[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4129352B2 - Casting method of low pressure casting equipment - Google Patents

Casting method of low pressure casting equipment Download PDF

Info

Publication number
JP4129352B2
JP4129352B2 JP2001057071A JP2001057071A JP4129352B2 JP 4129352 B2 JP4129352 B2 JP 4129352B2 JP 2001057071 A JP2001057071 A JP 2001057071A JP 2001057071 A JP2001057071 A JP 2001057071A JP 4129352 B2 JP4129352 B2 JP 4129352B2
Authority
JP
Japan
Prior art keywords
molten metal
pressure
casting
stalk
metal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001057071A
Other languages
Japanese (ja)
Other versions
JP2002254153A (en
Inventor
輝幸 小田
博 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2001057071A priority Critical patent/JP4129352B2/en
Publication of JP2002254153A publication Critical patent/JP2002254153A/en
Application granted granted Critical
Publication of JP4129352B2 publication Critical patent/JP4129352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低圧鋳造装置の鋳造方法に関する。
【0002】
【従来の技術】
例えばアルミニウム合金等の鋳造には、大量生産ができ、凝固過程も合理的で寸法精度も良好であり、かつ設備費が比較的安価であることから低圧鋳造法が広く行われている。
【0003】
この低圧鋳造法の概要を図9に示す低圧鋳造装置100の概念図によって説明する。
【0004】
低圧鋳造装置100は、溶湯保温炉101に保持された溶湯保持るつぼ102、この溶湯保持るつぼ102を密閉するるつぼ蓋103、るつぼ蓋103を貫通して下端が溶湯保持るつぼ102内に延在するストーク104、及びストーク104の上方に設置された金型105を有し、更に、溶湯保持るつぼ102には溶湯補給口及び圧縮空気入口管(図示せず)が設けられている。
【0005】
鋳造にあたり、るつぼ蓋103によって密閉された溶湯保持るつぼ102内に溶湯補給口より溶湯120を所定量注入し、溶湯補給口を蓋等で閉鎖して準備する。
【0006】
次に、圧縮空気入口管より比較的小さい圧力のガス体、例えば圧縮空気を供給して溶湯面120aを加圧し、この加圧力によって溶湯120をストーク104を通して押し上げて金型105のキャビティ106内に注湯する。キャビティ106内に充填された溶湯120はキャビティ106の上端から凝固を始め、次第に進行して湯口106aの部分が最後に凝固する。湯口106aの部分まで凝固が完了するまでガス体による溶湯保持るつぼ102内の加圧力を保持し、湯口106aまで凝固が完了した時点で加圧力を解除する。更に、凝固して鋳物となり金型105を開いて離型しても変形やかじりが発生しない温度まで鋳物の温度が降下した後、金型105から離型して鋳物を鋳造品として搬出する。
【0007】
この溶湯面120aの加圧によるキャビティ106内への注湯開始から溶湯120が湯口106aまで凝固して加圧を解除する時間が給湯時間、また凝固して鋳物となったものが金型105を開いて離型したときに変形やかじりが発生しない温度まで鋳物の温度が降下するまでの時間を凝固時間と称している。
【0008】
これらの注湯時間及び凝固時間の設定は、予め実験的に確認した時間をもとに、鋳造毎に鋳造作業者の経験と感で人為的に設定される。
【0009】
一方、溶湯保持るつぼ102に貯留された溶湯120は、鋳造に伴って図10の各(a)、(b)、(c)に示すように鋳造する毎に減少し、溶湯面120aが順次低下することから、金型105のキャビティ106内に溶湯120を押し上げて充填するためには、降下した溶湯面120aの差分hに相当する圧力を鋳造毎に加えるための加圧力、即ち充填圧力の制御が行われる。
【0010】
この加圧力の制御方法は、例えば、図9に示すように計算値による鋳造毎の加圧値をパソコン107等に予め記憶しておき、このデータに従って制御装置108によって開閉弁109を制御して、加圧力供給源110から供給される圧力ガスを自動的に調整して加圧する方法がある。
【0011】
また、他の加圧力の制御方法としては、鋳造品の外観を鋳造毎に目視監視しながら、鋳造作業者の経験と感により減圧弁(レギュレータ)を調整する方法や、予め実験値より鋳造毎の加圧値を調べ、その加圧値に基づいて鋳造毎に機械的に一定圧力を加える方法がある。
【0012】
【発明が解決しようとする課題】
上記低圧鋳造装置100によると、金型105のキャビティ106内での鋳込みが徐々に行われて先に流入した溶湯120は、後から押し上げられた溶湯120に押されて先端に流れていくので、先端から先に凝固してひけ巣やブローホール等の発生が抑制されて密度の高い緻密な鋳造品ができる。
【0013】
しかし、鋳造する毎に図10の各(a)、(b)、(c)に示すように溶湯120が減少し、順次低下する溶湯面120aの差分hに相当する加圧力を鋳造毎に加えるため鋳造毎の加圧値をパソコン107に予め記憶しておき、このデータにより加圧力を自動的に調整する加圧力調整方法によると、溶湯保持るつぼ102内に供給された溶湯120の量と、パソコン107に記憶される溶湯面120aの基準となる溶湯120の量との相互間に誤差があると、所期の加圧力に制御されず、湯回り不良や、ばり張り不具合の発生が懸念される。
【0014】
また、鋳造作業者の経験及び感による減圧弁の調整操作で加圧力を制御する方法においても、鋳造作業者により個人差があり、適正な加圧力を確保することは困難である。更に、予め実験値より得られた鋳造毎の加圧値に基づいて機械的に行う加圧力制御にあっても溶湯保持るつぼ102内の溶湯量の多少により同様の不具合の発生が懸念される。
【0015】
一方、鋳造毎に溶湯面120aが順次低下した分だけ、溶湯面120aからキャビティ106までの距離が増大し、充填のための溶湯120の移動距離が増大変化する。このため各鋳造毎に溶湯温度が変化し、鋳造毎に鋳造品の品質に差が発生するおそれがある。また、鋳造毎に溶湯面120aが順次低下した分だけキャビティ106までの溶湯120の移動距離及び時間が長くなり、溶湯表面の空気と接触する時間の増大に伴って溶湯120の酸化が促進され、ストーク104内の溶湯表面に酸化物を巻き込んで金型105のキャビティ106内に押し上げて鋳造品の品質低下を招き、かつストーク104の内周面に堆積する酸化物が多くなり溶湯通路断面積が小さくなり、湯口106aからの押し湯効果の低下が懸念される。
【0016】
従って、かかる点に鑑みなされた本発明の目的は、湯口からの押し湯効果を確保すると共に、安定した高品質の鋳造品が得られる低圧鋳造装置の鋳造方法を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成する請求項1に記載の低圧鋳造装置の鋳造方法の発明は、上下方向に延在するストークと、該ストークの上端に湯口を介して連続されるキャビティが形成された金型と、溶湯が貯留される溶湯保持るつぼ、該溶湯保持るつぼ内に貯留された溶湯に下部が浸漬された密閉状態の加圧ポット、該加圧ポットと前記ストークの下端とを連結する給湯管、前記加圧ポットの下部に穿設された吸込口を開閉する吸込口側弁体、前記加圧ポット内に開口する前記給湯管の吐出口を開閉する吐出口側弁体及び、前記加圧ポット内を減圧及び加圧する加圧ポット減圧加圧手段を備えた保持炉と、を備えた低圧鋳造装置の鋳造方法であって、前記吐出口を閉じかつ前記吸込口を開いて前記加圧ポット減圧加圧手段により加圧ポット内を減圧して吸込口から溶湯保持るつぼ内の溶湯を加圧ポット内に吸引する第1の工程と、次いで、前記吸込口を閉じて加圧ポット減圧加圧手段により加圧ポット内を加圧すると共に吐出口を開放して加圧ポット内の溶湯を前記給湯管を介してストーク内に圧送し、予めストーク内に設定された定溶湯面位置に押し上げて保持する第2の工程と、次いで、該定溶湯面位置に溶湯面を保持した状態から、1鋳造分毎の前記溶湯を順次圧送して前記ストーク内の溶湯を前記キャビティ内に充填する第3の工程と、を備えたことを特徴とする。
【0018】
請求項1の発明によると、溶湯供給装置によって、溶湯保持るつぼ内の溶湯を圧送してストーク内の定溶湯面位置まで押し上げると共に逆流を防止してストーク内の溶湯面を定溶湯面位置に保持し、この溶湯面を定溶湯面に保持した状態で溶湯保持るつぼ内の1鋳造分の溶湯を順次圧送してストーク内の溶湯をキャビティ内に充填して鋳造を繰り返すことから、各鋳造サイクル間において定溶湯面位置に保持された湯面からキャビティまでの距離が一定であり、各鋳造サイクルにおける溶湯供給装置によってストーク内の溶湯面を押し上げてキャビティ内に充填する充填圧力が一定であり、鋳造毎に充填圧力を増圧する必要がなくなり作動制御の簡素化が得られ、かつ充填圧力の変化に起因する品質の差がなくなり、安定した品質の鋳造品が得られる。
【0019】
また、定溶湯面位置からキャビティまでが近く、充填の際の溶湯の移動距離が短く充填に伴う溶湯の温度低下が抑制されて、キャビティに充填時の溶湯流動性がよく湯回り性に優れる。
【0020】
更に、充填時の溶湯の移動時間が短く、溶湯が移動する際のストーク内の空気に曝される時間の短縮が図られて酸化物の生成が減少して、酸化物が溶湯に巻き込まれることによる鋳造品の品質低下が回避される。同様にストーク内周面への酸化物の堆積が抑制されて溶湯通路断面積が確保され、湯口からの押し湯効果が確保される。
【0021】
請求項2に記載の発明は、請求項1の低圧鋳造装置の鋳造方法において、前記定溶湯面位置は、前記ストーク内の上端乃至上端近傍に設定されたことを特徴とする。
【0022】
請求項2の発明によると、定溶湯面位置をストークの上端乃至上端近傍に設定することによって、充填の際の湯面からキャビティまでの溶湯の移動距離がより短くなり充填の際の溶湯の温度低下がより抑制され、かつ溶湯が移動する際のストーク内の空気に曝される時間の短縮が図られて酸化物の生成がより減少する。
【0023】
請求項3に記載の発明は、請求項1の低圧鋳造装置の鋳造方法において、前記定溶湯面位置は、前記ストーク内に代えて金型の湯口内に設定されたことを特徴とする。
【0024】
請求項3の発明によると、定溶湯面位置を金型の湯口内に設定することによって、充填の際の定溶湯面位置の湯面からキャビティまでの溶湯の移動距離を極めて短くすることができ、充填の際の溶湯の温度低下を極めて少なくすることができ、キャビティに充填時の溶湯流動性が確保できる。また、酸化物が溶湯に巻き込まれることによる鋳造品の品質低下が回避される。
【0025】
請求項4に記載の発明は、請求項1〜3のいずれか1項の低圧鋳造装置の鋳造方法において、更に、前記第2の工程は、溶湯面位置センサによって定溶湯面位置の溶湯面を検出した場合、前記加圧ポット減圧加圧手段による加圧を停止することを特徴とする。
【0026】
請求項の発明によると、溶湯面位置センサによって定溶湯面位置の溶湯面を検出した場合、前記加圧ポット減圧加圧手段による加圧を停止することによって、効率的に溶湯供給装置の作動制御を確実に行うことができる。
【0027】
請求項の発明は、請求項4の低圧鋳造装置の鋳造方法において、前記溶湯面位置センサは、前記金型のキャビティ或いは湯口内に突出する鋳抜きピンに設けられた熱電温度計であって、該鋳抜きピンの先端近傍の温度を測定することで溶湯面を検出することを特徴とする。
【0028】
請求項の発明によると、キャビティ或いは湯口内に突出した鋳抜きピンに熱電温度計を設けることにより金型の複雑化を招くことなく溶湯面位置センサを形成することができる。
【0029】
【発明の実施の形態】
以下、本発明の低圧鋳造装置の鋳造方法の実施の形態をアルミニウム合金の鋳造を例に図1乃至図8を参照して説明する。
【0030】
図1は、保持炉10及び鋳造機30を備えた低圧鋳造装置1の概念図、図2は低圧鋳造装置1の要部概略図、図3は保持炉10の要部を示す図2のA部拡大図、図4は鋳造機30の要部を示す図2のB部拡大図である。
【0031】
保持炉10は、溶湯保温炉11に支持されて溶湯60を保持する溶湯保持るつぼ12を有し、溶湯保持るつぼ12の上方に設けられた支持枠13によって溶湯供給装置15が吊下支持されている。
【0032】
溶湯供給装置15は、図2及び図3に示すように支持枠13に吊下支持された基部16に上端が密閉状態で支持されて下部が溶湯保持るつぼ12内に貯留されたアルミニウム合金の金属溶湯60に浸漬される有底筒状の加圧ポット17が設けられている。
【0033】
加圧ポット17の底部には溶湯保持るつぼ12内と連通する吸込口17aが穿設されている。加圧ポット17の側部には先端が基部16を経由して鋳造機30のストーク33に連通する給湯管19の基端が挿入され、かつ給湯管19に穿設された吐出口19aが加圧ポット17内に開口している。これら吸込口17a及び吐出口19aは各々加圧ポット17内に設けられた吸込口側弁体18及び吐出口側弁体20によって開閉される。
【0034】
更に、溶湯供給装置15には、吸引兼送気管21を介して加圧ポット17内を減圧にする真空ポンプ22及び、吸引兼送気管21を介して加圧ポット17内に圧力ガス体、本実施の形態では圧縮空気を送り込むことによって加圧する加圧ポンプ23等によって構成され、加圧ポット17内を減圧及び加圧する加圧ポット減圧加圧手段24を有している。
【0035】
また、加圧ポット17内には加圧ポット17内の溶60の溶湯液面を検出するレベルセンサ(図示せず)が配設されている。なお、これら吸込口側弁体18、吐出口側弁体20、真空ポンプ22及び加圧ポンプ23等の各作動制御は、制御部(図示せず)によってなされる。
【0036】
一方、鋳造機30は、基台31にストークプレート32を介して上端が取り付けられて上下方向に延在する筒状のストーク33を有し、ストーク33の下端には保持炉10から導かれた給湯管19の先端が接続されている。
【0037】
ストーク33の上方に金型40が設置されている。本実施の形態における金型40は、図4及び図5に示すように、ストークプレート32にボルト等によって締結された下型41と、油圧シリンダ等の金型作動機構50(図1参照)によって下型41に対して接離可能に昇降する上型42と、基台31のダイベース34上に設けられ、かつ金型作動機構50によって互いに接離する水平方向に移動可能な一対の横型43、44によって構成され、下型41、上型42及び横型43、44の各キャビティサイド41a、42a、43a、44aによってキャビティ45を形成している。
【0038】
下型41には、上下方向に延在してストーク33側とキャビティ45側とを連通し、かつ中間部の開口面積が比較的小さく上方及び下方に移行するに従って次第に増大する湯口46が形成されている。
【0039】
一方、上型42には、図5に金型40の要部拡大図を示すように上下に貫通し、かつ段部47aを介して上方の大径部47b及び下方の小径部47cによって形成される鋳抜きピン装着孔47が穿設されている。
【0040】
鋳抜きピン48は、鋳抜きピン装着孔47の段部47aに係止可能な段部48aを介して大径部47bに嵌合する比較的大径の基部48bと小径部47cに嵌合する軸部48cを有する棒状であって、上方から鋳抜きピン装着孔47に挿入し、その段部48aを鋳抜きピン挿入孔47の段部47aに当接することによって軸部48cがキャビティ45内を貫通して先端48dが下型42の湯口46内の上部に達する長さを有し、鋳抜きピン装着孔47に嵌入することによって所定取付位置に保持される。
【0041】
鋳抜きピン48には、鋳抜きピン48の先端近傍に対応して温度測定点aが設定された温度測定手段、例えば熱電対による熱電温度計49が内装され、鋳抜きピン48を鋳抜きピン装着孔47に装着することによって湯口46内の上部位置の温度測定が可能になる。また、熱電温度計49を鋳抜きピン48に内装することによって金型40の構成を複雑化することなく熱電温度計49を配設することができる。
【0042】
この温度測定点aの温度は、ストーク33内の溶湯60の溶湯面60aが上昇して温度測定点aに接近するに従って上昇することから、所定位置の溶湯面60aにおける温度測定点aの温度を予め実験により得ることによって、ストーク33内の溶湯面60aの位置、例えば後述する定溶湯面位置Lまで上昇した溶湯面60aの位置を検出することができる。即ち、この熱電温度計49が溶湯面位置センサとして機能し、熱電温度計49によって検知された溶湯面検出信号として上記溶湯供給装置15に設けられた制御部に送られる。
【0043】
また、この温度測定点aの温度は、キャビティ45に注湯された溶湯60の溶湯熱によって最高値に達した後に、溶湯60が上端から凝固を開始して次第に降下し、温度測定点aの温度が降下することから、湯口46まで凝固が進行した時点の温度測定点aの温度を予め実験的に確認して設定しておき、この温度に達した時点で熱電温度計49から注湯時間解除信号として制御部に発信する。更に、凝固が進行して温度測定点aの温度が降下し続けて、凝固して鋳物となったものが金型40を離型しても変形やかじりが発生しない温度まで降下した時点の温度を予め実験的に確認して設定しておき、この温度に達した時点で熱電温度計49から凝固時間解除信号として制御部に電気信号を発する。
【0044】
なお、保持炉10の基部16と鋳造機30のストーク33間に配置される給湯管19は外周が給湯管用ヒータ51によって被覆して加熱及び保温され、かつストーク33も外周がストーク用ヒータ52によって被覆されて加熱及び保温される。この給湯管用ヒータ51及びストーク用ヒータ52は一体のヒータによって形成することもできる。
【0045】
次に、このように構成される低圧鋳造装置1による鋳造法について図6に示す湯詰め動作フローチャート、図7に示す充填動作及び繰返し充填動作フローチャート、及び図8に示す鋳造サイクル説明図を参照して説明する。
【0046】
金型40のキャビティ45内への溶湯60の注湯に先立って鋳造機30のストーク33の所定高さ位置、例えばストーク33の上端乃至上端近傍位置に設定された定湯面位置Lに溶湯面60aが達するまで湯詰めを行う。
【0047】
この湯詰め動作を図6に示す湯詰め動作フローチャートに従って説明する。
【0048】
予め、保持炉10の溶湯保持るつぼ12内にアルミニウム合金を溶解した溶湯60を注入し、所定量貯留して準備する。
【0049】
制御部からの指示により吐出口側弁体20により給湯管19の基端に開口する吐出口19aを閉じる(ステップS1)。続いて吸込口側弁体18によって閉鎖していた加圧ポット17の底部の吸込口17aを開放して溶湯保持るつぼ12内と加圧ポット17内を連通する(ステップS2)。
【0050】
次に吸引兼送気管21を介して真空ポンプ22により加圧ポット17内を減圧して、吸込口17aから溶湯保持るつぼ12内の溶湯60を加圧ポット17の上端近傍まで吸い込む(ステップ3)。加圧ポット17の上端近傍まで溶湯60が吸い込まれたことがレベルセンサで検知されると、真空ポンプ22による加圧ポット17内の減圧を停止し、かつ吸込口側弁体18によって吸込口17aを閉じる(ステップS4)。
【0051】
次に、加圧ポンプ23により吸引兼送気管21から加圧ポット17内に圧縮空気を供給して加圧ポット17内の溶湯面を加圧し、かつ吐出口側弁体20により閉じられていた吐出口19aを開き(ステップS5)、加圧ポット17内の溶湯60を給湯管19を通じてストーク33の上端乃至上端近傍位置に設定された定溶湯面位置Lまで押し上げる(ステップS6)。この時の定溶湯面位置Lまで溶湯60を押し上げる圧力を定溶湯面圧力とする。
【0052】
この定溶湯面位置Lまで溶湯60を押し上げる際、溶湯60の押し上げに伴ってストーク33内の溶湯面60aが鋳抜きピン48に設けられた熱電温度計49の温度測定点aに次第に近づき、図8の鋳造サイクルの説明図に示すように温度測定点aの温度が上昇し、この温度が予め実験的に得られた定溶湯面位置Lに溶湯面60aが位置する温度Aに達したことを熱電温度計49によって検知することによって検出される。
【0053】
熱電温度計49によって、定溶湯面位置Lまで押し上げられた溶湯面60aを検知する(ステップS7)と、その溶湯面検出信号が熱電温度計49から制御部に送られ、加圧ポンプ23による加圧ポット17内の加圧を停止し、かつ同時に吐出口19aを吐出口側弁体20によって閉じてストーク33からの溶湯60の逆流を防止して、定溶湯面圧力を維持することによって溶湯面60aを定溶湯面位置Lに保持する(ステップS8)。
【0054】
ステップ1からステップ8までの湯詰め動作に続いて金型40のキャビティ45への溶湯60を充填する充填動作が開始される。
【0055】
次に充填動作について図7に示す充填動作及び繰返し充填動作フローチャート、及び図8に示す鋳造サイクルの説明図を参照して説明する。
【0056】
吐出口側弁体20によって吐出口19aを閉じてストーク33からの溶湯面60aを定溶湯面位置Lに保持した状態(ステップS11)で、吸込口側弁体18によって閉鎖していた吸込口17aを開放して加圧ポット17内の定溶湯面圧力保持を開放する(ステップS12)。
【0057】
次に、吸引兼送気管21を介して真空ポンプ22により加圧ポット17内を減圧して、吸込口17aからキャビティ45の1鋳造分の溶湯60を加圧ポット17内に吸い込む(ステップS13)。加圧ポット17内に1鋳造分の溶湯60を吸い込むと、真空ポンプ22による減圧を停止し、かつ吸込口側弁体18によって吸引口17aを閉じる(ステップS14)。この加圧ポット17に吸い込み供給される1鋳造分の溶湯量は、予め実験的に求められ、加圧ポット17に設けられたレベルセンサによって一定位置までの吸い込みを検知することによって一定量を確保する。
【0058】
続いて、加圧ポンプ23によって吸引兼送気管21から加圧ポット17内に圧縮空気を供給して溶湯面を加圧し、かつ吐出口側弁体20によって閉鎖していた吐出口19aを開く(ステップS15)。開放された吐出口19aから給湯管19を通してストーク33内に溶湯60を圧送して溶湯面60aが押し上げられてキャビティ45内に充填され、かつこの充填に要する圧力、即ち充填圧力が維持される(ステップS16)。このキャビティ45へ充填された溶湯60の溶湯熱により図8に示すように鋳抜きピン48に設定された温度測定点aの温度上昇が開始し、熱電温度計49の検出温度が上昇する。
【0059】
溶湯熱により温度測定点aの温度が最高点、例えば600℃に達した後、キャビティ45内に充填された溶湯60は上端から凝固を開始し、この凝固の進行に伴って温度測定点aの温度は降下を開始する。
【0060】
湯口46の部分まで凝固が進行し、予め設定された温度測定点aまで凝固が進行した時点の温度まで降下した温度、例えば530℃を熱電温度計49が検知する(ステップS17)と、熱電温度計49から注湯時間解除信号として電気信号を送り、加圧ポンプ23による加圧ポット17内の加圧を停止して充填圧力を解除し、かつ同時に吐出口19aを吐出口側弁体20によって閉じてストーク33からの溶湯60の逆流を防止して、定溶湯面圧力を維持することによって溶湯面60aを定溶湯面位置Lに保持する(ステップS18)。
【0061】
更に、キャビティ45内の凝固が進行して温度測定点aの温度が降下し続けて、凝固して鋳物となったものが金型40を離型しても変形やかじりが発生しない温度、例えば490℃を熱電温度計49が検知すると、熱電温度計49から凝固時間解除信号として制御部に電気信号を発し、金型作動機構50等によって金型40を開き、キャビティ45内で凝固した鋳物を取り出して1鋳造サイクルが終了する(ステップS19)。しかる後金型40を閉じて次の溶湯充填待機状態にする。
【0062】
続く繰返し充填動作は、吐出口側弁体20によって吐出口19aを閉じてストーク33の溶湯面60aを定溶湯面位置Lに保持した状態で、吸込口側弁体18によって吸込口17aを開放して加圧ポット17内の定溶湯面圧力を開放するステップS11から、金型40を開き、キャビティ45内で凝固した鋳物を取り出すステップS19を経て金型40を閉じて次の溶湯充填待機状態にするステップS11からステップS19を繰り返すことによって、連続して鋳造が繰り返し行われる。
【0063】
上記低圧鋳造装置の鋳造方法によると、ストーク33からの逆流を防止してキャビティ45の直下でストーク33内の溶湯面60aを定溶湯面位置Lに維持した状態で、溶湯供給装置15からの溶湯60の押し出しによってストーク33内の溶湯面60aを押し上げてキャビティ45内に充填して鋳造することから、各鋳造サイクルにおける定湯面位置Lからキャビティ45までの距離が一定であるため、各鋳造サイクルにおいて溶湯供給装置15によってストーク33内の溶湯面60aを押し上げてキャビティ45内に充填する充填圧力が一定であり、従来の低圧鋳造のように鋳造毎に充填圧力を増圧する必要がなく、充填圧力制御手段が不要になり低圧鋳造装置1の作動制御の簡素化が得られる。
【0064】
定溶湯面位置Lによりよう湯面60aからキャビティ45までが近く、押し上げによる定溶湯面位置Lからキャビティ45までの溶湯60の移動距離が短く充填の際の溶湯60の温度低下が抑制されて、キャビティ45内に注湯される溶湯60の温度が維持され、キャビティ45に充填時の溶湯流動性がよく湯回り性に優れる。
【0065】
また定溶湯面位置Lとキャビティ45が近接することから、充填時の溶湯60の移動時間が短い。その結果、溶湯60が移動する際のストーク33内の空気に曝される時間が短く、酸化物の生成が極めて少なく、酸化物が溶湯60に巻き込まれてキャビティ45内に押し上げて鋳造品の品質低下を招くことが回避され、かつストーク33の内周面に堆積する酸化物が抑制されて溶湯通路断面積が確保され、湯口からの押し湯効果が確保されて鋳造作業の効率化が得られる。
【0066】
更に、従来、鋳造機の直下に溶湯保持るつぼが配置され、溶湯保持るつぼにおいてキャビティへの溶湯充填のための加圧を行っていたことから、溶湯充填加圧中は溶湯保持るつぼへの溶湯補給ができなく、円滑な鋳造作業に影響を及ぼしていたが、溶湯保持るつぼ12を備えた溶湯保持炉11と金型40が設けられる鋳造機30が分離して配置され、かつ溶湯保持るつぼ12と溶湯60を加圧する加圧ポット17が分離して別個に設けられることから、キャビティ45への溶湯充填に関係なく任意の時に溶湯保持るつぼ12へ溶湯の補給することが可能になり、溶湯補給のための鋳造停止が不要になり、鋳造作業の効率化が得られる。
【0067】
更に、キャビティ45に充填された溶湯60が上端から凝固を開始して湯口46まで進行した時点の温度測定点aの温度を予め実験的に確認して設定しておき、温度測定点aの温度が、この湯口46が凝固した温度に達した際に熱電温度計49から注湯時間解除信号として制御部に発信して充填圧力を解除することから、湯口46の部分が真に凝固した時点で注湯時間の解除が行える。この結果、適切な注湯時間の設定がなされて適切な押し湯効果が得られ、湯口46の部分における巣の発生が回避できる。また、同様に、凝固が進行して凝固して鋳物となったものが金型40を離型しても変形やかじりが発生しない温度まで降下した時点の温度測定点aの温度を予め実験的に確認して設定しておき、この設定された温度に達した時点で熱電温度計49から凝固時間解除信号として制御部に電気信号を発して型開きすることから、人為によらず適切な凝固時間が設定されて離型する際の温度が適切に設定されて、鋳造品に発生するかじりや変形が回避でき、かつ離型が容易になり鋳造品の品質が確保できる。
【0068】
本発明は、上記実施の形態に限定されることなく本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上記実施に形態では定溶湯面位置Lをストーク33の上端乃至上端近傍位置に設定したが、金型40の湯口46内に設定することによって、定溶湯面位置Lをよりキャビティ45に近づき、充填の際の定溶湯面位置Lの湯面60aからキャビティ45までの溶湯の移動距離を極めて短くすることで充填の際の溶湯60の温度低下が極めて少なくなり、充填時の溶湯流動性が確保できる。また、更に、酸化物の発生が抑制されて鋳造品の品質低下がより回避される。また、鋳造品の形状によって鋳抜きピン48の先端48dが湯口46に達しない場合等にあっては熱電温度計49の温度測定点aはキャビティ45内に設定される。また熱電温度計49を鋳抜きピン48に配置することなく下型41の湯口46近傍に配置することもできる。
【0069】
更に、鋳造品の形状や肉厚等により金型40に冷却水通路を形成し、冷却水によりキャビティ45内の凝固速度を制御することも可能である。更に、下型41に形成される湯口46に、溶湯の溶解過程に発生して溶湯内に混在する酸化物や不純物を除去し、かつ上昇する溶湯の乱れを抑制する金網を装着することができる。また、アルミニウム合金の鋳造以外に、銅や鉄等の高融点合金の鋳造も可能である。
【0070】
【発明の効果】
以上説明した本発明の低圧鋳造装置の鋳造方法によると、溶湯供給装置によって、溶湯保持るつぼ内の溶湯を圧送してストーク内の定溶湯面位置まで押し上げると共に逆流を防止してストーク内の溶湯面を定溶湯面位置に保持し、溶湯面を定溶湯面に保持した状態で溶湯保持るつぼ内の1鋳造分の溶湯を順次圧送してストーク内の溶湯をキャビティ内に充填して鋳造を繰り返すことから、各鋳造サイクルにおいて定湯面位置に保持された湯面からキャビティまでの距離が一定であり、各鋳造サイクルにおける溶湯供給装置によってストーク内の溶湯面を押し上げてキャビティ内に充填する充填圧力が一定であり、鋳造サイクル毎に充填圧力を増圧する必要がなくなり定圧鋳造装置の作動制御の簡素化が得られ、かつ充填圧力の変化に起因する品質の差がなくなり、安定した品質の鋳造品が得られる。
【0071】
また、定溶湯面からキャビティまでが近く、充填の際の湯面からキャビティまでの溶湯の移動距離が短く充填に伴う溶湯の温度低下が抑制されて、キャビティに充填時の溶湯流動性がよく湯回り性に優れる。
【0072】
更に、充填時の溶湯の移動距離が短く、溶湯が移動する際のストーク内の空気に曝される時間の短縮が図られて酸化物の生成が減少して、酸化物が溶湯に巻き込みによる鋳造品の品質低下が回避される。同様にストーク内の酸化物堆積が抑制されて溶湯通路断面積が確保されて湯口からの押し湯効果が確保されて高品質の鋳造品を得ることができる。
【図面の簡単な説明】
【図1】本発明による鋳造方法に使用される低圧鋳造装置の概念図である。
【図2】同じく、低圧鋳造装置の要部概略図である。
【図3】同じく、溶湯保持炉の要部を示す図2のA部拡大図である。
【図4】同じく、鋳造機の要部を示す断面図である。
【図5】同じく、金型の要部を示す断面図である。
【図6】同じく、湯詰め動作フローチャートである。
【図7】同じく、充填動作及び繰返し充填動作フローチャートである。
【図8】同じく、鋳造サイクルの説明図である。
【図9】従来の低圧鋳造装置の概念図である。
【図10】従来の低圧鋳造装置の溶湯面の低下を示す説明図である。
【符号の説明】
1 低圧鋳造装置
10 保持炉
12 溶湯保持るつぼ
15 溶湯供給装置
17 加圧ポット
17a 吸込口
18 吸込口側弁体
19 給湯管
19a 吐出口
20 吐出口側弁体
21 吸引兼送気管
22 真空ポンプ
23 加圧ポンプ
24 加圧ポット減圧加圧手段
30 鋳造機
33 ストーク
40 金型
45 ヒャビティ
46 湯口
48 鋳抜きピン
49 熱電温度計(溶湯面位置センサ)
60 溶湯
60a 溶湯面
a 温度測定点
L 定溶湯面位置
[0001]
BACKGROUND OF THE INVENTION
  The present inventionCasting method of low pressure casting equipmentAbout.
[0002]
[Prior art]
  For example, for casting aluminum alloy or the like, low-pressure casting is widely used because mass production is possible, the solidification process is rational, the dimensional accuracy is good, and the equipment cost is relatively low.
[0003]
  The outline of the low pressure casting method will be described with reference to the conceptual diagram of the low pressure casting apparatus 100 shown in FIG.
[0004]
  The low pressure casting apparatus 100 includes a molten metal holding crucible 102 held in a molten metal heat-retaining furnace 101, a crucible lid 103 for sealing the molten metal holding crucible 102, and a stalk having a lower end extending into the molten metal holding crucible 102 through the crucible lid 103. 104 and a mold 105 installed above the stalk 104, and the molten metal holding crucible 102 is provided with a molten metal replenishing port and a compressed air inlet pipe (not shown).
[0005]
  In casting, a predetermined amount of the molten metal 120 is poured into the molten metal holding crucible 102 sealed by the crucible lid 103 from the molten metal replenishing port, and the molten metal replenishing port is closed with a lid or the like.
[0006]
  Next, a gas body having a pressure relatively lower than that of the compressed air inlet pipe, for example, compressed air is supplied to pressurize the molten metal surface 120 a, and the molten metal 120 is pushed up through the stalk 104 by this applied pressure to enter the cavity 106 of the mold 105. Pour hot water. The molten metal 120 filled in the cavity 106 begins to solidify from the upper end of the cavity 106, gradually progresses, and the portion of the gate 106a finally solidifies. The applied pressure in the molten metal holding crucible 102 by the gas body is maintained until solidification is completed up to the pouring gate 106a, and the applied pressure is released when the solidification is completed up to the pouring gate 106a. Further, after the temperature of the casting is lowered to a temperature at which deformation or galling does not occur even if the mold 105 is opened and released after being solidified, the mold is released from the mold 105 and carried out as a cast product.
[0007]
  From the start of pouring into the cavity 106 due to the pressurization of the molten metal surface 120a, the time for the molten metal 120 to solidify to the pouring gate 106a and release the pressurization is the hot water supply time, and the solidified casting becomes the mold 105. The time until the temperature of the casting drops to a temperature at which no deformation or galling occurs when the mold is opened and released is called solidification time.
[0008]
  These pouring time and solidification time are set artificially based on the experience and feeling of the casting worker for each casting based on the time experimentally confirmed in advance.
[0009]
  On the other hand, the molten metal 120 stored in the molten metal holding crucible 102 decreases with each casting as shown in FIGS. 10A, 10B, and 10C, and the molten metal surface 120a sequentially decreases. Therefore, in order to push up and fill the molten metal 120 into the cavity 106 of the mold 105, control of the applied pressure for applying a pressure corresponding to the difference h of the lowered molten metal surface 120a every casting, that is, control of the filling pressure. Is done.
[0010]
  For example, as shown in FIG. 9, the pressurizing value for each casting is stored in advance in a personal computer 107 or the like as shown in FIG. 9, and the control device 108 controls the on-off valve 109 according to this data. There is a method of automatically adjusting and pressurizing the pressure gas supplied from the pressure supply source 110.
[0011]
  As another method of controlling the applied pressure, a method of adjusting the pressure reducing valve (regulator) according to the experience and feeling of the casting operator while visually monitoring the appearance of the cast product for each casting, There is a method of checking a pressurization value and mechanically applying a constant pressure for each casting based on the pressurization value.
[0012]
[Problems to be solved by the invention]
  According to the low-pressure casting apparatus 100, since the casting in the cavity 106 of the mold 105 is gradually performed, the molten metal 120 that has flowed in first is pushed by the molten metal 120 pushed up later and flows to the tip. By solidifying the tip first, the occurrence of shrinkage nests and blowholes is suppressed, and a dense casting with high density can be made.
[0013]
  However, as shown in FIGS. 10A, 10B, and 10C, each time the casting is performed, the molten metal 120 is decreased, and a pressing force corresponding to the difference h of the molten metal surface 120a that is sequentially decreased is applied for each casting. Therefore, according to the pressurization adjustment method in which the pressurization value for each casting is stored in the personal computer 107 in advance and the pressurization force is automatically adjusted based on this data, the amount of the melt 120 supplied into the melt holding crucible 102, If there is an error between the molten metal 120 and the amount of the molten metal 120a stored in the personal computer 107, it is not controlled by the desired applied pressure, and there is a concern about the occurrence of poor hot water or a problem of spreading. The
[0014]
  Also, in the method of controlling the pressure by adjusting the pressure reducing valve based on the experience and feeling of the casting worker, there are individual differences depending on the casting worker, and it is difficult to ensure an appropriate pressing force. Furthermore, even in the pressurization control that is mechanically performed based on the pressurization value obtained for each casting obtained in advance from experimental values, there is a concern that similar problems may occur depending on the amount of the molten metal in the molten metal holding crucible 102.
[0015]
  On the other hand, the distance from the molten metal surface 120a to the cavity 106 is increased by the amount that the molten metal surface 120a is successively lowered for each casting, and the moving distance of the molten metal 120 for filling is increased and changed. For this reason, the molten metal temperature changes for each casting, and there is a possibility that a difference may occur in the quality of the cast product for each casting. Further, the moving distance and time of the molten metal 120 up to the cavity 106 are increased by the amount that the molten metal surface 120a is sequentially lowered for each casting, and the oxidation of the molten metal 120 is promoted as the time of contact with the air on the molten metal surface increases. The oxide is wound on the surface of the molten metal in the stalk 104 and pushed up into the cavity 106 of the mold 105 to cause deterioration in the quality of the cast product, and more oxide is deposited on the inner peripheral surface of the stalk 104 and the molten metal passage cross-sectional area is increased. There is a concern that the effect of the hot water from the gate 106a is reduced.
[0016]
  Therefore, an object of the present invention made in view of such a point is to secure a hot water supply effect from the gate and obtain a stable high-quality cast product.Casting method of low pressure casting equipmentIs to provide.
[0017]
[Means for Solving the Problems]
  The invention of the casting method of the low-pressure casting apparatus according to claim 1, which achieves the above object, comprises a stalk extending in the vertical direction, and a mold having a cavity formed continuously through a gate at the upper end of the stalk. A molten metal holding crucible in which the molten metal is stored, a pressure pot in a sealed state in which a lower part is immersed in the molten metal stored in the molten metal holding crucible, a hot water supply pipe connecting the pressurized pot and the lower end of the stalk, A suction port side valve body that opens and closes a suction port formed in a lower portion of the pressurization pot, a discharge port side valve body that opens and closes a discharge port of the hot water supply pipe that opens in the pressurization pot, and the inside of the pressurization pot And a holding furnace equipped with a pressure pot pressure reducing and pressurizing means for pressure reducing and pressurizing, wherein the pressure pot is depressurized by closing the discharge port and opening the suction port. The pressure pot is depressurized and sucked The first step of sucking the molten metal in the crucible holding the molten metal from the mouth into the pressure pot, and then closing the suction port and pressurizing the pressure pot by the pressure pot pressure reducing and pressurizing means and opening the discharge port A second step of pumping the molten metal in the pressurization pot into the stalk through the hot water supply pipe and pushing the molten metal up to a constant molten metal surface position set in advance in the stalk; From the state of holding the molten metal surface,Every castingAnd a third step of sequentially pumping the molten metal and filling the cavity with the molten metal in the stalk.
[0018]
  According to the first aspect of the present invention, the molten metal supply device pumps the molten metal in the crucible holding the molten metal and pushes it up to the constant molten metal surface position in the stalk and prevents the back flow to hold the molten metal surface in the stalk at the constant molten metal surface position. In the state where the molten metal surface is held on the constant molten metal surface, the molten metal for one casting in the molten metal holding crucible is sequentially pumped and the molten metal in the stalk is filled into the cavity to repeat the casting. The distance from the molten metal surface held at the constant molten metal surface position to the cavity is constant, the molten metal supply device in each casting cycle pushes up the molten metal surface in the stalk to fill the cavity, and the casting pressure is constant. It is not necessary to increase the filling pressure every time, simplifying the operation control, eliminating the difference in quality due to changes in the filling pressure, and producing a stable quality casting. It is.
[0019]
  Moreover, the distance from the constant molten metal surface to the cavity is close, the distance of the molten metal during filling is short, the temperature drop of the molten metal accompanying filling is suppressed, and the molten metal fluidity at the time of filling the cavity is good and the molten metal is excellent.
[0020]
  Furthermore, the movement time of the molten metal at the time of filling is short, the time of exposure to the air in the stalk when the molten metal moves is shortened, and the generation of oxide is reduced, so that the oxide is caught in the molten metal. The deterioration of the casting quality due to is avoided. Similarly, deposition of oxide on the inner peripheral surface of the stalk is suppressed, the molten metal passage cross-sectional area is secured, and the effect of the hot water from the gate is secured.
[0021]
  The invention according to claim 2 is the invention according to claim 1.Casting method of low pressure casting equipmentThe fixed molten metal surface position is set in the upper end of the stalk or in the vicinity of the upper end.
[0022]
  According to the invention of claim 2, by setting the position of the constant molten metal surface from the upper end of the stalk to the vicinity of the upper end, the moving distance of the molten metal from the molten metal surface to the cavity at the time of filling becomes shorter, and the temperature of the molten metal at the time of filling The reduction is further suppressed, and the time of exposure to the air in the stalk when the molten metal moves is shortened, and the generation of oxide is further reduced.
[0023]
  The invention according to claim 3 is the invention according to claim 1.Casting method of low pressure casting equipmentThe fixed molten metal surface position is set in a mold gate instead of in the stalk.
[0024]
  According to the invention of claim 3, by setting the constant molten metal surface position in the gate of the mold, the movement distance of the molten metal from the molten metal surface to the cavity at the constant molten metal surface position during filling can be extremely shortened. The temperature drop of the molten metal during filling can be extremely reduced, and the fluidity of the molten metal during filling can be ensured in the cavity. Moreover, the deterioration of the quality of the cast product due to the oxide being caught in the molten metal is avoided.
[0025]
  The invention according to claim 4The casting method of the low-pressure casting apparatus according to any one of claims 1 to 3.LeaveFurther, in the second step, when the molten metal surface position is detected by the molten metal surface position sensor, pressurization by the pressure pot depressurizing and pressing means is stopped.It is characterized by that.
[0026]
  Claim4According to the invention, the molten metal surface position sensor detects the molten metal surface at the constant molten metal surface position.If so, pressurization by the pressurizing pot decompression pressurizing means is stopped.Thus, the operation control of the molten metal supply device can be performed efficiently and reliably.
[0027]
  Claim5The invention of claim4 casting method of low pressure casting equipmentLeaveThe molten metal surface position sensor is a thermoelectric thermometer provided on a core pin protruding into the mold cavity or the gate, and detects the surface of the molten metal by measuring the temperature near the tip of the core pin. It is characterized by doing.
[0028]
  Claim5According to this invention, the molten metal surface position sensor can be formed without incurring complication of the mold by providing the thermoelectric thermometer on the casting pin protruding into the cavity or the gate.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present inventionCasting method of low pressure casting equipmentThe embodiment will be described with reference to FIGS. 1 to 8 by taking the casting of an aluminum alloy as an example.
[0030]
  1 is a conceptual diagram of a low pressure casting apparatus 1 including a holding furnace 10 and a casting machine 30, FIG. 2 is a schematic view of a main part of the low pressure casting apparatus 1, and FIG. FIG. 4 is an enlarged view of part B of FIG.
[0031]
  The holding furnace 10 includes a molten metal holding crucible 12 that is supported by the molten metal heat insulating furnace 11 and holds the molten metal 60, and the molten metal supply device 15 is suspended and supported by a support frame 13 provided above the molten metal holding crucible 12. Yes.
[0032]
  As shown in FIGS. 2 and 3, the molten metal supply device 15 is made of an aluminum alloy metal whose upper end is supported in a sealed state by a base 16 suspended and supported by a support frame 13 and whose lower portion is stored in a molten metal holding crucible 12. A bottomed cylindrical pressure pot 17 immersed in the molten metal 60 is provided.
[0033]
  A suction port 17 a communicating with the inside of the molten metal holding crucible 12 is formed at the bottom of the pressure pot 17. A base end of a hot water supply pipe 19 having a tip communicating with the stalk 33 of the casting machine 30 through the base portion 16 is inserted into the side portion of the pressure pot 17, and a discharge port 19 a formed in the hot water supply pipe 19 is added. An opening is formed in the pressure pot 17. The suction port 17a and the discharge port 19a are opened and closed by a suction port side valve body 18 and a discharge port side valve body 20 provided in the pressurizing pot 17, respectively.
[0034]
  Further, the molten metal supply device 15 includes a vacuum pump 22 for depressurizing the inside of the pressurization pot 17 through the suction / air supply tube 21, a pressure gas body, a main body in the pressurization pot 17 through the suction / airfeed tube 21. In the embodiment, it is constituted by a pressurizing pump 23 or the like that pressurizes by sending compressed air, and has a pressurizing pot depressurizing / pressurizing means 24 that depressurizes and pressurizes the inside of the pressurizing pot 17.
[0035]
  Further, in the pressure pot 17, the solution in the pressure pot 17 is dissolved.Hot waterA level sensor (not shown) for detecting the molten metal level of 60 is provided. Each operation control of the suction port side valve body 18, the discharge port side valve body 20, the vacuum pump 22, the pressurizing pump 23, and the like is performed by a control unit (not shown).
[0036]
  On the other hand, the casting machine 30 has a cylindrical stalk 33 whose upper end is attached to a base 31 via a stalk plate 32 and extends in the vertical direction, and the lower end of the stalk 33 is guided from the holding furnace 10. The tip of the hot water supply pipe 19 is connected.
[0037]
  A mold 40 is installed above the stalk 33. As shown in FIGS. 4 and 5, the mold 40 in the present embodiment includes a lower mold 41 fastened to the stalk plate 32 with bolts and the like, and a mold operating mechanism 50 (see FIG. 1) such as a hydraulic cylinder. An upper mold 42 that moves up and down so as to be able to move toward and away from the lower mold 41; and a pair of horizontal molds 43 that are provided on the die base 34 of the base 31 and that are movable toward and away from each other by a mold operating mechanism 50; The cavity 45 is formed by the cavity sides 41a, 42a, 43a, 44a of the lower mold 41, the upper mold 42, and the horizontal molds 43, 44.
[0038]
  The lower mold 41 is formed with a gate 46 that extends in the vertical direction so as to communicate the stalk 33 side and the cavity 45 side, and that the opening area of the intermediate portion is relatively small and gradually increases upward and downward. ing.
[0039]
  On the other hand, the upper mold 42 is formed by an upper large-diameter portion 47b and a lower small-diameter portion 47c through a step portion 47a, as shown in an enlarged view of the main part of the mold 40 in FIG. A cast pin mounting hole 47 is formed.
[0040]
  The core pin 48 is fitted to a relatively large diameter base portion 48b and a small diameter portion 47c that are fitted to the large diameter portion 47b via a step portion 48a that can be locked to the step portion 47a of the core pin mounting hole 47. The rod portion 48c has a shaft portion 48c, and is inserted into the core pin mounting hole 47 from above, and the step portion 48a is brought into contact with the step portion 47a of the core pin insertion hole 47 so that the shaft portion 48c moves inside the cavity 45. The front end 48d has a length that reaches the upper part of the gate 46 of the lower mold 42, and is held in a predetermined mounting position by being fitted into the core pin mounting hole 47.
[0041]
  The core pin 48 is internally provided with temperature measuring means in which a temperature measurement point a is set corresponding to the vicinity of the tip of the core pin 48, for example, a thermoelectric thermometer 49 using a thermocouple, and the core pin 48 is connected to the core pin 48. By mounting in the mounting hole 47, the temperature of the upper position in the gate 46 can be measured. Moreover, the thermoelectric thermometer 49 can be arrange | positioned, without complicating the structure of the metal mold | die 40 by installing the thermoelectric thermometer 49 in the core pin 48. FIG.
[0042]
  The temperature of the temperature measurement point a rises as the molten metal surface 60a of the molten metal 60 in the stalk 33 rises and approaches the temperature measurement point a. Therefore, the temperature of the temperature measurement point a on the molten metal surface 60a at a predetermined position is determined. By obtaining in advance by experiments, it is possible to detect the position of the molten metal surface 60a in the stalk 33, for example, the position of the molten metal surface 60a that has risen to the constant molten metal surface position L described later. That is, the thermoelectric thermometer 49 functions as a molten metal surface position sensor, and is sent as a molten metal surface detection signal detected by the thermoelectric thermometer 49 to a control unit provided in the molten metal supply device 15.
[0043]
  Further, after the temperature at the temperature measurement point a reaches the maximum value due to the heat of the molten metal 60 poured into the cavity 45, the molten metal 60 starts to solidify from the upper end and gradually falls, and the temperature at the temperature measurement point a. Since the temperature drops, the temperature of the temperature measurement point a when solidification has progressed to the gate 46 is experimentally confirmed and set in advance, and when this temperature is reached, the pouring time from the thermoelectric thermometer 49 is reached. It is transmitted to the control unit as a release signal. Further, the temperature at which the temperature at the temperature measurement point a continues to drop as the solidification progresses, and the temperature at which the solidified casting becomes a temperature at which no deformation or galling occurs even when the mold 40 is released. Is experimentally confirmed and set in advance, and when this temperature is reached, an electric signal is issued from the thermoelectric thermometer 49 to the control unit as a solidification time release signal.
[0044]
  The hot water supply pipe 19 disposed between the base 16 of the holding furnace 10 and the stalk 33 of the casting machine 30 is heated and kept warm by covering the outer periphery with a hot water supply pipe heater 51, and the outer periphery of the stalk 33 is also heated by the stalk heater 52. It is coated and heated and kept warm. The hot water supply pipe heater 51 and the stalk heater 52 may be formed by an integral heater.
[0045]
  Next, casting by the low-pressure casting apparatus 1 configured in this wayDirectionThe hot water filling operation flowchart shown in FIG. 6, the filling operation and repeated filling operation flowchart shown in FIG. 7, and the casting cycle explanatory diagram shown in FIG. 8 will be described.
[0046]
  Prior to the pouring of the molten metal 60 into the cavity 45 of the mold 40, the molten metal surface is placed at a predetermined height position of the stalk 33 of the casting machine 30, for example, a constant molten metal surface position L set at the upper end of the stalk 33 or a position near the upper end. Fill with hot water until 60a is reached.
[0047]
  This hot water filling operation will be described with reference to the hot water filling operation flowchart shown in FIG.
[0048]
  A molten metal 60 in which an aluminum alloy is dissolved is poured into the molten metal holding crucible 12 of the holding furnace 10 in advance, and a predetermined amount is stored and prepared.
[0049]
  In response to an instruction from the controller, the discharge port 19 is closed by the discharge port side valve body 20 at the proximal end of the hot water supply pipe 19 (step S1). Subsequently, the suction port 17a at the bottom of the pressurization pot 17 that has been closed by the suction port side valve body 18 is opened, and the inside of the molten metal holding crucible 12 and the pressurization pot 17 are communicated (step S2).
[0050]
  Next, the inside of the pressure pot 17 is depressurized by the vacuum pump 22 through the suction / air supply pipe 21, and the molten metal 60 in the molten metal holding crucible 12 is sucked from the suction port 17a to the vicinity of the upper end of the pressure pot 17 (step 3). . When the level sensor detects that the molten metal 60 has been sucked up to the vicinity of the upper end of the pressurizing pot 17, the decompression in the pressurizing pot 17 by the vacuum pump 22 is stopped, and the suction port 17a is closed by the suction port side valve element 18. Is closed (step S4).
[0051]
  Next, compressed air was supplied into the pressurizing pot 17 from the suction / air supply pipe 21 by the pressurizing pump 23 to pressurize the molten metal surface in the pressurizing pot 17 and was closed by the discharge port side valve body 20. The discharge port 19a is opened (step S5), and the molten metal 60 in the pressure pot 17 is pushed up to the constant molten metal surface position L set at the upper end of the stalk 33 or near the upper end through the hot water supply pipe 19 (step S6). The pressure which pushes up the molten metal 60 to the constant molten metal surface position L at this time is defined as a constant molten metal surface pressure.
[0052]
  When the molten metal 60 is pushed up to the constant molten metal surface position L, the molten metal surface 60a in the stalk 33 gradually approaches the temperature measurement point a of the thermoelectric thermometer 49 provided on the core pin 48 as the molten metal 60 is pushed up. As shown in the explanatory diagram of No. 8 casting cycle, the temperature at the temperature measurement point a is increased, and this temperature has reached the temperature A at which the molten metal surface 60a is located at the constant molten metal surface position L obtained experimentally in advance. It is detected by sensing with a thermoelectric thermometer 49.
[0053]
  When the molten metal surface 60a pushed up to the constant molten metal surface position L is detected by the thermoelectric thermometer 49 (step S7), the molten metal surface detection signal is sent from the thermoelectric thermometer 49 to the control unit, The pressurization in the pressure pot 17 is stopped, and at the same time, the discharge port 19a is closed by the discharge port side valve body 20 to prevent the reverse flow of the molten metal 60 from the stalk 33 and maintain the constant molten metal surface pressure. 60a is held at the constant molten metal surface position L (step S8).
[0054]
  Subsequent to the hot water filling operation from step 1 to step 8, the filling operation for filling the molten metal 60 into the cavity 45 of the mold 40 is started.
[0055]
  Next, the filling operation will be described with reference to the flowchart of the filling operation and repeated filling operation shown in FIG. 7 and the explanatory diagram of the casting cycle shown in FIG.
[0056]
  The suction port 17a closed by the suction port side valve body 18 in a state where the discharge port 19a is closed by the discharge port side valve body 20 and the molten metal surface 60a from the stalk 33 is held at the constant molten metal surface position L (step S11). Is released to release the constant molten metal surface pressure in the pressure pot 17 (step S12).
[0057]
  Next, the inside of the pressure pot 17 is decompressed by the vacuum pump 22 through the suction / air supply pipe 21, and the molten metal 60 for one casting of the cavity 45 is sucked into the pressure pot 17 from the suction port 17a (step S13). . When the molten metal 60 for one casting is sucked into the pressurizing pot 17, the decompression by the vacuum pump 22 is stopped, and the suction port 17a is closed by the suction port side valve body 18 (step S14). The amount of molten metal for one casting sucked and supplied to the pressure pot 17 is experimentally determined in advance, and a certain amount is secured by detecting suction to a certain position by a level sensor provided in the pressure pot 17. To do.
[0058]
  Subsequently, the pressurized pump 23 supplies compressed air from the suction / air supply tube 21 into the pressure pot 17 to pressurize the molten metal surface, and opens the discharge port 19a closed by the discharge port side valve body 20 ( Step S15). The molten metal 60 is pumped into the stalk 33 from the opened discharge port 19a through the hot water supply pipe 19, and the molten metal surface 60a is pushed up to fill the cavity 45, and the pressure required for the filling, that is, the filling pressure is maintained ( Step S16). Due to the melt heat of the melt 60 filled in the cavity 45, the temperature rise at the temperature measurement point a set on the core pin 48 starts as shown in FIG. 8, and the temperature detected by the thermoelectric thermometer 49 rises.
[0059]
  After the temperature of the temperature measurement point a reaches the highest point, for example, 600 ° C. due to the heat of the molten metal, the molten metal 60 filled in the cavity 45 starts to solidify from the upper end, and as the solidification progresses, the temperature measurement point a The temperature begins to drop.
[0060]
  When the thermoelectric thermometer 49 detects a temperature, for example, 530 ° C., at which the solidification has proceeded up to the gate 46 and the solidification has progressed to a preset temperature measurement point a (step S17), the thermoelectric temperature is detected. An electric signal is sent from the total 49 as a pouring time release signal, pressurization in the pressurization pot 17 by the pressurization pump 23 is stopped to release the filling pressure, and at the same time, the discharge port 19a is discharged from the discharge port side valve body 20 The melt surface 60a is held at the constant melt surface position L by closing and preventing the backflow of the melt 60 from the stalk 33 and maintaining the constant melt surface pressure (step S18).
[0061]
  Further, the solidification in the cavity 45 progresses and the temperature at the temperature measurement point a continues to fall, and the solidified and cast product does not cause deformation or galling even when the mold 40 is released, for example, When the thermoelectric thermometer 49 detects 490 ° C., the thermoelectric thermometer 49 generates an electric signal to the control unit as a solidification time release signal, and the mold 40 is opened by the mold operating mechanism 50 or the like, so that the casting solidified in the cavity 45 is obtained. It takes out and one casting cycle is complete | finished (step S19). Thereafter, the mold 40 is closed to enter the next molten metal filling standby state.
[0062]
  In the subsequent repeated filling operation, the suction port 17a is opened by the suction port side valve body 18 in a state where the discharge port 19a is closed by the discharge port side valve body 20 and the molten metal surface 60a of the stalk 33 is held at the constant molten metal surface position L. From step S11 for releasing the constant molten metal surface pressure in the pressurizing pot 17, the mold 40 is opened, the mold 40 is closed through step S19 for taking out the solidified casting in the cavity 45, and the next molten metal filling standby state is entered. By repeating steps S11 to S19, casting is continuously performed.
[0063]
  the aboveCasting method of low pressure casting equipmentAccording to the above, in the state where the molten metal surface 60a in the stalk 33 is maintained at the constant molten metal surface position L just below the cavity 45 by preventing the backflow from the stalk 33, the molten metal 60 is pushed out from the molten metal supply device 15 to the inside of the stalk 33. Since the molten metal surface 60a is pushed up and filled in the cavity 45 and cast,MeltingSince the distance from the molten metal surface position L to the cavity 45 is constant, the filling pressure for filling the cavity 45 by pushing up the molten metal surface 60a in the stalk 33 by the molten metal supply device 15 in each casting cycle is constant. Unlike the low pressure casting, it is not necessary to increase the filling pressure for each casting, and the filling pressure control means is not required, and the operation control of the low pressure casting apparatus 1 can be simplified.
[0064]
  Due to the constant molten metal surface position L, the molten metal surface 60a is close to the cavity 45, the moving distance of the molten metal 60 from the constant molten metal surface position L to the cavity 45 by the push-up is short, and the temperature drop of the molten metal 60 during filling is suppressed, The temperature of the molten metal 60 poured into the cavity 45 is maintained, and the molten metal fluidity at the time of filling the cavity 45 is good and the molten metal is excellent.
[0065]
  In addition, since the constant molten metal surface position L and the cavity 45 are close to each other, the moving time of the molten metal 60 during filling is short. As a result, the exposure time to the air in the stalk 33 when the molten metal 60 moves is short, and the generation of oxide is extremely small, and the oxide is caught in the molten metal 60 and pushed up into the cavity 45 to improve the quality of the cast product. It is avoided that the deterioration is caused, and oxides deposited on the inner peripheral surface of the stalk 33 are suppressed to secure a cross-sectional area of the molten metal passage, and a hot metal effect from the pouring gate is ensured to improve the efficiency of the casting operation. .
[0066]
  Furthermore, conventionally, a molten metal holding crucible has been arranged directly under the casting machine, and the molten metal holding crucible has been pressurized to fill the cavity with the molten metal. During the molten metal filling pressurization, the molten metal is supplied to the molten metal holding crucible. However, the molten metal holding furnace 11 provided with the molten metal holding crucible 12 and the casting machine 30 provided with the mold 40 are arranged separately, and the molten metal holding crucible 12 is affected. Since the pressurizing pot 17 that pressurizes the molten metal 60 is provided separately and separately, the molten metal can be replenished to the crucible 12 holding the molten metal at any time regardless of the filling of the molten metal into the cavity 45. Therefore, it is not necessary to stop casting, and the efficiency of casting work can be improved.
[0067]
  Further, the temperature of the temperature measurement point a when the molten metal 60 filled in the cavity 45 starts to solidify from the upper end and proceeds to the gate 46 is experimentally confirmed and set in advance. However, when the pouring gate 46 reaches a solidified temperature, it is transmitted from the thermoelectric thermometer 49 as a pouring time release signal to the control unit to release the filling pressure, so when the pouring gate 46 portion is truly solidified. The pouring time can be canceled. As a result, an appropriate pouring time is set and an appropriate hot-water filling effect is obtained, and the formation of nests at the gate 46 can be avoided. Similarly, the temperature of the temperature measurement point a when the solidified product is solidified and becomes a cast product is lowered to a temperature at which no deformation or galling occurs even when the mold 40 is released, is experimentally determined in advance. When the set temperature is reached, an electric signal is sent from the thermoelectric thermometer 49 to the control unit as a coagulation time release signal, and the mold is opened. The temperature at the time of mold release is set appropriately for the time, so that the galling and deformation generated in the cast product can be avoided, and the mold release is facilitated to ensure the quality of the cast product.
[0068]
  The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the constant molten metal surface position L is set to the upper end of the stalk 33 or a position near the upper end. However, by setting the fixed molten metal surface position L in the gate 46 of the mold 40, the constant molten metal surface position L is made closer to the cavity 45. In addition, the temperature drop of the molten metal 60 at the time of filling is extremely reduced by extremely shortening the moving distance of the molten metal from the molten metal surface 60a at the constant molten metal surface position L at the time of filling to the cavity 45, and the melt fluidity at the time of filling is reduced. It can be secured. Furthermore, the generation of oxides is suppressed, and the deterioration of the quality of the cast product is further avoided. Further, when the tip 48 d of the casting pin 48 does not reach the gate 46 due to the shape of the cast product, the temperature measurement point a of the thermoelectric thermometer 49 is set in the cavity 45. Further, the thermoelectric thermometer 49 can be disposed in the vicinity of the gate 46 of the lower mold 41 without being disposed on the core pin 48.
[0069]
  Further, it is possible to form a cooling water passage in the mold 40 according to the shape and thickness of the cast product, and to control the solidification rate in the cavity 45 by the cooling water. Furthermore, a metal net that removes oxides and impurities that are generated in the melting process of the molten metal and are mixed in the molten metal and that suppresses the rise of the molten metal can be attached to the gate 46 formed in the lower mold 41. . In addition to casting an aluminum alloy, casting of a high melting point alloy such as copper or iron is also possible.
[0070]
【The invention's effect】
  Of the present invention described above.Casting method of low pressure casting equipmentAccording to the above, the molten metal supply device pumps the molten metal in the molten metal holding crucible and pushes it up to the constant molten metal surface position in the stalk and prevents the back flow to hold the molten metal surface in the stalk at the fixed molten metal surface position. Since the molten metal for one casting in the crucible holding the molten metal is sequentially pumped while being held on the constant molten metal surface, the molten metal in the stalk is filled into the cavity and casting is repeated, so that it is held at the constant molten metal surface position in each casting cycle. The distance from the molten metal surface to the cavity is constant, and the filling pressure for pushing up the molten metal surface in the stalk by the molten metal supply device in each casting cycle to fill the cavity is constant, and the filling pressure is increased for each casting cycle. This eliminates the need for pressure and simplifies the operation control of constant pressure casting equipment, eliminates the difference in quality caused by changes in filling pressure, and ensures stable quality castings. It is.
[0071]
  In addition, the distance from the surface of the molten metal to the cavity is close, the movement distance of the molten metal from the molten metal surface to the cavity during filling is short, and the temperature drop of the molten metal due to filling is suppressed, and the molten metal fluidity during filling is good. Excellent turnability.
[0072]
  Furthermore, the distance that the molten metal moves during filling is short, the time during which the molten metal is exposed to the air in the stalk is shortened, the generation of oxides is reduced, and the oxide is cast into the molten metal. Product quality degradation is avoided. Similarly, oxide accumulation in the stalk is suppressed, the molten metal passage cross-sectional area is secured, the effect of the hot water from the gate is secured, and a high-quality cast product can be obtained.
[Brief description of the drawings]
FIG. 1 is according to the present invention.Used for casting methodIt is a conceptual diagram of a low pressure casting apparatus.
FIG. 2 is a schematic view of the main part of the low-pressure casting apparatus.
FIG. 3 is an enlarged view of a part A in FIG. 2 showing a main part of the molten metal holding furnace.
FIG. 4 is a cross-sectional view showing the main part of the casting machine.
FIG. 5 is a cross-sectional view showing the main part of the mold, similarly.
FIG. 6 is also a hot water stuffing operation flowchart.
FIG. 7 is also a flowchart of a filling operation and a repeated filling operation.
FIG. 8 is also an explanatory diagram of a casting cycle.
FIG. 9 is a conceptual diagram of a conventional low-pressure casting apparatus.
FIG. 10 is an explanatory view showing a decrease in the melt surface of a conventional low pressure casting apparatus.
[Explanation of symbols]
1 Low pressure casting equipment
10 Holding furnace
12 molten metal holding crucible
15 Molten metal supply device
17 Pressurized pot
17a Suction port
18 Suction side valve body
19 Hot water pipe
19a Discharge port
20 Discharge port side valve body
21 Suction and air pipe
22 Vacuum pump
23 Pressure pump
24 Pressurizing pot pressure reducing means
30 casting machine
33 Stoke
40 mold
45 Habibiti
46 Yuguchi
48 Cast Pin
49 Thermoelectric thermometer (molten surface position sensor)
60 molten metal
60a molten metal surface
a Temperature measurement point
L Position of molten metal surface

Claims (5)

上下方向に延在するストークと、該ストークの上端に湯口を介して連続されるキャビティが形成された金型と、溶湯が貯留される溶湯保持るつぼ、該溶湯保持るつぼ内に貯留された溶湯に下部が浸漬された密閉状態の加圧ポット、該加圧ポットと前記ストークの下端とを連結する給湯管、前記加圧ポットの下部に穿設された吸込口を開閉する吸込口側弁体、前記加圧ポット内に開口する前記給湯管の吐出口を開閉する吐出口側弁体及び、前記加圧ポット内を減圧及び加圧する加圧ポット減圧加圧手段を備えた保持炉と、を備えた低圧鋳造装置の鋳造方法であって、
前記吐出口を閉じかつ前記吸込口を開いて前記加圧ポット減圧加圧手段により加圧ポット内を減圧して吸込口から溶湯保持るつぼ内の溶湯を加圧ポット内に吸引する第1の工程と、
次いで、前記吸込口を閉じて加圧ポット減圧加圧手段により加圧ポット内を加圧すると共に吐出口を開放して加圧ポット内の溶湯を前記給湯管を介してストーク内に圧送し、予めストーク内に設定された定溶湯面位置に押し上げて保持する第2の工程と、
次いで、該定溶湯面位置に溶湯面を保持した状態から、1鋳造分毎の前記溶湯を順次圧送して前記ストーク内の溶湯を前記キャビティ内に充填する第3の工程と、を備えたことを特徴とする低圧鋳造装置の鋳造方法。
A stalk extending in the vertical direction, a mold having a cavity formed at the upper end of the stalk through a pouring gate, a molten metal holding crucible for storing molten metal, and a molten metal stored in the molten metal holding crucible A sealed pressure pot in which the lower part is immersed, a hot water pipe connecting the pressure pot and the lower end of the stalk, a suction port side valve body for opening and closing a suction port formed in the lower part of the pressure pot, A discharge port side valve body that opens and closes the discharge port of the hot water supply pipe that opens into the pressurization pot, and a holding furnace that includes a pressurization pot decompression and pressurization unit that depressurizes and pressurizes the pressurization pot. A low pressure casting apparatus casting method,
A first step of closing the discharge port and opening the suction port, and depressurizing the pressure pot by the pressure pot depressurization and pressurizing means to suck the molten metal in the crucible holding the molten metal from the suction port into the pressure pot. When,
Next, the suction port is closed, the inside of the pressure pot is pressurized by the pressure pot pressure reduction means, the discharge port is opened, and the molten metal in the pressure pot is pumped into the stalk through the hot water supply pipe. A second step of pushing and holding at a constant molten metal surface position set in the stalk;
Then, from the state in which the molten metal surface is held at the constant molten metal surface position, a third step of sequentially pumping the molten metal for each casting and filling the molten metal in the stalk into the cavity is provided. A casting method for a low-pressure casting apparatus.
前記定溶湯面位置は、前記ストーク内の上端乃至上端近傍に設定されたことを特徴とする請求項1に記載の低圧鋳造装置の鋳造方法。 2. The casting method for a low-pressure casting apparatus according to claim 1, wherein the constant molten metal surface position is set in an upper end or a vicinity of the upper end in the stalk . 前記定溶湯面位置は、前記ストーク内に代えて金型の湯口内に設定されたことを特徴とする請求項1に記載の低圧鋳造装置の鋳造方法。 The method for casting a low-pressure casting apparatus according to claim 1, wherein the position of the constant molten metal surface is set in a mold gate instead of in the stalk . 更に、前記第2の工程は、溶湯面位置センサによって定溶湯面位置の溶湯面を検出した場合、前記加圧ポット減圧加圧手段による加圧を停止することを特徴とする請求項1〜3のいずれか1項に記載の低圧鋳造装置の鋳造方法。Furthermore, the said 2nd process stops the pressurization by the said pressurization pot pressure reduction pressurization means, when the molten metal surface of a fixed molten metal surface position is detected by the molten metal surface position sensor. The casting method of the low pressure casting apparatus of any one of these. 前記溶湯面位置センサは、前記金型のキャビティ或いは湯口内に突出する鋳抜きピンに設けられた熱電温度計であって、該鋳抜きピンの先端近傍の温度を測定することで溶湯面を検出することを特徴とする請求項4に記載の低圧鋳造装置の鋳造方法。The molten metal surface position sensor is a thermoelectric thermometer provided on a core pin protruding into the mold cavity or the gate, and detects the surface of the molten metal by measuring the temperature near the tip of the core pin. The casting method of the low-pressure casting apparatus according to claim 4, wherein:
JP2001057071A 2001-03-01 2001-03-01 Casting method of low pressure casting equipment Expired - Fee Related JP4129352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057071A JP4129352B2 (en) 2001-03-01 2001-03-01 Casting method of low pressure casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001057071A JP4129352B2 (en) 2001-03-01 2001-03-01 Casting method of low pressure casting equipment

Publications (2)

Publication Number Publication Date
JP2002254153A JP2002254153A (en) 2002-09-10
JP4129352B2 true JP4129352B2 (en) 2008-08-06

Family

ID=18917008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057071A Expired - Fee Related JP4129352B2 (en) 2001-03-01 2001-03-01 Casting method of low pressure casting equipment

Country Status (1)

Country Link
JP (1) JP4129352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080601A (en) * 2017-12-31 2018-05-29 北京航空航天大学 A kind of low-pressure charging casting machine fills the casting device and casting method of type High Pressure Solidification with low pressure

Also Published As

Publication number Publication date
JP2002254153A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP2020516464A (en) Anti-gravity type mold filling method and device
JP3000806B2 (en) Continuous differential pressure casting
EP3603851B1 (en) Method and apparatus for casting objects made of aluminum, aluminum alloys, light alloys, brass and the like
JP4129352B2 (en) Casting method of low pressure casting equipment
JP2004344976A (en) Vertical injection device using gravity feeding
JP6331642B2 (en) Method for producing aluminum alloy castings
JP4132814B2 (en) Casting method of low pressure casting equipment
JP2011000597A (en) Pressure casting method
JP2004195533A (en) Method for controlling cooling of metallic mold in low-pressure casting apparatus, and metallic mold in low-pressure casting apparatus
JP6183272B2 (en) Casting apparatus and casting method
JP2799454B2 (en) Pressure control method and pressure control device for low pressure casting machine
JP4233351B2 (en) Low pressure casting method
JP2003311389A (en) Method for casting metal and casting apparatus used therefor
JP2002254154A (en) Low pressure casting method and low pressure casting device
JP6596921B2 (en) Method for controlling molten metal filling in casting apparatus
JPH07155924A (en) Method for supplying molten metal in die casting machine
JP3906158B2 (en) Casting equipment
JPH04270056A (en) Method and device for low pressure casting
JP4095157B2 (en) Hot water surface adjustment method for molten metal supply equipment
JP2020146739A (en) Casting apparatus and casting method
JPH11197816A (en) Casting apparatus
JPH08174172A (en) Method for casting low melting point metallic material and casting machine
JPH0195856A (en) Pump for supplying molten metal
JPH06328222A (en) Method for supplying molten metal in die casting machine
JP3908341B2 (en) Casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4129352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees