JP4132212B2 - Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same - Google Patents
Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same Download PDFInfo
- Publication number
- JP4132212B2 JP4132212B2 JP12385598A JP12385598A JP4132212B2 JP 4132212 B2 JP4132212 B2 JP 4132212B2 JP 12385598 A JP12385598 A JP 12385598A JP 12385598 A JP12385598 A JP 12385598A JP 4132212 B2 JP4132212 B2 JP 4132212B2
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- corrosion resistance
- graphite
- refractory
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、鋼などの金属の連続鋳造において、タンディッシュからモールドへの溶融金属の注入に使用する浸漬ノズル等の連続鋳造用耐火物に関するものである。
【0002】
【従来の技術】
例えば、鋼の連続鋳造においては、耐火物製浸漬ノズルが、タンディッシュからモールドへ溶鋼を注入するために使用される。これは、溶鋼の大気との接触を妨げて溶鋼の酸化を抑制し、また、注入される溶鋼の飛散を防止し、整流化した状態で溶鋼を注入することによって溶鋼上に浮遊するスラグや非金属介在物などの不純物が溶鋼中へ巻き込まれることを防止し、鋼品質を改善すると同時に操業の安定性を確保するものである。
【0003】
鋼の連続鋳造の際、モールド内の溶鋼湯面上にはモールドパウダーと呼ばれる低塩基度で侵食性の強いスラグが浮遊している。このモールドパウダーは一般的にCaO、SiO2 、CaF2 、Na2 O、C(カーボン)を含有しており、塩基度は1程度であるため、アルミナやシリカは著しく溶損される。このためアルミナ−シリカ−黒鉛質やアルミナ−黒鉛質の耐火物では溶損による損耗が大きく、長時間の使用は不可能であり、モールドパウダーに接する部位にはジルコニア−黒鉛質の耐火物が使用される。
【0004】
従来のジルコニア−黒鉛質耐火物は、耐火原料として500μmから数μmのジルコニアと鱗状黒鉛を使用し、これにバインダーを加えて配合し、成形後加熱処理している。ジルコニア原料には多種あるが、連続鋳造用ノズルにはCaO安定化ジルコニア(以後断りのない限り、ジルコニアはCaO安定化ジルコニアを指す)を用いる場合が多い。
【0005】
ジルコニア−黒鉛質耐火物において、黒鉛は低膨張、低弾性率である特性を生かし耐熱衝撃性改善のために使用される。また、ジルコニアは耐火原料としては高耐食性であるため、主に耐食性向上の目的で使用される。従って、ジルコニア−黒鉛質耐火物では、耐食性を向上させるには黒鉛の配合量を少なくしジルコニアの配合量を増加させることが効果的である。しかし、ジルコニアの増量は耐熱衝撃性の低下を引き起こし、使用時の割れや折れの問題が発生する。また、耐熱衝撃性の向上には黒鉛の配合量を増加させジルコニアの配合量を少なくすることが効果的であるが、耐食性は低下する。このため、割れや折れ等が生じず実用可能なジルコニア−黒鉛質耐火物を得るためには、使用条件を考慮し黒鉛の配合量とジルコニアの配合量のバランスを取ることが重要となる。
【0006】
特開平5−367号公報では、ジルコニアが70〜90重量%、黒鉛が10〜30重量%で、しかもジルコニアの粒度が、125μmを越える粒子が30〜65重量%、125〜45μmの粒子が20〜55重量%、45μm未満の粒子が15〜45重量%であるジルコニア−黒鉛質耐火物が開示されている。また、特開昭62−148076号公報では、粒径100μm以下のジルコニアを最大95重量%、黒鉛を5重量%含有するジルコニア−黒鉛質耐火物が開示されている。しかし、現在では実使用可能でかつ耐食性が良好なジルコニア−黒鉛質耐火物が望まれており、これらの耐火物では不十分である。
【0007】
【発明が解決しようとする課題】
本発明は、従来のジルコニア−黒鉛質耐火物よりも耐食性が良好なジルコニア−黒鉛質耐火物及び連続鋳造用ノズルを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の耐火物は、CaOで安定化されたジルコニア原料70〜95重量%及び黒鉛5〜30重量%を焼成してなり、前記ジルコニア原料の粒度構成が、45μm以下のジルコニア粒が70%以上であることを特徴とする耐食性に優れるジルコニア−黒鉛質耐火物である。また、本発明の連続鋳造用ノズルは、浸漬ノズルの少なくともスラグが接触する部分に前記ジルコニア−黒鉛質耐火物を使用したことを特徴とする連続鋳造用ノズルである。
【0009】
【発明の実施の形態】
ジルコニア中のCaOはスラグ中のAl2 O3 やSiO2 等と低融点物質を形成してスラグへ溶解し、CaOを失い脱安定化したジルコニアはスラグ中へ分散していき、耐火物が溶損することとなる。
【0010】
500〜150μmのジルコニア粒(以後、粗粒ジルコニアという)及び150〜45μmのジルコニア粒(以後、中間粒ジルコニアという)は、45μm以下のジルコニア粒(以後、微粉ジルコニアという)により形成される母相により耐火物組織内に保持されている。しかし、ジルコニアの溶解により母相の保持力が失われると、粗粒ジルコニア及び中間粒ジルコニアは溶解する前にほぼ当初の大きさを保持したまま耐火物組織内から脱落し、スラグ中へと流失するので、耐火物の溶損速度は増加する。
【0011】
一方、微粉ジルコニアは脱安定化することにより細粒化してスラグ中へ分散し、分散した脱安定化ジルコニアによりスラグ中の固相の濃度が増加するためスラグの見かけ上の粘性が増加し、耐火物へのスラグの浸潤が抑制される。従って、微粉ジルコニアのスラグ中への溶解は耐火物の溶損を抑制し、耐用を向上させる。そこで、本発明においては、微粉ジルコニアの配合量の増加により耐食性を向上させることとしたのである。
【0012】
微粉ジルコニアの配合量は、ジルコニア総量に対して70重量%以上とする。70重量%未満の場合は、ジルコニアの溶解によりスラグの見かけ上の粘性を増加させる効果が減少し、耐用向上効果が得られないからである。例えば特開昭62−148076号公報記載の耐火物では100μm以下のジルコニア中の45μm以下のジルコニア量はたかだか60重量%程度であり、これでは微粉ジルコニアの溶解による耐用向上効果が得られない。
【0013】
本発明ではジルコニアの配合量を70〜95重量%と規定しているが、ジルコニアの配合量が70重量%未満であると耐食性が低下し、ジルコニアの配合量が95重量%を越えると耐熱衝撃性が低下するためである。
【0014】
黒鉛としては、通常鱗状黒鉛、電極屑、無煙炭、土状黒鉛等が使用可能である。
【0016】
【実施例】
(実施例1)
表1に示す配合に適量のフェノールレジンを添加して混練し、1000kg/cm2 の圧力でノズル形状にCIP成形し、コークス中に埋め込んで最高温度1000℃で還元焼成を行った。
【0017】
焼成したノズルの曲げ強度、弾性率、熱膨張率を測定した。曲げ強度は3点曲げ法により、弾性率は超音波法により、熱膨張率は市販の熱膨張計で測定し1500℃までの平均線膨張係数で示した。熱衝撃抵抗係数はポアソン比がほぼ一定であるため数1により計算した。数字が大きいほど耐スポール性に優れている。
【0018】
【数1】
(曲げ強度:MPa)/[(弾性率:GPa)×(熱膨張係数:×10-6/℃)]
【0019】
耐食性の調査には、前記ノズルから25×25×250mmのサンプルを切り出し、スラグ浸漬試験を実施した。るつぼ中に鋼を投入し、高周波誘導炉で1600℃まで昇温して溶融させ、これにモールドパウダーを投入して溶融させた。この溶鋼及びモールドパウダー中に前記サンプルを1時間浸漬し、溶損速度を計算し、これを指数化して評価した。
【0020】
測定結果を表1に示す。本発明例No.1〜No.7の方が比較例であるNo.8及びNo.10〜No.12よりも耐食性が良好であった。
【0021】
No.8はNo.1と比較してジルコニアの配合量が少ないため耐食性に劣った。No.9はNo.7と比較して耐食性は良好であるが、黒鉛の配合量が少ないため耐熱衝撃性に劣った。
【0022】
No.10〜No.12はジルコニア総量に対して微粉ジルコニア量が少ないため、No.4〜No.6よりも耐食性に劣った。
【0023】
【表1】
【0024】
(実施例2)
No.3及びNo.11の材質の耐火物をパウダーラインに用いた浸漬ノズルを作製し、タンディッシュに取り付けて実炉試験に供した。テスト本数は各10本ずつとした。
【0025】
どちらの材質のノズルとも割れ等のトラブルもなく、No.3の材質のノズルは1本あたり平均580分使用することができ、No.11の材質のノズルは400分使用することができた。本発明の浸漬ノズルの耐用時間は増加しており、本発明の有効性が確認された。
【0026】
【発明の効果】
本発明によりジルコニア−黒鉛質耐火物及びそれを用いた連続鋳造用ノズルのの耐食性が向上する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory for continuous casting such as an immersion nozzle used for injecting molten metal from a tundish into a mold in continuous casting of a metal such as steel.
[0002]
[Prior art]
For example, in continuous casting of steel, a refractory immersion nozzle is used to inject molten steel from the tundish into the mold. This prevents the molten steel from coming into contact with the atmosphere, prevents the molten steel from being oxidized, prevents the molten steel from splashing, and injects the molten steel in a rectified state to allow slag and non-floating floating on the molten steel. It prevents impurities such as metal inclusions from being caught in the molten steel, improves the steel quality and at the same time ensures the stability of the operation.
[0003]
During continuous casting of steel, low basicity and highly erosive slag called mold powder floats on the molten steel surface in the mold. This mold powder generally contains CaO, SiO 2 , CaF 2 , Na 2 O, and C (carbon), and since the basicity is about 1, alumina and silica are significantly damaged. For this reason, alumina-silica-graphite and alumina-graphite refractories are subject to wear due to melting damage and cannot be used for a long time. Zirconia-graphite refractories are used for the parts in contact with the mold powder. Is done.
[0004]
Conventional zirconia-graphitic refractories use zirconia and scaly graphite having a thickness of 500 μm to several μm as refractory raw materials, are mixed with a binder, and are heat-treated after molding. Although there are various kinds of zirconia raw materials, CaO-stabilized zirconia (hereinafter, unless otherwise noted, zirconia refers to CaO-stabilized zirconia) is often used as the nozzle for continuous casting.
[0005]
In zirconia-graphitic refractories, graphite is used to improve thermal shock resistance by taking advantage of its low expansion and low elastic modulus. Moreover, since zirconia has high corrosion resistance as a refractory raw material, it is mainly used for the purpose of improving corrosion resistance. Therefore, in the zirconia-graphitic refractory, it is effective to reduce the amount of graphite and increase the amount of zirconia to improve the corrosion resistance. However, the increase in the amount of zirconia causes a decrease in thermal shock resistance, which causes a problem of cracking or breaking during use. Moreover, to improve the thermal shock resistance, it is effective to increase the blending amount of graphite and reduce the blending amount of zirconia, but the corrosion resistance is lowered. For this reason, in order to obtain a zirconia-graphite refractory that can be practically used without cracking or breaking, it is important to balance the blending amount of graphite and the blending amount of zirconia in consideration of use conditions.
[0006]
In JP-A-5-367, zirconia is 70 to 90% by weight, graphite is 10 to 30% by weight, particles having a zirconia particle size exceeding 125 μm are 30 to 65% by weight, and particles having 125 to 45 μm are 20%. Zirconia-graphitic refractories are disclosed which are -55 wt%, particles less than 45 [mu] m are 15-45 wt%. JP-A-62-148076 discloses a zirconia-graphitic refractory containing up to 95% by weight of zirconia having a particle size of 100 μm or less and 5% by weight of graphite. However, at present, zirconia-graphitic refractories that can be practically used and have good corrosion resistance are desired, and these refractories are insufficient.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a zirconia-graphitic refractory and a continuous casting nozzle that have better corrosion resistance than conventional zirconia-graphitic refractories.
[0008]
[Means for Solving the Problems]
The refractory of the present invention is obtained by firing 70 to 95% by weight of zirconia raw material stabilized with CaO and 5 to 30% by weight of graphite, and the zirconia raw material has a particle size constitution of 70% or more of 45 μm or less zirconia particles. It is a zirconia-graphite refractory excellent in corrosion resistance characterized by being. The continuous casting nozzle of the present invention is a continuous casting nozzle characterized in that the zirconia-graphitic refractory is used at least in a portion where the slag contacts the immersion nozzle.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
CaO in zirconia forms a low-melting-point material with Al 2 O 3 and SiO 2 in the slag and dissolves in the slag, and the destabilized zirconia that loses CaO disperses in the slag and dissolves the refractory. Will be lost.
[0010]
The zirconia grains of 500 to 150 μm (hereinafter referred to as coarse zirconia) and the zirconia grains of 150 to 45 μm (hereinafter referred to as intermediate zirconia) are formed by a parent phase formed by zirconia grains of 45 μm or less (hereinafter referred to as fine zirconia). Held in a refractory structure. However, if the retention of the parent phase is lost due to dissolution of zirconia, coarse zirconia and intermediate zirconia fall off from the refractory structure while maintaining almost the original size before dissolution, and flow into the slag. As a result, the rate of refractory erosion increases.
[0011]
On the other hand, fine zirconia is finely divided by destabilization and dispersed in the slag, and the dispersed destabilized zirconia increases the solid phase concentration in the slag, increasing the apparent viscosity of the slag and increasing the fire resistance. Slag infiltration into objects is suppressed. Therefore, dissolution of finely powdered zirconia in the slag suppresses the refractory from being damaged and improves the durability. Therefore, in the present invention, the corrosion resistance is improved by increasing the blending amount of fine zirconia.
[0012]
The compounding quantity of fine powder zirconia shall be 70 weight% or more with respect to the total amount of zirconia. When the amount is less than 70% by weight, the effect of increasing the apparent viscosity of slag due to dissolution of zirconia decreases, and the durability improvement effect cannot be obtained. For example, in the refractory described in JP-A-62-148076, the amount of zirconia of 45 μm or less in zirconia of 100 μm or less is about 60% by weight, and this does not provide the effect of improving the durability due to dissolution of fine zirconia.
[0013]
In the present invention, the blending amount of zirconia is defined as 70 to 95% by weight. However, if the blending amount of zirconia is less than 70% by weight, the corrosion resistance is lowered, and if the blending amount of zirconia exceeds 95% by weight, the thermal shock is affected. This is because the property decreases.
[0014]
As the graphite, usually scaly graphite, electrode scraps, anthracite, earthy graphite and the like can be used.
[0016]
【Example】
(Example 1)
An appropriate amount of phenol resin was added to the formulation shown in Table 1, kneaded, CIP molded into a nozzle shape at a pressure of 1000 kg / cm 2 , embedded in coke, and reduced and fired at a maximum temperature of 1000 ° C.
[0017]
The bending strength, elastic modulus, and thermal expansion coefficient of the fired nozzle were measured. The bending strength was measured by a three-point bending method, the elastic modulus was measured by an ultrasonic method, and the thermal expansion coefficient was measured by a commercially available thermal dilatometer, and indicated by an average linear expansion coefficient up to 1500 ° C. The thermal shock resistance coefficient was calculated by Equation 1 because the Poisson's ratio was almost constant. The larger the number, the better the spall resistance.
[0018]
[Expression 1]
(Bending strength: MPa) / [(elastic modulus: GPa) × (thermal expansion coefficient: × 10 −6 / ° C.)]
[0019]
For the investigation of corrosion resistance, a 25 × 25 × 250 mm sample was cut out from the nozzle and a slag immersion test was performed. Steel was put into a crucible, heated to 1600 ° C. and melted in a high-frequency induction furnace, and mold powder was put into this and melted. The sample was immersed in this molten steel and mold powder for 1 hour, the rate of melting loss was calculated, and this was indexed and evaluated.
[0020]
The measurement results are shown in Table 1. Invention Example No. 1-No. No. 7 is a comparative example. 8 and no. 10-No. Corrosion resistance was better than 12.
[0021]
No. No. 8 is No. Since the blending amount of zirconia was small compared to 1, the corrosion resistance was inferior. No. No. 9 is No.9. Although the corrosion resistance was good compared to 7, the thermal shock resistance was inferior because of the small amount of graphite.
[0022]
No. 10-No. No. 12 has a smaller amount of fine zirconia than the total amount of zirconia. 4-No. It was inferior to 6 in corrosion resistance.
[0023]
[Table 1]
[0024]
(Example 2)
No. 3 and no. An immersion nozzle using 11 refractories in the powder line was prepared and attached to a tundish for an actual furnace test. The number of tests was 10 each.
[0025]
Both nozzles have no troubles such as cracks, and no. No. 3 nozzles can be used on average for 580 minutes per nozzle. 11 nozzles could be used for 400 minutes. The service life of the immersion nozzle of the present invention has increased, confirming the effectiveness of the present invention.
[0026]
【The invention's effect】
According to the present invention, the corrosion resistance of the zirconia-graphitic refractory and the continuous casting nozzle using the refractory is improved.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12385598A JP4132212B2 (en) | 1998-04-20 | 1998-04-20 | Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12385598A JP4132212B2 (en) | 1998-04-20 | 1998-04-20 | Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11302073A JPH11302073A (en) | 1999-11-02 |
JP4132212B2 true JP4132212B2 (en) | 2008-08-13 |
Family
ID=14871072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12385598A Expired - Fee Related JP4132212B2 (en) | 1998-04-20 | 1998-04-20 | Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4132212B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4629461B2 (en) * | 2005-03-04 | 2011-02-09 | 黒崎播磨株式会社 | Continuous casting nozzle |
KR100740631B1 (en) | 2005-12-22 | 2007-07-18 | 재단법인 포항산업과학연구원 | Method for preparing graphite coated with zircornium hydroxid |
KR20100080938A (en) * | 2007-12-05 | 2010-07-13 | 신닛뽄세이테쯔 카부시키카이샤 | Immersion nozzle and method of continuous casting |
SI2090554T1 (en) * | 2008-02-18 | 2012-09-28 | Refractory Intellectual Prop | Refractory article incorporating a cold slag band |
JP2009221031A (en) | 2008-03-13 | 2009-10-01 | Kurosaki Harima Corp | Zirconia-carbon-containing refractory and method for producing the same |
JP5130490B2 (en) * | 2008-09-19 | 2013-01-30 | 新日鐵住金株式会社 | Immersion nozzle |
CN102980195B (en) * | 2012-12-04 | 2015-01-07 | 杭州恩内泽科技有限公司 | Method for treating coal chemical gasified slag |
JP6204825B2 (en) * | 2013-12-26 | 2017-09-27 | 黒崎播磨株式会社 | Immersion nozzle |
JP6421632B2 (en) * | 2015-02-13 | 2018-11-14 | 新日鐵住金株式会社 | Ultrasonic flaw detection method and system for continuous casting nozzle |
JP6464831B2 (en) * | 2015-03-04 | 2019-02-06 | 品川リフラクトリーズ株式会社 | Immersion nozzle for continuous casting and method for continuous casting of steel |
CN112552046A (en) * | 2020-12-22 | 2021-03-26 | 江苏奥能耐火材料有限公司 | Low-expansion corrosion-resistant material added with cerium boride and preparation method thereof |
JP7060831B1 (en) * | 2021-07-29 | 2022-04-27 | 品川リフラクトリーズ株式会社 | Zirconia-Carbon Refractory Material, Immersion Nozzle, and Zirconia-Carbon Refractory Material Manufacturing Method |
-
1998
- 1998-04-20 JP JP12385598A patent/JP4132212B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11302073A (en) | 1999-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4132212B2 (en) | Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same | |
JP3283883B2 (en) | Alumina-magnesia-graphite refractory for continuous casting | |
EP0309225A2 (en) | Prevention of Al2O3 formation in pouring nozzles and the like | |
JP4431111B2 (en) | Continuous casting nozzle | |
JP3159432B2 (en) | Zirconia-graphitic refractory with excellent thermal shock resistance | |
JP3096586B2 (en) | Alumina-carbon casting nozzle refractories | |
JP2579681B2 (en) | Manufacturing method of immersion nozzle for continuous casting | |
JP2018075601A (en) | Semi-immersion nozzle | |
KR930011274B1 (en) | Unshaped refractories of alumina-spinel | |
US20010036894A1 (en) | Ceramic compositions | |
JP2003245770A (en) | Sliding nozzle plate | |
JP2002338347A (en) | Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material | |
JP2760751B2 (en) | Immersion nozzle for continuous casting | |
JPH11246265A (en) | High corrosion resistant fused silica-containing refractory | |
JP4629461B2 (en) | Continuous casting nozzle | |
JPH09277032A (en) | Refractory for continuous casting | |
JP4437101B2 (en) | Immersion nozzle for continuous casting | |
JPH09157043A (en) | Casting refractory for blast-furnace launder | |
JP2971824B2 (en) | High corrosion resistance refractory | |
JPH08157252A (en) | Refractory for molten iron preliminary treating vessel | |
JP3035858B2 (en) | Graphite-containing refractory and method for producing the same | |
JPS62202860A (en) | Nozzle for molten steel casting | |
JPH11246266A (en) | Alumina-zirconia-graphite refractory material | |
JP2764342B2 (en) | Manufacturing method of nozzle for continuous casting | |
JPH11189461A (en) | Highly corrosion resistant silica-containing refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050418 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050418 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050418 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070703 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070815 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |