JP4124609B2 - Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process - Google Patents
Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process Download PDFInfo
- Publication number
- JP4124609B2 JP4124609B2 JP2002101309A JP2002101309A JP4124609B2 JP 4124609 B2 JP4124609 B2 JP 4124609B2 JP 2002101309 A JP2002101309 A JP 2002101309A JP 2002101309 A JP2002101309 A JP 2002101309A JP 4124609 B2 JP4124609 B2 JP 4124609B2
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- film thickness
- measurement
- ray
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、半導体製造工程におけるパターン部膜厚を測定する方法と装置に関する。
【0002】
【従来の技術】
半導体製造において半導体素子や配線を形成するために、以下のような順序にて工程が繰り返される。まず、製膜工程によりウェハ全面に薄膜を形成する。次に、ウェハ全面にレジスト膜を塗布し、リソグラフィ工程によりパターン形状に合わせた露光を行い、露光されたレジスト部分のみ、または露光されなかったレジスト部分のみを除去する。次に、除去されずに残ったレジスト膜で保護されている部分以外の薄膜、つまり表面が露出している薄膜部分をエッチング等で除去する。最後に、エッチング時の保護膜として残っているレジスト膜を除去する。結果として、最初に形成した薄膜に露光パターンが転写される。除去されずに残った薄膜の一部が、半導体素子や配線として利用される。このような工程で製作したパターンの表面はレジストで保護されているので、エッチングによってその膜厚が変化することはない。したがって、パターン部膜厚を知りたい場合には、パターン形成前の薄膜の膜厚を測定すればよい。そのためには、4端子抵抗測定、渦電流測定、光干渉測定、エリプソメータ測定、蛍光X線測定等の方法が用いられる。
【0003】
【発明が解決しようとする課題】
最近ではエッチングで除去された溝部分に金属を埋め込んで配線として利用する方法も採用されている。この場合は、レジスト除去後のウェハ全面に金属薄膜を製膜し、溝部分を埋めた金属以外の金属薄膜をエッチバック工程、あるいはCMP工程により除去する。CMPはChemical Mechanical Polishingの略で、CMP工程とは化学的、及び機械的に表面を研磨し、その過程で表面の凸凹をならして平坦化する工程である。これらの工程では、溝を構成する薄膜表面より高い部分の金属を全て除去し、薄膜の厚さ,つまり溝の深さと同じ膜厚の金属配線を残すことが基本となる。しかし、実際には、溝を構成する薄膜自身の表面が一部除去され、同様に金属配線の膜厚も元の溝の深さよりも薄くなる。また、薄膜表面よりも金属配線部の方が多く除去されて、さらに配線膜厚が薄くなることもある。このように、金属配線の膜厚が溝を構成する薄膜の製膜直後の膜厚とは異なるという事態が生じる。
【0004】
上記のような工程で作成される配線パターンの膜厚を測定しようとすると、パターン形成前の薄膜の膜厚を測定する従来の方法は、以下のような問題を抱えているために利用できない。第一に、配線パターンの膜厚はパターン形成前の薄膜の膜厚とは異なる。したがって、パターン形成後の測定が必要になる。4端子抵抗測定、及び渦電流測定では面方向に構造のない広範囲の薄膜を測定する必要があるので、パターン形成後には利用できない。第二に、光干渉測定、及びエリプソメータ測定は光を通す薄膜しか測定できないので、金属薄膜を測定することはできない。第三に、蛍光X線測定では、個々の配線パターンより小さなビーム径の励起X線を用いれば個々の配線の膜厚を求めることができるが、パターン寸法ほどにビーム径を小さくすることは現実的ではない。
【0005】
同様に、パターン構造に合わせて上層を選択成長させるような場合も、工程途中に面方向に構造のない広範囲の薄膜が存在しないので、膜厚を測定する際に同様の問題が生じる。
【0006】
本発明の課題は、上記問題点を解決するために、蛍光X線測定を用いて微細化された繰り返し薄膜パターンの膜厚を簡便に測定する方法と装置を提案することである。
【0007】
【課題を解決するための手段】
上記の課題を解決するために、本発明では、蛍光X線を用いてパターン構造部分の膜厚を測定する。ただし、その測定領域内に隙間なく多数の繰り返し薄膜パターンが含まれるような構成をとる。また、検出した蛍光X線量を膜厚に換算する際に、薄膜パターンの面内寸法を用いる。
【0008】
【発明の実施の形態】
蛍光X線を膜厚測定に利用する方法はよく知られているが、物理的な測定対象は試料中の原子数である。測定対象の薄膜は励起X線で照射されている励起領域内で一様であると仮定し、かつ膜中の原子数密度を仮定して、検出した蛍光X線量から膜厚に換算する。このような制約を考えると、パターン構造を持った薄膜の膜厚を測定するには、励起X線のビーム径をパターン寸法以下にしなければならない。実際の測定対象となるパターン寸法は1マイクロメートル以下と非常に小さいので、小型の分析計測装置にそのような励起X線を用意することは現実的ではない。
【0009】
本発明では、新たな発想を元に、測定対象とする個々のパターン寸法よりも広い領域をまとめて測定し、その薄膜パターンの膜厚を求めるための蛍光X線測定を提案する。その新発想とは、測定対象は測定領域内で一様な薄膜でなければならないという今までの制限を取り払い、多数のパターンが繰り返されている広い領域を測定領域とする点である。測定により得られる情報は、個々のパターンの膜厚ではなく、測定領域内に含まれるパターンの平均膜厚である。したがって、測定対象とする微細構造の寸法以下に測定領域を小さくする必要が無く、逆に測定領域内に含まれる標本数が多いほど平均値の精度が良くなるので、測定領域が広いほうが望ましい。また、測定領域が小さいほどその測定位置がずれないように振動を低く抑える必要が生じるが、本発明においてはそのような要求を抑えることができる。したがって、測定対象とするパターン寸法のさらなる微細化に対応することが容易である点が、この発明の優れた点である。
【0010】
以下に、数式を利用して本発明の詳細を説明する。まず、蛍光X線測定により検出される蛍光X線量を以下のように表す。
【0011】
B = C・∫∫∫(a(x、y)・G1(x、y、z))・D(x、y、z)・
(e(x、y)・G2(x、y、z))dx・dy・dz
(積分範囲:測定領域全面×厚み)
ここで、Bは検出される蛍光X線量、D(x、y、z)は位置(x、y、z)での膜中の測定対象元素の体積原子数密度、(a(x、y)・G1(x、y、z))は位置(x、y、z)での励起X線の照射密度、(e(x、y)・G2(x、y、z))は位置(x、y、z)で出射された蛍光X線に対する検出効率を示す。G1(x、y、z)は、励起X線が位置(x、y、z)まで進入する時の透過率を示す。したがって、G1(x、y、0)=1である。同様に、G2(x、y、z)は、位置(x、y、z)で出射された蛍光X線が試料表面に達するまでの透過率を示す。したがって、G2(x、y、0)=1である。Cは励起X線のエネルギー、測定対象元素の種類、検出対象の蛍光X線エネルギー、測定時間、式中の単位系等で決まる定数を表す。x、及びyは試料表面に沿って直交する2軸上の座標を示し、zは試料表面からの深さを示す。積分範囲における「厚み」は、対象としている薄膜パターンの厚みを示す。積分中でa(x、y)とe(x、y)の両方が正値の部分のみが、蛍光X線量Bに寄与する。その寄与領域が測定領域である。
【0012】
試料表面に沿って2次元的にパターンが繰り返される場合、上式を適切に近似変換して以下の式を得ることができる。ここで、S1は単位構造の面積を示す。
【0013】
∫∫∫G1(x、y、z)・D(x、y、z)・
G2(x、y、z)dx・dy・dz (積分範囲:単位構造内)
= S1・B/(C・(∫∫a(x、y)・e(x、y)dx・dy))
(積分範囲:測定領域全面)
試料表面に沿った繰り返し構造が一方向にしか存在しない場合、繰り返し構造の無い軸上での繰り返し幅を任意の適当な幅として定義する。そうすることで、上式中のS1、及び積分範囲の「単位構造内」の定義を変更することなく上記の基本式を利用できる。
【0014】
式中の(∫∫a(x、y)・e(x、y)dx・dy)は、光学素子の特性、配置等で決まるので、何らかの基準測定により較正した値を定数として使用することができる。
【0015】
次に、上式の左辺の積分を書き換えて、膜厚を算出する式を導く。まず、以後の計算を明瞭に進められるように、試料内部でのX線の減衰が無視できる程度に少ないと仮定し、G1(x、y、z)=G2(x、y、z)=1とする。その結果、以下のように書き換えることができる。
【0016】
∫∫∫G1(x、y、z)・D(x、y、z)・
G2(x、y、z)dx・dy・dz (積分範囲:単位構造内)
= ∫∫∫D(x、y、z)dx・dy・dz (積分範囲:単位構造内)
ここで、測定対象の薄膜試料を上から見た時に、xy面内で測定対象元素を含む領域とそれ以外の領域が明確に分かれ、それぞれの領域での原子数密度D(x、y、z)がD、及び0となっている場合を考える。以後、単位構造内での測定対象元素を含む範囲を単位測定対象範囲と呼び、そのxy面内での面積を単位測定対象面積S2とする。また、単位測定対象範囲での膜厚をT(x、y)とする。これらの定義を用いてさらに式を変形する。続けて、単位測定対象範囲内での膜厚T(x、y)を一定値Tとした場合も検討する。
【0017】
∫∫∫D(x、y、z)dx・dy・dz (積分範囲:単位構造内)
= ∫∫∫Ddx・dy・dz
(積分範囲:単位測定対象範囲×厚み)
= D・∫∫T(x、y)dx・dy (積分範囲:単位測定対象範囲)
= D・T・∫∫dx・dy (積分範囲:単位測定対象範囲)
= D・T・S2
したがって、以下に示す2種の式を得ることができる。
【0018】
T = (S1/S2)・B/
(C・D・(∫∫a(x、y)・e(x、y)dx・dy))
(積分範囲:測定領域全面)
∫∫T(x、y)dx・dy (積分範囲:単位測定対象範囲)
= S1・B/(C・D・(∫∫a(x、y)・e(x、y)dx・dy))
(積分範囲:測定領域全面)
前者の式より、蛍光X線量Bとパターン面積比(S1/S2)をもとにTを求められることが分かる。
【0019】
例えば、繰り返しパターンの配線構造(図2を参照)であれば、配線幅W、及び繰り返しピッチ幅Pの2種の寸法が分かれば、(S1/S2)=P/Wなので膜厚Tを求めることができる。図2は、薄膜の断面図で、紙面に対して垂直方向に多数の配線が並んでいる状態を示している。
【0020】
例えば、繰り返しパターンのプラグ構造(図3A、及び3Bを参照)であれば、単位構造の面積S1とプラグの配線断面積S2の2種の値が分かれば、膜厚Tを求めることができる。図3Aは、試料を上から見た図で、xy面内でのプラグの繰り返し構造、及びS1とS2に対応する範囲を示している。プラグとは、ウェハ表面に対して平行な下層配線と上層配線の間を上下につなぐ短い配線である。プラグの配線断面積とは、プラグ配線をウェハ表面と平行な面(xy面)でカットした時の断面積を指す。図3Bは、プラグ構造を立体的に示した透視図である。
【0021】
パターン面積比(S1/S2)を求める際、パターン部の設計値をそのまま使用する方法もあるが、設計値とのずれが懸念される場合にはパターン部の面内寸法を別の測定手段にて求める必要がある。したがって、上記方法を取り入れた蛍光X線膜厚測定装置に、光学顕微鏡、電子顕微鏡、またはSPM(Scanning Probe Microscope)等の表面測長機能を組み込むことで、同じ装置内で面方向の測長と深さ方向の膜厚測定をまとめて行うことができる。SPMとはSTM(Scanning Tunneling Microscope)、AFM(Atomic Force Microscope)、SNOAM(Scanning Near−Field Optical Atomic−Force Microscope)等の総称で、先端のとがった針で試料表面をなぞり、その電気的、物理的、光学的な特性を検出し、試料の表面形状や特性を原子、分子サイズで測定する顕微鏡のことである。
【0022】
後者の式に関しては、表面形状を示すF(x、y)を用いて以下のような書き換えを行う。ここで、F(x、y)−F0=T(x、y)の関係を用いる。SPM等による測定で表面形状F(x、y)を測定した場合、それだけでは試料内部の情報を持たないので、膜厚T(x、y)との間にオフセットF0を考慮してなければならない。
【0023】
∫∫T(x、y)dx・dy
= ∫∫(F(x、y)−F0)dx・dy
= ∫∫F(x、y)dx・dy−F0・S2
= ∫∫F(x、y)dx・dy−(F(x、y)−T(x、y))・S2
(積分範囲:単位測定対象範囲)
最終的に、以下の式を得ることができる。
【0024】
T(x、y)
= F(x、y)−(1/S2)・∫∫F(x、y)dx・dy
(積分範囲:単位測定対象範囲)
+(S1/S2)・B/
(C・D・(∫∫a(x、y)・e(x、y)dx・dy))
(積分範囲:測定領域全面)
したがって、蛍光X線量B、S1、S2、及び表面形状F(x、y)をもとにT(x、y)を求められることが分かる。T(x、y)は表面形状F(x、y)に膜厚情報が加わったもので、断面形状を表わしている。
【0025】
次に、上式を用いて単位測定対象範囲内での平均膜厚Tを求める。結果は、以下のようになり、膜厚一定の試料を測定した場合の膜厚Tと同じ結果を得る。
【0026】
T = (S1/S2)・B/
(C・D・(∫∫a(x、y)・e(x、y)dx・dy))
(積分範囲:測定領域全面)
表面形状F(x、y)、S1、及びS2を求める際にSPM等による表面形状測定を行うが、本発明の蛍光X線膜厚測定装置にその表面形状測定機能を組み込むことで、ひとつの装置内で断面形状測定を行うことができる。
【0027】
ここまで、G1(x、y、z)=G2(x、y、z)=1と仮定して計算を進めてきたが、この仮定が適切でない場合には上記の計算のように膜厚T、またはT(x、y)を単純な式で表すことはできなくなる。そのような場合、まず、膜厚T、またはT(x、y)を適当に仮定し、薄膜パターンの具体的な構造を元に、G1(x、y、z)、及びG2(x、y、z)を計算により求める。次に、そのG1(x、y、z)、及びG2(x、y、z)を用いて、検出した蛍光X線量から膜厚を求める。ここで得られた膜厚と最初に仮定した膜厚が一致すれば、最初に仮定した膜厚が正しかったことが分かる。もしずれていれば、補正した仮定膜厚を用いて同じ事を繰り返す。仮定した膜厚と解析結果の膜厚が一致した時、正しい膜厚が得られたことになる。また、実際の薄膜パターンの構造によっては、具体的な構造を計算に組み込むことで、上記と同様に膜厚T、またはT(x、y)を求める式を算出できる場合もある。その場合は、計算を繰り返す必要は無くなる。
【0028】
【実施例】
実施例について図面を参照して説明する。本実施例では、配線構造の試料に対する測定例を示したが、繰り返し配線構造だけが対象試料ではない。例えば、プラグの繰り返しパターン構造も本発明の対象に含まれる。
【0029】
図1は、測定試料と蛍光X線測定器を含めて示した図である。ウェハ4の表面にTEG5を設け、そこに励起X線1を照射する。TEG(Test Element Group)とは測定条件に合わせて作成された測定専用領域で、直に測定できない実デバイスの製造工程をモニターするために利用される。励起X線1により照射された部分だけが測定領域15となり、そこから放出された蛍光X線14を蛍光X線用検出器3を用いて測定する。また、励起X線1の照射範囲を絞るために励起X線用集光ミラー2を用いる。この方法で利用するTEGは、そのパターン形状が管理対象のパターンと同じになるように、管理対象のパターンと同時に作成する。また、下部構造が測定に影響しないように、それ以前の工程により作られる下部構造を制限する。励起X線の照射範囲に多数のパターンが含まれるように、パターン寸法に合わせて、励起X線のビーム径、およびTEGの大きさを設定する。集光ミラーの代わりにコリメーターを利用して必要なビーム径の励起X線ビームを用意してもよい。実際の装置においては、ウェハ4内でのTEG5の位置を特定し、測定領域をその位置に合わせる必要があり、その目的のために内蔵された光学顕微鏡等を利用する。
【0030】
図4は、CMP後の配線パターンを示している。CMP後に残された配線部8は、表面が水平ではなく、えぐれた形状をしている。配線パターンの配線ピッチ6、及び配線幅7をSEM測定によって求め、そこから得られるパターン面積比(S1/S2)の値を元に配線部の膜厚を求める。本発明による膜厚測定方法では破線で示したような平均の膜厚9が求められる。
【0031】
図5は、図4と同様のCMP後の配線パターンを示している。この例では、配線パターンの配線ピッチ6、及び配線幅7をAFM測定によって求め、そこから得られるパターン面積比(S1/S2)の値を元に配線部の膜厚9を求める。AFM測定では、さらに各配線の表面形状10も測定することができる。したがって、本発明により、破線で示した平坦な平均膜厚9だけではなく、平均的な配線断面形状11も求めることができる。したがって、配線側壁近傍での膜厚12、配線のえぐれ形状の底部での膜厚13等を求めることができる。平坦膜厚9から求められる配線断面積と膜構造11から求められる配線断面積は、ほぼ等しくなる。
【0032】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0033】
照射範囲内に多数の繰り返しパターンが含まれるように励起X線を照射し、その照射範囲からの蛍光X線量を測定することで、パターン面積比を元にパターン薄膜の平均膜厚を求めることができる。また、パターン表面形状を元にパターン薄膜の断面形状を求めることができる。
【0034】
蛍光X線膜厚測定装置に、光学顕微鏡、電子顕微鏡、またはSPM等の表面測長機能を組み込むことで、同じ装置内で面方向の測長と深さ方向の膜厚測定をまとめて行うことができる。また、SPM等の表面形状測定機能を組み込むことで、同じ装置内でパターン部の断面形状測定を行うことができる。
【0035】
測定領域を広くとれるため、ビームをパターン寸法ほどに集光したりする必要がなく、振動を低く抑える必要も無いので、将来の半導体加工におけるさらなる微細化に対応することが容易である。
【0036】
半導体集積回路の配線に対して、その配線幅とピッチをもとにして、配線部の膜厚を求めることができる。
【図面の簡単な説明】
【図1】本発明における実施例をTEGと共に示す図である。
【図2】パターン薄膜の断面図で、繰り返しパターンの配線構造を示す図である。
【図3】Aは、プラグ構造の繰り返しパターンを薄膜の上から見た図である。Bは、プラグ構造の繰り返しパターンを立体的に示した透視図である。
【図4】配線パターンの測定をSEMと組み合わせて行う例を示す図である。
【図5】配線パターンの測定をAFMと組み合わせて行う例を示す図である。
【符号の説明】
1 励起X線
2 励起X線用集光ミラー
3 蛍光X線用検出器
4 ウェハ
5 TEG
6 配線ピッチ
7 配線幅
8 配線
9 膜厚(測定結果)
10 表面形状
11 膜構造(測定結果)
12 配線側壁近傍での膜厚
13 配線のえぐれ形状の底部での膜厚
14 蛍光X線
15 測定領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring a film thickness of a pattern part in a semiconductor manufacturing process.
[0002]
[Prior art]
In order to form semiconductor elements and wirings in semiconductor manufacturing, the steps are repeated in the following order. First, a thin film is formed on the entire wafer surface by a film forming process. Next, a resist film is applied to the entire surface of the wafer, and exposure according to the pattern shape is performed by a lithography process to remove only the exposed resist portion or only the unexposed resist portion. Next, the thin film other than the part protected by the resist film remaining without being removed, that is, the thin film part having the exposed surface is removed by etching or the like. Finally, the resist film remaining as a protective film at the time of etching is removed. As a result, the exposure pattern is transferred to the initially formed thin film. A part of the thin film remaining without being removed is used as a semiconductor element or wiring. Since the surface of the pattern manufactured by such a process is protected by a resist, the film thickness does not change by etching. Therefore, when it is desired to know the film thickness of the pattern portion, the film thickness of the thin film before pattern formation may be measured. For this purpose, methods such as 4-terminal resistance measurement, eddy current measurement, optical interference measurement, ellipsometer measurement, and fluorescent X-ray measurement are used.
[0003]
[Problems to be solved by the invention]
Recently, a method of embedding a metal in a groove portion removed by etching and using it as a wiring is also employed. In this case, a metal thin film is formed on the entire wafer surface after the resist is removed, and the metal thin film other than the metal filling the groove is removed by an etch back process or a CMP process. CMP is an abbreviation for Chemical Mechanical Polishing. The CMP process is a process in which a surface is chemically and mechanically polished, and the surface is made uneven by planarizing the surface. In these steps, it is fundamental to remove all the metal in a portion higher than the surface of the thin film constituting the groove, and leave a metal wiring having the same thickness as the thickness of the thin film, that is, the depth of the groove. However, in practice, a part of the surface of the thin film itself constituting the groove is removed, and similarly, the thickness of the metal wiring becomes thinner than the depth of the original groove. In addition, the metal wiring portion may be removed more than the surface of the thin film, and the wiring film thickness may be further reduced. Thus, a situation occurs in which the film thickness of the metal wiring is different from the film thickness immediately after the thin film forming the groove is formed.
[0004]
When trying to measure the film thickness of the wiring pattern created in the above-described process, the conventional method of measuring the film thickness of the thin film before pattern formation cannot be used because it has the following problems. First, the thickness of the wiring pattern is different from the thickness of the thin film before pattern formation. Therefore, measurement after pattern formation is required. In 4-terminal resistance measurement and eddy current measurement, it is necessary to measure a wide range of thin films with no structure in the plane direction, so it cannot be used after pattern formation. Secondly, since the optical interference measurement and the ellipsometer measurement can only measure a thin film that transmits light, a metal thin film cannot be measured. Thirdly, in the fluorescent X-ray measurement, the film thickness of each wiring can be obtained by using the excitation X-ray having a beam diameter smaller than that of each wiring pattern. Not right.
[0005]
Similarly, when the upper layer is selectively grown in accordance with the pattern structure, there is no wide-area thin film having no structure in the plane direction during the process, so that the same problem occurs when measuring the film thickness.
[0006]
In order to solve the above problems, an object of the present invention is to propose a method and apparatus for simply measuring the film thickness of a repetitive thin film pattern that has been miniaturized using fluorescent X-ray measurement.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, the film thickness of the pattern structure portion is measured using fluorescent X-rays. However, a configuration is adopted in which a large number of repetitive thin film patterns are included in the measurement region without gaps. Moreover, when converting the detected fluorescent X-ray dose into a film thickness, the in-plane dimension of the thin film pattern is used.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Although the method of using fluorescent X-rays for film thickness measurement is well known, the physical measurement object is the number of atoms in the sample. The thin film to be measured is assumed to be uniform within the excitation region irradiated with excitation X-rays, and the atomic number density in the film is assumed, and the detected fluorescent X-ray dose is converted into the film thickness. Considering such restrictions, in order to measure the film thickness of a thin film having a pattern structure, the beam diameter of excitation X-rays must be made smaller than the pattern dimension. Since the actual pattern size to be measured is as small as 1 micrometer or less, it is not realistic to prepare such an excitation X-ray in a small analytical measurement apparatus.
[0009]
In the present invention, based on a new idea, a fluorescent X-ray measurement is proposed for measuring a region wider than the individual pattern dimensions to be measured and determining the film thickness of the thin film pattern. The new idea is that the measurement object should be a wide area where a large number of patterns are repeated, eliminating the conventional limitation that the measurement object must be a uniform thin film within the measurement area. The information obtained by the measurement is not the film thickness of each pattern but the average film thickness of the patterns included in the measurement region. Therefore, it is not necessary to make the measurement area smaller than the dimension of the microstructure to be measured. Conversely, the larger the number of samples contained in the measurement area, the better the accuracy of the average value. Further, as the measurement area is smaller, it is necessary to suppress the vibration to be low so that the measurement position does not shift. In the present invention, such a requirement can be suppressed. Therefore, the point that it is easy to cope with further miniaturization of the pattern dimension to be measured is an excellent point of the present invention.
[0010]
The details of the present invention will be described below using mathematical expressions. First, the fluorescent X-ray dose detected by fluorescent X-ray measurement is expressed as follows.
[0011]
B = C · ∫∫∫ (a (x, y) · G1 (x, y, z)) · D (x, y, z) ·
(E (x, y) · G2 (x, y, z)) dx · dy · dz
(Integration range: entire measurement area x thickness)
Here, B is the detected fluorescent X-ray dose, D (x, y, z) is the volume atom number density of the element to be measured in the film at position (x, y, z), and (a (x, y) G1 (x, y, z)) is the irradiation density of the excitation X-rays at the position (x, y, z), and (e (x, y) G2 (x, y, z)) is at the position (x, y, z). The detection efficiency for fluorescent X-rays emitted at y, z) is shown. G1 (x, y, z) indicates the transmittance when the excited X-ray enters the position (x, y, z). Therefore, G1 (x, y, 0) = 1. Similarly, G2 (x, y, z) indicates the transmittance until the fluorescent X-ray emitted at the position (x, y, z) reaches the sample surface. Therefore, G2 (x, y, 0) = 1. C represents a constant determined by the energy of excited X-rays, the type of element to be measured, the fluorescent X-ray energy to be detected, the measurement time, the unit system in the formula, and the like. x and y represent coordinates on two axes orthogonal to each other along the sample surface, and z represents a depth from the sample surface. “Thickness” in the integration range indicates the thickness of the target thin film pattern. Only the part where both a (x, y) and e (x, y) are positive in the integration contributes to the fluorescent X-ray dose B. The contribution area is the measurement area.
[0012]
When the pattern is repeated two-dimensionally along the sample surface, the following equation can be obtained by appropriately approximating the above equation. Here, S1 represents the area of the unit structure.
[0013]
∫∫∫G1 (x, y, z) · D (x, y, z) ·
G2 (x, y, z) dx · dy · dz (integral range: in unit structure)
= S1 · B / (C · (∫∫a (x, y) · e (x, y) dx · dy))
(Integration range: entire measurement area)
When the repeating structure along the sample surface exists only in one direction, the repeating width on the axis without the repeating structure is defined as any appropriate width. By doing so, the above basic formula can be used without changing S1 in the above formula and the definition of “in unit structure” of the integration range.
[0014]
Since (∫∫a (x, y) · e (x, y) dx · dy) in the equation is determined by the characteristics and arrangement of the optical element, a value calibrated by some reference measurement may be used as a constant. it can.
[0015]
Next, the equation for calculating the film thickness is derived by rewriting the integral on the left side of the above equation. First, it is assumed that the attenuation of X-rays in the sample is negligibly small so that the subsequent calculations can be performed clearly, and G1 (x, y, z) = G2 (x, y, z) = 1. And As a result, it can be rewritten as follows.
[0016]
∫∫∫G1 (x, y, z) · D (x, y, z) ·
G2 (x, y, z) dx · dy · dz (integral range: in unit structure)
= ∫∫∫D (x, y, z) dx · dy · dz (integral range: in unit structure)
Here, when the thin film sample to be measured is viewed from above, the region containing the element to be measured and the other region are clearly separated in the xy plane, and the atom number density D (x, y, z in each region). ) Is D and 0. Hereinafter, the range including the measurement target element in the unit structure is referred to as a unit measurement target range, and the area in the xy plane is defined as a unit measurement target area S2. The film thickness in the unit measurement target range is T (x, y). Using these definitions, the formula is further transformed. Subsequently, the case where the film thickness T (x, y) within the unit measurement target range is set to a constant value T will also be examined.
[0017]
∫∫∫D (x, y, z) dx · dy · dz (integral range: in unit structure)
= ∫∫∫Ddx / dy / dz
(Integration range: Unit measurement target range x thickness)
= D · ∫∫T (x, y) dx · dy (Integration range: Unit measurement target range)
= DT ・ ∫∫dx ・ dy (Integration range: Unit measurement target range)
= DT ・ S2
Therefore, the following two formulas can be obtained.
[0018]
T = (S1 / S2) · B /
(C · D · (∫∫a (x, y) · e (x, y) dx · dy))
(Integration range: entire measurement area)
∫∫T (x, y) dx · dy (Integration range: Unit measurement target range)
= S1 · B / (C · D · (∫∫a (x, y) · e (x, y) dx · dy))
(Integration range: entire measurement area)
From the former equation, it can be seen that T can be obtained based on the fluorescent X-ray dose B and the pattern area ratio (S1 / S2).
[0019]
For example, in the case of a repetitive pattern wiring structure (see FIG. 2), if two dimensions of the wiring width W and the repetitive pitch width P are known, the film thickness T is obtained because (S1 / S2) = P / W. be able to. FIG. 2 is a cross-sectional view of the thin film, and shows a state in which a large number of wirings are arranged in a direction perpendicular to the paper surface.
[0020]
For example, if the plug structure has a repetitive pattern (see FIGS. 3A and 3B), the film thickness T can be obtained if the two values of the area S1 of the unit structure and the wiring cross-sectional area S2 of the plug are known. FIG. 3A is a view of the sample from the top, and shows a repetitive structure of the plug in the xy plane and a range corresponding to S1 and S2. The plug is a short wiring that vertically connects between a lower wiring and an upper wiring parallel to the wafer surface. The wiring cross-sectional area of the plug refers to a cross-sectional area when the plug wiring is cut along a plane (xy plane) parallel to the wafer surface. FIG. 3B is a perspective view showing the plug structure in three dimensions.
[0021]
When obtaining the pattern area ratio (S1 / S2), there is a method of using the design value of the pattern part as it is, but if there is a concern about deviation from the design value, the in-plane dimension of the pattern part is used as another measuring means. It is necessary to ask. Therefore, by incorporating a surface length measuring function such as an optical microscope, electron microscope, or SPM (Scanning Probe Microscope) into a fluorescent X-ray film thickness measuring device incorporating the above method, The film thickness measurement in the depth direction can be performed collectively. SPM is a generic name for the surface, such as STM (Scanning Tunneling Microscope), AFM (Atomic Force Microscope), SNOAM (Scanning Near-Field Optical), It is a microscope that detects the optical and optical characteristics and measures the surface shape and characteristics of the sample with atomic and molecular sizes.
[0022]
Regarding the latter formula, the following rewriting is performed using F (x, y) indicating the surface shape. Here, the relationship of F (x, y) −F0 = T (x, y) is used. When the surface shape F (x, y) is measured by measurement using SPM or the like, the information inside the sample is not obtained by itself, so the offset F0 must be taken into consideration with the film thickness T (x, y). .
[0023]
∫∫T (x, y) dx · dy
= ∫∫ (F (x, y) −F0) dx · dy
= ∫∫F (x, y) dx · dy-F0 · S2
= ∫∫F (x, y) dx · dy− (F (x, y) −T (x, y)) · S2
(Integration range: Unit measurement target range)
Finally, the following equation can be obtained.
[0024]
T (x, y)
= F (x, y)-(1 / S2) · ∫∫F (x, y) dx · dy
(Integration range: Unit measurement target range)
+ (S1 / S2) ・ B /
(C · D · (∫∫a (x, y) · e (x, y) dx · dy))
(Integration range: entire measurement area)
Accordingly, it is understood that T (x, y) can be obtained based on the fluorescent X-ray doses B, S1, S2, and the surface shape F (x, y). T (x, y) is obtained by adding film thickness information to the surface shape F (x, y) and represents a cross-sectional shape.
[0025]
Next, the average film thickness T within the unit measurement target range is obtained using the above equation. The result is as follows, and the same result as the film thickness T when a sample having a constant film thickness is measured is obtained.
[0026]
T = (S1 / S2) · B /
(C · D · (∫∫a (x, y) · e (x, y) dx · dy))
(Integration range: entire measurement area)
When determining the surface shape F (x, y), S1, and S2, the surface shape is measured by SPM or the like. By incorporating the surface shape measuring function into the fluorescent X-ray film thickness measuring device of the present invention, The cross-sectional shape can be measured in the apparatus.
[0027]
Up to this point, the calculation has been made assuming that G1 (x, y, z) = G2 (x, y, z) = 1. However, if this assumption is not appropriate, the film thickness T is calculated as in the above calculation. Or T (x, y) cannot be expressed by a simple expression. In such a case, first, the film thickness T or T (x, y) is appropriately assumed, and G1 (x, y, z) and G2 (x, y) are based on the specific structure of the thin film pattern. , Z) is obtained by calculation. Next, using the G1 (x, y, z) and G2 (x, y, z), the film thickness is obtained from the detected fluorescent X-ray dose. If the film thickness obtained here agrees with the initially assumed film thickness, it can be understood that the initially assumed film thickness was correct. If there is a deviation, the same process is repeated using the corrected assumed film thickness. When the assumed film thickness coincides with the film thickness of the analysis result, the correct film thickness is obtained. Further, depending on the actual structure of the thin film pattern, an equation for obtaining the film thickness T or T (x, y) may be calculated in the same manner as described above by incorporating a specific structure into the calculation. In that case, there is no need to repeat the calculation.
[0028]
【Example】
Embodiments will be described with reference to the drawings. In this embodiment, the measurement example for the wiring structure sample is shown, but the repeated wiring structure is not the only sample. For example, a repeated pattern structure of a plug is also included in the subject of the present invention.
[0029]
FIG. 1 is a diagram including a measurement sample and a fluorescent X-ray measurement device. A
[0030]
FIG. 4 shows a wiring pattern after CMP. The
[0031]
FIG. 5 shows a wiring pattern after CMP similar to FIG. In this example, the
[0032]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0033]
By irradiating excitation X-rays so that a large number of repeated patterns are included in the irradiation range, and measuring the fluorescent X-ray dose from the irradiation range, the average film thickness of the pattern thin film can be obtained based on the pattern area ratio. it can. Further, the cross-sectional shape of the pattern thin film can be obtained based on the pattern surface shape.
[0034]
By incorporating surface length measurement functions such as an optical microscope, electron microscope, or SPM into the fluorescent X-ray film thickness measurement device, the length measurement in the surface direction and the thickness measurement in the depth direction are performed together in the same device. Can do. Further, by incorporating a surface shape measurement function such as SPM, the cross-sectional shape of the pattern portion can be measured in the same apparatus.
[0035]
Since the measurement area can be widened, it is not necessary to focus the beam as much as the pattern size, and it is not necessary to keep vibrations low, so that it is easy to cope with further miniaturization in future semiconductor processing.
[0036]
With respect to the wiring of the semiconductor integrated circuit, the film thickness of the wiring portion can be obtained based on the wiring width and pitch.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention together with a TEG.
FIG. 2 is a cross-sectional view of a patterned thin film, showing a wiring structure of a repetitive pattern.
FIG. 3A is a view of a repetitive pattern of a plug structure as viewed from above a thin film. B is a perspective view three-dimensionally showing the repetitive pattern of the plug structure.
FIG. 4 is a diagram illustrating an example in which measurement of a wiring pattern is performed in combination with an SEM.
FIG. 5 is a diagram illustrating an example in which measurement of a wiring pattern is performed in combination with an AFM.
[Explanation of symbols]
DESCRIPTION OF
6
10
12 Film thickness in the vicinity of the
Claims (6)
前記測定領域から出射される蛍光X線を検出し、
表面測長機能で前記測定領域の面内寸法を測定し、
前記蛍光X線の検出量と前記測定した面内寸法に基づいて前記パターンの膜厚を求めるパターン膜厚測定方法。Irradiating an excitation X-ray in the measurement area comprising a plurality of repetitive patterns,
Detecting fluorescent X-rays emitted from the measurement region;
Measure the in-plane dimensions of the measurement area with the surface length measurement function,
A pattern film thickness measurement method for obtaining a film thickness of the pattern based on the detected amount of the fluorescent X-ray and the measured in-plane dimension.
前記測定領域に励起X線を照射する励起X線源と、
前記測定領域から放出された蛍光X線を検出する蛍光X線検出器と、
前記表面測長機能で測定された面内寸法と、前記蛍光X線検出器で検出された前記蛍光X線の検出量に基づいて、前記パターンの膜厚を求める解析手段と、を備えたことを特徴とするパターン膜厚測定装置。Surface length measurement function to measure the in-plane dimension of the measurement area consisting of multiple repeating patterns,
An excitation X-ray source for irradiating the measurement region with excitation X-rays;
A fluorescent X-ray detector for detecting fluorescent X-rays emitted from the measurement region;
A plane dimension measured at the surface length measurement function, that said detected by X-ray fluorescence detector based on the detected amount of the fluorescent X-ray, with a, and analyzing means for determining the thickness of said pattern A pattern film thickness measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002101309A JP4124609B2 (en) | 2002-04-03 | 2002-04-03 | Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002101309A JP4124609B2 (en) | 2002-04-03 | 2002-04-03 | Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003294431A JP2003294431A (en) | 2003-10-15 |
JP4124609B2 true JP4124609B2 (en) | 2008-07-23 |
Family
ID=29241744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002101309A Expired - Lifetime JP4124609B2 (en) | 2002-04-03 | 2002-04-03 | Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4124609B2 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101374308B1 (en) * | 2005-12-23 | 2014-03-14 | 조르단 밸리 세미컨덕터즈 리미티드 | Accurate measurement of layer dimensions using xrf |
JP5276382B2 (en) * | 2008-08-28 | 2013-08-28 | 株式会社リガク | X-ray fluorescence analyzer |
EP2417659B1 (en) * | 2009-04-06 | 2018-12-26 | EaglePicher Technologies, LLC | System and method for verifying correct ordering of stack of components |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
PL2251454T3 (en) | 2009-05-13 | 2014-12-31 | Sio2 Medical Products Inc | Vessel coating and inspection |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
CA2887352A1 (en) | 2012-05-09 | 2013-11-14 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
EP2914762B1 (en) | 2012-11-01 | 2020-05-13 | SiO2 Medical Products, Inc. | Coating inspection method |
EP2920567B1 (en) | 2012-11-16 | 2020-08-19 | SiO2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US20160015898A1 (en) | 2013-03-01 | 2016-01-21 | Sio2 Medical Products, Inc. | Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
KR102472240B1 (en) | 2013-03-11 | 2022-11-30 | 에스아이오2 메디컬 프로덕츠, 인크. | Coated Packaging |
WO2015148471A1 (en) | 2014-03-28 | 2015-10-01 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
BR112018003051B1 (en) | 2015-08-18 | 2022-12-06 | Sio2 Medical Products, Inc | VACUUM BLOOD COLLECTION TUBE |
-
2002
- 2002-04-03 JP JP2002101309A patent/JP4124609B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003294431A (en) | 2003-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4124609B2 (en) | Method and apparatus for measuring film thickness of pattern part in semiconductor manufacturing process | |
CN101278237B (en) | Structure and method for simultaneously determining overlay accuracy and pattern placement error | |
KR102495770B1 (en) | Whole Beam Metrology for X-ray Scatterometry Systems | |
JP6320387B2 (en) | Device correlation measurement method (DCM) for OVL with embedded SEM structure overlay target | |
USRE45943E1 (en) | Measurement of overlay offset in semiconductor processing | |
JP2023518221A (en) | Method for cross-sectional imaging of inspection volume in wafer | |
JP2020522883A (en) | Process monitoring of deep structure by X-ray scatterometry | |
TW201940841A (en) | Systems and methods for combined X-ray reflectometry and photoelectron spectroscopy | |
KR102748447B1 (en) | Method and system for overlay measurement based on soft x-ray scatterometry | |
KR20200018824A (en) | Method and System for Semiconductor Measurement Based on Multicolor Soft X-ray Diffraction | |
KR20180083435A (en) | X-ray scatterometry measurements on high aspect ratio structures | |
KR20220050976A (en) | Method and system for semiconductor metrology based on wavelength-resolved soft X-ray reflectometry | |
KR20190095525A (en) | X-ray zoom lens for small angle X-ray scatterometry | |
EP0720216B1 (en) | Linewidth metrology of integrated circuit structures | |
CN111948239B (en) | Computationally efficient X-ray based overlay measurement system and method | |
KR100890478B1 (en) | Mark position detection apparatus | |
JP7520501B2 (en) | System and method for analyzing semiconductor devices | |
CN109324278A (en) | Method for X-ray scattering measurement | |
JP2004003959A (en) | Measuring method of fluorescent x-ray measuring method and apparatus, working method, and working apparatus | |
JP2005009941A (en) | Library preparing method | |
JP3753239B2 (en) | Sample for observing surface defect of semiconductor wafer and method for producing the same | |
JP2022539425A (en) | METROLOGY METHOD AND RELATED COMPUTER PRODUCTS | |
JP2906924B2 (en) | Wafer surface roughness measurement method | |
CN100380234C (en) | Measurement method combining CD and coating in one step | |
JP3950074B2 (en) | Thickness measuring method and thickness measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040304 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040526 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080430 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080502 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4124609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |