1b are branched by electrodes 2a1 and 2a2 formed on the substrate 7, and are connected in parallel to each other . Further, the current paths 1a and 1b are arranged in parallel from one end side 11 to the other end side 12 of the substrates 6 and 7, and are formed by sequentially folding back at the one end side 11 and the other end side 12 of the substrates 6 and 7. .
[0023]
In FIG. 1B, for ease of explanation, the current path 1b is indicated by a broken line, but the current path 1b is also a continuous path in the same manner as the current path 1a.
[0024]
The present embodiment is configured as described above, and the two current paths 1a and 1b are arranged in parallel with each other and are routed over the entire electrode formation surface of the substrates 6 and 7, so that the current path 1a side And the resistance value on the current path 1b side are slightly different, and even if a difference in current flow occurs due to this delicate difference, for example, it is possible to suppress the deviation of the upper surface temperature of the substrate 6 of the thermoelectric conversion module. .
[0025]
Further, according to the present embodiment, even if either one of the current paths 1a and 1b fails, a remarkable temperature distribution failure or temperature distribution abnormality occurs as in the thermoelectric conversion module shown in FIG. There is nothing, and a highly reliable thermoelectric conversion module can be realized.
[0026]
In addition, this invention is not limited to the said embodiment example, Various aspects can be taken. For example, in the above embodiment, the two current paths 1a and 1b are provided, but three or more independent current paths 1 may be provided to form a thermoelectric conversion module. Again, by parallel connection of three or more independent current paths 1 and parallel to each other, the wire laying formed over the entire electrode formation surface of the substrate 6, to achieve the same effect as the above embodiment Can do.
[0027]
Further, the formation mode of the current path 1 is not limited to the above-described embodiment example, and is appropriately set. For example, in the mode as shown in FIG. You may arrange | position the electric current path | route 1 (here 1a, 1b).
[0028]
Furthermore, in the above description, the example in which the thermoelectric conversion module is cooled and heated by the Peltier effect has been described. However, the thermoelectric conversion module of the present invention is also applied to the thermoelectric conversion module that generates power using the Seebeck effect. it can.
[0029]
【The invention's effect】
According to the present invention, adjacent thermoelectric conversion elements provided between the upper and lower substrates of the thermoelectric conversion module are sequentially connected via the corresponding electrodes 2 to form a plurality of independent current paths. Since they are arranged side by side and connected in parallel and routed over the entire electrode formation surface of the substrate, the resistance values of each current path are slightly different, and this current difference causes a difference in current flow. Moreover, it can suppress that the temperature of the board | substrate of a thermoelectric conversion module is biased.
[0030]
Further, according to the present invention, even if any of the plurality of independent current paths fails, a remarkable temperature distribution failure or temperature distribution abnormality does not occur, and a highly reliable thermoelectric conversion module is realized. can do.
[Brief description of the drawings]
FIG. 1 is a main part configuration diagram schematically showing an embodiment of a thermoelectric conversion module according to the present invention.
FIG. 2 is an explanatory view schematically showing a current path formed in another embodiment of a thermoelectric conversion module according to the present invention.
FIG. 3 is an explanatory diagram showing a proposed example of a thermoelectric conversion module provided with two current paths for passing current to an electrode and a thermoelectric conversion element in the thermoelectric conversion module.
FIG. 4 is an explanatory view showing an example of a conventional thermoelectric conversion module in a side view.
[Explanation of symbols]
1, 1a, 1b Current path 2 Electrodes 5, 5a, 5b Thermoelectric conversion elements 6, 7 Substrate

Claims (1)

上下に間隔を介して対向配置された2枚の基板を有し、これらの基板の対向表面には複数の電極が互いに間隔を介して形成されていて、上側基板表面の電極と下側基板表面の電極とは形成電極の位置を互いにずらした状態で形成されており、前記基板間には複数の熱電変換素子が立設配置され、隣り合う熱電変換素子が対応する電極を介して順次接続されて前記電極と前記熱電変換素子とに電流を流す複数の独立した電流経路が形成されており、該電流経路は互いに並設されて並列接続され、前記基板の電極形成面全体にわたって引き回し形成されていることを特徴とする熱電変換モジュール。It has two substrates that are vertically opposed to each other with a gap between them, and a plurality of electrodes are formed on the opposite surfaces of these substrates with a gap between them. The electrodes on the upper substrate surface and the lower substrate surface The electrodes are formed in a state where the positions of the forming electrodes are shifted from each other, and a plurality of thermoelectric conversion elements are erected between the substrates, and adjacent thermoelectric conversion elements are sequentially connected via corresponding electrodes. A plurality of independent current paths for passing current to the electrode and the thermoelectric conversion element are formed, the current paths are arranged in parallel to each other, connected in parallel, and routed over the entire electrode formation surface of the substrate. A thermoelectric conversion module characterized by comprising:
JP2002214087A 2002-07-23 2002-07-23 Thermoelectric conversion module Expired - Fee Related JP4242118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214087A JP4242118B2 (en) 2002-07-23 2002-07-23 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214087A JP4242118B2 (en) 2002-07-23 2002-07-23 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2004055993A JP2004055993A (en) 2004-02-19
JP4242118B2 true JP4242118B2 (en) 2009-03-18

Family

ID=31936504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214087A Expired - Fee Related JP4242118B2 (en) 2002-07-23 2002-07-23 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP4242118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045970A (en) * 2015-08-29 2017-03-02 京セラ株式会社 Thermoelectric module

Also Published As

Publication number Publication date
JP2004055993A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
EP0870337B1 (en) Fabrication of thermoelectric modules and solder for such fabrication
JP4127437B2 (en) Thermo module
JPH10270762A (en) Thermoelectric conversion element
KR20050000514A (en) Thermoelectric device utilizing double-sided peltier junctions and method of making the device
US4687879A (en) Tiered thermoelectric unit and method of fabricating same
JP2004221504A (en) Thermoelectric conversion device and its manufacturing method
JP4242118B2 (en) Thermoelectric conversion module
US10833237B2 (en) Thermoelectric module
JP2012532468A (en) Module having a plurality of thermoelectric elements
US10236430B2 (en) Thermoelectric module
JP2006319262A (en) Thermoelectric conversion module
WO2020071036A1 (en) Thermoelectric conversion module, and cooling device, temperature measurement device, heat flow sensor, or power generation device using same
JP4294965B2 (en) Thermoelectric conversion module
US20180226559A1 (en) Thermoelectric conversion device
KR102456680B1 (en) Thermoelectric element
JP7281715B2 (en) Thermoelectric conversion module
JPH08293628A (en) Thermoelectricity conversion device
JP2004281451A (en) Thermoelectric conversion element
US20220199885A1 (en) Thermoelectric module
JP2004055994A (en) Thermoelectric conversion module
JPH0337246Y2 (en)
JP2003324218A (en) Thermoelectric conversion module
EP4338210A1 (en) Thermoelectric module
JP2004327785A (en) Multistage thermoelectric element and electronic apparatus using the multistage thermoelectric element
JP2006005154A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees